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Simple Summary: Automatic segmentation of organs and other regions of interest is a promising
approach for reducing the workload of doctors in radiotherapeutic planning, but it can be hard for
doctors and researchers to keep up with current developments. This review evaluates 807 papers
and reveals trends, commonalities, and gaps in the existing corpus. A set of recommendations for
conducting effective segmentation studies is also provided.

Abstract: This review provides a formal overview of current automatic segmentation studies that
use deep learning in radiotherapy. It covers 807 published papers and includes multiple cancer
sites, image types (CT/MRI/PET), and segmentation methods. We collect key statistics about the
papers to uncover commonalities, trends, and methods, and identify areas where more research
might be needed. Moreover, we analyzed the corpus by posing explicit questions aimed at providing
high-quality and actionable insights, including: “What should researchers think about when starting
a segmentation study?”, “How can research practices in medical image segmentation be improved?”,
“What is missing from the current corpus?”, and more. This allowed us to provide practical guidelines
on how to conduct a good segmentation study in today’s competitive environment that will be useful
for future research within the field, regardless of the specific radiotherapeutic subfield. To aid in our
analysis, we used the large language model ChatGPT to condense information.

Keywords: radiotherapy; segmentation; automatic; deep learning; artificial intelligence; artificial
neural networks

1. Introduction

Radiotherapy (RT) represents an important treatment modality for cancer patients
that uses high-dose ionizing radiation for curative or palliative purposes. When RT is
prescribed, accurate delineation of the tumors, target volumes, and organs at risk (OARs) is
crucial for effective treatment planning and reducing the risk of radiation-induced toxicity.
However, manual segmentation of these structures, which is the current standard of care,
is time-consuming and prone to inter- and intra-observer variability [1–7], which can
contribute to suboptimal treatment outcomes. Moreover, the task is repetitive and tiresome,
which makes the process tedious for doctors, who typically prefer to devote their time
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elsewhere. Thus, there is a significant need for good automatic segmentation methods that
can be incorporated into clinical practice to improve current workflows and outcomes.

The repetitive nature of the segmentation process makes it a prime candidate for au-
tomation with modern machine learning methods, which excel in performing monotonous
information-based tasks quickly. Recent years have seen deep learning (DL)-based autoseg-
mentation methods gain significant attention in the field of radiotherapy (see results below).
These methods typically employ convolutional neural networks (CNNs) to automatically
learn relevant features from medical images which helps them segment the structures accu-
rately. The increasing interest in DL-based automatic segmentation is driven by its success
over traditional methods such as atlases, active contours, or region-growing, particularly
as demonstrated in online segmentation challenges like BraTS [8], KiTS [9], AMOS [10],
and PROMISE [11]. The advantages of DL-based methods include improved accuracy,
reproducibility, speed, observer variability, and efficiency, which are all crucial factors in
radiotherapy treatment planning. But despite the many advantages, several limitations
exist, most notably the requirement for large, annotated training datasets, which can be
time-consuming and resource-intensive to collect. Another limitation is the potential for
overfitting and related generalization issues, which can lead to erroneous segmentation
results when the model encounters atypical samples [12,13]. Some notable developments
such as transfer learning [14], data augmentation [15], and ensemble models [16] may aid in
overcoming these limitations. Transfer learning has shown promise in reducing the amount
of required training data, while data augmentation techniques can increase the diversity of
the training dataset at hand. Ensemble models can be used to improve both segmentation
accuracy and robustness by combining multiple models into a better performing ensemble
(e.g., using models with different architectures or training parameters).

The problem setting for automatic segmentation varies greatly, partly because RT is
applied to treat various types of cancer located in many different body regions, including
the brain, breast, prostate, lung, and others. Multiple different image types, including
magnetic resonance imaging (MRI), computed tomography (CT), and positron emission
tomography (PET), are all frequently utilized to visualize the tumor and surrounding
normal tissues in the treatment planning process. Each imaging modality excels at depicting
different information, which means that they are used to varying extents in different
cancer sites. However, most DL models are modality agnostic, meaning that they can
be adequately applied to different image types provided that they have been trained on
similar images. Therefore, much can be learned from observing advances in adjacent
fields, even for researchers working exclusively on a single cancer site or image modality.
Another important source of variability relies on the different pathological conditions and
physical characteristics of the patients. Automatic segmentation is further complicated
by the fact that imaging protocols may vary between institutions or even according to
who performs the examination. Therefore, developing robust and versatile automatic
segmentation methods that can handle different cancer sites and imaging modalities is
essential for their success in radiotherapy treatment planning and execution.

