
European Journal of Operational Research 316 (2024) 1070–1084

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Analytics, Computational Intelligence and Information Management

Mathematical programming for simultaneous feature selection and outlier
detection under l1 norm
Michele Barbato ∗, Alberto Ceselli
Department of Computer Science, Università degli Studi di Milano, 18, via Celoria, 20133, Milano, Italy

A R T I C L E I N F O

Keywords:
Data science
Outlier detection
Feature selection
Least absolute deviation
Mathematical programming

A B S T R A C T

The goal of simultaneous feature selection and outlier detection is to determine a sparse linear regression
vector by fitting a dataset possibly affected by the presence of outliers.

The problem is well-known in the literature. In its basic version it covers a wide range of tasks in data
analysis. Simultaneously performing feature selection and outlier detection strongly improves the application
potential of regression models in more general settings, where data governance is a concern. To trigger this
potential, flexible training models are needed, with more parameters under control of decision makers.

The use of mathematical programming, although pertinent, is scarce in this context and mostly focusing
on the least-squares setting. Instead we consider the least absolute deviation criterion, proposing two mixed-
integer linear programs, one adapted from existing studies, and the other obtained from a disjunctive
programming argument. We show theoretically and computationally that the disjunctive-based formulation
is better in terms of both continuous relaxation quality and integer optimality convergence.

We experimentally benchmark against existing methodologies from the literature. We identify the char-
acteristics of contamination patterns, in which mathematical programming is better than state-of-the-art
algorithms in combining prediction quality, sparsity and robustness against outliers. Additionally, the mathe-
matical programming approaches allow the decision maker to directly control parameters like the number of
features or outliers to tolerate, those based on least absolute deviations performing best. On real world datasets,
where privacy is a concern, our approach compares well to state-of-the-art methods in terms of accuracy, being
at the same time more flexible.
1. Introduction

In the last two decades huge advances in data collection and digiti-
zation techniques have led high-dimensional problems becoming rele-
vant in several fields, such as chemometrics (Bertsimas, Kitane, Azami,
& Doucet, 2020), biomedical research (Insolia, Kenney, Chiaromonte,
& Felici, 2021), genomics and pattern recognition. Classical references
from the literature cover this domain (Greenshtein, 2006 and references
therein).

A key application is linear regression. Given is a dataset of points in
a (𝑑+1)-dimension space: 𝑑 dimensions represent features, and the last
one represents a response.

Intuitively, each point in the dataset is assumed to represent a
linearly related input–response pair describing a certain phenomenon,
whose measurement is affected by noise. With a geometric analogy,
this linear relation can be modeled by a hyperplane in a (𝑑 + 1)-
dimension space: the regression problem consists in finding the slope
and intercept which optimize a predefined notion of proximity between
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the hyperplane and the points. That is, searching for an optimal linear
fitting of points.

Such a fitting hyperplane provides an approximation of the phe-
nomenon measured by the dataset, and can therefore be used either
as a descriptive model for it, or more commonly to perform predictions
of the same phenomenon on new observations.

Linear regression has been studied for decades in statistical data
analysis. However, the increase in the dimensionality and size of
datasets has recently led to important methodological consequences.
First, applications require an accurate feature selection. Such a need is
not only computational. For instance, the interpretability of a model
produced by fitting is preserved only if a restricted set of relevant
explanatory variables are included in it. In the extreme case of under-
determined regimes (having more features than points) classical solution
methods for linear regression problems do not even apply directly (Filz-
moser & Nordhausen, 2021). Other situations in which an accurate
feature selection is desirable arise, e.g., in applications where privacy
must be, at least partially, preserved. As a paradigmatic example,
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consider datasets containing sensitive attributes that, if appropriately
combined, might reveal identity or personal data. In this case it is
desirable to forbid such combinations or to use a very limited amount
of attributes to perform predictions from such datasets. Giving to the
decision maker a direct, a priori control on parameters like the number
of features to select is central in this type of applications. Encoding
these portions of logic in a mathematical program best suits this need.

Another consequence in the increase of dataset storage complexity
is that contamination chances are greater. Structurally, classical con-
tamination types are the vertical outliers and the bad leverage points,
corresponding to large deviations in the response or explanatory vari-
ables, respectively (James et al., 2021, pages 97-99). The presence
of a few outliers, that is, points not conforming to the trends of the
dataset as a whole, may greatly affect the fitting quality. Outliers may
share statistical properties or not, depending on the application. For
example, in distributed dataset storage, data corruption may be due
to the deliberated action of an adversary (not necessarily malicious)
in one of the storage nodes. That is, very general contamination types
may occur, making it desirable to remain agnostic with respect to the
contamination type. Furthermore, providing to the decision maker the
direct management of parameters like the number of outliers to toler-
ate, in the form of data in a mathematical program, yields invaluable
additional flexibility.

While outlier detection and feature selection have traditionally been
treated separately, there is a very recent research trend, attempting
to handle them together (Bottmer, Croux, & Wilms, 2022). At the
same time, a seminal paper by Bertsimas, King, and Mazumder (2016)
opened up new perspectives, not only in the Operations Research
community, showing mathematical programming to be a potential
breakthrough in these applications. In fact, mixed-integer programming
(MIP) formalizations of the regression with simultaneous feature selection
and outlier detection (SFSOD) problem have been considered indepen-
dently in a few studies (Insolia et al., 2021; Jammal, 2020; Jammal,
Canu, & Abdallah, 2020, 2021; Thompson, 2022). All these works
focus on a common assumption: using the least-squares (LS) criterion
to measure the proximity of a point to the hyperplane. This is not
a coincidence: while measures based on least absolute deviations are
common in machine learning, having differentiable proximity measures
allows more freedom in the choice of optimization techniques.

In this paper we instead focus on the option of solving the lin-
ear regression with SFSOD using a least absolute deviation (LAD)
optimization criterion.

Motivations and contributions. Two facts motivate a research interest on
the LAD criterion. The first fact is straightforward: a LAD regression
problem can be efficiently re-formulated as a mixed-integer linear pro-
gram and solved with specific state-of-the-art optimization packages.
The second fact comes from the literature: LAD models tend to produce
better solutions in terms of robustness (Arslan, 2012; Dodge, 1997;
Wang, Li, & Jiang, 2007; Wang & Zhu, 2017; Xu & Ying, 2010). They
are also easier to be handled when exploiting dual formulations for
training, as in Support Vector Regression models (Hastie, Tibshirani,
& Friedman, 2009, pp. 434–437). A research question naturally arises,
whether using mathematical programming models with LAD optimiza-
tion criteria helps in combining these two effects, or not. Such a
research question triggers other ones, for instance how different types
of outliers affect the behavior of the regression methods which use
mathematical programming.

As first contribution we propose two MIP models of the linear re-
gression with SFSOD using the LAD optimization criterion. One model
is the natural adaptation to the LAD setting of the model used in Insolia
et al. (2021), Jammal et al. (2020, 2021) and Thompson (2022) for the
LS setting; it exploits auxiliary variables to cancel the residuals of the
fitting hyperplane over the selected outliers. The other one elaborates
over a canonical disjunctive linearization of the bilinear terms used to
1071

eliminate the residuals directly in the objective function. We provide a
theoretical analysis of this latter approach, which proves to grant struc-
tural advantages, such as provably stronger LP bounds, with respect
to the method adapted from the literature. All these MIP approaches
involve the use of big-𝑀 values bounding the residuals of the fitting
hyperplane. We adapt and integrate procedures from the literature
in a heuristic to compute them. We therefore analyze theoretically
and computationally the relationship between their magnitude and the
quality of their dual bounds. We also consider both comparison and
integration of principles borrowed from the leveraged least-trimmed
absolute deviation method of Sudermann-Merx and Rebennack (2021).

Our second contribution is application-oriented. We conduct an
extensive experimental analysis on synthetic and real-world datasets,
comparing the MIP-based models, considering also benchmarks from
the literature. Our study takes into account (a) computational efficiency
of the fitting optimization process, (b) quality of the results, when the
corresponding regression solutions are used for prediction, not only in
terms of regression error, but also of accuracy in selecting features.

Our paper is organized as follows. In Section 2 we introduce our
notation and review relevant concepts and related approaches from the
literature. In Section 3 we describe in detail the MIP models for the lin-
ear regression with SFSOD with LAD objective including our heuristic
procedure for computing and refining big-𝑀 values. In Section 4 and
Section 5 we present our computational analysis on synthetic and real
world data, respectively, and in Section 6 we collect a few conclusions.

2. Notation and background

Given a dataset of the form  = {𝑝𝑖 = (𝑎𝑖, 𝑟𝑖) ∈ R𝑑+1, 𝑖 = 1… 𝑘},
he traditional linear regression problem is to find a vector 𝜔 ∈ R𝑑 of

coefficients and an intercept value 𝜁 ∈ R such that a given proximity
measure between the set  and the hyperplane  = {(𝑥, 𝑦) ∈ R𝑑+1 ∶ 𝑦 =
𝜔𝑥 + 𝜁} is optimized. The process of determining the pair (𝜔, 𝜁) is also
called fitting.

The linear regression paradigm is useful when it is reasonable
to assume that a linear relation exists between the input values 𝑎𝑖’s
(belonging to a 𝑑-dimensional space of features) and the corresponding
scalar response values 𝑟𝑖’s. In this context, the dataset  represents a
set of 𝑘 input–response measurements, possibly affected by noise or
errors, and the hyperplane  represents a reliable estimate of the actual
underlying mechanism generating the data in  . In particular,  can be
used to forecast the responses that would be obtained from new input
data through the same mechanism that generated the dataset  .

As discussed in the introduction, the SFSOD approach enhances the
traditional linear regression by combining it with (a) feature selection,
that is, drop dimensions which are irrelevant and (b) outlier detection,
that is, drop points which represent measurements strongly affected by
errors.

Elaborating on the most general form provided in Insolia et al.
(2021), we consider a loss function 𝓁∶R → R≥0 and express the linear
regression with SFSOD as the following MIP:

min
𝑘
∑

𝑖=1

1
𝑘
𝑠𝑖𝓁(𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧) (1)

||𝑤||0 ≤ 𝑑0 (2)

||𝑠||0 ≥ 𝑘 − 𝑘0 (3)

𝑤 ∈ R𝑑 , 𝑧 ∈ R (4)

𝑠 ∈ {0, 1}𝑘 (5)

where ||⋅||0 is the 0-norm (counting the nonzero entries of its argument)
and 𝑑0 and 𝑘0 are given ‘‘budget’’ values respectively for the number of
features that can be selected in the final solution and for the number
of points that can be marked as outliers. The feature and outlier
budget constraints (2) and (3) are put as inequalities for flexibility
and consistency with the literature. In fact, optimal solutions always

exist in which constraint (3) is tight, and constraint (2) is likely to
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be tight due to numerical reasons. For the sake of generality, function
𝓁(⋅) is not given explicitly. A typical choice in the literature is to take
𝓁(𝑥) = 𝑥2, under which (1) corresponds to optimize the LS criterion. We
call the corresponding problem LS-SFSOD. Another common criterion is
the LAD, corresponding to take 𝓁(𝑥) = |𝑥|. We call the corresponding
problem LAD-SFSOD. Variables 𝑠1, 𝑠2,… , 𝑠𝑘 are called switches here-
after: given a solution (𝑤̂, 𝑧̂, 𝑠̂) to (1)–(5) point 𝑝𝑖 = (𝑎𝑖, 𝑟𝑖) is selected
as an authentic point (a non-outlier) if and only if 𝑠𝑖 = 1.

Sparse and robust regression. Sparsity in regression problems consists
in determining faithful predictors relying on small sets of features. The
prototype of sparse regression problems is the best subset selection (BSS),
obtained from (1)–(5) by taking 𝓁(𝑥) = 𝑥2 and 𝑘0 = 0. BSS is NP-
hard (Natarajan, 1995) and it has been considered computationally
intractable for decades: an effective MIP-based resolution algorithm
for the BSS has been proposed only recently (Bertsimas et al., 2016).
Previously, sparse regression has been mainly performed through relax-
ations of BSS. An efficiently solvable convex relaxation of the BSS is the
LASSO (Tibshirani, 1996), obtained by replacing the 0-norm constraint
with its 1-norm counter-part, that is, ||𝑤||1 ≤ 𝑑0. For a suitably chosen
𝜆 ≥ 0, the LASSO can be expressed in the equivalent ‘‘penalized 𝓁1’’
form

min{||𝑟 − 𝐴𝑤 − 𝑧𝟏||22 + 𝜆||𝑤||1 ∶𝑤 ∈ R𝑑 , 𝑧 ∈ R},

highlighting that sparsity is incentivized through the penalization of
the term ||𝑤||1. Similar penalization approaches are used in the non-
convex estimators SCAD (Fan & Li, 2001) and MC+ (Zhang, 2010);
variations of the standard LASSO method also include the usage of
multiple penalization coefficients to control separately the feature se-
lection and the feature coefficient shrinkage (Meinshausen, 2007), and
adaptive penalization coefficients, where the 𝜆 used in the LASSO varies
e.g., with the number of training points (Zou, 2006). The elastic net
LASSO approach (Zou & Hastie, 2005) replaces the penalization term
of the LASSO with a combination of 1-norm and 2-norm penalization
obtaining reliable sparse predictors in presence of highly correlated
variables. The Dantzig estimator (Candes & Tao, 2007) relies on the
resolution of a linear program whose objective function is equivalent
to the 1-norm of the feature vector and whose domain controls the size
of correlated residual vectors.

