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Abstract: Designing conventional circuits presents many challenges, including minimizing internal power 

dissipation. An approach to overcoming this problem is utilizing quantum technology, which has attracted 

significant attention as an alternative to Nanoscale CMOS technology. The reduction of energy dissipation makes 

quantum circuits an up-and-coming emerging technology. Ternary logic can potentially diminish the quantum 

circuit width, which is currently a limitation in quantum technologies. Using qutrit instead of qubit could play an 

essential role in the future of quantum computing. First, we propose two approaches for quantum ternary decoder 

circuit in this context. Then, we propose a quantum ternary multiplexer and quantum ternary demultiplexer to 

exploit the constructed quantum ternary decoder circuit. Techniques to achieve lower quantum cost are of 

importance. We considered two types of circuits, one in which the output states are always restored to the initial 

input states and the other in which the states of the output are irrelevant. We compare the proposed quantum ternary 

circuits with their existing counterparts and present the improvements. It is possible to realize the proposed designs 

using macro-level ternary gates that are based on the ion-trap realizable ternary 2-qutrit Muthukrishnan–Stroud 

and 1-qutrit permutation gates. 
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1. Introduction 

According to Moore's law, computer processing power has steadily increased in the last few decades owing to the 

escalating transistor density on chips. To reduce the width and increase the number of transistors, the problem of 

electron interaction and the creation of unwanted capacitors should be considered [1-2]. It will eventually be 

impossible to keep downsizing the current technology forever since this will eventually reach the fundamental 

physical limits of atomic structures. Rolf Landauer demonstrated that losing every bit of information in irreversible 

conventional circuits leads to an internal power dissipation of at least kTln2 Joules, where T is the absolute 

temperature of the environment and k is the Boltzmann constant [3]. Scientists have sought alternatives to CMOS 

technology due to a growing demand for lower power consumption and higher processing power [4]. 

It is believed that quantum computing has a great deal of potential to parallelize information processing. In 

quantum computing, quantum mechanical systems are used to process quantum information. Various quantum 

technologies have been introduced in the literature: ion trap systems in which information is represented as the 

energy levels of individual ions; optical quantum systems, which represent information using different 

polarizations of photons; silicon NMR systems where information stored in the spin of the nucleus of an atom or 

superconductor [5-10]. 

The quantum computer is a promising candidate for the next generation of computers, which are more powerful 

than classical ones. They are believed to solve intractable problems that the current classical computers cannot 



solve. Since quantum computing is inherently reversible and information is not lost in reversible computations, 

the use of quantum gates prevents power dissipation [11-12]. Quantum gates implement permutation functions 

and have the same number of outputs and inputs [13-16]. Fan-out and feedback from output to input are prohibited 

when designing quantum reversible circuits [17]. The research on quantum computers is moving towards avoiding 

energy loss and designing computers with high speed [11]. 

Qudit circuits and more specifically qutrit ones in quantum technology are recently investigated by researchers 

due to their advantages over their binary counterparts, including logarithmic reductions in the number of qudits 

[50-53]. For a Hilbert space of N dimensions, in a quantum binary system, the required number of qubits is equal 

to [18-20]:  

�� = log� �  (1) 

However, in a quantum 3-valued system, the required number of qudits is: 

�� = log� �  (2) 

�� = log� � = 	
�� 
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�� �� �� = �
�.��� �� = 0.63  �� (3) 

As can be seen in equation (3), a 3-valued quantum system requires 0.63 times the memory of the respective binary 

quantum system. Therefore, logarithmic reduction in the number of qudits can be considered the main advantage 

of a 3-valued quantum system over a binary quantum system [18-20]. 