The aim of this review is to analyze the current state of the field of medical image
segmentation with deep learning for RT and attempt to answer questions about general
trends and needs. We are particularly interested in the datasets, images, cancer sites,
and limitations. Our intention is to help identify areas where more research might be
needed, to illuminate common flaws, and to guide new research in the field. To do this, we
pose explicit questions aimed at providing concrete overviews of the common trends and
methods. The analysis we put forward helped us distill a set of four key points that we
believe can be useful in designing new studies and maximizing the impact of future work
in the field.

2. Related Work

Many reviews have been published on automatic segmentation methods for specific
regions of interest [17–26], image modalities [17,20,24,27,28], and methods [29–40]. How-
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ever, none of these thoroughly cover all three aspects to provide a holistic overview of the
state of the field. Moreover, previous reviews tend to focus on quantitative analysis of a
relatively limited set of papers, or the different methods and models applied within them.

Our contribution to this work is three-fold. First, we gathered a very large set of
807 papers and collected statistics to provide a comprehensive overview of the field of
medical image segmentation in radiotherapy. Second, we highlight a novel way to leverage
modern large language models (LLMs) like ChatGPT for condensing large bodies of infor-
mation. Third, we pose explicit questions for the analysis to provide a valuable resource
for researchers seeking actionable insights.

3. Data Collection

To collect relevant academic papers in the field of automatic segmentation with deep
learning in radiotherapy, we searched the Scopus and PubMed databases using the follow-
ing query and collected all unique results:

• Title: “segmenting” or “*segmentation”;
• Title, abstract, or keywords: “CT”, “MRI”, “PET”, “DWI”, or “*medical image*”;
• Title, abstract, or keywords: “deep learning” or “artificial neural network*”;
• Title, abstract, or keywords: “radiotherapy”;
• Document type: article or conference proceeding;
• Language: English.

All review articles and unrelated papers were removed from the dataset. The
relevant metadata (including abstract, publication date, URL, and citation information)
were collected for all remaining publications using both web-scraping tools and manual
annotations.

As a data mining tool, we utilized the large language model ChatGPT (v3.5-turbo,
Mar 14 version, OpenAI [41]). This model is designed to respond to arbitrary natural
language queries by producing text outputs. The model was asked to answer the follow-
ing questions about the abstract of each paper (the answers can be found online in the
Supplementary Material):

• Is the paper a review article? (Yes/No).
• How many patients were used in the study? Only answer with a number.
• What type of images were used in the study? Choose from MRI/PET/CT/DWI/

Ultrasound/Other.
• Did the paper use images from multiple sources or multiple organs? (Yes/No).
• Is the paper about organ or tumor segmentation? Choose from Organ/Tumor/Both.
• Did the paper propose a novel segmentation method or deep learning architecture?

(Yes/No).
• Was the code made public? (Yes/No).
• Was the data made public? (Yes/No).
• What is the key takeaway of the paper? Answer in one sentence.

The responses were then reviewed such that the answers were correct and consistent.
To instruct the language model to answer properly, we gave it the following system prompt
(this prompt acts as a form of base instruction that the model takes into account when
answering the users’ queries):

“You will be asked to read a scientific paper and then answer questions about it. The paper
is about automatic segmentation with deep learning in radiotherapy. Please prioritize
correctness in your answers. If you don’t know the answer, respond with ‘I don’t know.’”

4. Analysis
4.1. Statistics

Statistics about the publication year, number of included patients, target site, imaging
modality (MRI/CT/PET/Ultrasound), and segmentation type (organ/tumor) were col-
lected and plotted. To gauge the extent of research conducted on various topics of interest,
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we scanned the abstracts and GPT responses for the appearance of certain keywords relat-
ing to each topic. These topics included: transfer learning or pretraining, self-supervised or
semi-supervised or contrastive learning, cross-validation, transformers, publicly available
data, and open-sourcing code.

