Pick your threshold: a comparison among different methods of anaerobic threshold evaluation in heart failure prognostic assessment.

Elisabetta Salvioni, PhD, Massimo Mapelli, MD, Alice Bonomi, PhD, Damiano Magrì, MD, Massimo Piepoli, MD, Maria Frigerio, MD, Stefania Paolillo, MD, Ugo Corrà, MD, Rosa Raimondo, MD, Rocco Lagioia, MD, Roberto Badagliacca, MD, Pasquale Perrone Filardi, MD, Michele Senni, MD, Michele Correale, MD, Mariantonietta Cicoira, MD, Enrico Perna, MD, Marco Metra, MD, Marco Guazzi, MD, Giuseppe Limongelli, MD, Gianfranco Sinagra, MD, Gianfranco Parati, MD, Gaia Cattadori, MD, Francesco Bandera, MD, Maurizio Bussotti, MD, Federica Re, MD, Carlo Vignati, MD, Carlo Lombardi, MD, Angela B. Scardovi, MD, Susanna Sciomer, MD, Andrea Passantino, MD, Michele Emdin, MD, Claudio Passino, MD, Caterina Santolamazza, MD, Davide Girola, MD, Denise Zaffalon, MD, Fabiana De Martino, MD, Piergiuseppe Agostoni, MD, PhD, on behalf of MECKI score research group (see appendix)

PII: S0012-3692(22)01184-9

DOI: https://doi.org/10.1016/j.chest.2022.05.039

Reference: CHEST 5116

To appear in: CHEST

Received Date: 18 February 2022

Revised Date: 15 April 2022

Accepted Date: 4 May 2022

Please cite this article as: Salvioni E, Mapelli M, Bonomi A, Magrì D, Piepoli M, Frigerio M, Paolillo S, Corrà U, Raimondo R, Lagioia R, Badagliacca R, Filardi PP, Senni M, Correale M, Cicoira M, Perna E, Metra M, Guazzi M, Limongelli G, Sinagra G, Parati G, Cattadori G, Bandera F, Bussotti M, Re F, Vignati C, Lombardi C, Scardovi AB, Sciomer S, Passantino A, Emdin M, Passino C, Santolamazza C, Girola D, Zaffalon D, De Martino F, Agostoni P, on behalf of MECKI score research group, Pick your threshold: a comparison among different methods of anaerobic threshold evaluation in heart failure prognostic assessment., *CHEST* (2022), doi: https://doi.org/10.1016/j.chest.2022.05.039.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of

record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 Published by Elsevier Inc under license from the American College of Chest Physicians.

Total word count: 2944

Abstract word count: 282

Pick your threshold: a comparison among different methods of anaerobic threshold evaluation in heart failure prognostic assessment.

Elisabetta Salvioni¹, PhD, Massimo Mapelli^{1,2}, MD, Alice Bonomi¹, PhD, Damiano Magri³, MD, Massimo Piepoli⁴, MD, Maria Frigerio⁵, MD, Stefania Paolillo⁶, MD, Ugo Corrà⁷, MD, Rosa Raimondo⁸, MD, Rocco Lagioia⁹, MD, Roberto Badagliacca¹⁰, MD, Pasquale Perrone Filardi¹¹, MD, Michele Senni¹², MD, Michele Correale¹³, MD, Mariantonietta Cicoira¹⁴, MD, Enrico Perna⁵, MD, Marco Metra¹⁵, MD, Marco Guazzi¹⁶, MD, Giuseppe Limongelli¹⁷, MD, Gianfranco Sinagra¹⁸, MD, Gianfranco Parati^{19,20}, MD, Gaia Cattadori²¹, MD, Francesco Bandera^{22,23}, MD, Maurizio Bussotti²⁴, MD, Federica Re²⁵, MD, Carlo Vignati¹, MD, Carlo Lombardi¹⁵, MD, Angela B. Scardovi²⁶, MD, Susanna Sciomer¹⁰, MD, Andrea Passantino²⁷, MD, Michele Emdin^{28,29}, MD, Claudio Passino²⁸, MD, Caterina Santolamazza⁵, MD, Davide Girola³⁰, MD, Denise Zaffalon¹⁸, MD, Fabiana De Martino¹, MD, Piergiuseppe Agostoni^{1,2}, MD, PhD, on behalf of MECKI score research group (see appendix)

- 1. Centro Cardiologico Monzino, IRCCs, Milan, Italy;
- 2. Department of clinical sciences and community health, Cardiovascular section, University of Milan, Milan, Italy;
- 3. Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant'Andrea, "Sapienza" Università degli Studi di Roma, Roma, Italy
- 4. UOC Cardiologia, G da Saliceto Hospital, Piacenza, Italy
- 5. Dipartimento Cardiologico "A. De Gasperis", Ospedale Cà Granda- A.O. Niguarda, Milano, Italy
- 6. IRCCS SDN Istituto di Ricerca, Napoli, Italy
- 7. Cardiology Department, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno Institute, Veruno, Italy
- 8. Divisione di Cardiologia Riabilitativa, Istituti Clinici Scientifici Maugeri, Tradate, Italy. Varese, Italy
- 9. UOC Cardiologia di Riabilitativa, Mater Dei Hospital, Bari, Italy
- 10. Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, "Sapienza", Rome University, Rome, Italy
- 11. Department of Advanced Biomedical Sciences, Federico II University of Naples and Mediterranea CardioCentro, Naples, Italy
- 12. Department of Cardiology, Heart Failure and Heart Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
- 13. Department of cardiology, University of Foggia, Foggia, Italy
- 14. Section of Cardiology, Department of Medicine, University of Verona, Italy
- 15. Cardiology, Department of Medical and Surgical Specialities, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- 16. Ospedale San Paolo, Università degli studi di Milano, Italy
- 17. Cardiologia SUN, Ospedale Monaldi (Azienda dei Colli), Seconda Università di Napoli, Napoli
- 18. Cardiovascular Department, "Azienda Sanitaria Universitaria Giuliano-Isontina", Trieste, Italy
- 19. Istituto Auxologico Italiano, Milan, Italy

