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Abstract
A quantitative theory of the superconductivity of materials confined at the nanoscale in
parameter-free agreement with experimental data has been missing so far. We present a
generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good
metals which are confined along one of the three spatial directions, such as thin films. In this
formulation of the Eliashberg equations the approximation of taking the normal density of states
as its value at the Fermi level has been removed. By numerically solving these new
Eliashberg-type equations, we find the dependence of the superconducting critical temperature
Tc on the confinement size L, in quantitative agreement with experimental data of Pb and Al thin
films with no adjustable parameters. This quantitative agreement provides an indirect
confirmation that, upon increasing the confinement, a crossover from a spherical-like Fermi
surface, which contains two growing hole pockets caused by the confinement, to a strongly
deformed Fermi surface, occurs. This topology of the Fermi sea is implemented in the new
Eliashberg-type equations to reproduce the experimentally observed maximum in the critical
superconducting temperature vs film thickness of ultra-thin Pb films.

Keywords: superconductivity, thin films, elemental metals, electron–phonon, Eliashberg theory

1. Introduction

Superconducting thin films are of fundamental interest for
physics since they provide a model system to under-
stand the effect of confinement on quantum macroscopic
phenomena [1–7]. Also, they play a crucial role in a
variety of applications, which include Josephson junctions
(Dayem bridges) [8], single-photon detectors for space
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telecommunications [9], qubits for quantum computing [10]
etc. More recently, the effect of the electric field-driven sup-
pression of superconductivity has been discovered in pioneer-
ing works by Giazotto and collaborators on metallic supercon-
ducting thin films [11] and superconducting quantum interfer-
ence devices [12]. This novel supercurrent field effect opens up
unprecedented opportunities to fabricate electric field-gated
quantum materials. Crucially, the effect leverages the film
thickness-dependent suppression of superconductivity under
an external electric field [13].

In spite of this being a central topic in contemporary con-
densed matter and quantum physics, no fully quantitative
theory of size-dependent superconductivity in real materials
exists to date.

The standard one-infinite-band s-wave Eliashberg
theory [14, 15] is a powerful tool to explain exactly all
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superconductive properties of old low Tc superconductors
[15] as Pb, Sn, Al etc. Lately, new experimental data [15] have
appeared that seem not to be in agreement with this theory.
These are critical temperature measurements on thin lead films
as a function of thickness which are in contrast to the behavior
predicted theoretically. Many studies have been devoted to
rationalizing the dependence of the superconducting critical
temperature Tc on confinement and on the thin film thickness
L [16–21]. In the past, the superconducting thin films were
mostly amorphous while nowadays, with the advent of modern
preparation techniques, also thin films with good crystalline
order can be obtained. Early numerical studies [16] suggested
a possible enhancement of Tc upon decreasing L although a
mechanistic explanation has remained elusive. More recently,
experiments on ordered thin films [20, 21], besides the above
mentioned regime of enhancement upon reducing L, have also
highlighted a second regime at lower (nanometric) thickness
L, where, instead, Tc grows with increasing L. Travaglino and
Zaccone in a recent paper [22] developed the first fully ana-
lytical theory of confinement effects on superconductivity of
thin films in the framework of the simplified weak-coupling
BCS formalism. The mathematical predictions were verified
for experimental data of crystalline thin films and were able
to reproduce the trend of Tc vs L, including the maximum of
Tc at L= Lc = (2π/n)1/3, where n is the concentration of free
carriers. However, the simplified weak-coupling BCS formula
is not quantitative for Pb (which is a strong-couplingmaterial),
and adjustable parameters are used in the comparison.

Furthermore, a new topological transition in the available
momentum space was predicted to occur at the critical Lc value
of thickness, which corresponds to the maximum in Tc vs L
[22].