From the points discussed above, it can be concluded that in quantum ternary systems, 0.37 times fewer qutrits are 

required than the required qubits in the quantum binary systems [18-20]. In this work, we will focus on qutrit 

systems. Compared to qubit systems, qutrit systems simplify the decomposition and reduce resources, requiring 

fewer qubits and less memory. Investigating qutrit systems is essential since we have access to a limited number 

of qudits. However, the preparation, control, accessibility, fault tolerance, runtime, reliability, noise, and error rate 

issues, which are difficult to surmount, also need to be investigated. Since using qutrit systems, a smaller amount 

of energy separates states beyond zero and one; hence noise and control issues become challenging. An inverse 

engineering method is proposed in [59] for the dynamical control of three-level open systems by considering 

energy relaxation and dephasing. This paper shows that, by using a superconducting qutrit platform, the error rate 

of the controls is significantly reduced. Authors in [51] discussed constructing any qutrit multiple-controlled 

Clifford+T unitary using just Clifford+T gates and without using any ancilla lines. They proposed ancilla-free 

Clifford+T implementations of multiple-controlled T gates as well as all versions of qutrit multiple-controlled 

Toffoli gate, while the analogous results for qubits are impossible [51]. An implementation of ternary classical 

reversible functions on n-trits as an ancilla-free qutrit unitary is also provided in [51]. Quantum systems are highly 

sensitive to errors, and it is even possible for a state to be changed when interacting with the environment [58,63]. 

In [63], an error-correcting code is proposed which can correct a single error in a qutrit. Fault tolerance in quantum 

circuits can be determined by the entangling gate and the interaction network topology [60]. It is important to 

optimize the number of quantum units as well as the depth of a quantum circuit in order to minimize the effect of 

noise in the output. The authors in [62] discussed the advantages of using qutrit systems instead of qubit systems 

in scalar quantum electrodynamics. In [61], qutrit systems were shown to outperformed qubits ones in terms of 

reliability and runtime. 

Any combinational logic circuit can be implemented in a binary system using multiplexers and basic logic gates 

which is also true for ternary logic [54]. Many quantum ternary circuits implementation for different types of 

computational units of quantum systems, including full adder, half adder, parallel adder/subtractor, subtractor, 



multiplier, decoder, encoder, demultiplexer, and multiplexer, can be found in the literature [20-31, 58]. Decoder, 

multiplexer, and demultiplexer circuits are major sub-circuits needed for constructing ternary quantum oracles and 

ternary system designs such as communication systems, computer memory, and arithmetic logic unit [55]. In [31], 

a quantum ternary decoder with a quantum cost of 57 is presented. 

Moreover, quantum ternary multiplexer and demultiplexer are introduced in [30], with a quantum cost of 102. This 

paper focuses on synthesizing more efficient quantum ternary decoders, multiplexers, and demultiplexers 

compared to existing designs in [30-31]. Moreover, we present the characteristics of the proposed circuits with 

respect to quantum cost, depth, number of garbage outputs, and number of constant inputs. The synthesized circuits 

are usually evaluated by minimizing these important parameters, which leads to better efficiency of the quantum 

ternary logic design [32-34]. In the literature, these parameters are defined as follows: 

Total quantum cost is the number of 1-qutrit permutation gates required to realize the quantum ternary 

circuit. 

Depth is the number of timesteps required to realize the corresponding quantum circuit [49]. One or more 

quantum ternary gates that act on disjoint qutrit can be executed in each timestep in parallel.  

The number of constant inputs is the number of inputs to be kept constant at 0, 1, or 2 in order to 

synthesize a logic function.  

The number of Garbage outputs is the number of unused outputs to maintain the reversibility of the logic 

functions. 

The paper is organized as follows: Section 2 presents ternary logic and ternary Galois Field, and quantum ternary 

gates, which are used in the following sections to design our proposed circuits. Section 3 presents the realization 

of our proposed quantum reversible ternary decoder, multiplexer, and demultiplexer circuits. In Section 4, the 

assessment of the proposed circuits is discussed, and finally, the conclusion is given in Section 5. 

 

2. Preliminaries 

The basic concepts of quantum ternary logic are presented in this section. We will also introduce ternary Galois 

Field 3 (GF3) and corresponding multiplication and addition operations in GF3. Moreover, this section includes 

quantum ternary permutation, Muthukrishnan-Stroud, and Controlled Feynman gates, which were used to 

construct our proposed designs in the next sections.  