- 20. Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- 21. Unità Operativa Cardiologia Riabilitativa, IRCCS Multimedica, Milano, Italy
- 22. Department of Biomedical Sciences for Health, University of Milano, Milan, Italy.
- 23. Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
- 24. Cardiac Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Scientific Institute of Milan, Milan, Italy
- 25. Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo-Forlanini Hospital, Roma, Italy
- 26. Cardiology Division, Santo Spirito Hospital, Roma, Italy
- 27. Division of Cardiology, Istituti Clinici Scientifici Maugeri, Institute of Bari, Bari, Italy
- 28. Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
- 29. Fondazione Gabriele Monasterio, CNR-Regione Toscana, Pisa, Italy
- 30. Clinica Hildebrand Centro di riabilitazione Brissago, Switzerland

Short title: Computation of anaerobic threshold in HF prognosis

Conflict of interests: none

Corresponding author: Prof. Piergiuseppe Agostoni, MD, PhD, Centro Cardiologico Monzino, IRCCS Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan Via Parea, 4, 20138 Milan, Italy Phone 0039 02 58002772 E-mail piergiuseppe.agostoni@unimi.it; piergiuseppe.agostoni@ccfm.it

Abstract

Background

In clinical practice, anaerobic threshold (AT), is used to guide training and rehabilitation programs, to define risk of major thoracic or abdominal surgery, and to assess prognosis in heart failure (HF). VO₂AT has been reported as absolute value (VO₂ATabs), as percentage of predicted peak VO₂ (VO₂AT%peak_pred) or as percentage of observed peak VO₂ value (VO₂AT%peak_obs). A direct comparison of the prognostic power among these different ways to report AT is missing.

Research Question

What is the prognostic power of these different ways to report AT?

Study Design and Methods

Observational cohort study. We screened data of 7746 HF patients with history of reduced ejection fraction (<40%), recruited between 1998 and 2020 and enrolled in the MECKI register. All patients underwent a maximal cardiopulmonary exercise test (CPET), executed using a ramp protocol on an electronically braked cycle ergometer.

Results

In this study we considered 6157HF patients with identified AT. Follow up was 4.2 years (1.9-5.0). Both VO₂ATabs (823(305 mL/min)) and VO₂AT%peak_pred (39.6(13.9%)) but not VO₂AT%peak_obs (69.2(17.7%)) well stratified the population as regards prognosis (composite endpoint: cardiovascular death, urgent heart transplant or left ventricular assist device). Comparing AUC values, VO₂ATabs (0.680) and VO₂AT%peak_pred (0.688) performed similarly, while VO₂AT%peak_obs (0.538) was significantly weaker (*P*<0.001). Moreover, VO₂AT%peak_pred AUC value was the only performing as well as AUC based on peakVO₂ (0.710), with even a higher AUC (0.637 vs. 0.618 respectively) in the group with severe HF (peakVO₂<12mL/min/kg). Finally, the combination of VO₂AT%peak_pred with Peak VO₂ and VE/VCO₂ shows the highest prognostic power.

Interpretation

In HF, VO₂AT%peak_pred is the best way to report VO₂ at AT in relation to prognosis, with a prognostic power comparable to that of peak VO₂ and, remarkably, in severe HF patients.

Keywords: Anaerobic threshold; cardiopulmonary exercise test; prognosis; heart failure

Abbreviation list

anaerobic threshold as absolute value: VO₂ATabs

anaerobic threshold as percentage of the observed maximum: VO₂AT%peak_obs

anaerobic threshold as percentage of the predicted maximum VO₂: VO₂AT%peak_pred

anaerobic threshold: AT

Area under the curve: AUC

carbon dioxide production: VCO₂

cardiopulmonary exercise test: CPET

end-tidal pressure of CO₂: PetCO₂

end-tidal pressure of O₂: PetO₂

heart failure: HF

left ventricular assist device: LVAD

oxygen uptake: VO₂

receiver-operating characteristic: ROC

respiratory exchange ratio: RER

urgent heart transplant: HT

ventilation: VE

Since its discovery 50 years ago ¹⁻⁴, the anaerobic threshold (AT) has fascinated scientists regarding the physiological origin, meaning and the utility of its identification in prognostic assessment^{5,6}, alongside peak oxygen uptake (peak VO₂) and ventilation vs. CO₂ relationship (VE/VCO₂ slope), the two mainly prognosis-related variables of cardiopulmonary exercise test (CPET).

Even on its denomination there is some controversy. As a matter of facts, AT has also named gas exchange threshold, or ventilatory threshold ¹. Indeed, the term anaerobic is still used, but mainly for historical reasons, since the concept that AT is associated to hypoxia is not supported by evidence albeit it is clear that AT is associated with sustained elevation of lactate ⁴. At AT hyperventilation occurs in response to extra amount of CO_2 production due to the greater prevalence of lactate acidosis as an additional source of

energy. AT correct identification by respiratory gas exchange test is challenging, and several methods have been proposed ^{7,8}, whose results are not always consistent and in agreement ^{9,10}.

AT relevance in the physiology of exercise is unquestionable: its value is indicative of the subject's training, exercise intensity ¹¹, metabolic efficiency status and specifically muscle efficiency ¹² and muscle O_2 extraction ¹³. Moreover, AT has been used to guide training and rehabilitation programs or to define when it is safe to undergo major thoracic or abdominal surgery ^{4,14,15}. Not only that, in patients with heart failure (HF) undergoing a maximal CPET, the failure to identify AT indicates a very poor prognosis ^{5,6,16}. In addition, VO_2 values measured at AT (VO_2ATabs) stratify the prognosis of these patients^{5,17}.

Given the significant inter-subject variability of CPET parameters to increase their clinical power in identifying the severity of exercise limitation, they are expressed not only in absolute value, but also as a percentage of their predicted value ^{18,19}. In the case of AT, on top of the absolute value, it can be reported as the percentage of the predicted maximum VO₂ (VO₂AT%peak_pred) ^{8,20,21} or as a percentage of the peak VO₂ achieved by the subject during exercise (VO₂AT%peak_obs) ¹¹⁻¹³. The latter is quite commonly reported, although this can introduce errors because maximal VO₂ declines more than VO₂AT with age²². Moreover, VO₂AT expressed as % of observed peak may be misleading, when used for prognostication, in the case of patients' not maximal effort.

Studies of comparison of the prognostic value of AT when expressed as absolute value (VO₂AT abs) vs. as VO₂AT%peak_pred or vs. as VO₂AT%peak_obs are lacking. In this work, we compared these three variables in a large multicentric population with HF with reduced ejection fraction aiming to evaluate which of them is better to use for prognostication considering both the entire HF population or specific HF phenotypes as atrial fibrillation (AF) patients or patients with different HF severity.