In this paper we formulate a generalized Eliashberg theory
of strong-coupling superconductivity that takes into account
effects of quantum confinement on the free carriers, as well as
a realistic electron–phonon spectral density. For doing this, it
is necessary to use a generalization of standard s-wave one-
band Eliashberg theory [14], where we ignore effects of struc-
tural disorder. The new Eliashberg equations are more com-
plex than the usual ones, because the normal density of states
(DOS) cannot be approximated by its value at the Fermi level
and this fact produces a change in the form of the Eliashberg
equations. This new theory is shown to produce predictions
which, for the first time, are in quantitative agreement with
experimental data of Pb and Al thin films, with no adjustable
parameters.

2. The mathematical framework

2.1. Eliashberg equations

The standard (infinite) one-band s-wave Eliashberg
equations, when the Migdal theorem holds [23],
are given in terms of the renormalization function
Z(iωn) and the gap function ∆(iωn) as [15, 24–29]:

∆(iωn)Z(iωn) = πT
∑
ωn′

∆(iωn′)√
ω2
n′ +∆2 (iωn′)

[λ(iωn′ − iωn)−µ∗ (ωc)θ (ωc− |ωn′ |)]

Z(iωn) = 1+
πT
ωn

∑
ωn′

ωn′√
ω2
n′ +∆2 (iωn′)

λ(iωn′ − iωn) (1)

where θ(ωc − |ωn′ |) is the Heaviside function, ωc is a
cut-off energy (ωc > 3Ωmax where Ωmax is the maximum
phonon energy) [25], µ∗(ωc) is the Coulomb pseudopotential,
λ(iωn′ − iωn) is a function related to the electron-boson spec-
tral density α2F(Ω) through the relation

λ(iωn′ − iωn) = 2
ˆ ∞

0

Ωα2F(Ω)dΩ

Ω2 +(ωn′ −ωn)
2 . (2)

The strength of the electron–phonon coupling intensity
is given by the electron–phonon coupling parameter λ=

2
´∞
0

α2F(Ω)dΩ
Ω .

In general, the Eliashberg equations are solved numerically
with iterative method until numerical convergence is reached.
The numerical procedure is quite simple in the formulation

on the imaginary axis, but much less so on the real axis. The
critical temperature can be calculated either by solving an
eigenvalue equation or, more easily, by giving a very small
test value to the superconducting gap (for the Pb it is∆= 1.34
meV at T = 0 K so, for example,∆(T) = 10−7 meV) and then
by checking at which temperature the solution converges. In
this way, a precision in the Tc value is obtained that is much
higher than the experimental confidence interval.

If one removes the approximations of the infinite bandwidth
and of taking the DOS equal to a constant (i.e. its value at
the Fermi level), the Eliashberg equations are slightly more
complex and they become four equations [25]. However, when
N(ε) = N(−ε) (the DOS is symmetrical with respect to the
Fermi level) the situation is particularly simple because the
non-zero self energy terms remain two, i.e. just the equations
for Z(iωn) and ∆(iωn)Z(iωn) and they read as [30, 31]
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∆(iωn)Z(iωn) = πT
∑
ωn′

∆(iωn′)√
ω2
n′ +∆2 (iωn′)

[
N(iωn′)+N(−iωn′)

2

]

× [λ(iωn′ − iωn)−µ∗ (ωc)θ (ωc − |ωn′ |)]
2
π
arctan

 W

2Z(iωn′)
√
ω2
n′ +∆2 (iωn′)

 (3)

Z(iωn) = 1+
πT
ωn

∑
ωn′

ωn′√
ω2
n′ +∆2 (iωn′)

[
N(iωn′)+N(−iωn′)

2

]
λ(iωn′ − iωn)

× 2
π
arctan

 W

2Z(iωn′)
√
ω2
n′ +∆2 (iωn′)

 (4)

where N(±iωn′) = N(±Z(iωn′)
√
(ωn′)2 +∆2(iωn′)) and the

bandwidth W is equal to half the Fermi energy, EF/2.
The fact of having a symmetric DOS is crucial otherwise

it becomes much more complicated to arrive at numerical
convergence.