The above-mentioned BSS and LASSO-like methods are suitable
for sparse regression in both the underdetermined (𝑑 < 𝑘) and the
overdetermined (𝑑 ≥ 𝑘) regimes but they are sensitive to outliers. The
most intuitive way to deal with outliers is to recognize and remove
them before training any learning model. Among the methods for
apriori outlier recognition we first mention those based on statistical
preprocessing. They describe the data at hand through a (known or
unknown) stochastic distribution and identify outliers as those not
conforming to that distribution model. For the univariate case, a simple
example of this approach is provided in Laurikkala et al. (2000): a point
is considered an outlier whenever it exceeds the upper or the lower
distribution extremes by 1.5× the interquartile range of the dataset
values. Parametric statistical methods assume a prior distribution of the
data (e.g., a Gaussian model) and first estimate the distribution model
parameters, then run some statistical test to assess the conformity of
the points. Examples of this approach are the maximum volume ellipsoid
estimation and the convex peeling described in Rousseeuw and Leroy
(2005) as well as the method presented in Yang, Latecki, and Pokrajac
(2009) which fits a Gaussian model using an expectation maximization
algorithm. Non-parametric methods do not assume prior knowledge on
the data distribution. Among them the kernel density estimation uses ker-
el functions to identify outliers as those points whose local density is
ot aligned to the local densities of the neighbors (Pavlidou & Zioutas,
014). In a similar fashion, density-based approaches leveraging the use
f nearest neighbors algorithms instead of kernel-based estimations,
dentify outliers as those points having low-density neighborhood, see
.g., the local outlier factor algorithm (Breunig, Kriegel, Ng, & Sander,
1072
000). Several other outlier detection methods are available in the
iterature. An exhaustive review is beyond the scope of this section,
ence we refer the reader to the extensive surveys provided in Hodge
nd Austin (2004) and Wang, Bah, and Hammad (2019).

Other methods exploit robust loss functions. Regression performed
ith the LS criterion can be robustified by adopting the least-trimmed

quares (LTS) paradigm (Rousseeuw, 1984), obtained from (1)–(5) by
etting 𝓁(𝑥) = 𝑥2 and 𝑑0 = 𝑑. The LTS is satisfactorily solvable
hrough fast heuristic algorithms, see e.g., the R Studio package
astLTS implementing the approach of Rousseeuw and Van Driessen
2006). The penalized trimmed square (PTS) approach (Zioutas, Pitsoulis,

Avramidis, 2009) is obtained from the LTS by relaxing the out-
ier budget constraint and augmenting the objective function with a
enalization term for each point, so that points producing residuals
arger than the penalization are discarded. Alternative approaches do
ot involve direct control on the outlier selection and adopt robust
oss functions. Among them we mention Huber’s loss function and the
ukey’s biweight loss function which are both convex, see the litera-
ure survey in Thompson (2022) for these and additional robust loss
unctions. A similar approach is to replace the LS loss function with
he LAD loss function, which is generally more robust as it places
ess weight on large deviations (Hastie et al., 2009, pp. 349–350).
oreover, under mild conditions, the LAD criterion is provably immune

o vertical outliers (Dodge, 1997). Based on this latter observation, the
ppealing idea of the leveraged least-trimmed absolute deviation (LLTA)
ethod (Sudermann-Merx & Rebennack, 2021) is to solve problem (1)–

5) in which 𝑑0 = 𝑑 (there is no feature selection), 𝓁(𝑥) = |𝑥| (a LAD
oss function is considered) and only a subset of switch variables 𝑠 are
sed, making the resolution of the corresponding MIP faster. The used
witch variables correspond to potential bad leverage points, as de-
ected by a statistical preprocessing step. The LLTA method is described
n greater detail in Section 4.3, because we compare our methods with a
odification of the LLTA method embedding the feature selection task.

Finally, we review methods attempting to obtain simultaneously
parsity and robustness. One approach is to combine the LASSO idea
for sparsity) with the LAD criterion (for robustness), thus obtain-
ng the so-called LAD-LASSO method (Wang et al., 2007). Variations
f the LAD-LASSO method include the use of adaptive penalization
oefficients in the feature shrinkage term (Xu & Ying, 2010) and the so-
alled weighted LAD-LASSO (WLAD) method (Arslan, 2012) where the
esiduals summed in the LAD loss function of the LAD-LASSO objective
re weighted distinctly to obtain resistance against bad leverage points.
combination of the WLAD method with the SCAD penalization term
entioned above is studied in Wang and Zhu (2017).

Analogously, the sparseLTS method (Alfons, Croux, & Gelper, 2013)
mbeds the LTS idea within the LASSO framework. It is equivalent to
he following optimization problem:

min{
𝑘
∑

𝑖=1
(1 − 𝑠𝑖)𝓁(𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧) + 𝑘0𝜆||𝑤||1 ∶ ||𝑠||0

≤ 𝑘0, 𝑠 ∈ {0, 1}𝑘, 𝑤 ∈ R𝑑 , 𝑧 ∈ R, }

or a suitably chosen 𝜆 ≥ 0. A sparseLTS implementation is available
n package robustHD (Alfons, 2021) of R Studio (RStudio Team,
020). A similar LTS embedding in the elastic net LASSO has been
tudied in Kurnaz, Hoffmann, and Filzmoser (2018a) and is avail-
ble in the R Studio package enetLTS (Kurnaz, Hoffmann, & Filz-
oser, 2018b). Alternative approaches from the literature to get spar-

ity and robustness against outliers often work in a 2-stage fashion.
or example, robust principal components regression and robust partial
east-squares regression methods combine a robust dimension reduction
ith a subsequent robust regression on the set of selected explanatory
ariables (Filzmoser & Nordhausen, 2021, Sect. 3.2-3.3). All above-
entioned robust sparse estimators lack direct control on either the

election of the features (e.g., LASSO-based methods) or the selection
f the outliers (e.g., BSS-derived methods).
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In the present paper we elaborate on the linear regression with
SFSOD defined by (1)–(5), which can be seen as a fully robustified
BSS method. Formalizations of the linear regression with SFSOD as
the optimization problem (1)–(5) are present in the literature (Chen,
Caramanis, & Mannor, 2013), but only very recently some works have
appeared in which such problem has been formalized and solved as a

IP. To our knowledge, such an approach to tackle the LS-SFSOD has
een proposed in Jammal et al. (2020, 2021). In Jammal et al. (2020)
LASSO version is considered, that is, a 1-norm penalization term is

ncluded in the objective function. Instead, in Jammal et al. (2021)
he LS-SFSOD is tackled by solving exactly a mixed-integer quadratic
rogram (MIQP); to improve convergence, the latter is supplied with a
arm-start heuristic solution obtained through a proximal alternating
inimization (PALM) algorithm. The results of Jammal et al. (2020,
021), together with similar approaches in the domain of support
ector machine, are also reported in Jammal (2020). The MIQP used
n Jammal et al. (2020, 2021) is independently found and used in two
ther works (Insolia et al., 2021; Thompson, 2022). Both those studies
rovide an analysis of the breakdown point of the proposed LS-SFSOD
odels; moreover, (Thompson, 2022) provides a primal heuristic al-

orithm alternative to the above-mentioned PALM algorithm, which is
ased on a gradient descent technique.

The computational outcome of these works is consistent: when
ompared to classical methods in sparse or robust regression, solving
he LS-SFSOD as a MIP provides solutions of high quality in terms of
parsity and robustness, at the price of a greater computational effort.

We also stress that all the above-mentioned works dealing with the
FSOD consider the LS setting for their experimental evaluation. There
s therefore a clear uncovered research ground on the LAD setting,
hich in turn is the subject of investigation in our paper.

n handling bilinear terms in MIPs. When considering the SFSOD ap-
roach, a key role is taken by the handling of the product of terms
n the objective function (1). In the LAD setting, in fact, they become
ilinear terms: linearization techniques are known in the literature
o work well in this context. One of them relies on McCormick’s
nvelopes (McCormick, 1976). It replaces each single quadratic term
= 𝑥𝑦 by a set of linear inequalities allowing the resolution of the

nitial MIP through standard mixed-integer linear programming (MILP)
olvers. Such approach typically needs bounds on the variables appear-
ng in the product hence it introduces big-𝑀 values in the resulting
ILP. The spatial branch-and-bound paradigm tightens the McCormick’s

nvelopes locally to each branch-and-bound node, by exploiting bounds
mplied by the branching steps. In the context of generic bilinear MIPs
regular spatial branch-and-bound scheme can be improved by means
f non-standard branching rules and by separating valid intersection
uts (Fischetti & Monaci, 2020). For the cases of bilinear terms involv-
ng the product of one continuous and one integer variable a binary
xpansion method of the integer variables produces an exact integer
inear reformulation which proves to be superior to McCormick’s one
oth theoretically and computationally (Gupte, Ahmed, Cheon, & Dey,
013). State-of-the-art solvers typically offer built-in functionalities
o solve optimization problems with specific bilinear terms without
elying on explicit linearizations of such terms. For example, Gurobi
0.1 (Gurobi Optimization, 2023) has native support for bilinear terms
n the objective function. Moreover, bilinear terms with one binary and
ne generic bounded variable can be reformulated in Gurobi as well as
PLEX (IBM ILOG, 2020) through the so-called Special Ordered Sets of

ype 1 (SOS-1), that is, expressions of the type (𝑥, 𝑦) ∈ SOS-1 imposing
hat at most one of variables 𝑥 and 𝑦 can have a nonzero value in the
olution (Bertsimas & Weismantel, 2005). Indeed the identity 𝑧 = 𝑥𝑦
ith 𝑥 ∈ {0, 1} and 𝑦 ∈ R is equivalent to the pair of SOS-1 constraints
𝑥, 𝑧−𝑦) ∈ SOS-1 and (1−𝑥, 𝑧) ∈ SOS-1. Such constraints are managed by
he supporting solvers through specific branching rules thus avoiding
ig-𝑀 terms. We also recall that SOS-1 constraints can be used to model
1073

-norm constraints as (2) and (3), see e.g., (Bertsimas et al., 2016).
n particular the LAD version of MIP (1)–(5) can be modeled in both
PLEX and Gurobi using SOS-1 constraints without using big-𝑀 values.

In the same setting of products between one binary and one generic
ounded variable another reformulation approach is through the so-
alled indicator constraints: these latter enforce conditions linked to
he value of the binary variable in an ‘‘on/off’’ fashion, so that the
elation 𝑧 = 𝑥𝑦 with 𝑥 ∈ {0, 1} amounts to specify the two indicator
onstraints (𝑥 = 0 ⇒ 𝑧 = 0) and (𝑥 = 1 ⇒ 𝑧 = 𝑦). When, as in
his case, the conditions amount to satisfy linear constraints, solvers
nternally reformulate indicator constraints in an extended space and
inearize them following McCormick’s technique, and the involved
ariable bounds are automatically tightened during branch-and-bound
lgorithms (Belotti et al., 2016).

Finally, we report that the use of disjunctive programming (Balas,
998) to linearize specific indicator constraints in the space of natural
ariables, also when the underlying condition is nonlinear, showed
reat potential in the literature (Bonami, Lodi, Tramontani, & Wiese,
015; Hijazi, Bonami, Cornuéjols, & Ouorou, 2012).

. Formulations and properties

Formally, the LAD-SFSOD problem is obtained by taking 𝓁(𝑥) = |𝑥|
n (1) and thus it amounts to solve

in

{

1
𝑘

𝑘
∑

𝑖=1
𝑠𝑖|𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧|∶ 𝑠,𝑤, 𝑧 satisfy (2)–(5)

}

(LAD-SFSOD)

iven points 𝑝1 = (𝑎1, 𝑟1), 𝑝2 = (𝑎2, 𝑟2),… , 𝑝𝑘 = (𝑎𝑘, 𝑟𝑘) as in Section 2,
e define 𝐴 as the design matrix (whose rows are 𝑎1, 𝑎2,… , 𝑎𝑘), and
= (𝑟1, 𝑟2,… , 𝑟𝑘) in R𝑘 as the (column) response vector.

Let (𝑠̂, 𝑤̂, 𝑧̂) be a feasible solution to (LAD-SFSOD) and let 𝐴̂ and 𝑟̂
e obtained from 𝐴 and 𝑟 by removing all 𝑘0 rows indexed by ℎ ∈
1, 2,… , 𝑘} such that 𝑠̂ℎ = 0. Then the value of (𝑠̂, 𝑤̂, 𝑧̂) in (LAD-SFSOD)
orresponds to ||𝑟̂ − 𝐴̂𝑤 − 𝑧̂𝟏||1 where || ⋅ ||1 is the 1-norm and 𝟏 is
he all 1’s column vector of the conforming dimension. For every 𝑖 ∈
1, 2,… , 𝑘}, a point 𝑝𝑖 = (𝑎𝑖, 𝑟𝑖) is labeled as an outlier when 𝑠𝑖 = 0 while
t is labeled as authentic if 𝑠𝑖 = 1. With this nomenclature we conclude
hat an optimal solution to (LAD-SFSOD) amounts to selecting, among
ll possible combinations, at most 𝑘0 outliers such that the hyperplane
̂ = {(𝑥, 𝑦) ∈ R𝑑+1 ∶ 𝑦 = 𝑤̂𝑥 + 𝑧̂} provides the minimum least absolute
eviation from the set of authentic points. Moreover, the hyperplane ̂
ust be sparse in the sense that 𝑤̂ must contain at most 𝑑0 nonzero

ntries, corresponding to features which are retained. The remaining
eatures are discarded.