4.2. Region-Specific Analysis

All papers related to each body region (head and neck, brain, prostate, lung, cervix
and uterus, liver, heart, stomach and colon, kidney, breast, pancreas, spleen, and skin)
were also isolated and analyzed separately to uncover what research patterns and trends
are common within the different cancer sites. This includes the images used, the organs
and structures segmented, the methods employed, and the most common results and
conclusions mentioned in the abstracts.

4.3. Subjective Analysis

To support and encourage further research in the field, we attempted to distill more
actionable material from the collected papers by posing and discussing explicit questions
aimed at providing more guidance. The questions were:

• What is missing from the current corpus?
• What should researchers think about when starting a segmentation study?
• How can research practices in medical image segmentation be improved?
• Do authors agree on conclusions, and is it possible to spot trends in the employed

methods?

5. Results
5.1. Statistics

A flowchart of the paper and data collection process is shown in Figure 1. A total of
905 unique papers matched the query. After removing review articles and unrelated papers
(e.g., papers in foreign languages or papers we were unable to access), 807 remained. The
number of studies published per year is plotted in Figure 2. The field has been growing
steadily since its mainstream adoption around 2013 (not counting five early adopters in
1999 [42], 2006 [43], 2008 [44], and 2010 [45,46]), accumulating a total of 225 publications in
2022 alone. The five most common cancer sites were: head and neck (H and N; 198 papers),
brain (130 papers), prostate (117 papers), lung (107 papers), and cervix (101 papers; see
Figure 3). The H and N area further stands out as having the most structures of interest
for segmentation (e.g., larynx, pharynx, parotid glands, esophagus, masseter, thorax, etc.).
Less frequently studied cancer sites included: the skin (6 papers), spleen (12 papers), pan-
creas (30 papers), breast (30 papers), and kidney (32 papers). In Figure 4, the number of
publications per imaging modality and segmentation type is plotted. Roughly 58% of the
publications (457 papers) studied CT images, 33% studied MRI (254 papers, of which 22
were specific to DWI), 8% studied PET images (64 papers), and 22 (3%) studied ultrasound
images. The majority of the studies focused on organ segmentation (415 papers, or 56%)
rather than tumor segmentation (260 studies, or 35%), with only about 9% (68 studies)
focusing on both. A spreadsheet of the included studies along with abstracts, the gen-
erated answers, one-sentence summaries, and corresponding metadata can be found in
Supplementary Table S1.
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Figure 4. The total number of published studies organized by (a) image type and (b) segmentation
type.

The combined studies yielded a median and mean patient count of 128 and 363,
respectively (in cases where a study used multiple datasets, we used the total sum of
patients). A graph showing the distribution of sample sizes is shown in Figure 5. Only
407 papers disclosed the sample size in the abstract. Of these, roughly 40% had fewer
than 100 patients, and 42% were in the 100–500 patients range. The three cancer regions
with the largest cohorts, as measured by median sample size (see Figure 6), were the brain
(250 patients), spleen (215 patients), and lung (144 patients). The sites with the smallest
cohorts were the heart (66 patients), liver (72 patients), and H and N (87 patients). Notably,
heart and H and N also had the studies with the second and third largest sample sizes
(6535 [47] and 6000 [48] patients, respectively)—not too far off from the largest sample size
of 9032 [49].
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When asked whether the study proposes a novel deep learning model or architecture,
the language model responded “Yes” for 550 studies (70%) and “No” for only 232 studies
(see Figure 7), revealing a strong tendency to introduce new methods.
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Figure 7. The number of yes and no responses when asked: “Did the paper propose a novel
segmentation method or deep learning architecture? (Yes/No)”. The number of studies proposing
novel models/architectures shows that the vast majority of papers focus on developing new methods.

5.2. Region-Specific Analysis
5.2.1. Head and Neck

Within the head and neck region, 48 studies specifically concerned segmentation of the
tumors while 59 segmented the pharynx, 41 segmented the esophagus, 32 segmented the
parotid gland, 8 segmented the larynx, and 3 segmented the masseter. The most common
architecture by far was a standard 3D U-net, but a notable fraction also employed GAN
architectures while a few used 2D networks. A total of 64 papers used data from multiple
sources or organs. In all papers, deep learning segmentation was superior to the competing
method. Even though the head and neck region is one of the most studied body regions, it
is one of the regions suffering the most from small data sets (median sample size 87).