 

2.1. Quantum Ternary Logic and Qutrit 

In quantum multiple-valued logic, quantum ternary logic is the most popular type. In comparison with binary logic, 

quantum ternary logic offers several advantages, including higher security [35, 36], stronger quantum information 

processing [37], higher density of stored information, reduced interconnection complexity and area [38], lower 

power consumption and improved fault tolerance [39]. Ternary quantum computation achieves higher error-

tolerance when compared to binary quantum computation [56]. In a quantum ternary system, the unit of 

information is called qutrit (quantum ternary digit). There are three basic states for a qutrit, namely |0〉, |1〉, and |2〉. 
These basic states are called qutrit states and can be represented by 3×1 vectors [25]: 

|0〉 = �100�        |1〉 = �010�         |2〉 = �001�  (5) 



Qutrits can be represented by linear superpositions of basis states in a quantum ternary system. Superposition is 

the term for this technique, which can be defined with the following equation:  

� =  |0⟩ + #|1⟩ + $|2⟩  (6) 

where ψ is the wave function and α, β, and γ are complex numbers. The quantum ternary system may be in each 

basis state with a specified probability. The probability measurement of the occurrences for state |0〉 is equal to 

|α|2, for state |1〉 is |#|�, and for state |2〉 is equal to |$|�. The sum of these probabilities is shown in the following:  

| |� + |#|� + |$|� = 1  (7) 

2.2. Ternary Galois Field 

In this section, an introduction to the Ternary Galois Field 3 (GF3) is provided. The GF3 algebraic structure is 

composed of three elements T= {0, 1, 2} and two primitive binary operations that are module 3. Table 1 and Table 

2 show the operations of addition (⊕) and multiplication (⊙), respectively [26, 40].  

 

Table 1. The truth table of GF 3 addition operation [26, 29]. 

⊕⊕⊕⊕ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

 

Table 2. The truth table of GF 3 multiplication operation [26, 29]. 

⊙⊙⊙⊙ 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

 

GF3 operations satisfy the following axioms. As can be seen, operations in GF3 are associative and commutative. 

Moreover, multiplication is distributive over addition. 

Axiom 1: a⊕ (b⊕ c) = (a⊕ b) ⊕ c (Associative law for addition) 

Axiom 2: a⊕ b= b⊕ a (Commutative law for addition) 

Axiom 3: a⊕ 0 = a (Identity element for addition) 

Axiom 4: a⊕ (−a) = 0 (Inverse element for addition) 

Axiom 5: a ⨀ (b ⨀ c) = (a ⨀ b) ⨀ c (Associative law for multiplication) 

Axiom 6: a ⨀ b= b ⨀ a (Commutative law for multiplication) 

Axiom 7: a ⨀1 = a (Identity element for multiplication) 

Axiom 8: a ⨀ a−1= 1 (Inverse element for multiplication) 

Axiom 9: a ⨀ (b⊕ c) = (a ⨀ b) ⊕ (a ⨀ c) (Distributive law) 

 

2.3. Ternary Permutation Gates 

In ternary logic, there are 3! =6 possible permutations of 0, 1, and 2. Accordingly, a ternary logic variable can be 

transformed in 6 ways using unitary transformations. The truth tables for these transforms can be seen in Table 3. 

 

Table 3. Ternary permutative unitary transforms [18]. 

Z(02)  Z(01) Z(12)  Z(+2)  Z(+1)  Z(+0)  Transform  

210  102 021  201  120  012  Input 012  



 

According to Table 3, the value of the variable a changes from x to y and y to x without changing the other values 

if transforms of the form Z (xy) (where x, y ∈ {0, 1, 2}) and x ≠ y, are applied on a variable a. The value of the 

variable a will become a ⊕ x when the transforms of the form Z (+x) (where x ∈ {0, 1, 2}) are applied on a 

variable a.  