In order to solve (LAD-SFSOD) with commercial MILP solvers it
s convenient to linearize its objective function and the 0-norm con-
traints (2) and (3). We proceed in two steps. We first linearize the 0-
orm constraints and the absolute value terms in the objective function
sing the same approach considered in Insolia et al. (2021), Jammal
t al. (2021) and Thompson (2022); next, we focus on the lineariza-
ion of the products in the objective function. To perform the first
tep we assume to know upper- and lower-bound vectors 𝑊 𝑈 =
𝑊 𝑈

1 ,𝑊 𝑈
2 ,… ,𝑊 𝑈

𝑑 ) and 𝑊 𝐿 = (𝑊 𝐿
1 ,𝑊 𝐿

2 ,… ,𝑊 𝐿
𝑑 ) such that 𝑊 𝐿

𝑗 ≤ 𝑤̂𝑗 ≤
𝑈
𝑗 for every 𝑗 = 1, 2,… , 𝑑 and for every optimal solution (𝑠̂, 𝑤̂, 𝑧̂)

o (LAD-SFSOD).
Then, we introduce binary variables 𝑓 ∈ {0, 1}𝑑 , each 𝑓𝑗 taking

alue 1 if feature 𝑗 is retained, 0 if it is discarded, and the continuous
ariables 𝑝 ≥ 𝟎, each 𝑝𝑖 upper-bounding the value of the residual on
oint 𝑝𝑖. Consider the following MIP:

) min 1
𝑘

𝑘
∑

𝑖=1
𝑠𝑖𝑝𝑖 (6)

𝑝𝑖 ≥ 𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧 ∀𝑖 = 1, 2,… , 𝑘 (7)

𝑝𝑖 ≥ 𝑧 + 𝑎𝑖𝑤 − 𝑟𝑖 ∀𝑖 = 1, 2,… , 𝑘 (8)
𝐿
𝑤𝑗 ≥ 𝑊𝑗 𝑓𝑗 ∀𝑗 = 1, 2,… , 𝑑 (9)
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𝑞

𝑟

𝑤𝑗 ≤ 𝑊 𝑈
𝑗 𝑓𝑗 ∀𝑗 = 1, 2,… , 𝑑 (10)

𝑑
∑

𝑗=1
𝑓𝑗 ≤ 𝑑0 (11)

𝑘
∑

𝑖=1
𝑠𝑖 ≥ 𝑘 − 𝑘0 (12)

𝑠 ∈ {0, 1}𝑘 (13)

𝑓 ∈ {0, 1}𝑑 (14)

𝑝 ≥ 𝟎, 𝑤 ∈ R𝑑 , 𝑧 ∈ R (15)

roposition 1. The MIP () is equivalent to (LAD-SFSOD).

Indeed, let (𝑝⋆, 𝑓⋆, 𝑠⋆, 𝑤⋆, 𝑧⋆) be a solution to (6)–(15). Since it is a
inimization problem, constraints (7)–(8) imply that 𝑝⋆𝑖 = |𝑟𝑖 −𝑤⋆𝑎𝑖 − 𝑧⋆|

or every 𝑖 = 1, 2,… , 𝑘 such that 𝑠⋆𝑖 = 1; moreover, by (9)–(10) we get
hat 𝑤⋆

𝑗 ≠ 0 only if 𝑓⋆
𝑗 = 1, hence (11) guarantees that 𝑤⋆ has at

ost 𝑑0 nonzero entries, that is, ||𝑤⋆
||0 ≤ 𝑑0. Since 𝑠⋆ ∈ {0, 1}𝑘 we

lso immediately get ||𝑠⋆||0 ≥ 𝑘 − 𝑘0 from (12). Therefore (𝑠⋆, 𝑤⋆, 𝑧⋆)
is a feasible solution to (LAD-SFSOD) of value ∑𝑘

𝑖=1 𝑠
⋆
𝑖 |𝑟𝑖 −𝑤⋆𝑎𝑖 − 𝑧⋆|;

analogously, if (𝑠̂, 𝑤̂, 𝑧̂) is a solution to (LAD-SFSOD) we can define 𝑓𝑗 =
0 if and only if 𝑤̂𝑗 = 0 for every 𝑗 = 1, 2,… , 𝑑 and 𝑝̂𝑖 = |𝑟𝑖 − 𝑤̂𝑎𝑖 − 𝑧̂| for
every 𝑖 = 1, 2,… , 𝑘. Since 𝑊 𝐿 and 𝑊 𝑈 provide valid lower- and upper-
bounds on the entries of 𝑤̂ we get that (𝑝̂, 𝑓 , 𝑠̂, 𝑤̂, 𝑧̂) satisfies (9)–(15),
showing the equivalence.

Observation 1. We point out that, without additional information on the
structure of features (e.g., mandatory/forbidden simultaneous selection of
feature subsets), the difficulty of solving ( ) mostly depends on the big-𝑀
values used in constraints (9) and (10). Indeed, even slightly loose big-𝑀
values in (9)–(10) allow solutions (𝑤̃, 𝑧̃) of the continuous relaxation of ( )
with all nonzero 𝑤̃𝑗 ’s. This is opposed to the outlier detection part, which
benefits from the presence of the switch variables in the objective function
(so that it is always convenient to set a switch variable to 0 while the budget
constraint is satisfied).

3.1. Objective function linearizations and theoretical analysis

All constraints of the MIP () are linear. However, its objective
function is bilinear and, in general, non-convex. Therefore in this
section we consider two linearizations for the bilinear terms in (1).
Both linearizations involve the use of big-𝑀 values. For notational
convenience, we define res𝑖(𝑤, 𝑧) = |𝑟𝑖 −𝑤𝑎𝑖 − 𝑧| for every 𝑖 = 1, 2,… , 𝑘;
that is, res𝑖(𝑤, 𝑧) is the residual of hyperplane  = {(𝑥, 𝑦) ∈ R𝑑+1 ∶ 𝑦 =
𝑤𝑧 + 𝑧} with respect to point 𝑝𝑖. We assume to know a vector 𝑅𝑈 =
(𝑅𝑈

1 , 𝑅
𝑈
2 ,… , 𝑅𝑈

𝑘 ) of valid upper bounds on the residuals of an optimal
solution (𝑠⋆, 𝑤⋆, 𝑧⋆) to (LAD-SFSOD), that is, res𝑖(𝑤⋆, 𝑧⋆) ≤ 𝑅𝑈

𝑖 for
every 𝑖 = 1, 2,… , 𝑘.

The first linearization of (6) we consider is a refinement of a
standard technique based on disjunctive programming. Let us fix 𝑖 ∈
{1, 2,… , 𝑘} and consider an auxiliary variable 𝑥𝑖 ≥ 0 defined by
𝑥𝑖 = 𝑠𝑖𝑝𝑖; since 𝑠𝑖 ∈ {0, 1} we may restrict to consider the solutions
(𝑥̂, 𝑝̂, 𝑓 , 𝑠̂, 𝑤̂, 𝑧̂) such that one of the two cases holds: either 𝑠̂𝑖 = 1 and
hence 0 ≤ 𝑥̂𝑖 = 𝑝̂𝑖 ≤ 𝑅𝑈

𝑖 ; or 𝑠̂𝑖 = 0 and hence 𝑥̂𝑖 = 0 and 𝑝̂𝑖 = 𝑅𝑈
𝑖 . The

latter holds because when 𝑠̂𝑖 = 𝑥̂𝑖 = 0 defining 𝑝̂𝑖 = 𝑅𝑈
𝑖 necessarily

satisfies all constraints (7)–(15) and does not have any impact on
the objective function. Equivalently, this disjunction is expressed by
(𝑥̂𝑖, 𝑝̂𝑖, 𝑠̂𝑖) ∈ 𝑃 𝑖

0 ∪ 𝑃 𝑖
1 where 𝑃 𝑖

0 = {(0, 𝑅𝑈
𝑖 , 0)} and 𝑃 𝑖

1 = {(𝜋, 𝜋, 1)∶ 0 ≤
𝜋 ≤ 𝑅𝑈

𝑖 } for every 𝑖 = 1, 2,… , 𝑘; since 𝑃 𝑖
0 is a single point in R3, while

𝑃 𝑖
1 is a segment, the convex hull of their union is easily determined as:

conv(𝑃 𝑖
0 ∪ 𝑃 𝑖

1)

= {(𝑥𝑖, 𝑝𝑖, 𝑠𝑖)∶ 𝑥𝑖 = 𝑝𝑖 − 𝑅𝑈
𝑖 (1 − 𝑠𝑖), 0 ≤ 𝑥𝑖 ≤ 𝑝𝑖 ≤ 𝑅𝑈

𝑖 , 0 ≤ 𝑠𝑖 ≤ 1}.
1074
Projecting out the 𝑥 variables we get the following disjunctive-based
linearization of (LAD-SFSOD):

() min 1
𝑘

𝑘
∑

𝑖=1
(𝑝𝑖 − (1 − 𝑠𝑖)𝑅𝑈

𝑖 ) (16)

𝑝𝑖 ≥ 𝑅𝑈
𝑖 (1 − 𝑠𝑖) ∀𝑖 = 1, 2,… , 𝑘 (17)

𝑝𝑖 ≤ 𝑅𝑈
𝑖 ∀𝑖 = 1, 2,… , 𝑘 (18)

(𝑝, 𝑓 , 𝑠, 𝑤, 𝑧) satisfy (7)–(15). (19)

Observation 2. Since () is a minimization problem, an optimal solution
will automatically satisfy constraints (18). Therefore these latter may be
omitted from () without affecting the correctness of the model. We include
them since they appear explicitly in the description of conv(𝑃 𝑖

0 ∪ 𝑃 𝑖
1) given

above.

We point out the following relations to exist between the disjunctive-
based formulation () and the linearization of (6) via McCormick’s
envelopes.

Observation 3. The following results hold true:

• the polyhedron corresponding to the continuous relaxation of ()
is a face of that corresponding to the continuous relaxation of Mc-
Cormick’s reformulation of ();

• the optimal continuous relaxation value of () and that of Mc-
Cormick’s reformulation coincide, even if the set of feasible solutions
does not;

• by fixing to 0 a switch variable 𝑠𝑖 for some 𝑖 ∈ {1, 2… , 𝑘} for-
mulation () automatically implies the constraint 𝑝𝑖 = 𝑅𝑈

𝑖 , which
does not hold for McCormick’s reformulation (for which, in general
𝟎 ≤ 𝑝 ≤ 𝑅𝑈 independently of the value of the 𝑠 variables).

For the sake of conciseness, here we do not report the McCormick’s
reformulation of () nor the formal derivation of the first two items in
Observation 3. They can be found in the online Appendix A.

Since formulation () is of smaller size than McCormick’s refor-
mulation and the fixing in the last item of Observation 3 is a typ-
ical operation in several MIP resolution techniques (e.g., branching
in branch-and-bound methods), the disjunctive-based approach offers
computational advantages a priori. In fact, as reported in Vielma (2015,
Sect. 2.2), effective MIP formulations combine small size with strong
LP bounds and with good behavior under branching. In this regard
the disjunctive-based reformulation of LAD-SFSOD is superior to Mc-
Cormick’s one in all these aspects, hence we will focus on () from
now on.

We now move to the second linearization of the objective function
of (). It arises from an adaptation to the LAD setting of the LS-
SFSOD considered independently in Insolia et al. (2021), Jammal et al.
(2021) and Thompson (2022). All these three works introduce variables
which cancel the residuals in correspondence of outliers. We are not
aware of alternative exact models of the LS-SFSOD in the literature.
For the sake of structural comparison with the literature, we consider
the corresponding LAD version, which can be obtained by using the loss
function 𝓁(𝑥) = |𝑥| instead of 𝓁(𝑥) = 𝑥2 in the model of Insolia et al.
(2021), (Jammal et al., 2021) and Thompson (2022). This leads to the
following linearization of (LAD-SFSOD):

() min 1
𝑘

𝑘
∑

𝑖=1
𝑞𝑖 (20)

𝑖 + 𝑟𝑖 −𝑤𝑎𝑖 − 𝑧 − 𝑡𝑖 ≥ 0 ∀𝑖 = 1, 2,… , 𝑘 (21)

𝑖 −𝑤𝑎𝑖 − 𝑧 − 𝑡𝑖 − 𝑞𝑖 ≤ 0 ∀𝑖 = 1, 2,… , 𝑘 (22)

𝑡𝑖 ≥ −(1 − 𝑠𝑖)𝑅𝑈
𝑖 ∀𝑖 = 1, 2,… , 𝑘 (23)

𝑡𝑖 ≤ (1 − 𝑠𝑖)𝑅𝑈
𝑖 ∀𝑖 = 1, 2,… , 𝑘 (24)

(𝑓, 𝑠,𝑤, 𝑧) satisfy (9)–(15) (25)
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𝑞 ≥ 𝟎, 𝑡 ∈ R𝑘. (26)

ariables 𝑡, appearing in (20)–(26), are used to cancel the residual in
orrespondence of outliers, which in turn are selected by the switch
ariables 𝑠, while in () this is done directly with the binary switch
ariables.