5.2.2. Brain

In the brain, the vast majority (94 out of 130) of studies focused on tumor segmen-
tation. Only a handful focused on specific structures like the brain stem, pituitary gland,
cerebellum, etc. Papers published regarding brain segmentation appeared to propose novel
segmentation methods to a larger extent compared to the other regions; only 39 papers
do not make specific mention of a new contribution. The 3D U-net was again the most
common architecture, but many alternative approaches exist. Only 31 papers tested their
methods on multiple datasets or organs. Apart from 27 studies that were inconclusive, all
papers concluded that deep learning was superior to the alternative approach.

5.2.3. Prostate

For the prostate, only 19 out of 117 studies focused on tumor segmentation while the
majority focused on segmentation of the whole prostate. Many studies also performed
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segmentation of surrounding organs like the bladder (68 studies) and rectum (57 studies).
Although the majority of papers focused on 3D networks, 12 papers also tested 2D models.
Only 30 papers tested their methods on multiple datasets or organs. All but 5 out of the
117 studies concluded that deep learning performed better than other methods.

5.2.4. Lung

The papers studying lung segmentation were dominated by 3D U-net type architec-
tures, with a handful of 2D hybrid networks. Out of the 107 papers, roughly 80 proposed
new architectures and 49 focused on tumor segmentation. A total of 9 papers used MRI
images, 14 used PET, and 89 used CT images. All but one lung segmentation study that
compared deep learning with other approaches concluded that the performance of deep
learning was superior.

5.2.5. Liver

Almost all studies of the liver analyzed CT images, but 11 also analyzed MRI images,
5 analyzed PET images, and 1 analyzed ultrasound images. A total of 49 papers studied
the segmentation of tumors (20 of which studied segmentation of both tumors and organs);
almost 60% of the 83 papers. Only 19 papers did not propose a new method or architecture,
but 36 used images from multiple sources or organs. All but four papers concluded that
deep learning was better than the alternative approach.

5.2.6. Heart

For the heart, 53 out of 61 papers studied CT images while 2, 4, and 1 paper studied
PET, MRI, and ultrasound images, respectively. Only 12 papers studied tumor segmenta-
tion, meaning that most papers focused on segmenting the heart and its various substruc-
tures. About 42 papers proposed a novel method or architecture while 18 did not. Two
papers were inconclusive as to whether deep learning performed better than the competing
approach and fifty-eight studies concluded that deep learning was better.

5.2.7. Colon

Among the papers studying the colon, 41 focused on CT images and 12 focused on
MRI images. Only a total of 12 out of 54 studies focused on tumor segmentation. Roughly
two-thirds (41) of the papers proposed novel methods or architectures and 26 used images
from multiple sources or organs. Most studies appeared to use fairly standard 3D U-net-
type architectures. In total, 52 papers concluded that deep learning was superior (two
studies were inconclusive).

5.2.8. Kidney

Among the kidney studies, 3 out of 32 papers studied tumor segmentation only, while
4 papers studied both rumor and organ segmentation. Four studies used MRI images and
twenty-four studies used CT images. Sixteen papers tested their methods on multiple
datasets or organs. All but seven studies proposed novel methods and architectures and
all but one study (which was inconclusive) concluded that deep learning was superior to
alternative approaches.

5.2.9. Breast

Within the breast studies, 14 used CT images, 8 used MRI images, and 5 used ultra-
sound images. Eleven out of the thirty studies focused on tumor segmentation, while four
focused on both tumor and organ segmentation. Nine papers tested their methods on
multiple datasets or organs. Twenty-two (22) studies proposed novel methods or archi-
tectures and all but two inconclusive studies concluded that deep learning outperformed
alternative methods.
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5.2.10. Pancreas

In studies of the pancreas, 21 papers used CT images and 8 used MRI. Seven out of
the thirty papers focused on tumor segmentation and only five did not explicitly propose
new methods or deep learning architectures. More than half (18 papers) used data from
multiple organs. All studies (except for two that were inconclusive) showed that deep
learning outperformed conventional approaches.