All transforms can also be represented by 3×3 matrixes. Any of these matrixes can be presented by a 1-qutrit 

permutation gate [30, 41]. Figure 1 illustrates 1-qutrit permutative transforms. 

 

Z (+0) =�1 0 00 1 00 0 1�              Z (+1) =�0 0 11 0 00 1 0�           Z (+2) =�0 1 00 0 11 0 0� 

 

Z (12) =�1 0 00 0 10 1 0�              Z (01) =�0 1 01 0 00 0 1�           Z (02) =�0 0 10 1 01 0 0� 

Figure 1. 1-qutrit permutative transforms [26, 30]. 

 

In the Z (+0) transformation, each column shows 0, 1, and 2, respectively, and it is known as an elementary state. 

In Z (+1) transformation, the qutrit states are Z (+0) shifted by 1, in Z (+2) transformation, the qutrits in elementary 

state shift by 2; with Z (12) transformation, the qutrit states |1〉 and |2〉 in Z (+0) will be exchanged, Z (01) 

exchanges qutrit states |0〉 and |1〉 in the elementary state, and with Z (02) qutrit states |0〉 and |2〉 will be 
exchanged. These transformations can be presented as 1-qutrit permutation gates. In the literature, each of these 

gates has various names [41- 44, 57], Z(+0) is called buffer and represents a quantum wire; Z(+2) is named C2 

and dual-shift; Z(+1) is called C1 and single-shift; Z(12) is termed D and self-shift; Z(01) called E and self-single-

shift, and Z(02) is called N inverse and self-dual-shift. Figure 2 shows the symbolic representation of 1-qutrit 

permutation gates. In this gate, the output P is equal to Z transform (where Z= {+0, +1, +2, 01, 02, 12}) of input 

A. The quantum cost of these gates is 1.  

A PZ
 

Figure 2. Symbol of 1-qutrit permutation gates [25].  

 

As an example, for 1-qutrit permutation gates, when the transform is Z (+2) and the variable a is 1, we have: 

Z (+2) =�0 1 00 0 11 0 0�                 6 = |1〉 = �010�         (8) 

Application of a transform Z on a variable a is computed as the matrix multiplication of Z.a. The computation of 

Z (+2).a is as follows: 

�0 1 00 0 11 0 0� . �010� = �100�            (9) 

As can be seen in Table 3, when the input is 1, and the transform is Z (+2), the result is 0. It is worth mentioning 

that each of the 1-qutrit permutation gates has a unitary inverse gate which is utilized in order to restore the inputs 

[45-46]. Inverse gates for each 1-qutrit permutation gate are illustrated in Table 4. As shown in this table, Z (01), 

Z (02), and Z (12) are self-inverse gates. 



 

Table 4. Ternary 1- qutrit gates and their inverse gates [18]. 

Z(02)  Z(01)  Z(12)  Z(+2)  Z(+1)  Gate  

Z(02)  Z(01)  Z(12)  Z(+1)  Z(+2)  Inverse gate  

 

2.4. Ternary Muthukrishnan–Stroud Gates 

Muthukrishnan and Stroud designed 2-qutrit quantum gates and demonstrated their ion-trap realizations [25]. 

Figure 3 shows the graphical symbol used for 2-qutrit Muthukrishnan-Stroud (M-S) gate. As shown, the inputs 

for this gate are A and B, and the outputs are P and Q where P equals A and Q equals Z transform (where Z= {+1, 

+2, 01, 02, 12}) of B when A=2, otherwise Q=B. This gate has a quantum cost of 1. 

 

A

B

P

QZ
 

Figure 3. Symbol of 2-qutrit Muthukrishnan-Stroud gate [25]. 