Our finding is that the disjunctive-based linearization is inherently
ifferent from the linearization () proposed in the literature. Namely,
e are able to theoretically prove that the continuous relaxation value
f the disjunctive-based formulation is at least as strong as the contin-
ous relaxation value of the literature MILP; next, we derive sufficient
onditions on the bound vector 𝑅𝑈 for the two continuous relaxation
alues to coincide; finally we experimentally show that by violating
uch a condition we can construct instances on which the continuous
elaxation of the disjunctive-based formulation is strictly stronger. To
ix notation let ̄𝑅𝑈 and ̄𝑅𝑈 be the polytopes arising from the contin-
ous relaxations of () and () respectively and let 𝑣(̄𝑅𝑈 ) and 𝑣(̄𝑅𝑈 )

indicate the corresponding continuous relaxation values. The following
result holds for every big-𝑀 vector 𝑅𝑈 used in the above formulations
also non-valid ones).

roposition 2. 𝑣(̄𝑅𝑈 ) ≥ 𝑣(̄𝑅𝑈 ) for every 𝑅𝑈 ≥ 𝟎.

roof. Let (𝑝̃, 𝑓 , 𝑠̃, 𝑤̃, 𝑧̃) ∈ ̄𝑅𝑈 ; we determine 𝑞, 𝑡 such that (𝑞, 𝑡, 𝑓 , 𝑠̃, 𝑤̃, 𝑧̃)
̄𝑅𝑈 and ∑𝑘

𝑖=1(𝑝̃𝑖 − (1 − 𝑠̃𝑖)𝑅𝑈
𝑖 ) =

∑𝑘
𝑖=1 𝑞𝑖, which therefore proves the

laim.
To this end, we define 𝑞𝑖 = 𝑝̃𝑖 − (1 − 𝑠̃𝑖)𝑅𝑈

𝑖 . Then the equivalence of
he objective functions is immediate. Moreover, from (17) it follows
hat 𝑞𝑖 ≥ 0. Finally, let 𝐼𝑖 = [𝑟𝑖 − 𝑤̃𝑎𝑖 − 𝑧̃ − 𝑞𝑖, 𝑟𝑖 − 𝑤̃𝑎𝑖 − 𝑧̃ + 𝑞𝑖] ∩
−(1 − 𝑠̃𝑖)𝑅𝑈

𝑖 , (1 − 𝑠̃𝑖)𝑅𝑈
𝑖 ] for every 𝑖 = 1, 2,… , 𝑘. Note that 𝐼 ≠ ∅:

rom (7) we get 𝑟𝑖 − 𝑤̃𝑎𝑖 − 𝑧̃ − 𝑞𝑖 ≤ (1 − 𝑠̃𝑖)𝑅𝑈
𝑖 while (8) implies

𝑖 − 𝑤̃𝑎𝑖 − 𝑧̃+ 𝑞𝑖 ≥ −(1− 𝑠̃𝑖)𝑅𝑈
𝑖 . Let us pick 𝑡𝑖 ∈ 𝐼𝑖 for every 𝑖 = 1, 2,… , 𝑘.

hen (𝑞, 𝑡, 𝑓 , 𝑠̃, 𝑤̃, 𝑧̃) ∈ ̄𝑅𝑈 . □

We now present a sufficient condition for 𝑣(̄𝑅𝑈 ) = 𝑣(̄𝑅𝑈 ).

roposition 3. If 𝑅𝑈
𝑖 ≥ max{|𝑟𝑖 −𝑤𝑎𝑖 − 𝑧|∶ (𝑞, 𝑡, 𝑓 , 𝑠, 𝑤, 𝑧) attains

𝑣(̄𝑅𝑈 )} for 𝑖 = 1, 2,… , 𝑘 then 𝑣(̄𝑅𝑈 ) = 𝑣(̄𝑅𝑈 ).

Proof. In view of Proposition 2 we only need to prove that 𝑣(̄𝑅𝑈 ) ≤
𝑣(̄𝑅𝑈 ) when 𝑅𝑈 is as in statement of Proposition 3. Let (𝑞, 𝑡, 𝑓 , 𝑠̄, 𝑤̄, 𝑧̄) ∈
̄𝑅𝑈 attaining value 𝑣(̄𝑅𝑈 ). Then 𝑞𝑗 ≤ 𝑠̄𝑗𝑅𝑈

𝑗 for every 𝑗 = 1, 2,… , 𝑘. In-
deed, suppose by contradiction that 𝑞𝑖 > 𝑠̄𝑖𝑅𝑈

𝑖 for some 𝑖 ∈ {1, 2,… , 𝑘}.
Since (𝑞, 𝑡, 𝑓 , 𝑠̄, 𝑤̄, 𝑧̄) attains the minimum of (20) on ̄𝑅𝑈 , constraints
(21) and (22) imply 𝑞𝑖 = |𝑟𝑖 − 𝑤̄𝑎𝑖 − 𝑧̄ − 𝑡𝑖|; then |𝑟𝑖 − 𝑤̄𝑎𝑖 − 𝑧̄ − 𝑡𝑖| >
𝑠𝑖𝑅𝑈

𝑖 . Let first 𝑟𝑖−𝑤̄𝑎𝑖− 𝑧̄−𝑡𝑖 ≥ 0. Then 𝑅𝑈
𝑖 ≥ 𝑟𝑖−𝑤̄𝑎𝑖− 𝑧̄ > 𝑠𝑖𝑅𝑈

𝑖 +𝑡𝑖 since
𝑈
𝑖 is a valid upper bound on |𝑟𝑖 − 𝑤̄𝑎𝑖 − 𝑧̄| by the hypothesis. Then

𝑖̄ < (1−𝑠̄𝑖)𝑅𝑈
𝑖 . Let 𝜀 = min{(1−𝑠̄𝑖)𝑅𝑈

𝑖 −𝑡𝑖, 𝑞𝑖−𝑠̄𝑖𝑅
𝑈
𝑖 }. We define 𝑞′𝑖 ∶= 𝑞𝑖−𝜀,

′
𝑖 ∶= 𝑡𝑖 + 𝜀 and 𝑞′𝑗 = 𝑞𝑗 , 𝑡′𝑗 = 𝑡𝑗 for every 𝑗 ≠ 𝑖. By the definitions,
𝑖̄ > 𝑞′𝑖 ≥ 0 and 𝑟𝑖 − 𝑤̄𝑎𝑖 − 𝑧̄ − 𝑡′𝑖 = 𝑞′𝑖 . Hence (𝑞′, 𝑡′, 𝑓 , 𝑠̄, 𝑤̄, 𝑧̄) ∈ ̄𝑅𝑈

nd its value is strictly less than 𝑣(̄𝑅𝑈 ), a contradiction. The case
𝑖−𝑤̄𝑎𝑖−𝑧̄−𝑡𝑖 < 0 is analogous. To conclude we define 𝑝̄𝑗 = 𝑞𝑗+(1−𝑠̄𝑗 )𝑅𝑈

𝑗
or every 𝑗 = 1, 2,… , 𝑘. The fact that 𝑞𝑗 ≤ 𝑠̄𝑗𝑅𝑈

𝑗 for every 𝑗 = 1, 2,… , 𝑘
mplies that 𝑝̄𝑗 ≤ 𝑅𝑈

𝑖 . All other constraints of (17)–(19) are easily seen
o be satisfied by (𝑝̄, 𝑠̄, 𝑤̄, 𝑧̄) and the latter obviously has value 𝑣(̄𝑅𝑈 ).
hus 𝑣(̄𝑅𝑈 ) ≤ 𝑣(̄𝑅𝑈 ). □

We recall the following.

bservation 4. When 𝑅𝑈 is a vector of valid upper bounds on the
esiduals of an optimal solution of (LAD-SFSOD), MILPs () and () are
oth valid reformulations of (LAD-SFSOD).

In fact, if for some 𝑖 ∈ {1, 2,… , 𝑘} the value 𝑅𝑈
𝑖 does not satisfy

he assumption in Proposition 3, inequality 𝑞𝑖 ≤ 𝑠𝑖𝑅𝑈
𝑖 is not implied

y the constraints defining ̄𝑅𝑈 . Therefore using them may lead to
̄ ̄
1075

(𝑅𝑈 ) < 𝑣(𝑅𝑈 ). In particular, this is the case of the bounds vectors 𝑆
𝑈 as those considered in Observation 4. We have actually observed
experimentally this phenomenon to occur frequently, see Section 4.1.

3.2. Big-𝑀computation

As reported in Thompson (2022) it ‘‘remains an open research
question how to estimate provably correct parameters in the absence of
any assumptions on’’ the design matrix. In fact, in the SFSOD context,
it is nontrivial to determine big-𝑀 values (even loose ones) which do
not cut off optimal solutions. As a consequence, the works adopting the
SFSOD approach resort to the following heuristic method: first a primal
solution (𝜔⋆, 𝜁⋆) and the corresponding residuals res⋆1 , res⋆2 ,… , res⋆𝑘 are
omputed; then (arbitrary) multipliers 𝑚1, 𝑚2 ≥ 1 are selected, allowing
o set 𝑊 𝐿

𝑗 = −𝑚1|𝜔⋆
𝑗 | and 𝑊 𝑈

𝑗 = 𝑚1|𝜔⋆
𝑗 | for every 𝑗 = 1, 2,… , 𝑑 and

𝑈
𝑖 = 𝑚2res⋆𝑖 for every 𝑖 = 1, 2,… , 𝑘. A refinement of this technique
xploiting multiple primal solutions is given in Insolia et al. (2021).

The approach just described is not exact since it could cut off the
lobal minimum of (LAD-SFSOD) (or its LS counter-part), although it
aximally improves the starting primal solutions without worsening its

esiduals nor changing its sparsity: if 𝑤⋆
𝑗 = 0 for some 𝑗 = 1, 2,… , 𝑑 then

lso 𝑊 𝐿
𝑗 = 𝑊 𝑈

𝑗 = 0. More flexibility on the sparsity of the resulting
ector is obtained in Jammal et al. (2021) and Thompson (2022) by
etting 𝑊 𝐿

𝑗 = −𝑚1||𝑤⋆
||∞ and 𝑊 𝑈

𝑗 = 𝑚1||𝑤⋆
||∞, but in this case all

ntries of 𝑊 𝐿, as well as those of 𝑊 𝑈 , coincide.
Building on alternative ideas from the literature, and in particular

n the heuristic approach presented in Bertsimas et al. (2016) to
alculate 𝑊 𝐿,𝑊 𝑈 for the BSS in the overdetermined regime (𝑘 > 𝑑
ith at least 𝑑 points in general position), we proceed as follows.
et (𝑤⋆, 𝑧⋆) be hyperplane coefficients of a feasible solution to (LAD-
FSOD) and let 𝑣⋆ = ||𝑟 − 𝐴𝑤⋆ − 𝑧⋆𝟏||22; for every 𝑗 = 1, 2,… , 𝑑 we
et 𝑊 𝑈

𝑗 and 𝑊 𝐿
𝑗 by solving the following pair of convex optimization

rograms:
𝐿
𝑗 =min𝑤𝑗 𝑊 𝑈

𝑗 =max𝑤𝑗

||𝑟 − 𝐴𝑤 − 𝑧𝟏||22 ≤ 𝑣⋆ ||𝑟 − 𝐴𝑤 − 𝑧𝟏||22 ≤ 𝑣⋆

𝑤 ∈ R𝑑 , 𝑧 ∈ R, 𝑤 ∈ R𝑑 , 𝑧 ∈ R.

ince the domain of the above problems is a compact set of R𝑑+1,
hey both admit finite optimal values. These latter can be computed
nalytically exploiting the convexity of the problem domain, see the
ormulas in the supplementary material of Bertsimas et al. (2016).

We remark that while the approach of Bertsimas et al. (2016)
o the BSS allows an exact computation of valid big-𝑀 values, our
daptation to the LAD-SFSOD turns out to be heuristic: the 2-norm of
he total residual of an optimal solution to the (LAD-SFSOD) could be
arger than the one of a sub-optimal solution. Indeed, in an optimal
olution to (LAD-SFSOD), large deviations can be cancelled by setting
he corresponding switch variables to 0. We point out that, with this
pproach, 𝑤⋆

𝑗 = 0 does not necessarily imply 𝑊 𝑈
𝑗 = 0 nor 𝑊 𝐿

𝑗 = 0
or any 𝑗 ∈ {1, 2,… , 𝑑} and the bounds are not necessarily coinciding.

e also point out that, when computing the big-𝑀 vectors 𝑊 𝐿 and
𝑈 used in the (LAD-SFSOD) linearization, an alternative could be

o replace the convex constraint in the above optimization problems
ith its 1-norm counter-part ||𝑟 − 𝐴𝑤 − 𝑧𝟏||1 ≤ 𝑣̄⋆, where 𝑣̄⋆ = ||𝑟 −
𝑤⋆ − 𝑧⋆𝟏||. This yields an alternative optimization problem that can
e cast to a linear program. In our experiments we adopt the convex
ptimization-based approach for two reasons: first, since it admits an
nalytical solution, the computation of 𝑊 𝐿 and 𝑊 𝑈 takes constant
ime; second the big-𝑀 values obtained from the convex programs can
e used for both the LAD- and LS-SFSOD reformulations with which we
xperiment in the subsequent sections.