2.2. Electron confinement model

When the system is confined along one of the three spatial dir-
ections, such as in thin films, the DOS cannot be approximated
by a constant but takes a different form [22]. In this case, we
have two different regimes depending on the film thickness L:
in the first confinement regime, when L> Lc and EF > ε∗, the
DOS has the following form

N(ε) = N(0)C

ϑ(ε∗ − ε)

√
EF

ε∗
|ε|
EF

+ϑ(ε− ε∗)

√
|ε|
EF


where C= (1+ 1

3
L3c
L3 )

1/3, ε∗ = 2π2 h̄2

mL2 , Lc = ( 2πn0 )
1/3, m is the

electron mass, L is the film thickness, n0 is the density of carri-
ers and EF,bulk is the Fermi energy of the bulk material. In this
case, it is possible to demonstrate [22] the following relations:

EF = C2EF,bulk (5)

N(EF) = CN(EF,bulk) = CN(0) (6)

N(EF,bulk) =
V(2m)3/2

2π2h̄3
√
EF,bulk. (7)

In the second confinement regime, L< Lc, the DOS has a new,
linear dependence on the energy, in contrast with the standard
square-root dependence [22].

To summarize, in this version of the Eliashberg theory, four
things will change:

(a) the DOS will no longer be a constant but a function of
energy. We removed the factors C because we put this
factor in the renormalization of the electron–phonon inter-
ation so the DOS that we put in the Eliashberg equations
in the first confinement regime L> Lc is

N(ε) =

ϑ(ε∗ − ε)

√
EF

ε∗
|ε|
EF

+ϑ(ε− ε∗)

√
|ε|
EF

 . (8)

(b) the electron–phonon interaction will be renormalized so as
to have a new λ= Cλbulk in a way to scale the electron–
phonon spectral function without changing its shape. We
moved the factor of the normal DOSC inside the definition
of electron–phonon coupling as in the Coulomb pseudo-
potential. Of course the reason for this choice is only ped-
agogic, because in this way we can justify the use of the
Allen–Dynes equation [32] for Tc which is a crude, but
effective, approximation of the numerical solution of the
Eliashberg equations.

(c) the value of the Fermi energy will be renormalized in
the following way: EF = C2EF,bulk. Furthermore, in the
Eliashberg equations, in the symmetric case discussed
above, it is W= EF/2.

(d) the Coulomb pseudopotential changes (also the Fermi
energy in the definition, changes):

µ∗ =
Cµbulk

1+µbulk ln(EF/ωc)

where µbulk =
µ∗
bulk

1−µ∗
bulk ln(EF,bulk/ωc)

.

In the second confinement regime, when L< Lc and EF <
ε∗ [22]:

N(ε) = C ′N(0)

√
EF

ε∗
ε

EF
(9)
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where

N(ε= EF) = C ′N(0)

EF =
h̄2

m

√
(2π)3 n
L

= C ′2EF,bulk

C ′ =
2√
L

(
8π
3

)2/3 1(
n(2π)3

)1/6
.

In this confinement regime (L< Lc), the DOS is given by
[22]:

N(ε) =

√
EF

ε∗
|ε|
EF
,

and the factor C′ goes to renormalize the electron–phonon
coupling and the Coulomb pseudopotential as follows:

λ= C ′λbulk, µ∗ =
C ′µbulk

1+µbulk ln(EF/ωc)
. (10)

By recalling that in the Eliashberg equations the reference
energy is the Fermi energy taken as the zero of the energy, in
the program that numerically solves the Eliashberg equations,
the DOS has been rescaled in the following way (by also put-
ting care that the DOS is continuous for ε= ε∗). When L> Lc
and ε∗ < EF:

N(ε) =

ϑ(ε∗ − ε)

√
EF

EF − ε∗

(
1− |ε|

EF

)

+ϑ(ε− ε∗)

1−

√
|ε|
EF

 . (11)

Instead, when L< Lc and ε∗ > EF:

N(ε) =

√
EF

ε∗

(
1− |ε|

EF

)
. (12)