 

2.5. Ternary Controlled Feynman Gate 

Figure 4a shows the symbolic representation of the ternary Feynman gate. As shown, the inputs for this gate are 

A and B, and the outputs are P and Q where P equals A and Q equals A⊕B. This gate can be realized using 

Muthukrishnan-Stroud gates and 1-qutrit permutation gates in Figure 4b. According to the proofs stated in [47, 

48] ternary Feynman gate evaluation matrix can be expressed as: 

 

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡1  0  0  0  0  0  0  0  00  1  0  0  0  0  0  0  00  0  1  0  0  0  0  0  00  0  0  0  0  1  0  0  00  0  0  1  0  0  0  0  00  0  0  0  1  0  0  0  00  0  0  0  0  0  0  1  00  0  0  0  0  0  0  0  10  0  0  0  0  0  1  0  0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤
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Figure 4. 2-qutrit Feynman gates. a) Symbol. b) Realization using 2-qutrit M–S gates [30]. 

 

H.A Khan in [30] designed ternary Controlled Feynman gate and demonstrated their realization using 2-qutrit 

Muthukrishnan-Stroud gates. Figure 5a illustrates the symbolic representation of the ternary Controlled Feynman 

gate. As can be seen, the inputs for this gate are A, B, and C, and the outputs are P, Q, and R. P equals A, Q equals 



B, and R equals B⊕C when A=2; otherwise, R=C. This gate can be realized using Muthukrishnan-Stroud gates 

and 1-qutrit permutation gates in Figure 5b. Resulting in a quantum cost of 4 for this gate. It is possible to remove 

the fourth 2-qutrit M-S gate in the red box if input B is not needed at the output Q. The quantum cost is reduced to 

3 in this way. 
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Q

R

②A P

⃝ 
 

(a) 

B

C

Q

R+2

12
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12

A P
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Figure 5. 3-qutrit Controlled Feynman gates. a) Symbol. b) Realization using 2-qutrit M–S gates [30]. 

 

3. The Proposed Quantum Ternary Circuits 

In this section, we first propose two quantum ternary decoders. The quantum ternary multiplexer and demultiplexer 

circuits are then presented. The following subsections describe these designs in detail. 

 

3.1. The Proposed Quantum Ternary Decoder Circuits 

One of the important ternary combinational logic circuits is the ternary decoder which converts ternary information 

from the N inputs to 3N unique outputs. Figure 6 illustrates the block diagram of N×3N ternary decoder circuit. 

Table 5 shows the truth table of 2 × 9 ternary decoders with active-2 output. In this table, A and B are the input 

variables, whereas D0, D1, D2, D3, D4, D5, D6, D7, and D8 are the Output variables. For each combination of 

inputs, only one output line will be activated. Here, the circuit is active-2, i.e. if the output line is 2, then the line 

is ON; otherwise, it is OFF. 
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Figure 6. Block diagram of N×3N ternary multiplexer circuit. 

 

Table 5. 2×9 ternary decoder truth table. 

Inputs 

(AB) 

Outputs 

D0 D1 D2 D3 D4 D5 D6 D7 D8 

00 2 x x x x x x x x 

01 x 2 x x x x x x x 

02 x x 2 x x x x x x 

10 x x x 2 x x x x x 

11 x x x x 2 x x x x 

12 x x x x x 2 x x x 

20 x x x x x x 2 x x 

21 x x x x x x x 2 x 

22 x x x x x x x x 2 



x: OFF, 2: ON 

 

According to the above true table, only one of the outputs will be 2 for a given input combination. The outputs are 

equal to:  

D0=A0B0 D1=A0B1 D2=A0B2 

D3=A1B0 D4=A1B1 D5=A1B2 

D6=A2B0 D7=A2B1 D8=A2B2 

 

The outputs x in Table 5 can be either 0 or 1. In both cases, the output line will be inactive.  

Here we present two approaches to constructing the proposed quantum ternary decoder.  