We heuristically compute a bound vector 𝑅𝑈 on the residuals in a
imilar manner. Namely, by first solving the following convex optimiza-
ion programs for every 𝑖 = 1, 2,… , 𝑘:
𝐿 𝑖 𝑈 𝑖

𝑖 =min 𝑎 𝑤 + 𝑧 𝑆𝑖 =max 𝑎 𝑤 + 𝑧
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Algorithm 1 Bisection algorithm for the refinement of big-𝑀 values.
Require:

• an incumbent solution (𝑤⋆, 𝑧⋆)
• a starting big-𝑀 vector 𝑅𝑈

• design matrix and response vector 𝐴 and 𝑦
• an iteration limit 𝐿
• a nonnegative real number 𝜇 ≥ 1
• an outlier budget 𝑘0

1: 𝑛𝑒𝑤𝑅𝑈 ← 𝑅𝑈∕2
2: for 𝓁 < 𝐿 do
3: if |𝑟𝑖 −𝑤⋆𝑎𝑖 − 𝑧⋆| ≤ 𝑛𝑒𝑤𝑅𝑈

𝑖 for 𝑖 = 1, 2,… , 𝑘 then
4: 𝑅𝑈 ← 𝑛𝑒𝑤𝑅𝑈

5: 𝑛𝑒𝑤𝑅𝑈 ← 𝑅𝑈∕2
6: else
7: 𝑛𝑒𝑤𝑅𝑈 ← 𝑛𝑒𝑤𝑅𝑈 + (𝑅𝑈 − 𝑛𝑒𝑤𝑅𝑈 )∕2
8: end if
9: 𝓁 ← 𝓁 + 1

10: end for
11: Sort 𝑅𝑈 by non-increasing value
12: for 𝑖 = 1, 2,… 𝑘0 do
13: 𝑅𝑈

𝑖 ← 𝜇𝑅𝑈
𝑖

14: end for
15: reset the entries of 𝑅𝑈 to the original positions
16: return 𝑅𝑈

||𝑟 − 𝐴𝑤 − 𝑧𝟏||22 ≤ 𝑣⋆ ||𝑟 − 𝐴𝑤 − 𝑧𝟏||22 ≤ 𝑣⋆

𝑤 ∈ R𝑑 , 𝑧 ∈ R, 𝑤 ∈ R𝑑 , 𝑧 ∈ R.

nd then using |𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧| ≤ |𝑟𝑖| + max{|𝑆𝐿
𝑖 |, |𝑆

𝑈
𝑖 |} =∶ 𝑅𝑈

𝑖 ; in
his case the convex programs defining 𝑆𝐿

𝑖 and 𝑆𝑈
𝑖 admit analytical

solutions in both the underdetermined and overdetermined regimes -
see the supplementary material of Bertsimas et al. (2016). Once we
have computed the vector 𝑅𝑈 we refine the values of its entries by using

bisection algorithm: the current values are halved if the incumbent
olution remains feasible and are increased otherwise, until an iteration
imit is reached; next, the 𝑘0 largest values obtained in 𝑅𝑈 in this way
re multiplied by a large factor. See Algorithm 1 for the pseudo-code.

The above convex programming-based approaches to compute big-
values for our reformulations of the linear regression with SFSOD are

seful when no information on the magnitude of the prediction errors
nd/or hyperplane coefficients of an optimal solution is available a
riori. This is the case of the real-world dataset considered in Section 5.

. Computational results on synthetic instances

In this section we evaluate branch-and-bound algorithms based on
he formulations presented in Section 3. The comparison is performed
rom two standpoints. On one hand we consider an integer program-
ing perspective: we measure the quality of the continuous relaxations

f the proposed formulations as well as the computational effort in
olving them to optimality. We compare such formulations with each
ther, and with an enhancement of the LLTA method (Sudermann-Merx

Rebennack, 2021) which includes feature selection. On the other
and we consider the prediction quality of the regression hyperplanes
ound as solutions to (LAD-SFSOD) by means of the formulations of
ection 3. We compare such solutions with state-of-the-art methods
or the robust sparse regression. In order to control the parameters
ffecting the performance of the considered algorithms we generated
ynthetic instances to perform the experiments in this section.

nstances. Let 𝑑 and 𝑘 be fixed. Each synthetic instance is a pair
f one training and one testing dataset, each containing 𝑘 points in
𝑑+1. Five instances are created for each value of 𝑘 ∈ {100, 150, 200};
1076

f

Table 1
Parameters used to generate our synthetic instances.

Parameter name 𝑑 𝛼 𝜇𝑟 𝜇𝐴 𝜋

Parameter value 49 5 −10 10 0.1

even if they are not enough to provide a ultimate statistical proof of
dominance between methods, we found them to offer a reasonable
trade off between the CPU time required to perform our experiments
and the insights coming from their results. Moreover, each instance
depends on a coefficient feature vector 𝜔 ∈ R𝑑 , on a signal-to-noise
ratio (SNR) value 𝛼, on an outlier ratio 0 < 𝜋 < 1∕2 and on response and
design error means 𝜇𝑟 and 𝜇𝐴. The design matrices of both datasets are
initially constructed row-wise, drawing each row from a multi-variate
normal distribution  (0, I) with I being the identity matrix. We observe
that this specific generation criterion yields normalized data. Therefore
no further standardization technique to increase numerical stability and
improve bounds computation is needed. Given also 𝜎2 = ||𝜔||22∕𝛼 the
esponse vector is defined by 𝑟𝑖 = 𝜔𝑎𝑖 + 𝜁 + 𝜀𝑖 for every 𝑖 = 1, 2,… , 𝑘
ith 𝜁 extracted from a  (0, 1) distribution and 𝜀𝑖 extracted from a
(0, 𝜎2) distribution. The 𝜀𝑖’s simulate the presence of noise in the
easurements yielding the synthetic datasets. In a subsequent step
e consider one of the two corruption schemes, only for the training
ataset:

1. corruption only in the responses (vertical outliers);
2. corruption in both design matrix and responses (bad leverage

points).

n both schemes, each point is independently chosen as outlier with
given probability 𝜋. For outlier points, the corresponding response

ntry is corrupted, changing it by a value extracted from a  (𝜇𝑟, 1)
istribution. Only in scheme 2, also the design matrix is corrupted by
hanging the entries in the rows corresponding to outliers by a value
xtracted from a  (𝜇𝐴, 1) distribution. Only entries corresponding to
onzero coefficients in the feature vector are corrupted in this way. For
oth corruption schemes, we consider the hyperplane coefficient vector
∈ R𝑑 having its first 5 entries equal to 1, and all others equal to 0

nd the parameters given in Table 1. Such parameters are essentially
hose used in Insolia et al. (2021) for the tests on synthetic instances.
he only differences are in the definition of 𝜔, whose first 5 entries
re set to 2 in Insolia et al. (2021), and in the fact that here we focus
n the overdetermined regime (having 𝑘 > 𝑑). The following theorem
heds light on the robustness of the LAD fitting with respect to vertical
utliers:

roposition 4 (Dodge, 1997). If (𝑤̂, 𝑧̂) is a solution to min𝑤∈R𝑑 ,𝑧∈R
𝑘
𝑖=1 |𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧| then it is also a solution to min𝑤∈R𝑑 ,𝑧∈R

∑𝑘
𝑖=1

𝑟′𝑖 − 𝑎𝑖𝑤 − 𝑧| provided that 𝑟′𝑖 ≥ 𝑎𝑖𝑤̂ + 𝑧̂ (resp. 𝑟′𝑖 ≤ 𝑎𝑖𝑤̂ + 𝑧̂) whenever
𝑖 > 𝑎𝑖𝑤̂ + 𝑧̂ (resp. 𝑟𝑖 < 𝑎𝑖𝑤̂ + 𝑧̂) for every 𝑖 = 1, 2,… , 𝑘.

In other words, the LAD fitting is automatically unaffected by ver-
ical outliers, when the corruption noise on the response has the same
ign of the measurement noise. However, our models do not rely on
his assumption, allowing us to handle arbitrary adversarial corruptions
s well. Our training instances, in fact, cover also this general case
including, in particular, cases where 𝜇𝑟 and the 𝜀𝑖’s have opposite
ign). The synthetic instances used in this section are available on the
nline repository associated with this paper (Barbato & Ceselli, 2023).

omputation of 𝑊 𝐿, 𝑊 𝑈 and 𝑅𝑈 . Vectors 𝑊 𝐿 and 𝑊 𝑈 are com-
uted via the resolution of convex optimization programs reported
n Section 3.2. The feasible solution needed for the computation of

𝐿 and 𝑊 𝑈 is obtained by the PALM algorithm of Jammal et al.
2020). The PALM algorithm was designed to produce a primal solu-
ion for the LS-SFSOD problem but such a solution is obviously also

easible for (LAD-SFSOD). Pseudo-code and convergence guarantees
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Table 2
LP bound values of formulations of Section 3 and relative increase of 𝑣() over 𝑣(). We consider LAD-SFSOD on instances corrupted with bad
leverage points. Results are averaged over the 5 dataset replications of each dataset size 𝑘.
𝑘 𝑘0 (%) 𝜙 = 1 𝜙 = 1.2 𝜙 = 1.5

𝑣() 𝑣() Incr. (%) 𝑣() 𝑣() Incr. (%) 𝑣() 𝑣() Incr. (%)

100 10 37.45 38.09 1.69 30.58 31.04 1.49 23.81 23.86 0.19
13 26.78 27.73 3.56 20.73 21.11 1.84 13.09 13.17 0.60
17 20.91 21.75 4.03 14.34 14.74 2.78 7.83 7.90 0.84
20 15.55 16.33 5.06 9.61 9.96 3.67 3.33 3.40 1.98

Avg. 3.58 2.45 0.90

150 10 130.78 131.18 0.30 80.13 80.54 0.50 65.79 66.04 0.39
13 76.29 77.44 1.51 63.59 64.26 1.05 49.16 49.51 0.70
17 61.22 62.96 2.85 47.92 48.72 1.66 31.24 31.58 1.07
20 52.39 54.24 3.54 38.32 39.12 2.07 23.01 23.41 1.72

Avg. 2.05 1.32 0.97

200 10 119.55 121.46 1.60 105.27 105.97 0.67 90.91 90.92 0.01
13 99.77 102.78 3.02 87.00 87.76 0.87 69.91 69.92 0.02
17 85.34 88.36 3.53 70.20 70.96 1.08 49.24 49.26 0.05
20 73.34 76.36 4.11 55.80 56.57 1.38 36.97 37.09 0.32

Avg. 3.06 1.00 0.10
w
C
S
e

of such an algorithm can be found in Jammal et al. (2020). The
convex programming-based approach for getting 𝑅𝑈 turned out to
produce very large bounds, resulting in numerical instability and poor
performance of the branch-and-bound algorithms used in this section.
Since we are interested in studying the strength of the formulations
of Section 3 depending on the magnitude of the bounds in 𝑅𝑈 , we
roceed differently as follows. For each instance replication we define
𝑖 = |𝑟𝑖 − 𝜔𝑎𝑖 − 𝜁 | for every 𝑖 = 1, 2,… , 𝑘, where 𝑟𝑖 and 𝑎𝑖 are

the response and design row of the 𝑖th point in the instance after
applying the corruption step. Vector 𝐸 = (𝐸1, 𝐸2,… , 𝐸𝑘) represents
the smallest bounds on the residuals of the authentic hyperplane on
the training dataset points. In our experiments we will set 𝑅𝑈 = 𝜙𝐸
with 𝜙 ≥ 1 being a parameter allowing us to control the tightness of
the big-𝑀 used in the MIP formulations of Section 3. Depending on
the experiment, the values in 𝑅𝑈 are refined using Algorithm 1 with
iteration limit 𝐿 = 10 and multiplier 𝜇 = 20. We point out that using
such big-𝑀 values could cut off the global optimum of (LAD-SFSOD)
but ensure its feasibility.

Implementation details. The instance generation script is implemented
in R. The MIP formulations presented in Section 3 are implemented us-
ing the C++ API of Gurobi 10.1 and solved with the branch-and-bound
framework offered by the same optimization suite. Unlike formula-
tions () and () given above, in our implementation we omit the term
1∕𝑘 in the objective function, since in preliminary tests we observed
that it did not improve the computational performance. The redundant
constraints (18) discussed in Observation 2 are implemented as upper
bounds of variables 𝑝𝑖’s so that Gurobi manages them automatically.
Each run is performed in parallel mode on a Linux machine (Ubuntu
20.04.4) equipped with 32 GB of RAM and with a 6 cores 4.10 GHz CPU
(model Intel(R) Xeon(R) W-1250P). The whole test session is performed
in parallel using the parallel package of R (we parallelize over the
feature budgets). We use the default setting of Gurobi except for the
parameters Cuts, CutPasses and MIPFocus that are set to 3, 1000
and 2, respectively, after a side experimental investigation (Barbato,
Bertoncini, & Ceselli, 2023). The former two parameters have the
effect of producing a high number of generic cuts at the root node
while the latter parameter drives the solver to produce strong dual
bounds during the branch-and-bound execution. The primal solution
produced by the PALM algorithm in the computation of the bound
vectors 𝑊 𝐿 and 𝑊 𝑈 is provided to Gurobi as a warm-start. Since we
onsider increasing sequences of the feature budget, when possible, the
odel is reoptimized by exploiting the optimization performed in the
revious step: we update the feature budget constraint of each model
1077
and provide Gurobi with the optimal solution of the previous step. In
this way we avoid to reoptimize similar models from scratch.