Methods

The study population included patients with HF with history of reduced ejection fraction, recruited in the Metabolic Exercise combined with Cardiac and Kidney Indexes (MECKI score project) ¹⁸. Specifically, inclusion criteria were previous or present HF symptoms (NYHA functional class I-IV, stage B and C of ACC/AHA classification) and previous documentation of left ventricular ejection fraction (LVEF)<40%, unchanged HF medications for at least three months, ability to perform a CPET, and no major cardiovascular treatment or intervention scheduled. Exclusion criteria were: history of pulmonary embolism, moderate-to-severe aortic and mitral stenosis, pericardial disease, severe obstructive lung disease, exercise-induced angina and significant ECG alterations, or presence of any clinical comorbidity interfering with exercise performance.

All patients underwent a CPET, performed using a ramp protocol on an electronically braked cycle ergometer. Specifically, the CPET protocol was tailored to the patient's functional status so that the patient reached peak exercise in in eight to twelve minutes²³, but tests were stopped only as patients reported to have reached their maximal effort, regardless of the respiratory exchange ratio (RER) value. A familiarization test was recommended. In all tests, ventilation and respiratory gases were collected breath by breath and analyzed following a standard technique²⁴. PeakVO₂ was calculated as the 20-second average of the highest recorded VO_2 , while VE/VCO_2 slope was calculated as the slope of the linear relationship between ventilation (VE) and carbon dioxide production (VCO₂) from one minute after the beginning of loaded exercise to the end of the isocapnic buffering period. AT was identified using a V-slope analysis of VO_2 and VCO_2 , and it was confirmed by specific trends of VE vs. VO_2 (VE/VO₂) and CO₂ (VE/VCO₂), and of end-tidal pressure of O₂ (PetO₂) and CO₂ (PetCO₂) ^{3,25}. Indeed, at AT VE/VO₂ but not VE/VCO₂ increases while PetO₂ increases, being PetCO₂ still flat. Each center was responsible for tests analysis and each test had to be evaluated by two CPET experts and a third expert should be consulted in case of disagreement. $VO_2AT\%$ peak_pred was calculated according to Hansen et al²⁶. AT was reported as VO_2AT as a percentage of peak VO₂ predicted (VO₂AT%peak_pred) and as a percentage of measured peak VO₂ (VO₂AT%peak_obs) (figure 1).

Follow-up and data management

Patient follow-up and data management procedures were performed as previously described ¹⁸. In brief, follow-up was carried out according to the local HF program, and it ended with the last clinical evaluation or with patients' death, urgent heart transplant (HT) defined as UNOS status 1 ²⁷, or left ventricular assist device (LVAD) implantation. If a patient died outside the hospital where they were followed up, medical records of the event and the reported cause of death were considered. For prognosis evaluation the end point was the composite of cardiovascular death, urgent HT, or LVAD implantation. The study was approved by the local ethics committee (CCM04_21 PA).

Statistical analysis

Continuous variables are presented as mean(standard deviation. For continuous variables the differences between the two groups of AT or patients with AF vs. sinus rhythm were calculated with *t*-test for independent samples or χ^2 test for categorical data. Missing data were not computed being <2% for all analyzed variables.

Event-free survival (absence of the composite of cardiovascular death, urgent HT, or LVAD implantation), stratified for the 3 tertiles of the selected variables, was estimated by Kaplan-Meier curves. Comparisons between Kaplan Meier curves were made by LongRank test, with Tukey Kramer adjustment used for multiple comparisons.

The ability of these variables to predict of the composite of cardiovascular death, urgent HT, or LVAD implantation, was quantified by the area under the receiver-operating characteristic (ROC) curve (AUC) as well as by Harrell's concordance statistic. Comparisons were performed as recommended by DeLong et al.²⁸

The AUC comparisons were performed both on the entire population and on subgroups according to peakVO₂ tertiles or presence/absence of AF.

All tests were 2-tailed, and *P*<0.05 was required for statistical significance. All analyses were performed using SAS version 9.4 (SAS Institute Inc, Cary, NC, US).

Results

The study population included 7746 HF patients enrolled in the MECKI score registry ¹⁸ at the end of 2020, who underwent a CPET between 1998 and 2020 (age 61.6(12.6) years, 82% males) with a median follow up of 4.2 years (1.9-5.0). 1681 cardiovascular events – 1441 cardiovascular death, 202 HT and 38 LVAD- were observed with an average 42 events/1000 patients/year.

We excluded from the analysis 1589 patients in whom AT could not be detected at CPET (figure 2). These patients had more severe HF as shown by exercise performance (Peak VO₂ 914(383) mL/min vs. 1208(428, P<0.001; Peak VO₂ 12.15(4.23) mL/min/kg vs. 15.49(4.79)mL/min/kg (P<0.001), VE/VCO₂ slope 36.6(9.3) vs. 32.3(7.2), P<0.001, AT non detectable and detectable, respectively) and worse prognosis as shown by the event rate observed (62 events/1000patients/years vs. 38, P=0.01).

Accordingly, the remaining 6157 subjects who performed a CPET with an identified AT (61.6(12.6) years, 84% males, 4.2 years (1.9-7.5) follow up, 1212 cardiovascular events -1043 cardiovascular deaths 144 transplant 25 LVAD-) represent the population of this study. Table 1 shows the main characteristics of these patients and ongoing therapy at the time of CPET. Of note, therapy was set by the referring physician and considered optimized according to guidelines available when patients were recruited. Table 2 shows the main CPET results of HF subjects with an identified AT. Among these patients, 1409 patients reported a maximal effort albeit they did not reach the RER criterion for a maximal test (RER>1.05). In comparison with patients who reached this criterion (RER \geq 1.05), those who did not were similar regarding parameters of HF severity and were included in the present analysis. In the studied HF population (N= 6157) average AT values were: VO₂AT abs 823(305) mL/min, VO₂AT abs 10.55(3.50) mL/min/kg, VO₂AT%peak_pred 39.6(13.9) %(and VO₂AT%peak_obs(69.2(17.7) %. Figure 3 shows the Kaplan Meier curves for the study end point (combination of cardiovascular death, urgent transplant or LVAD implantation) according to analyzed AT values. In the case of VO₂AT%peak_obs (figure 3, middle panel), the stratification of the risk is less accurate as the two lower tertiles overlap (*P*= 0.927) while all the other curves are significantly different

(*P*<0.001). Also, survival results were comparable if patients with RER<1.05 were excluded. Finally, results were not influenced by patients age and gender.