3. Comparison with experimental data

Now we can apply this theory to reproduce experimental data
from the literature. The first set of experimental data refers to
crystalline thin lead films [20, 21]. We further noticed that the
Tc value for the maximum thickness is around 6.05 K that is
somewhat different from the most quoted bulk value of 7.22
K. On the other hand, measurements performed on 500 mono-
layers thick films indeed show the bulk value for Tc, suggest-
ing the possible existence of a 3D to quasi-2D transition [21].
We thus assume that the critical reference temperature is equal
to 6.05 K. The bulk electron phonon spectral function [15]
with λbulk,0 = 1.55 is shown in the inset of figure 1 and is
that of Pb appropriately rescaled (we choose λbulk = 1.3335)
to obtain, using the bulk value of the Coulomb pseudopotential
µ∗(ωc) = 0.1338 (the cut-off energy is ωc = 90 meV and the
maximum electronic energy is ωmax = 100 meV), the value of
Tc = 6.05 K for L= 50 Å. The values [22] of the bulk Fermi

Figure 1. Theoretical parameters (λ (dark line), 10µ∗ (red line),
EF/104 (blue line), ε∗/104) (green line) versus film thickness for Pb
thin films. For the calculations we assume a bulk electron–phonon
coupling λbulk = 1.337 to obtain the experimental value [21]
Tc(L= 50 Å) = 6.05 K. The true value of bulk electron–phonon
coupling is λbulk = 1.55 and Tc(L=∞) = 7.22 K. In the inset the
bulk electron–phonon spectral function is shown [15]. The bulk
Fermi energy is EF,bulk = 9470 meV and we use the correct value of
Coulomb pseudopotential for the bulk µ∗

b = 0.1338.

energy and carrier density are respectivelyEF,bulk = 9470meV
and n0 = 0.132 · 1030 m−3. This produces a critical thickness
Lc = 3.6 Å. In figure 1 some typical physical quantities used
in the theory are shown as functions of the film thickness.

We have solved the Eliashberg equations in a numerical
way for determining the critical temperature of films of differ-
ent thickness: the result is shown in figure 2. This calculation
has no free parameters. Looking at figure 2 it might seem that
the calculated critical temperature diverges but this is not the
case. Themaximum Tc is obtained by setting L= Lc and, since
the corresponding electron–phonon coupling, as can be seen in
figure 1, is finite, so is the Tc which will be Tcmax = 19.57 K. In
figure 3, the gap values versus temperature for three different
film thickness: L= 50 Å (dark solid line), L= 6 Å (blue solid
line) and L= 3 Å (red solid line) are shown.

We now can reproduce other experimental data from the
literature relative to thin aluminum films [33]. The bulk elec-
tron phonon spectral function [34] with λbulk,0 = 0.43 [15] is
shown in the inset of figure 4 while the bulk value of the
Coulomb pseudopotential is chosen to be µ∗(ωc) = 0.14295
(the cut-off energy is ωc = 190 meV and the maximum elec-
tronic energy is ωmax = 200 meV), in order to produce the
value of Tc,bulk = 1.20 K. The values of the bulk Fermi energy
and carriers density are respectively [35]EF,bulk = 11700meV
and n0 = 0.181 · 1030 m−3. This produces a critical thickness
Lc = 3.3 Å. We can see that the theory with this value of free
carrier concentration does not work (black solid line) in com-
parison with the experimental data [33]. The reason is that,
in thin aluminum films, the carriers density is, actually, a few
orders of magnitude lower than the above quoted bulk value
n0 = 0.181 · 1030 [36]. If we assume that, in Al thin films, the

4
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Figure 2. Experimental critical temperature versus film thickness:
open circles represent experimental data for Pb thin films taken
from [21], while the solid red line represents the theory of this
paper. The apparent divergence at L= Lc = 3.6 Å is due to the
occurrence of a topological transition of the Fermi surface as
predicted in [22]. One should note that the two data points
corresponding to the two lowest L values refer to two different
surface patterns in the experimental setup of [21].

Figure 3. Calculated gap value versus temperature for three
different film thickness: L= 50 Å (dark solid line), L= 6 Å (blue
solid line) and L= 3 Å (red solid line). All the other parameters are
those used for Pb thin films in figures 1 and 2.

value of carriers density is n0 = 0.130 · 1025 m−3 (Lc = 169.1
Å), which is not far from experimental observations (n0 ∼ 1025

m−3 found in [36] for nanometric thin films, or even lower in
[37]), we then obtain the red solid line in figure 4 that provides
an excellent agreement with the experimental data. Even for
aluminium, looking at figure 4 one might think that the calcu-
lated critical temperature diverges. Proceeding as in the previ-
ous case, i.e. placing L= Lc in the Eliashberg equations, we
find Tcmax = 1.76 K.