Comparison to general purpose solvers. In a round of experiments, we
have considered the straight use of built-in functionalities of MIP
solvers. In details, in the online Appendix B we compare algorithm ()

ith several alternative algorithms relying on built-in functionalities of
PLEX 20.1 and Gurobi 10.1 to model the non-convex terms in LAD-
FSOD, without explicitly linearizing them. In particular, this allows to
xpress the LAD-SFSOD MIP without relying on the use of big-𝑀 values.

In the datasets with 100 points and bad leverage outliers, the plain
use of CPLEX solves 45 instances to proven optimality within a time
limit of 1800𝑠, while our algorithm () solves 91 of them. Gurobi was
not able to close any of them, neither in a configuration with bilinear
objective and 0-norm constraints, nor in a configuration where 0-norm
constraints have been linearized, nor in a configuration using indicator
constraints. That is, we found such a straight use of MIP solvers to be
far from effective.

4.1. Comparison of continuous relaxations

In this section we experimentally compare the continuous relaxation
of formulations () and (). Proposition 2 states the former to never
be weaker than the latter. Our main finding is the following.

Experimental Observation 1. The continuous relaxation of the disjunc-
tive-based formulation () is strictly stronger than the continuous relaxation
of (), unless other assumptions on data are made (in which case they might
be equal).

We recall that according to Proposition 3 a necessary condition to
guarantee such a result is that the value of 𝑅𝑈

𝑖 is small enough for
at least one 𝑖 ∈ {1, 2,… , 𝑘}. Experimentally, we compare the relative
increase of the LP bound obtained by the disjunctive-based approach
with respect to the literature approach, by considering sequences of
vectors 𝑅𝑈 having increasing entries. Let 𝑣(𝑅𝑈 ) and 𝑣(𝑅𝑈 ) be the LP
bound values of () and () respectively. The relative increase of the
LP bound is computed as 100 ⋅

𝑣(𝑅𝑈 )−𝑣(𝑅𝑈 )
𝑣(𝑅𝑈 ) . In this experiment we use

𝑅𝑈 = 𝜙𝐸 with 𝜙 = 1, 1.2, 1.5; that is, we consider the vector with the
smallest bounds on the residuals of the authentic hyperplane and two
additional bound vectors whose entries are respectively increased by
20% and 50% with respect to the smallest ones. We consider datasets
polluted with bad leverage points, that is, following scheme 2. For
each instance replication we solve the continuous relaxations of both
formulations () and (), where we consider all combinations of 𝑑0 =
5, 6,… , 10 and 𝑘 = ⌊0.1𝑘⌋ , ⌊0.13𝑘⌋ , ⌊0.17𝑘⌋ , ⌊0.2𝑘⌋ (corresponding to
0



European Journal of Operational Research 316 (2024) 1070–1084M. Barbato and A. Ceselli

g
o
e

t
C
d
r
o
c
o
r
t
a
l
c
c

about 10%, 13%, 17% and 20% of points selectable as outliers). This
gives a grid of 24 parameter combinations for each considered formula-
tion; since we have 5 dataset replications for each dataset of size 𝑘, we
et a total of 120 tests for each value of 𝑘 ∈ {100, 150, 200}. Averaging
ver all the tests executed in this section, the continuous relaxation of
ach formulation is computed in less than 0.06 CPU seconds.

The averaged computational results are provided in Table 2, while
he detailed results are available on the online repository (Barbato &
eselli, 2023). Interestingly, the continuous relaxation values do not
epend on 𝑑0 for any formulation. Therefore in Table 2 we report
esults according to the dataset size (column ‘‘𝑘’’) and to the percentage
f points selectable as outliers (column ‘‘𝑘0 (%)’’). The remaining three
olumns give the LP bound values and the relative increase depending
n the value of 𝜙. An additional line (‘‘Avg’’.) reports the average of the
elative increases for each dataset size. We immediately observe that
he continuous relaxation values of the disjunctive-based formulation
re strictly larger than those of the literature formulation and that
arger relative increases correspond to smaller values of 𝜙. This is
onsistent with the theoretical findings of Section 3.1. The table also
learly shows that the relative increase improves when 𝑘0 is larger. In

general, the average relative increase worsens by increasing the dataset
size, although some exceptions are present (𝑘 = 200 with 𝜙 = 1 and
𝑘 = 150 with 𝜙 = 1.5).

4.2. LAD-SFSOD models: Comparison of MILP performances

In this section we analyze the computational performance of the
branch-and-bound algorithms relying on formulations () and () of
Section 3 (for short, we will indicate the algorithms by () and () as
well). We use the same grid of combinations for 𝑘0 and 𝑑0 employed
in Section 4.1. That is, for each corruption scheme, each algorithm is
executed over a total of 360 runs (120 for each dataset size). Each run
has a CPU time limit of 1800 s. We define 𝑅𝑈 = 2𝐸 for both MILPs
and we refine the values in 𝑅𝑈 by using Algorithm 1 with 𝐿 = 10 and
𝜇 = 20.

The results are presented here in a concise and qualitative way.
Detailed results are provided in spreadsheets available on the online
repository (Barbato & Ceselli, 2023). We consider the CPU time as the
performance indicator of the algorithms. In Fig. 1 we provide perfor-
mance profiles of () (blue line) and () (orange line) computed on the
instances with vertical outliers and bad leverage points, respectively. A
performance profile reports the number of solved tests (𝑦-axis) within
a given time bound (𝑥-axis): an upper curve corresponds to a better
performance. Then Fig. 1 leads to the following observation.

Experimental Observation 2. Regardless of the corruption scheme,
algorithm () reaches optimality in more tests than algorithm () within
the same time bound.

The above is in line with the theoretical observations made in
Section 3.

Additional observations can be drawn from Fig. 1. The first one is
expected: larger datasets yield LAD-SFSOD instances whose optimiza-
tion is more time-consuming. Second, comparing the profiles obtained
on the instances with vertical outliers with those obtained on the
instances with bad leverage points, we deduce the following.

Experimental Observation 3. Regardless of the LAD-SFSOD MIP, the
instances with vertical outliers are more time-consuming and difficult to
optimize than those with bad leverage points.

In fact, we report that, within the time limit, algorithm () solves
to optimality 124 tests on instances with vertical outliers and 196 tests
on instances with bad leverage points (out of 360 for each corruption
1078

scheme); algorithm () solves to optimality 110 instances with vertical
outliers and 158 with bad leverage points. As expected from Observa-
tion 1, another parameter affecting the difficulty of the instances is the
feature budget. More precisely, we have the following.

Experimental Observation 4. Regardless of the corruption scheme,
instances with larger feature budget 𝑑0 are more time-consuming.

This is shown in Fig. 2. For every value 𝑑0 of the feature budget
and every corruption scheme it contains two boxplots, corresponding
to algorithms () and (). The boxplots describe the distribution of
the CPU times employed by each algorithm to reach optimality on
the 101 (resp. 154) tests on instances with vertical outliers (resp. bad
leverage points) solved by both algorithms. The points overlapping with
the boxplots are outcomes on individual tests. Fig. 2 clearly shows that
for 5 ≤ 𝑑0 ≤ 7 the number of points overlapping with the boxplots is
larger than for 8 ≤ 𝑑0 ≤ 10. Also, regardless of the corruption scheme,
the median CPU time of () increases as 𝑑0 does; the same behavior is
observed on the median CPU time of (), although, for this algorithm,
the trend is more evident on instances with bad leverage points.

4.3. Comparison with the LLTA method

We also consider an extension of the LLTA method (Sudermann-
Merx & Rebennack, 2021) to the feature selection problem. The LLTA
method relies on the assumption that the LAD loss function is unaf-
fected by vertical outliers and that the potential bad leverage points
can be detected during a preprocessing phase. Given a multiplier 𝑚 > 1
and a point 𝑝𝑖 in the dataset, the preprocessing phase considers each
of the features 𝑝𝑖𝑗 (𝑗 = 1, 2,… , 𝑑) and checks whether it exceeds by 𝑚
times the extrema of the interquartile interval of the same feature in
the dataset (see Sudermann-Merx & Rebennack, 2021 for details). If
that is the case, 𝑝𝑖 is a potential bad leverage point. Let  be the set of
indices of the potential bad leverage points detected in that way. The
LLTA method consists in solving model (LAD-SFSOD) in which 𝑠𝑖 = 1
for every 𝑖 ∉  and 𝑑0 = 𝑑, that is, switch variables are assigned only
to potential bad leverage points and there is no feature selection.

In Sudermann-Merx and Rebennack (2021), the LLTA model is
implemented in Gurobi exploiting some its features to avoid the use
of big-𝑀 values. In particular, the bilinear terms in the objective
function of (LAD-SFSOD) are maintained and Gurobi deals with them
automatically. Following the same spirit, we embed the feature se-
lection task within the LLTA model by exploiting the possibility of
specifying 0-norm constraints in that solver. The resulting formulation,
corresponding to our actual implementation, is denoted (FS-LLTA) and
reads:

(FS-LLTA) min 1
𝑘
∑

𝑖∈
𝑠𝑖𝑝𝑖 +

∑

𝑖∉
𝑝𝑖 (27)

𝑝𝑖 ≥ 𝑟𝑖 − 𝑎𝑖𝑤 − 𝑧 ∀𝑖 = 1, 2,… , 𝑘 (28)

𝑝𝑖 ≥ 𝑧 + 𝑎𝑖𝑤 − 𝑟𝑖 ∀𝑖 = 1, 2,… , 𝑘 (29)

𝑓 = ||𝑤||0 (30)

𝑓 ≤ 𝑑0 (31)
∑

𝑖∈
𝑠𝑖 ≥ 𝑘 − 𝑘0 (32)

𝑠 ∈ {0, 1}|| (33)

𝑓 ∈ Z+ (34)

𝑝 ≥ 𝟎, 𝑤 ∈ R𝑑 , 𝑧 ∈ R (35)

In our experiments with (FS-LLTA) we use 𝑚 = 1.5 as in Sudermann-
Merx and Rebennack (2021) but we point out that the multiplier should
be tuned as changing its value can affect the performance of the method
as well as the prediction quality of its solutions. Indeed, small sets 
imply a small number of switch variables, hence, in general, a more
easily solvable model (FS-LLTA), but also a more inaccurate outlier
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Fig. 1. Performance profiles of algorithms () (blue line) and () (orange line): the 𝑦-axis of each plot reports the number of solved tests on instances with vertical outliers (left)
nd bad leverage points (right) within a given CPU time (reported on the 𝑥-axis of each plot). For a given corruption scheme, each plot corresponds to the performance of the
lgorithms on the instances with 𝑘 points (𝑘 ∈ {100, 150, 200}). In each plot all instances with feature budget 𝑑0 ∈ {5, 6, 7, 8, 9, 10} and outlier budget 𝑘0 ∈ {10%, 13%, 17%, 20%} are
onsidered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Boxplots of the CPU times employed by algorithms () and () to solve tests on instances with vertical outliers (left) and bad leverage points (right).
o

etection. This is especially true when the interquartile range criterion
sed in preprocessing is not able to capture the authentic structure
f the outliers, as it can happen in presence of specific ‘‘adversarial’’
utliers. Since this is the case in both corruption types affecting our
ynthetic instances, we test (FS-LLTA) on both sets of instances with
ertical outliers and bad leverage points. The performance profiles of
ig. 3 show a qualitative comparison of the computational performance
f (FS-LLTA) and (). The detailed computational results of (FS-LLTA)
re available in spreadsheets on the online repository (Barbato &
eselli, 2023). We see that (FS-LLTA) is able to solve a few tests within
ery short time bounds (during which () does not solve any); when
arger time bounds are considered () exhibits a better performance.

As it is clear from the discrepancy between the profiles of the two
algorithms, () solves more tests than (FS-LLTA), regardless of the
corruption scheme. We explain this outcome as follows. In our ex-
periments we also measured how many potential outliers are left by
LLTA preprocessing. We found that after preprocessing, between 40
nd 80 binary variables are left in the models, independently on the
ype of outliers affecting the instance. This leads to a high number of
inary variables in model (FS-LLTA), whose resolution is made more
ifficult than that of () by the presence of non-convex objective and
onstraints in the model.

The principles behind LLTA remain appealing. We further experi-
ent the potential of them, also by means of an embedding of the
1079
LLTA preprocessing within our algorithm (). This is described and
experimentally evaluated in Section 5 on a real-world dataset.