Comparing the three ways to evaluate AT with respect to events at two years of follow up, we found in the overall population similar AUC values between VO₂ATabs and VO₂AT%peak_pred, while the VO₂AT%peak_obs one was significantly lower (*P*<0.001), (figure 4). Moreover, VO₂AT%peak_pred AUC value was the only performing as well as AUC based on peakVO₂, while the performance of both VO₂ATabs and VO₂AT%peak_obs were significantly worse (supplemental table 1). Harrell's concordance statistic provided very similar results and are reported in the supplemental material as supplemental table 2.

In addition, taking as reference the VE/VCO₂ slope AUC, both VO₂AT%peak_pred and VO₂ATabs, either as mL/min or mL/min/kg, have a similar prognostic accuracy, while VO₂AT%peak_obs AUC is significantly lower (supplemental table 1). Finally, combining AUC of PeakVO₂ and VE/VCO₂ with each of the three VO₂AT variables, only with VO₂AT%peak_pred the curve is significantly improved, p=0.012 (supplemental figure 1).

We also grouped the population according to the severity of the functional limitation as identified by CPET ²⁹: group 1 with peak VO₂<12 (n=1452), group 2, with peakVO₂ 12-16 (n=2254), and group 3 with peak VO₂>16 mL/kg/min (n=2436). The AUC comparisons among each group are reported in figure 5. Regardless of the HF severity group VO₂AT%peak_obs AUC was weaker as prognosis predictor. Of note, in the group of most severe patients (group 1) the VO₂AT%peak_pred AUC value was the highest.

Finally, the study population presented 940 out of 6157 patients (15.3%) with AF. Patients with AF had a lower peakVO₂ than patients in sinus rhythm but higher VO₂AT%peak_obs values, indicating a postponed AT (Table 3). The AUC comparisons of patients in sinus rhythm were similar to those of the general population. Specifically, VO₂AT%peak_pred AUC (0.6848) was the only one performing as well as peak VO₂ AUC (0.7051), while VO₂ATabs and VO₂%peak_obs performed significantly worse (0.6766, *P*<0.001 and 0.5399, *P*<0.0001 respectively). Differently, in AF population the AUC of both VO₂AT%peak_pred (0.6926) and VO₂ATabs (0.6830) were both statistically comparable (*P*=ns) to that of peak VO₂ (0.6992), while

VO₂%peak_obs AUC confirms to be less accurate also in this subgroup (0.4944, *P*<0.001). Again, no differences were observed when considering absolute values as mL/min or as mL/min/kg.

Discussion

The present study investigated a large population of patients with history of reduced ejection fraction and compared three different ways of reporting VO₂at AT (VO₂ATabs, VO₂AT%peak_pred, and VO₂AT%peak_obs) in order to identify the most accurate method of expressing AT in relation to HF prognosis. Our results show that the capacity to stratify the population is similar for VO₂ATabs and VO₂AT%peak_pred and, in both cases, better than VO₂AT%peak_obs. Furthermore, VO₂AT%peak_pred is the only parameter to have an AUC as good as that of peak VO₂. Finally, the advantage of using VO₂AT%peak_pred instead of other methods for presenting AT appears to be particularly relevant when estimating prognosis in patients with reduced exercise performance in whom peak VO₂ may be more difficult to be reached due to severe exercise impairment and for this reason its clinical reliability is questionable. It must be recognized, however, that no difference between VO₂ATabs and VO₂AT%peak_pred on AUC values was observed and that from a practical point of view, AUC values of 0.680 and 0.688 sound rather comparable. Indeed, VO₂AT%peak_pred seems to 'win on points' VO₂ATabs, at least when considering an patients with moderate HF, in sinus rhythm and who performed a maximal or near maximal effort.

We present data from a large population of HF patients with history of reduced ejection fraction followed in 26 Italian HF centers. Follow-up was prolonged, with a relevant number of events observed. AT was not identified in 20% of cases, a number in line with previous publications ³⁰. In previous analysis of the MECKI score dataset, we identified that the absence of an identified AT was associated with a very poor prognosis ^{6,16}. This was confirmed in the present study in larger HF population ^{6,16}. The AT was identified in the remaining 6157 cases. The present study extends the investigation about the value of AT as a prognostic marker in the MECKI score population and it analyzes which of the three more common methods to report

AT has the greatest prognostic power. Interestingly, VO₂AT%peak_pred showed the highest performance, comparable to that of peak VO₂ and VE/VCO₂ slope, both of which have recognized pivotal role in HF prognosis. Not only that, its combination with Peak VO₂ and VE/VCO₂ significantly improves the prognostic power.

In the present analysis a non-negligible group of patients (n= 1409) had a peak exercise RER <1.05. Albeit exercise was symptom limited and self-interrupted by patients we have no proof that maximal effort was really reached. Previous findings and studies on CPET parameters, as we did for the present analysis, suggested to consider also these patients when evaluating HF prognosis and exercise performance ³¹. Of note, excluding the cases with a peak RER < 1.05 did not change our findings.

Conceptually, AT is important in all HF patients, but its prognostic role is particularly relevant when the reliability of peak VO₂ value is questionable. In fact, sometimes peak VO₂ can be influenced by the patient's willingness or can be altered by arrhythmias, ischemia or severe hypertension, that occur more frequently when the subject reaches the maximum effort. In these cases, it may be appropriate to use a sub-maximal VO₂ value¹⁷. In clinical practice, in case of submaximal effort, VE/VCO₂ slope is usually preferred to peak VO₂, as also suggested in the heart transplantation guidelines ³². On the basis of the present study we suggest that AT data and specifically VO₂AT%peak_pred can also be utilized as a sub-maximal parameter for assessing prognosis, while other VO₂ values at AT seem less efficacious. Accordingly, our findings reinforce the original and historic data by Janicki and Weber who reported VO_2 at peak and AT in parallel ³³. The findings of this study are most relevant in severe HF since patients with advanced disease a true maximal performance may not be reached for several reasons and, consequently, peak VO₂ may be in a few cases unreliable. Of note in severe HF a maximal effort may be considered by patients and medical personal as risky. Moreover, patients with severe HF are the ones who most need a precise risk assessment that should be used also for LVAD/HT indication. Interestingly, dividing subjects according to their functional impairment (i.e. peak VO₂), we obtained the highest VO₂ AT%peak_pred AUC in the most severe cases.