 

3.1.1. The Primary Quantum Ternary Decoder Design Approach 

In the Primary quantum ternary decoder design approach (PQTDA), only one of the outputs will be equal to 2 for 

a given input combination, and the remaining outputs will be equal to 0 (i.e., x=0). For better comprehension, first, 

we show the quantum ternary decoder operation in three parts (Figure 7a-c). Then show the complete design in 

Figure 7d. The realization of the first part is shown in Figure 7a, which consists of five 1-qutrit permutation gates 

and nine 2-qutrit Muthukrishnan–Stroud gates. In the first part, if inputs A and B are equal to 00, only output D0 

will be equal to 2; however, when inputs A and B are 01, only output D1 is 2; whereas if A and B are 02 will result 

in output D2 to be 2.  

A

B

0

0

0

A+1

01

+2

01

+2

12

+2

01 0112

+2

01 0112

+2

B

D0

D1

D2

 

(a) 

A+1

B

0

0

0

A

01

+2

0112

+2

01 0112

+2

01 0112

+2

B

D3

D4

D5

 

(b) 

A

B

0

0

0

A

01

+2

0112

+2

01 0112

+2

01 0112

B

D6

D7

D8  

(c) 



A

B

0

0

0

01

+2

01

+2

12

+2

01 0112

+2

01 0112

+2

0

0

0

0

0

0

+2 +2 +2

01 0112

01 0112

+2

01 0112

01 0112

+2

01 0112

+2

01 0112

A

B

D0

D1

D2

D3

D4

D5

D7

D6

D8

+2

(d) 

Figure 7. The proposed PQTDA. a) The first part. b) The second part. c) The third part. d) Complete realization of PQTDA 

using 2-qutrit M–S and 1-qutrit permutation gates. 

 

The realization of the second part is shown in Figure 7b using five 1-qutrit permutation gates and nine 2-qutrit 

Muthukrishnan–Stroud gates. In this part, if inputs A and B are equal to 10, only output D3 will be equal to 2; 

when inputs A and B are 11, output D4 is 2; and if A and B are 12, output D5 will be 2.  

The realization of the last part is shown in Figure 7c. In this part, if the inputs A and B are equal to 20, only the 

output D6 will be equal to 2; when inputs A and B are 21, output D7 will be 2; and finally, if A and B are 22, output 

D8 will be 2. The realization of the proposed quantum ternary decoder is shown in Figure 7d. As can be seen, 

twelve 1-qutrit permutation gates and twenty-seven 2-qutrit Muthukrishnan–Stroud gates were used in the 

proposed decoder. This circuit has a quantum cost of 39. The outputs of this circuit for different input combinations 

are illustrated in Table 6. The depth of the proposed quantum ternary decoder circuit in Figure 7d is 30. 

 

Table 6. PQTDA truth table. 

Inputs 

(AB) 

Outputs 

D0 D1 D2 D3 D4 D5 D6 D7 D8 

00 2 0 0 0 0 0 0 0 0 

01 0 2 0 0 0 0 0 0 0 

02 0 0 2 0 0 0 0 0 0 

10 0 0 0 2 0 0 0 0 0 

11 0 0 0 0 2 0 0 0 0 

12 0 0 0 0 0 2 0 0 0 

20 0 0 0 0 0 0 2 0 0 

21 0 0 0 0 0 0 0 2 0 

22 0 0 0 0 0 0 0 0 2 

0: OFF, 2: ON 

 

3.1.2. Optimized Quantum Ternary Decoder Design Approach 

In the optimized quantum ternary decoder design approach (OQTDA), we present a lower quantum cost ternary 

decoder. In this optimized realization, all unselected outputs are allowed to take on the value 1 or 0 while only the 

selected output to be equal to 2. To design this circuit, we have used 1-qutrit permutation gates and 2-qutrit 

Muthukrishnan–Stroud. The proposed circuit is realized in Figure 8. As shown, nine 1-qutrit permutation gates 

and eighteen 2-qutrit Muthukrishnan–Stroud gates are used. The quantum cost of this circuit is 27, resulting in a 

great improvement with respect to overall implementation cost and circuit depth as compared to PQTDA. The 

outputs of this circuit are shown in Table 7. The depth of the proposed quantum ternary decoder circuit in Figure 



8 is 18. It is to be noted that in OQTDA, at the first line, the output is restored to input A. If it is not essential to 

restore this input at the output, we can remove the last +1 gate, which is marked with a red-colored dashed line in 

Figure 8. As a result, the quantum cost is reduced to 26, and the output on the first line will become A+2.  
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Figure 8. OQTDA realization. 