4.4. Comparison of prediction quality and solution sparsity

In this section we study the quality of the solutions produced by
the algorithms described in the previous sections. We follow to a large
extent the evaluation setting proposed in Insolia et al. (2021). We com-
pare the solutions obtained from formulations of Section 3 with those
produced by the R packages enetLTS (v. 1.1.0) and sparseLTS
(v. 0.7.2) mentioned in Section 2 (the complete parameter specification
of these methods is provided in the online Appendix D). Both are
much faster than MIP approaches (see Appendix D for details). For
completeness, we include in the comparison method ()2 which is
btained from () by using the LS loss as objective function. That is,

()2 coincides with the LS-SFSOD model used in Insolia et al. (2021).
The detailed computational results of ()2 are available in spreadsheets
on the online repository (Barbato & Ceselli, 2023). We also consider
the prediction made by the authentic hyperplane with the correct
outlier detection. In the comparison table the corresponding solution
is denoted Authentic. Its values are in italic and serve as baseline to
evaluate the performance of the other algorithms. The comparison is
made evaluating the quality of the solutions produced by the con-
sidered methods. Since we deal with simultaneous feature and outlier

detection, three measures are relevant: the quality of the prediction
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Fig. 3. Performance profiles of algorithms () (blue line) and (FS-LLTA) (orange line): number of solved instances with vertical outliers (left) and bad leverage points (right)
ithin a given CPU time.
ver the testing dataset (which, we recall, is not corrupted), the sparsity
evel of the fitted hyperplanes and the accuracy of the coefficients of
he fitted hyperplanes. Let 𝑝1 = (𝑎1, 𝑟1), 𝑝2 = (𝑎2, 𝑟2),… , 𝑝𝑘 = (𝑎𝑘, 𝑟𝑘) be

the points in a testing dataset and let (𝜔̂, 𝜁 ) be a solution obtained from
one of the above-mentioned methods. The first measures we define are:

• rooted mean squared prediction error (RMSPE) defined by RMSPE =
(

∑𝑘
𝑖=1(𝑟𝑖−𝜔̂𝑎

𝑖−𝜁 )2

𝑘

)1∕2

• mean absolute error (MAE) defined by MAE =
∑𝑘

𝑖=1 |𝑟𝑖−𝜔̂𝑎
𝑖−𝜁 |

𝑘
• false positive ratio (FPR) and false negative ratio (FNR) for the

feature selection defined by FPR = |{𝑗=1,2,…,𝑑 ∶ 𝜔̂≠0 and 𝜔=0}|
|{𝑗=1,2,…,𝑑 ∶𝜔=0}| and

FNR = |{𝑗=1,2,…,𝑑 ∶ 𝜔̂=0 and 𝜔≠0}|
|{𝑗=1,2,…,𝑑 ∶𝜔≠0}| where 𝜔 is the authentic vector of

hyperplane coefficients.
• F1-score for the feature selection: F1 = (1−FNR)∕(1−FNR+(FPR+

FNR)∕2)

For each dataset size, let also (𝜔̂1, 𝜁1),… , (𝜔̂5, 𝜁5) be the solutions
obtained on the 5 corresponding replications. Their average is defined
by (𝜔̄, 𝜁 ) =

∑5
ℎ=1(𝜔̂

ℎ, 𝜁ℎ)∕5. Given the authentic hyperplane 𝜔, in the
tables we additionally report the mean squared error (MSE) subdi-
vided in MSE bias defined by

∑𝑑
𝑗=1(𝜔𝑗−𝜔̄𝑗 )2

𝑑 and MSE variance defined by
∑𝑑

𝑗=1
∑5

ℎ=1(𝜔̂
ℎ
𝑗 −𝜔̄𝑗 )2

5𝑑 .
Before presenting the results, we recall that our branch-and-bound

lgorithms for the LAD- and LS-SFSOD are run on each training dataset
y varying 𝑑0 and 𝑘0 over a grid of parameters, thus producing a grid
f solutions; then we select only one of them which is subsequently
sed to perform the prediction on the corresponding testing dataset. To
his end we use a method based on a ‘‘robustified’’ Akaike information
riterion (Akaike, 1974), taken from the implementation available
n Insolia et al. (2021). A candidate solution (𝑤⋆, 𝑧⋆, 𝑠⋆) is selected if it
inimizes the quantity 𝜅𝛿+𝜅 log(𝐿), where 𝜅 and 𝛿 denote the number

of non-outliers and of nonzero features in the solution (including the
intercept, so that for non-degenerate instances 𝜅 = 𝑘0 and 𝛿 = 𝑑0+1), 𝐴′

and 𝑟′ are the restrictions of the design matrix and response vector to
the 𝜅 rows corresponding to the non-outliers and 𝐿 = ||𝑟′ − 𝑤⋆𝐴′ −
𝑧⋆𝟏||22∕𝜅 is the average prediction error (under the LS criterion) on
the non-outlier training points. A similar approach is used to select
one solution of sparseLTS and enetLTS per dataset replication. In
our experience, the robustified Akaike information criterion (rAIC from
now on) privileges sparse solutions with good predictive power more
than other information criteria that we have tested.

In Table 3 we present the results in both settings involving verti-
cal outliers (left part) and bad leverage points (right part). For each
approach, the values reported in the table are averages of the quality
1080
measures above. The averages are computed over the 5 solutions (one
per training dataset replication) selected via the rAIC, each evaluated
on the corresponding testing dataset. For each quality measure and
each dataset size we highlight in boldface the best corresponding result.
A high prediction quality is related to low values of RMSPE and MAE.
The results in Table 3 show that, in terms of prediction quality, all MIP-
based methods except (FS-LLTA) yield similar results and better than
those of enetLTS and sparseLTS. Among MIP-based methods, (FS-
LLTA) yields the worst RMSPE values for 𝑘 = 100, 150. This is due
to two combined factors: first, the difficulty in solving (FS-LLTA) to
optimality, as already discussed in Section 4.3; second, the lack of full
control on the outlier detection, resulting in a less accurate estimation
of the feature coefficients, especially when the number of points is low.

High accuracy in recovering the coefficients of the authentic hyper-
plane corresponds to low values of FPR and FNR. The FNR is identically
0 for all methods, meaning that the authentic nonzero features are
identified correctly by all methods. At the same time, only the MIP-
based approaches and sparseLTS yield solutions with a FPR close or
equal to 0, while enetLTS reports a FPR of at least 30%. Since the
FPR relates to features wrongly assigned with a nonzero coefficient,
this means that the predicting power of enetLTS comes at the price
of producing non-sparse hyperplanes (we recall that the authentic
hyperplane coefficients has only 5 nonzero entries and 44 zero entries).

An analogous analysis is made in the right part of Table 3 for
datasets corrupted with bad leverage points. In terms of prediction
quality the MIP-based approaches clearly outperform enetLTS and
sparseLTS. Within the MIP-based approaches, (FS-LLTA) has the
worst RMSPE for all dataset sizes. Again, this is explained by the
less accurate outlier selection as well as by the reduced optimization
potential of (FS-LLTA) model which, we recall, is not linearized. Similar
conclusions are obtained when considering the values of the FPR and
FNR. Therefore we have the following.

Experimental Observation 5. Regardless of the corruption scheme, the
MIP-based approaches with direct control of the feature selection and outlier
detection are the best methods in combining prediction and feature selection
quality.

Discussion. Given the above analysis, as well as the considerations on
the computational performance of the MIP-based approaches, we draw
the following conclusions: in the case of low computational resources,
enetLTS and sparseLTS are viable, although they may yield in-
accuracies in the hyperplane reconstruction and, as a consequence,
higher prediction errors than the MIP-based methods. When higher
computational resources are available, the MIP-based approaches with

direct control on the feature selection and outlier detection should be
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Table 3
Prediction and feature selection quality of several SFSOD-based algorithms. The values reported in each column are averaged over 5 replications.
𝑘 Method Vertical outliers Bad leverage points

RMSPE MAE FPR FNR F1 MSE bias MSE variance RMSPE MAE FPR FNR F1 MSE bias MSE variance

100 LAD-SFSOD () 1.15 0.92 0.00 0.00 1.00 0.00 0.01 1.04 0.84 0.00 0.00 1.00 0.00 0.03
LAD-SFSOD () 1.18 0.95 0.00 0.00 1.00 0.00 0.01 1.06 0.85 0.00 0.00 1.00 0.00 0.03
LS-SFSOD ()2 1.16 0.93 0.00 0.00 1.00 0.00 0.01 1.03 0.83 0.00 0.00 1.00 0.00 0.03
(FS-LLTA) 1.17 0.94 0.01 0.00 1.00 0.00 0.01 1.15 0.93 0.05 0.00 0.97 0.00 0.04
enetLTS 1.21 0.97 0.30 0.00 0.87 0.00 0.01 2.97 2.38 0.30 0.33 0.66 0.14 0.05
sparseLTS 1.31 1.05 0.02 0.00 0.99 0.01 0.01 1.65 1.32 0.07 0.10 0.90 0.03 0.06
Authentic 1.05 0.83 0.00 0.00 1.00 0.00 0.00 0.98 0.78 0.00 0.00 1.00 0.00 0.00

150 LAD-SFSOD () 1.03 0.82 0.00 0.00 1.00 0.00 0.02 1.07 0.87 0.00 0.00 1.00 0.00 0.01
LAD-SFSOD () 1.04 0.83 0.00 0.00 1.00 0.00 0.02 1.09 0.89 0.00 0.00 1.00 0.00 0.01
LS-SFSOD ()2 1.03 0.82 0.00 0.00 1.00 0.00 0.02 1.07 0.87 0.00 0.00 1.00 0.00 0.01
(FS-LLTA) 1.13 0.90 0.01 0.00 1.00 0.00 0.02 1.11 0.90 0.02 0.00 0.99 0.00 0.01
enetLTS 1.09 0.87 0.31 0.00 0.87 0.00 0.02 2.68 2.16 0.29 0.27 0.68 0.13 0.02
sparseLTS 1.23 0.99 0.00 0.00 1.00 0.01 0.02 1.77 1.45 0.05 0.07 0.94 0.04 0.03
Authentic 0.98 0.78 0.00 0.00 1.00 0.00 0.00 1.03 0.84 0.00 0.00 1.00 0.00 0.00

200 LAD-SFSOD () 1.00 0.81 0.00 0.00 1.00 0.00 0.00 1.04 0.82 0.00 0.00 1.00 0.00 0.02
LAD-SFSOD () 1.00 0.81 0.00 0.00 1.00 0.00 0.00 1.05 0.83 0.00 0.00 1.00 0.00 0.02
LS-SFSOD ()2 1.00 0.81 0.00 0.00 1.00 0.00 0.00 1.03 0.82 0.00 0.00 1.00 0.00 0.01
(FS-LLTA) 1.05 0.85 0.01 0.00 0.99 0.00 0.01 1.07 0.86 0.01 0.00 0.99 0.00 0.02
enetLTS 1.05 0.85 0.41 0.00 0.84 0.00 0.00 2.81 2.25 0.25 0.27 0.70 0.13 0.02
sparseLTS 1.27 1.02 0.00 0.00 1.00 0.01 0.00 1.85 1.48 0.02 0.27 0.78 0.04 0.03
Authentic 0.98 0.78 0.00 0.00 1.00 0.00 0.00 1.01 0.80 0.00 0.00 1.00 0.00 0.00
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preferred; method (FS-LLTA) also yields good performance, provided
hat its preprocessing phase reliably captures the outlier structure of the
raining datasets. The above conclusions should be read in light of a few
emarks. First, the results of Table 3 may (also substantially) change if
ther criteria are used to select the solutions. In the online Appendix
we report the results of our experiments with the standard Akaike

nd Bayesian information criterion, as well as with a ‘‘robustified’’
ayesian information criterion: the main outcome is that only the
isjunctive-based model () yields stable RMSPE values regardless of
he used criterion, the number 𝑘 of dataset points and outlier scheme;
he selected solutions of the other LAD- and LS-SFSOD MIPs may be of
orse quality.

Second, the results of each MIP-based approach in Table 3 cor-
espond to the averaged performances of one solution per dataset
eplication. In particular, Table 3 do not show substantial differences
etween the LAD- and the LS-SFSOD models. Hence a natural question
s whether additional insights can be obtained by analyzing the whole
olution pool produced from the resolution of () and ()2. A detailed
omparison between these two algorithms is reported in the online
ppendix E. The main outcome is that on instances with vertical
utliers, both  and 2 exhibit almost identical performances in terms
f prediction error and outlier detection; on instances with bad leverage
oints, the performances of the two algorithms is similar but 2 is more

unstable: in several cases it reports high RMSPEs and fails to detect
correctly the authentic outliers.

5. Computational results on the student performance dataset

In this section we demonstrate the usage of the LAD-SFSOD ap-
proach in a social science application with privacy protection. We
start from a clean dataset relating the performance in Mathematics of
395 Portuguese high-school students with several attributes (Cortez,
2014). Most of attributes concern the students’ private life, while a few
others cover the students’ grades and diligence. The goal is to perform
regression so to accurately predict the final grades of the students.
Given the presence of sensitive data we impose that a small amount
of features is used by the predictor, that is, we require high sparsity
level.

Moreover, we assume that attributes of a small amount of students
have been altered by an adversary: the final grade of these students
will be unnaturally high despite their 1st semester grades are low.
We require our predictor to perform accurate regression despite the
1081

t

presence of such outliers, that is, we demand robustness against these
outliers. In our experiments we consider the LAD-SFSOD models ()
nd (FS-LLTA) as well as a hybrid approach where model () is
ombined with the preprocessing phase of the LLTA method, so that
everal of its switch variables are set to 1.

nstances. Given the original Math student dataset (Cortez, 2014), we
enerate a new corrupted Math student dataset (CMSD, from now on) as
ollows: (a) remove the 4 categorical attributes concerning the mothers’
nd fathers’ jobs (attributes Mjob and Fjob), the reason behind the
chool choice (attribute reason) and the students’ guardians (attribute
uardian); additionally remove the 2nd semester grade of each stu-
ent (attribute G2); (b) lower to 2 the 1st semester grade (attribute
1) of the 15 students with the highest final grade (rows 1-15 in the
ataset non-increasingly ordered by final grade); additionally lower
o 10 the 1st semester grade of the subsequent 15 students with the
ighest final grade (rows 16-30 in the dataset non-increasingly ordered
y final grade).