HF patients with permanent AF represent a special population since they have a lower performance (lower peak VO₂) and a VO₂AT that seems to be, on the average, 10% higher than that in sinus rhythm patients. AF patients shows a peculiar behavior of heart rate and cardiac output at the beginning of exercise, with the increased heart rate response likely due to an increased sympathetic drive triggered to maintain cardiac output ^{16,34,35}. Indeed, as shown by Magrì et al. the prognostic meaning of AT in patients with HF and AF is different compared to patients in sinus rhythm ¹⁶. In the present study we confirmed these peculiar characteristics and we found that the prognostic power of VO₂AT%peak_pred is maintained also in this specific HF population, although the reliability of VO₂AT%peak_pred is similar to that of VO₂AT abs, and both are similar to that of peak VO₂ values (i.e. AUC of these three variables are not statistically different).

The results of the present study open the need for further studies evaluating the efficiency of VO₂AT%peak_pred in multiparametric patient evaluation. In fact, it has now been demonstrated that multiparametric prognostic scores are superior to any single parameter for estimating the risk in HFrEF. Currently, in these patients, the most effective score is the MECKI score³⁶⁻³⁸, which uses CPET parameters, combined with blood chemistry (hemoglobin, sodium, and glomerular filtration rate estimated from creatinine) and echocardiographic (LVEF) parameters¹⁸. It might therefore be desirable to use AT value instead of peak VO₂ when the patient has not reached maximal effort or it is not clear whether a true maximal effort has been obtained, albeit this hypothesis needs to be evaluated in a dedicated analysis.

The study has a few limitations which need to be acknowledged. First of all, the retrospective nature of the present analysis. Second, the V-slope analysis was used to identify AT and the possible presence of a dual AT not considered ⁹. Third, it is unknown whether treatment or training influence the onset of AT and how this can affect HF prognosis.

Interpretation

This study demonstrates that VO₂AT%peak_pred is the best way to express VO₂ at AT in relation to prognosis,

with a prognostic power comparable to that of peak VO_2 and VE/VCO_2 slope especially in more severe

patients.

Take home pullout:

Study Question

Any differences in prognostic power of VO_2 at anaerobic threshold (AT) expressed as absolute value (VO_2ATabs), as percentage of predicted peak VO_2 ($VO_2AT\%$ peak_pred) or as percentage of observed peak VO_2 value ($VO_2AT\%$ peak_obs)?

Results

Comparing AUC values, VO₂AT%peak_obs was significantly weaker, while VO₂AT%peak_pred was the only performing as well as peakVO₂, with even a higher AUC in the group with severe HF peakVO₂<12mL/min/kg).

Interpretation

In HF, VO₂AT%peak_pred is the best way to report VO₂ at AT in relation to prognosis and its combination with Peak VO₂ and VE/VCO₂ has the highest prognostic power.

References

- 1 Naimark A, Wasserman K, McIlroy MB. Continuous Measurement of Ventilatory Exchange Ratio during Exercise. J Appl Physiol. 1964; 19:644-652
- 2 Wasserman K, Whipp BJ, Koyl SN, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973; 35(2):236-243
- 3 Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986; 60(6):2020-2027
- 4 Poole DC, Rossiter HB, Brooks GA, et al. The anaerobic threshold: 50+ years of controversy. *J Physiol*. 2021; 599(3):737-767
- 5 Agostoni P, Corra U, Cattadori G, et al. Prognostic value of indeterminable anaerobic threshold in heart failure. *Circ Heart Fail*. 2013; 6(5):977-987
- 6 Carriere C, Corra U, Piepoli M, et al. Isocapnic buffering period: From physiology to clinics. *Eur J Prev Cardiol*. 2019; 26(10):1107-1114
- 7 Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the 'isocapnic buffering' region in rapidlyincremental exercise. *Respir Physiol*. 1989; 76(3):357-367
- 8 Task Force of the Italian Working Group on Cardiac Rehabilitation P, Working Group on Cardiac R, Exercise Physiology of the European Society of C, et al. Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation. Part I: definition of cardiopulmonary exercise testing parameters for appropriate use in chronic heart failure. *Eur J Cardiovasc Prev Rehabil*. 2006; 13(2):150-164
- 9 Rovai S, Magini A, Cittar M, et al. Evidence of a double anaerobic threshold in healthy subjects. *Eur J Prev Cardiol*. 2021
- 10 Whipp BJ, Agostoni P. Noninvasive estimation of the lactate threshold in a subject with dissociated ventilatory and pulmonary gas exchange indices: a case report. *Chest*. 2007; 132(6):1994-1997
- 11 Anselmi F, Cavigli L, Pagliaro A, et al. The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. *Scand J Med Sci Sports*. 2021; 31(9):1796-1808
- 12 Tomono J, Adachi H, Oshima S, et al. Usefulness of anaerobic threshold to peak oxygen uptake ratio to determine the severity and pathophysiological condition of chronic heart failure. J Cardiol. 2016; 68(5):373-378
- 13 Nesti L, Pugliese NR, Sciuto P, et al. Mechanisms of reduced peak oxygen consumption in subjects with uncomplicated type 2 diabetes. *Cardiovasc Diabetol*. 2021; 20(1):124
- 14 Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. *Chest*. 1999; 116(2):355-362
- 15 Older PO, Levett DZH. Cardiopulmonary Exercise Testing and Surgery. Ann Am Thorac Soc. 2017; 14(Supplement_1):S74-S83
- 16 Magri D, Agostoni P, Corra U, et al. Deceptive meaning of oxygen uptake measured at the anaerobic threshold in patients with systolic heart failure and atrial fibrillation. *Eur J Prev Cardiol*. 2015; 22(8):1046-1055
- 17 Gitt AK, Wasserman K, Kilkowski C, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. *Circulation*. 2002; 106(24):3079-3084
- 18 Agostoni P, Corra U, Cattadori G, et al. Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis. Int J Cardiol. 2013; 167(6):2710-2718
- 19 Salvioni E, Corra U, Piepoli M, et al. Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction. *ESC Heart Fail*. 2020; 7(1):371-380
- 20 Ramos RP, Alencar MC, Treptow E, et al. Clinical usefulness of response profiles to rapidly incremental cardiopulmonary exercise testing. *Pulm Med*. 2013; 2013:359021
- 21 Barron A, Francis DP, Mayet J, et al. Oxygen Uptake Efficiency Slope and Breathing Reserve, Not Anaerobic Threshold, Discriminate Between Patients With Cardiovascular Disease Over Chronic Obstructive Pulmonary Disease. *JACC Heart Fail*. 2016; 4(4):252-261