 

Table 7. OQTDA truth table. 

Inputs 

(AB) 

outputs 

D0 D1 D2 D3 D4 D5 D6 D7 D8 

00 2 1 1 1 0 0 1 0 0 

01 1 2 1 0 1 0 0 1 0 

02 1 1 2 0 0 1 0 0 1 

10 1 0 0 2 1 1 1 0 0 

11 0 1 0 1 2 1 0 1 0 

12 0 0 1 1 1 2 0 0 1 

20 1 0 0 1 0 0 2 1 1 

21 0 1 0 0 1 0 1 2 1 

22 0 0 1 0 0 1 1 1 2 

0, 1: OFF, 2: ON 

 

3.2. The Proposed Quantum Ternary Multiplexer Circuit 

A multiplexer circuit has one output, multiple inputs, and selectors. Selectors specify which inputs are gated to the 

output. A ternary multiplexer takes N ternary numbers as selectors and 3N ternary numbers as input and gives 

output as a number. The block diagram of 3N×1 ternary multiplexer circuit is illustrated in Figure 9. Table 8 

shows the truth table of 9×1 ternary multiplexer, where A and B are selectors, and I0, I1, I2, I3, I4, I5, I6, I7, and 

I8 are the inputs, and the output is depicted as O. For a given selector combination, only the selected input will be 

gated to the output. 
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Figure 9. Block diagram of 3N×1 ternary multiplexer circuit. 

 



Table 8. 9×1 ternary multiplexer truth table. 

Selectors 

(AB) 

Output 

(O) 

00 I0 

01 I1 

02 I2 

10 I3 

11 I4 

12 I5 

20 I6 

21 I7 

22 I8 

 

According to Table 8, the output is equal to:  

O=(A0B0) I0+( A0B1) I1+( A0B2) I2+( A1B0) I3+( A1B1) I4+( A1B2) I5+( A2B0) I6+(A2B1) I7+(A2B2) I8 

 

To construct a ternary multiplexer circuit, we use the proposed quantum ternary decoder and ternary Controlled 

Feynman gates. The realization of the proposed multiplexer is shown in Figure 10. In this circuit, input restoration 

is necessary, where PQTDA, nine ternary controlled Feynman, and sixty-three 2-qutrit Muthukrishnan–Stroud 

gates are used. In this implementation, the outputs preserve their corresponding inputs by utilizing nine 

Muthukrishnan–Stroud gates shown in red in the figure. Resulting in total quantum cost of 75. Cost can be further 

decreased to 53 if input restoration is not necessary and can be accomplished using OQTDA and removing the 1-

qutrit permutation gates shown in red from Figure 10. 
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Figure 10. Realization of the proposed quantum ternary multiplexer circuit. 

  



3.3. The Proposed Quantum Ternary Demultiplexer Circuit 

A demultiplexer circuit has one input, multiple outputs, and selectors. The selector specifies how the input is 

switched to the specified output. A ternary demultiplexer takes N ternary number as selectors and one ternary 

number as input and gives 3N number as outputs. The block diagram of 1×3N ternary demultiplexer is shown in 

Figure 11 whereas Table 9 shows the truth table of 1×9 ternary demultiplexer. The input is specified as I, selectors 

are A and B, and outputs as O. Only one of the outputs will be equal to I for a given selectors combination, and the 

remaining ones will be 0. 
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Figure 11. Block diagram of 1×3N ternary demultiplexer circuit. 

 

According to Table 9, The outputs are equal to:  

O0=A0B0I O1=A0B1I O2=A0B2I 

O3=A1B0I O4=A1B1I O5=A1B2I 

O6=A2B0I O7=A2B1I O8=A2B2I 

 

Table 9. 1×9 ternary demultiplexer truth table. 