The removal of the categorical attributes allows us to perform a
umerical regression eliminating since the beginning some of sensitive
ttributes; the removal of attribute G2 makes the accurate regression
ask more difficult, because there is a strict relation between such
ttribute and the final grade. After the attribute removals we obtain
dataset with 27 attributes and 1 response value (the original Math
tudent dataset contains 32 attributes). Finally, the modification of the
ttribute G1 described above introduces outliers: they correspond to
tudents with expected low performance who are ‘‘helped’’ by the
valuators and obtain a high final grade. The outliers introduced by
owering to 2 the G1 value will be called heavy outliers, those introduced
y lowering the G1 to 10 will be called mild outliers. The CMSD is
vailable at the online repository (Barbato & Ceselli, 2023).

We train and evaluate the MIP-based LAD-SFSOD models using a
0-fold cross-validation approach. From the CMSD we obtain 10 pairs
f training-testing datasets, where each training dataset contains about
he 90% of the CMSD rows and all 30 outliers. The training-testing pairs
re available at the online repository (Barbato & Ceselli, 2023).

mplementation details. We compare 5 LAD-SFSOD algorithms. The first
ne is (), relying on the disjunctive-based formulation of Section 3.
he other ones use two distinct preprocessing phases inherited from
LTA (we call them LLTA-like algorithms): a full preprocessing which
pplies the interquartile criterion to all attributes (hence it corresponds

o the original preprocessing procedure described in Sudermann-Merx
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and Rebennack (2021)); a weak preprocessing which only applies the
interquartile criterion to non-binary attributes. The rationale behind
the weak preprocessing is that the interquartile criterion on binary
attributes labels most of entries in the CMSD training dataset as poten-
tial bad leverage points, causing the LLTA-like methods to lose their
potential computational advantage.

Applying one preprocessing type before solving () yields two
algorithms -fp (using the full preprocessing) and -wp (using the
weak preprocessing). In -fp and -wp we only include the switch
variables associated with the potential bad leverage points detected by
the corresponding preprocessing phase. Similarly, algorithms FS-LLTA-
fp and FS-LLTA-wp correspond to solve (FS-LLTA) after applying the
full and the weak preprocessing, respectively.

All algorithms are solved in Gurobi 10.1, using the same solver
parameters of Section 4. In particular, each test is run with a time limit
of 1800 s. In this case we use feature budgets 𝑑0 ∈ {3, 5, 7} and outlier
budgets 𝑘0 ∈ {⌊0.05𝑘⌋ , ⌊0.075𝑘⌋ , ⌊0.1𝑘⌋} (corresponding to about 5%,
7.5% and 10% of the instance size). This gives a total of 90 tests (9
per training dataset). The budget values are chosen so that the final
predictors are very sparse and under the assumption that the CMSD
does not contain more than 10% of outliers. We solve the LAD-SFSOD
formulation () by providing the incumbent solution computed via
the PALM algorithm as a warm-start. In each training repetition we
compute the big-𝑀 values used in the LAD-SFSOD formulation () as
follows: we first apply the convex programming approach described in
Section 3.2; next we apply the refining procedure of Algorithm 1 with
𝐿 = 10 and 𝜇 = 20. As in Section 4, when increasing the feature budget,
we exploit the solution corresponding to the last feature budget test,
thus avoiding a resolution from scratch.

Computational results. The detailed computational results of the SFSOD-
based algorithms of this section are available on the online reposi-
tory (Barbato & Ceselli, 2023). Here we provide a qualitative analysis.
Regardless of the feature budget, the tests on the CMSD instances
turn out to be very hard to solve, as the algorithms never reach
optimality. We point out here that the final incumbent reported at
reaching the time limit could be an optimal or a near-optimal solution
even in the case integer optimality has not been proved by the branch-
and-bound process. In view of such remark, we have compared the
incumbent values (primal bounds) of the tested algorithms. The results
are reported in Appendix F. The main outcome is summarized in the
following:

Experimental Observation 6. In the majority of tests, algorithm ()
ields better incumbents than the algorithms based on the full-preprocessing
-wp and FS-LLTA-wp); moreover, it always produces solutions of better
uality than the algorithms relying on the weak-preprocessing phase (-wp

and FS-LLTA-wp).

In Appendix F we also analyze the quality of the relative optimality
gaps. It shows that (a) algorithm () with no preprocessing produces
smaller optimality gaps than FS-LLTA-fp (b) solutions obtained by weak
preprocessing can hardly be further improved by optimization.

Prediction quality and feature selection. Finally we study the quality of
the solutions produced by the tested algorithms in terms of prediction
quality and feature selection. We include in the comparison the results
of enetLTS and sparseLTS which are trained and tested on the
ame 10 training-testing pairs of CMSD instances described above. The
arameters used to train enetLTS and sparseLTS on the CMDS
nstances are given in the online Appendix D.

Given a CMSD training instance, each MIP-based algorithm pro-
uces a grid of solutions obtained from all combinations of feature and
utlier budgets 𝑑0 ∈ {3, 5, 7} and 𝑘0 ∈ {5%, 7.5%, 10%}. We select one
olution per training instance via the rAIC, as done for the synthetic
nstances. The selected solution is then evaluated on the corresponding
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esting CMSD instance in terms of RMSPE, MAE, number of nonzero q
eatures and several metrics concerning the detection of outliers. The
alues of each quality measure are averaged over the 10 testing CMSD
nstances. The same procedure is used to select and evaluate one
olution among those produced by enetLTS and sparseLTS from

each training CMSD instance. The averaged results are presented in
Table 4.

The best RMSPE value is obtained by enetLTS which, however,
roduced less sparse hyperplanes (using more than 9 nonzero features
n average). All other algorithms yield solutions with similar RMSPE,
hich is between 2.90 (-wp and FS-LLTA-wp) and 3.00 (-fp and

FS-LLTA-fp). The MAE is similar for all algorithms, with the MIP-based
approach yielding slightly better results, between 1.86 (-fp) and 1.88
(-wp and FS-LLTA-wp). The results on the feature selection can be
seen in column ‘‘Selected features’’ of Table 4.

The rAIC always selects solutions of the MIP-based approaches with
3 nonzero features (the smallest feature budget). This is in line with
the results of sparseLTS which selects solutions having between 2
and 3 nonzero features (we recall that in sparseLTS there is no
direct control on the number of features). In our tests with the other
information criteria described in Section 4 and Appendix C this result
does not change except for the rBIC, which seldom selects hyperplanes
with 5 nonzero features. Putting together these results on the MAE and
on the feature selection we deduce that the real final grade can be
predicted with a shift of at most 2 units by using a very limited amount
of features.

A closer look to the actual nonzero features that are used for the
prediction yields that the most recurring ones are: G1 (1st semester
grade), always used by all methods; age (students’ age), always used
by all solutions of the MIP-based approaches, and by the solutions of
sparseLTS with 3 nonzero features; failures (number of previous
class failures), used by the sparseLTS solutions and by the solutions
of the MIP-based approaches with weak preprocessing; absences
(number of students’ absences), used by the MIP-based approaches with
full preprocessing.

As seen in column ‘‘Detected (%)’’ the selected solutions of the MIP-
based approaches detect a number of outliers which is the 9.76% of the
total number of points in the training instances regardless of the prepro-
cessing phase (the real value is around 8.5% in each training instance).
The value coincides for all MIP-based approach because the outlier
budget constraints is always saturated. Algorithms sparseLTS and
enetLTS detect 13.02% and 11.46% outliers respectively. Another
interesting observation concerns the capability of the tested algorithms
in performing an accurate outlier detection. To analyze it we rely on
standard true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) values of the outlier detection. Then the quality
of the outlier detection performed by each algorithm is evaluated by
using the following metrics: the percentage of outliers over the total
number of dataset points (column ‘‘Detected (%)’’ in Table 4); the true
positive ratio (TPR) of the outlier detection (column ‘‘TPR’’); the TPR
restricted to the detection of the hard outliers (column ‘‘Hard outliers
TPR’’); the precision (column ‘‘Precision’’) computed as 𝑇𝑃∕(𝑇𝑃 +𝐹𝑃 );
the accuracy (column ‘‘Accuracy’’) computed as (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝑇𝑁+
𝐹𝑃 + 𝐹𝑁) and the F1-score (column ‘‘F1’’) computed as in Section 4.

For each considered metric, enetLTS yields the best results. Re-
tricting ourselves to the methods also yielding very sparse solutions,
e see that only () and sparseLTS detect all hard outliers cor-

ectly, while the algorithms based on the preprocessing phase do not.
lgorithm sparseLTS yields a higher TPR than (). This is the
onsequence of a higher number of outliers used in the sparseLTS
olution, as indicated in column ‘‘Detected (%)’’; as a consequence, ()
s 4% more precise and 1% more accurate than sparseLTS.

iscussion. We draw the following conclusions from the above exper-
ments: the results obtained by algorithm () are in line with those
f state-of-the-art algorithms from the literature in terms of prediction

uality, feature selection and outlier detection. The other LAD-SFSOD
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Table 4
Prediction, feature selection and outlier detection quality of the solutions produced by several algorithms on the corrupted Math student dataset.
The values reported in each column are averaged over 10 testing replications.

RMSPE MAE Selected features Outlier detection

Detected (%) TPR Hard outliers TPR Precision Accuracy F1

 2.94 1.87 3.00 9.76 0.56 1.00 0.48 0.91 0.52
-fp 2.99 1.86 3.00 9.76 0.39 0.61 0.34 0.88 0.36
-wp 2.90 1.88 3.00 9.76 0.27 0.28 0.23 0.86 0.25
FS-LLTA-fp 3.00 1.87 3.00 9.76 0.39 0.61 0.34 0.88 0.36
FS-LLTA-wp 2.90 1.88 3.00 9.76 0.27 0.28 0.23 0.86 0.25
sparseLTS 2.93 1.90 2.40 13.02 0.69 1.00 0.44 0.90 0.54
enetLTS 2.83 1.87 9.10 11.46 0.72 1.00 0.49 0.91 0.58
MIPs relying on the preprocessing phase introduced in Sudermann-
Merx and Rebennack (2021) are not accurate in the outlier detection,
hence this aspect should be kept in mind when applying them to
problems where the outlier detection enters the decision process. While
solving the LAD-SFSOD MIPs is computationally more demanding than
using sparseLTS and enetLTS it allows a full control on the num-
er/type of features to be selected. Moreover, the good prediction
esults of the solutions of () hold even when the corresponding MIP
esolution does not finish with a proven integer optimality, suggesting
hat the produced incumbents are of good quality.

. Conclusions

Our paper revolves around the idea of using a least absolute devia-
ion (LAD) criterion for the simultaneous feature selection and outlier
etection (SFSOD), instead of the least-squares (LS) criterion which
s more commonly used in the literature. We rely on a mathematical
rogramming approach: we model and solve the LAD-SFSOD by means
f two MILP formulations, one adapted from the literature dealing with
he LS-SFSOD and the other one based on a disjunctive argument.
ur theoretical analysis proves the disjunctive-based formulation to
ffer, in terms of polyhedral structure, advantages with respect to MILP
dapted from the literature. These yield computational advantages. For
nstance, the quality of the continuous relaxation of the disjunctive-
ased formulation is never worse than those of models adapted from
he literature, and it becomes strictly better when a proper choice of
odel parameters can be made.

For what concerns the specific application to the SFSOD approach,
e are able to obtain several insights. First, the performance of LAD
ethods are strongly affected by the type of outliers in the dataset.
hen vertical outliers are involved both the MIP-based approaches

nd state-of-the-art least-trimmed square (LTS) heuristics provide good
alancing of prediction error and sparsity, LTS heuristics being faster.
owever, when bad leverage points pollute the dataset, our exper-

ments show that the mathematical programming approaches using
AD-SFSOD models perform best (and especially the disjunctive-based
ormulation). In particular, in this case, LTS methods are not able to
ombine sparsity and robustness satisfactorily.

We have also tested MIP-based LAD-SFSOD approaches and state-
f-the-art LTS approaches on real-world datasets describing students’
erformance. Our results indicate that the disjunctive-based formula-
ion produces solutions similar to the LTS methods, while MIP-based
ounterparts relying on statistical preprocessing to identify potential
utliers may lead to worse outlier detection. In these experiments, the
uality of LTS and MIP-based solutions are similar. However, the MIP-
ased approach has a fundamental advantage: it allows a direct control
n the feature selection process, granting more potential in applications
here this flexibility is central. For instance, the budget on the number
f features may be used either as a hyperparameter, whose tuning can
mprove regression quality, or as a user parameter whose fixing is under
he direct control of the decision maker.

Finally, we found it interesting to note that our results were ob-
ained by changing the classical approach in computational statistics,
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in favor of one which is mathematical programming oriented. This
highlights the potential impact that Operations Research techniques
can still bring in computational statistics. A fundamental preliminary
step toward this direction is to improve the scalability of the proposed
mathematical programming approaches making them able to deal with
datasets of orders of magnitudes larger than those considered in our
paper and in the recent literature. In this spirit, a first direction for
future investigation is the design of dedicated algorithms for optimiz-
ing the LAD-SFSOD MILPs of this paper. To this end decomposition
approaches are promising to improve computational performances,
as shown in related applications of MILPs to computational statistics
(see e.g., Warwicker & Rebennack, 2022 for a Benders’ decomposition
algorithm for the resolution of robust piecewise linear regression based
on a previous work of Rebennack & Krasko, 2020). Another direction
is more application-oriented: investigate if the application of kernels to
the dual of stronger formulations (as the disjunctive-based one) would
improve the performance of classic methods.
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