- 22 Neder JA, Nery LE, Castelo A, et al. Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. *Eur Respir J*. 1999; 14(6):1304-1313
- 23 Agostoni P, Bianchi M, Moraschi A, et al. Work-rate affects cardiopulmonary exercise test results in heart failure. *Eur J Heart Fail*. 2005; 7(4):498-504
- 24 Agostoni P, Dumitrescu D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. *Int J Cardiol*. 2019; 288:107-113
- 25 Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Clinical Exercise Testing. Principles of Exercise Testing and Interpretation Including Pathophysiology and Clinical Applications: Lippincott Williams & Wilkins, 2005; 138-139
- 26 Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. *Am Rev Respir Dis.* 1984; 129(2 Pt 2):S49-55
- 27 U.S. Department of Health & Human Services. Organ Procurement and Transplantation Network: https://optn.transplant.hrsa.gov/media/1200/optn_policies.pdf#nameddest=Policy_06
- 28 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. *Biometrics*. 1988; 44(3):837-845
- 29 Wasserman K, Zhang YY, Gitt A, et al. Lung function and exercise gas exchange in chronic heart failure. *Circulation*. 1997; 96(7):2221-2227
- 30 Metra M, Raddino R, Dei Cas L, et al. Assessment of peak oxygen consumption, lactate and ventilatory thresholds and correlation with resting and exercise hemodynamic data in chronic congestive heart failure. *Am J Cardiol*. 1990; 65(16):1127-1133
- 31 Corra U, Agostoni P, Piepoli MF, et al. Metabolic exercise data combined with cardiac and kidney indexes: MECKI score. Predictive role in cardiopulmonary exercise testing with low respiratory exchange ratio in heart failure. *Int J Cardiol*. 2015; 184:299-301
- 32 Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant. 2016; 35(1):1-23
- 33 Janicki JS, Weber KT, McElroy PA. Use of the cardiopulmonary exercise test to evaluate the patient with chronic heart failure. *Eur Heart J.* 1988; 9 Suppl H:55-58
- 34 Palermo P, Magri D, Sciomer S, et al. Delayed Anaerobic Threshold in Heart Failure Patients With Atrial Fibrillation. *J Cardiopulm Rehabil Prev.* 2016; 36(3):174-179
- 35 Agostoni P, Emdin M, Corra U, et al. Permanent atrial fibrillation affects exercise capacity in chronic heart failure patients. *Eur Heart J*. 2008; 29(19):2367-2372
- 36 Agostoni P, Paolillo S, Mapelli M, et al. Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: a long-term comparison. *Eur J Heart Fail*. 2018; 20(4):700-710
- 37 Kouwert IJ, Bakker EA, Cramer MJ, et al. Comparison of MAGGIC and MECKI risk scores to predict mortality after cardiac rehabilitation among Dutch heart failure patients. *Eur J Prev Cardiol*. 2020; 27(19):2126-2130
- 38 Freitas P, Aguiar C, Ferreira A, et al. Comparative Analysis of Four Scores to Stratify Patients With Heart Failure and Reduced Ejection Fraction. *Am J Cardiol*. 2017; 120(3):443-449

Figure Legend

Figure 1:

Graphical representation of the 3 possible ways to report anaerobic threshold (AT): absolute value (VO₂AT abs, red line); percentage of predicted peak VO₂ (VO₂AT%peak_pred, yellow line); percentage of observed peak VO₂ (VO₂AT%peak_obs, orange line). Green columns represent the portion of VO₂ below the AT, expressed as percentage of VO₂ATobs (left) or of VO₂ATabs (right), while the orange areas show the difference of those percentage to their reference value.

VO₂AT %peak_obs = VO₂ATabs / peak VO₂x 100 VO₂AT%peak_pred = VO₂ATabs / predicted peak VO₂ x 100

Figure 2

Scheme representing population selection.

Figure 3

Survival according to the study end point (combination of cardiovascular death, urgent transplant or LVAD implantation) in the heart failure population. The three panels show the stratification of the patients divided in tertiles based on the three analyzed anaerobic threshold variables: VO₂AT%peak_predicted (upper panel), VO₂AT%peak_obs (middle panel), VO₂ATabs (lower panel, results were similar when VO₂AT_abs was expressed in mL/min and in mL/min/kg). Tertiles for VO₂AT%peak_pred were : \leq 33 ; >33- \leq 43.8; >43.8. were Tertiles for VO2%peak_obs: \leq 62.6 ; >62.6- \leq 75.2; >75.2 and tertiles for VO2ATabs were: \leq 664 ; >664- \leq 908.5; >908.5.

Figure 4

Receiving operating curves and area under the curve (AUC) values according to VO₂AT%peak_predicted, VO₂AT%peak_obs, and VO₂AT_abs (results were similar when VO₂AT_abs was expressed in mL/min and in mL/min/kg).

Figure 5

Area under the curve values of the three variables under study (VO₂AT%peak_predicted, VO₂AT%peak_observed, and VO₂AT absolute value) in relation to peak VO₂ obtained by dividing the population into three groups according to severity. Specifically, group 1: peak VO₂<12 mL/min/kg, group 2: peak VO₂ 12-16 mL/min/kg, peak VO₂>16 mL/min/kg. Results were similar when VO₂AT_abs was expressed in mL/min and in mL/min/kg.

*= p<0.005 vs. Peak VO₂

Figure 1 supplemental

Comparison of AUCs obtained combining the two main variables of cardiopulmonary exercise test (Peak VO_2 and VE/VCO_2 slope) with the variables under study ($VO_2AT\%$ peak_predicted, $VO_2AT\%$ peak_observed, and VO_2AT absolute value).

ournal pre-proc

Variable	Mean	(SD)
Age (years)	61.6	(12.6)
Body mass index (kg/m²)	26.7	(4.4)
LVEF (%)	33.0	(10.3)
EDV (ml)	183	(75)
ESV (ml)	126	(64)
Hb (g/dl)	13.5	(1.9)
MDRD (ml/min/1.73m ²)	72.6	(24.0)
Na+	139.5	(3.19)
Variabile	n	%
Sex (males, %)	5181	75%
NYHA 1 (n, %)	1080	18%
NYHA 2 (n, %)	3485	57%
NYHA 3 (n, %)	1496	24%
NYHA 4 (n, %)	75	1%
Idiopathic etiology (n, %)	2280	41%
Ischemic etiology (n, %)	2623	47%
Valvular etiology (n, %)	232	4%
Therapy		
ACE inhibitors (n, %)	4420	72%
AT1 inhibitors (n, %)	1150	19%
Beta-blockers (n, %)	5384	88%
Diuretics (n, %)	4792	78%
Statins (n, %)	2853	47%
Mineralcorticoid antagonists (n, %)	3142	52%
Antiplatelets (n, %)	3252	53%
Anticoagulants (n, %)	1721	28%
Amiodarone (n, %)	1416	23%