Selectors 

(AB) 

Outputs 

O0 O1 O2 O3 O4 O5 O6 O7 O8 

00 I 0 0 0 0 0 0 0 0 

01 0 I 0 0 0 0 0 0 0 

02 0 0 I 0 0 0 0 0 0 

10 0 0 0 I 0 0 0 0 0 

11 0 0 0 0 I 0 0 0 0 

12 0 0 0 0 0 I 0 0 0 

20 0 0 0 0 0 0 I 0 0 

21 0 0 0 0 0 0 0 I 0 

22 0 0 0 0 0 0 0 0 I 

 

The proposed decoder and ternary-controlled Feynman gates are used to construct the ternary demultiplexer circuit. 

The proposed quantum ternary demultiplexer is realized in Figure 12. In this circuit, input restoration is necessary, 

and the proposed PQTDA and nine ternary controlled-Feynman gates are utilized. By using the red-colored 

Muthukrishnan–Stroud gates, inputs can be restored leading to a total quantum cost of 75. However, if input 

restoration is not necessary, then OQTDA design can be used, along with removing red-colored gates, decreasing 

the quantum cost to 53. 
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Figure 12. Realization of the proposed ternary demultiplexer circuit. 

 

4. Result Assessment 

The proposed quantum ternary decoders, multiplexer, and demultiplexer are analyzed with respect to their quantum 

cost, depth, number of garbage outputs, and constant inputs. These are the most important metrics to evaluate the 

efficiency of any quantum circuits.  

Table 10 compares our proposed quantum ternary decoder circuit with its counterpart in [31]. As can be seen, the 

proposed decoder (OQTDA) has less quantum cost, depth, garbage outputs and constant inputs than the design in 

[31], eliminating 27 M-S gates, 4 permutation gates, and reducing by one both constant input and garbage output.  

According to Table 10, the proposed multiplexer improves quantum cost, depth, garbage outputs and constant 

inputs when compared with the similar circuit suggested in [30]. In particular, the improvement in quantum cost, 

depth, garbage outputs and constant inputs are 48%, 41%, 4% and 9%, respectively. 

The comparison in Table 10 clearly demonstrates the proposed design of demultiplexer leads to improvements in 

terms of quantum cost (48%), depth (41%), garbage outputs (7%) and constant inputs (5%) as compared to its 

counterpart in [30]. 

It should be noted that although all the proposed designs are more efficient when compared with the circuits 

suggested in [30, 31], the comparison has done using the best proposed designs which do not restore inputs. 

  



Table 10. Evaluation of quantum ternary decoder, multiplexer and demultiplexer circuits. 

 Decoder Designs Multiplexer Designs Demultiplexer Designs 
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Quantum Cost 26 57 54% 53 102 48% 53 102 48% 

Depth 18 54 66% 44 75 41% 44 75 41% 

Constant Input 9 10 10% 10 11 9% 18 19 5% 

Garbage Output 2 3 33% 20 21 4% 12 13 7% 

Input restoration capability No  Yes  - No  Yes  - No Yes  - 

 

5. Conclusion 

Quantum ternary circuits are the new generation of quantum circuits, and they have advantages over their binary 

counterparts. Many quantum ternary circuits and optimization approaches to construct different computational 

units of quantum computers and other complicated systems have been investigated in the literature. This paper 

proposes two new realizations of quantum ternary decoder by using 1-qutrit permutation gates and 2-qutrit 

Muthukrishnan–Stroud gates. We have also presented quantum ternary multiplexer and demultiplexer based on 

the realization of the decoder circuit. The proposed circuits in this work reduce quantum cost, depth, the number 

of garbage outputs, and constant inputs. Since the lower values of these figures of merit lead to more efficient 

quantum ternary circuit designs compared to the existing counterparts, our proposed realizations are more efficient. 

In addition, the proposed designs in this study can be utilized to design various components for ternary quantum 

computers and other intricate computational systems. 
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