5.2.11. Cervix

Among the 26 studies of the cervix and uterus, 15 used CT images, 1 used PET
images, 7 used MRI images, and 1 used ultrasound. Thirteen papers focused on tumor
segmentation, seven on organ segmentation, and six on both. A total of nine papers did
not propose any new methods or architectures. All studies concluded that deep learning
was superior to competing approaches.

5.2.12. Spleen

Of the twelve papers studying the spleen, eight used CT images, and two used MRI
images. Eight papers specifically mention developing new deep learning architectures or
methods. None of them were specifically testing methods for automatic tumor segmenta-
tion, but most (nine papers) used data from multiple organs to test their methods. In total,
all papers concluded that deep learning was superior to the alternative, apart from one
study that was inconclusive.

5.2.13. Skin

In studies of the skin, three papers used ultrasound images, one used MRI images, one
used dermoscopic images, and one used photographs of the skin. All six papers explicitly
examined the segmentations of tumors, while half of them proposed novel methods. Five
studies concluded that deep learning was superior to the alternative approaches.

5.3. Subjective Analysis
5.3.1. What Is Missing from the Current Corpus?

• Benchmark datasets: At present, direct comparisons of results remain unfeasible since
very few studies use the same data. Specifically, only 92 studies employed data sourced
from at least one of the following datasets: UK Biobank, BraTS, KiTS, HECKTOR,
OASIS, or PROMISE. Moreover, there is a very strong preference for novelty over
replication in the current corpus. This prevents researchers from knowing how their
model fares against other models without having to implement them themselves
(often from scratch), which in itself is often not possible due to insufficient details
having been given in the publications of other groups. Efforts to publish high-quality
benchmarks, analogous to the CIFAR10 and ImageNet datasets in general computer
vision, are much more likely to yield high-impact results, especially since the literature
is dominated by presentations of novel “state of the art” models. It is possible that this
overabundance is a direct consequence of the lack of benchmarks, possibly convincing
researchers that minor improvements on very small datasets result in a state-of-the-art
model (while, in reality, it may just be the result of statistical variations).

• Open sourcing and making code available: Out of 807 papers, only three made code of
their models available; an abysmal number compared to numbers in related research
disciplines. Open-sourcing code is a great way to promote research and enable other
researchers to benchmark their models and implement strong baselines, ultimately
driving the field forward. If there are privacy objections to open-sourcing, a good
compromise is to publish the code without the model weights.

• More research on, e.g., spleen and pancreas: As seen clearly in Figure 3, relatively few
papers have been published on the spleen and pancreas compared to, e.g., H and N or
lung cancer. It might be worthwhile for institutions to put more effort into collecting
data in these areas so models and methods can be tested in a wider variety of settings.
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• Evaluation of alternative training techniques: Computer vision is a rapidly evolving
field with successful novel paradigms being introduced relatively frequently. Some
notable training strategies appear to be less studied in the field of medical image seg-
mentation. In particular, only 48 papers made use of transfer learning or pretraining,
only 21 papers studied self-supervised, semi-supervised, or contrastive learning, and
only 11 papers explicitly studied transformer-based architectures. It is possible that
segmenting medical images could be more amenable to these methods than what is
currently being realized.

5.3.2. What Should Researchers Consider When Starting a Segmentation Study?

• Collect more (high-quality) data: An alarming number of studies use very small
datasets: 163 studies used fewer than 100 patients. While this can be good as a proof
of concept, it is hard to draw conclusions from such a narrow scope. Furthermore,
increasing the number of data samples can often be more effective than developing a
stronger training pipeline (e.g., a better model) when it comes to both performance
and generalizability.

• Test models on multiple datasets and cancer sites: Diversifying a model by training it
on qualitatively different images is a great way to demonstrate the capacity of a model,
even if it is intended for a very specific purpose. Moreover, models trained on multiple
modalities (e.g., both images and patient data) often show superior performance
compared to single-modality training [50–54]. One way to do this is to include images
from open sources like the UK Biobank, the Cancer Imaging Archive (TCIA), the
BraTS (brain tumor segmentation) dataset, the MM-WHS (Multi-modality whole heart
segmentation) dataset, and even The Cancer Genome Atlas (TCGA).