Table 1 Main characteristics of the heart failure population with identified anaerobic threshold (N=6157)

LVEF: left ventricular ejection fraction: EDV: end-diastolic volume; ESV: end-systolic volume; Hb: hemoglobin; MDRD: Glomerular filtration rate by modification of diet in renal disease; NYHA: New York Heart Association class; ACE: Angiotensin converting enzyme; AT1: Angiotensin II Type 1 Receptor; Hb: hemoglobin. Table 2: Cardiopulmonary exercise test results of the patients with identified anaerobic threshold (N=6157)

Variabile	Mean	SD
Peak VO₂ (ml/min)	1150	(435)
Peak VO₂ (ml/min/kg)	14.8	(4.9)
Peak VO ₂ % pred	56.1	(17.5)
<i>VE/VCO₂ Slope</i>	33.2	(7.9)
VO ₂ /WR slope	9.7	(2.2)
Workload (Watt)	52.3	(24.6)
Peak RER	1.12	(0.16)
VO₂ ATabs (ml/min)	823	(305)
VO ₂ ATabs (ml/min/kg)	10.6	(3.5)
VO2 AT%peak_obs	69.2	(17.7)
VO2 AT %peak_pred	39.6	(13.9)

Peak VO₂: oxygen uptake at peak exercise; VE/VCO₂ slope: minute ventilation/carbon dioxide production relationship slope; WR: work; RER: respiratory exchange ratio; VO₂ATabs= oxygen uptake at anaerobic threshold absolute value; VO₂AT%peak_obs: = oxygen uptake at anaerobic threshold as % of observed peak; VO₂AT %peak_pred: = oxygen uptake at anaerobic threshold as % of predicted peakVO₂.

Table 3 Differences between patients with and without atrial fibrillation.

		s rhythm =5211)		ibrillation =940)	Р
PeakVO ₂	1229	(436)	1100	(363)	<0.0001
VO ₂ ATabs	830	(311)	779	(266)	<0.0001
VO2 AT %peak_obs	69	(14)	73	(31)	<0.0001

Peak VO₂: oxygen uptake at peak exercise; VO₂ATabs= oxygen uptake at anaerobic threshold absolute value; VO₂ AT%peak_obs: = oxygen uptake at anaerobic threshold as % of observed peak;

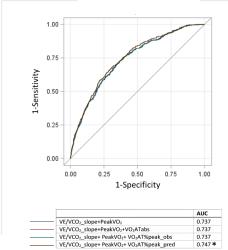
Acknowledgments:

Piergiuseppe Agostoni, Elisabetta Salvioni: had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

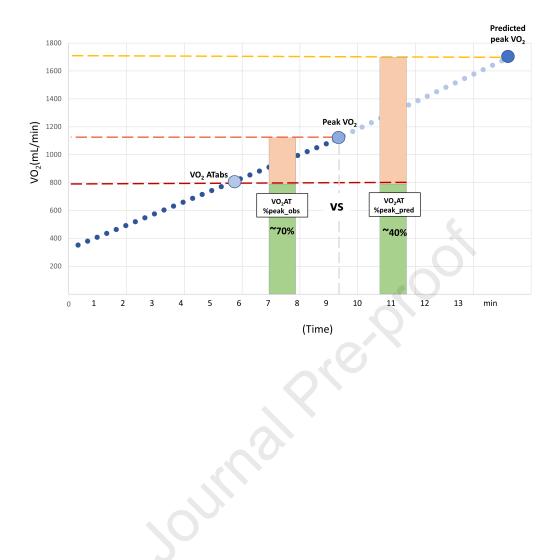
Piergiuseppe Agostoni, Elisabetta Salvioni, Massimo Mapelli, Alice Bonomi, Damiano Magrì, Massimo Piepoli, Maria Frigerio, Roberto Badagliacca, Claudio Passino, Stefania Paolillo, Gaia Cattadori: contributed substantially to the study design, data collection, data analysis and interpretation, and the writing of the manuscript

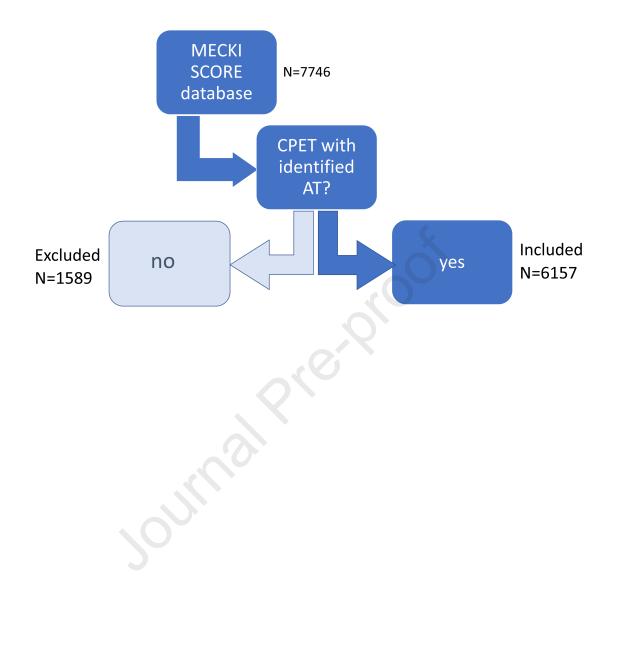
Ugo Corrà, Rosa Raimondo, Rocco Lagioia, Pasquale Perrone Filardi, Michele Senni, Marco Guazzi, Michele Correale, Mariantonietta Cicoira, Giuseppe Limongelli, Gianfranco Sinagra, Gianfranco Parati, Francesco Bandera, Maurizio Bussotti, Federica Re, Carlo Vignati, Carlo Lombardi, Angela B. Scardovi, Enrico Perna, Susanna Sciomer, Andrea Passantino, Michele Emdin, Caterina Santolamazza, Davide Girola, Denise Zaffalon, Fabiana De Martino: contributed substantially to data collection, interpretation and critical revision of the manuscript