• Evaluate existing models and training techniques over developing new ones: There is a
relative overabundance of papers proposing novel deep learning architectures/modules
and claiming state-of-the-art performance on rather narrow datasets. It seems exceed-
ingly unlikely that a model trained on just about 50 patients can really be considered
state-of-the-art within a certain field. As such, the scientific community should fo-
cus more on evaluating existing models and training techniques on larger and more
representative datasets and benchmarking them against established baselines.

• Focus on clinical viability over minor improvements in metrics: A limited number of
publications assess the practical feasibility of their models, such as subjecting them to
downstream applications, investigating their generalizability across different patient
populations and clinical scenarios, or evaluating the contours they produce from a
medical standpoint. It seems likely that the difficult legislative environment and
distance to market limits the number of groups willing to dedicate time and energy to
rendering their models suitable for clinics. The regulatory landscape for healthcare is
complex and can be a significant obstacle to the implementation of new technologies,
which is why research on these issues is important.

5.3.3. How Can Research Practices in Medical Image Segmentation Be Improved?

In addition to the general remarks made under the previous two headlines, we suggest
using the following good practices, which often appear to be overlooked, to improve the
methodology in individual studies:

• Follow good reporting/documentation guidelines: We found a surprising number
of studies lacking critical information needed to reproduce or even implement the
methods given in the study. In particular, multiple studies (and abstracts) fail to report
details about the patients (e.g., the class balance), the training procedure (e.g., learning
rate, data augmentation parameters, and dropout rate), or the validation procedure
(e.g., whether the train-test split was random or not). A good place to start is to follow
proposed guidelines such as [55] or [56].

• Do cross-validation: Despite being a standard practice in machine learning, a surpris-
ing number of studies do not cross-validate their models and instead opt to use a
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single train-test split. This severely limits the validity of the conclusions, particularly
for smaller datasets, and is strongly discouraged.

• Implement more robust baselines: Implementing a strong baseline is critical in order to
adequately assess a new model (particularly due to the lack of open benchmarks). Yet,
a number of studies appear to use dated or suboptimally implemented references such
as a naïve U-net. A good place to start is models like SegFormer [57] or nn-Unet [58],
which are open-source and can be copied directly from their respective repositories.

5.3.4. Do Authors Agree on Conclusions, and Is It Possible to Spot Trends in the
Employed Methods?

Authors overwhelmingly agree that deep learning has the potential to greatly help
in the process of delineating regions of interest in medical images—not a single paper
reviewed in this study specifically concluded that deep learning was actively inferior to tra-
ditional approaches. However, very few papers study well-established model architectures
on diverse datasets and body regions. Thus, instead of seeing the field converge on very
strong models with wide applicability—like the transformer network in natural language
processing—we see a continuing trend to propose novel architectures that perform very
well on a small, constrained dataset.

6. Limitations

This review contains both objective and subjective analyses and may be considered
both systematic and narrative, or neither. To prevent a biased selection and interpretation,
we employed an automated selection procedure without hand-picking papers to exclude or
include. As a result, some papers from the search results may be less relevant than others.
Moreover, due to the large number of papers and queries answered by ChatGPT, we did
not check the correctness of all answers. In our quality control of about 660 answers, the
model only made one error, where it conflated the sample size and the number of images
in the study. Lastly, the model was only presented with the abstracts of the papers.

7. Conclusions

In this review, we have analyzed the current state of research in medical image
segmentation by examining 807 studies that make use of deep learning for radiotherapy
applications. Our statistical evaluation revealed that 58% of the publications were based
on CT, 33% on MRI, and 8% on PET imaging. The three most studied cancer areas were
the head and neck, lung, and brain regions, while the three least studied areas were the
spleen, pancreas, and kidney. The median number of patients across all studies was 137.
Several issues in the field were highlighted, including the lack of benchmark datasets, the
need for open-sourcing code, the importance of collecting more high-quality data, and the
need to evaluate existing models and training techniques instead of developing new ones.
We also suggested good practices to improve methodology in individual studies, such as
following good reporting/documentation guidelines, conducting cross-validation, and
implementing more robust baselines. Overall, we hope that this provides valuable insights
into the challenges and opportunities in medical image segmentation research and that our
suggestions can help researchers improve the quality and rigor of their future work.
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