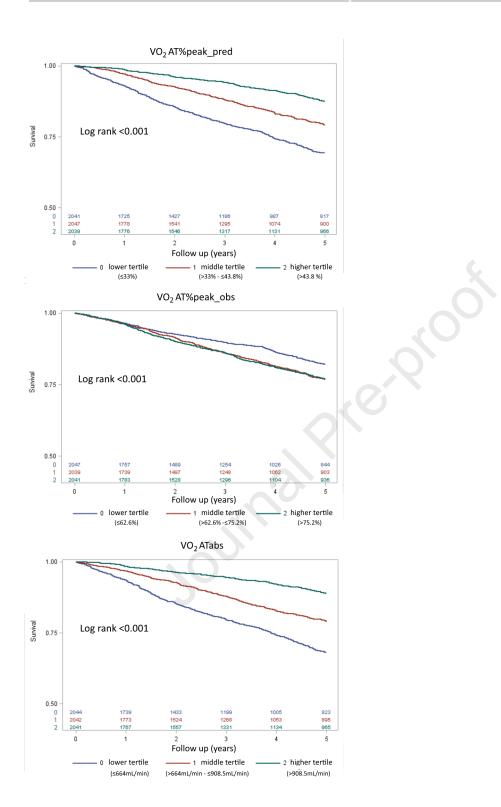
Appendix

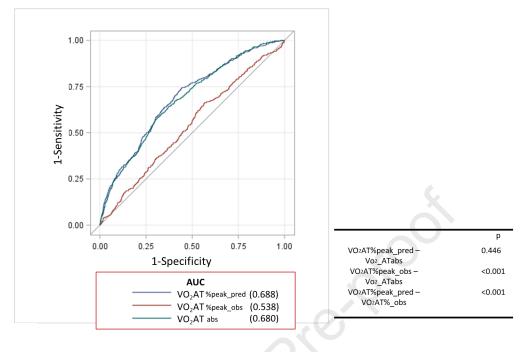

Other participants to the MECKI score group to be acknowledged:

- Centro Cardiologico Monzino, IRCCs, Milan, Italy
 Stefania Farina, Beatrice Pezzuto, Anna Apostolo, Pietro Palermo, Mauro Contini, Paola Gugliandolo, Irene Mattavelli, Michele Della Rocca
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant'Andrea, "Sapienza" Università degli Studi di Roma, Roma, Italy Giovanna Gallo
- Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza", Rome University, Rome, Italy: Federica Moscucci
- Department of Cardiology, Heart Failure and Heart Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy: Anita Iorio
- UOC Cardiologia, G da Saliceto Hospital, Piacenza, Italy Geza Halasz, Bruno Capelli, Simone Binno
- Cardiologia SUN, Ospedale Monaldi (Azienda dei Colli), Seconda Università di Napoli, Napoli Giuseppe Pacileo, Fabio Valente, Rossella Vastarella
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy: Denise Zaffalon, Cosimo Carriere, Marco Masè, Marco Cittar, Andrea Di Lenarda
- Istituto Auxologico Italiano, Milan, Italy: Sergio Caravita, Elena Viganò
- Cardiac Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Scientific Institute of Milan, Milan, Italy:

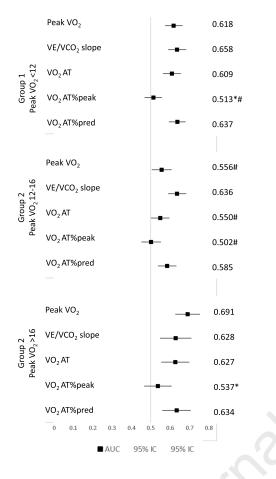

Giovanni Marchese


- Cardiology Division, Santo Spirito Hospital, Roma, Italy: Roberto Ricci, Luca Arcari
- Division of Cardiology, Istituti Clinici Scientifici Maugeri, Institute of Cassano Murge, Bari, Italy: Domenico Scrutinio
- U.O. Cardiologia, S. Chiara Hospital, Trento, Italy: Elisa Battaia, Michele Moretti
- Ospedali Riuniti, Ancona, Italy: Maria Vittoria Matassini; Matilda Shkoza
- UOSD di Cardiologia/UTIC dell'IRCCS Neurolesi di Messina Roland Herberg
- Federico II hospital, Napoli, Italy: Antonio Cittadini, Andrea Salzano, Alberto Marra
- ISMETT, Palermo, Italy Eluisa Lafranca
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli Hospital, Palermo, Italy: Giuseppe Vitale


ounalpre



* p= 0.012 vs VE/VCO2_slope+PeakVO2



OUTRO

* p<0.05 vs Peak VO₂ # p<0.05 vs VE/VCO₂ slope

Supplemental table 1: comparison between AUC at 2 years taking as reference peakVO₂ or VE/VCO₂

		Ref. VE/VCO ₂ slope (AUC 0.705) (n = 6032)	Ref. peak VO2 (AUC 0.710)
			(n = 6032)
	AUC	Р	Р
VO2 ATabs (ml/min)	0.680 (0.653-0.708)	0.1489	0.0014
VO2 ATabs (ml/min/kg)	0.671 (0.642-0.698)	0.0637	0.0085
VO₂ AT % obs	0.538 (0.509-0.568)	<0.0001	<0.0001
VO ₂ AT %peak_pred	0.688 (0.661-0.715)	0.3868	0.1635

Peak VO₂: oxygen uptake at peak exercise; VE/VCO₂ slope: minute ventilation/carbon dioxide production relationship slope; VO₂ATabs= oxygen uptake at anaerobic threshold absolute value; VO₂ AT%peak_obs: = oxygen uptake at anaerobic threshold as % of observed peak; VO₂AT%peak_pred: = oxygen uptake at anaerobic threshold as % of predicted peakVO₂.

Supplemental table 2: Harrell's concordance statistic

	AUC	Harrell's Concordance Statistic
VO2 ATabs (ml/min)	0.680	0.650
VO ₂ AT % obs	0.538	0.538
VO2 AT %peak_pred	0.688	0.642

 VO_2ATabs = oxygen uptake at anaerobic threshold absolute value; $VO_2 AT\%peak_obs$: = oxygen uptake at anaerobic threshold as % of observed peak; $VO_2AT\%peak_pred$: = oxygen uptake at anaerobic threshold as % of predicted peak VO_2 .