Figure 4. Critical temperature versus film thickness for Al thin
films: open circles are experimental data from measurements of
López-Núñez et al [33], the solid black line is the theory with
n0 = 0.181 · 10−30 m−3 and the solid red line is the theory with
n0 = 0.130 · 1025 m−3. In the inset, the Eliashberg electron–phonon
spectral function is shown [15].

The penetration depth or the density of superfluid is another
experimentally accessible physical quantity that can be also
calculated within the two-band Eliashberg model, so as to fur-
ther check the reliability of its predictions. The penetration
depth of the magnetic field λ(T) in the London limit [38] is
expressed, without considering the anisotropy, as

λ−2 (T) =

(
h̄ωp
c

)2

π kBT (13)

×
+∞∑

n=−∞

∆2
i (ωn)Z

2
i (ωn)[

ω2
nZ

2
i (ωn)+∆2

i (ωn)Z
2
i (ωn)

]3/2 (14)

where c is the speed of light, Z(ωn) and ∆(ωn) are the solu-
tions of the Eliashberg equations and ωp ∝ E3/4

F is the plasma
frequency [35]. The results for the superfluid density ns ∝ λ−2

are shown in figure 5 for the same thickness values used in
figure 3. It is clear that ns ∝ λ−2 increases markedly with
increasing the film thickness L. This theoretical prediction
is in qualitative agreement with recent experimental data of
[33] where the magnetic penetration depth λ is observed to
decrease markedly upon increasing L.

4. Absence of oscillations in Tc vs L

A gas of free electrons inside a rectangular slab (box) is
described by basic quantummechanics in terms of planewaves
with a wavefunction ψ ∼ sin(kxx)sin(kyy)sin(kzz) obeying
the Schrödinger equation. Here, z could be the confined dimen-
sion. This form of wavefunction, as is well known, arises from
‘hard-wall’ boundary conditions (BCs), i.e. upon imposing
that the wavefunction is identically null exactly at the bound-
aries of the box. Furthermore, the plane waves of the quantum
particles in a 3D isotropic sample in real space, must satisfy

5
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Figure 5. Calculated normalized density of superfluid ns ∝ λ−2

versus temperature T for three different film thickness values:
L= 50 Å (blue solid line), L= 6 Å (red solid line) and L= 3 Å
(black solid line). All the other parameters are those used for Pb thin
films in figures 1 and 2.

the following relation in reciprocal space [39, 40]:

1
k2

(
k2x + k2y + k2z

)
= 1, (15)

with |k|= k= 2π/λ the modulus of the wavevector k, and λ is
the wavelength. While kx, ky, kz are, in general, discretized for
small systems owing to the hard-wall BCs, or periodic BCs,
and to the wave-like character of the Schrödinger equation,
if the sample is, instead, macroscopically extended in the xy
plane, k can still be treated as a quasi-continuous variable.
Also, it is important to recognize that the hard-wall BCs are a
strong idealization of the real physical system, where atomic-
scale roughness, disorder and irregularities prevent the wave-
functions to become exactly null at a fixed coordinate, thus
making kz not a good quantum number [41]. Indeed, as it is
well known from quantum mechanics, momentum is a good
quantum number for hard-wall or periodic BCs, but not for
open BCs [42], the latter being much more realistic for real-
world thin films due to the atomic roughness and irregularit-
ies of the interface. Hence, while oscillations as a function of
the number of atomic layers are often observed in numerical
simulations, they are not usually visible in the experimental
data [43]. This is due to the more regular atomic-scale struc-
ture of simulated thin films compared to experimental ones,
especially at the interface; and also because the total number
of atoms in the experimental samples is typically much lar-
ger than in simulations (since they are much more extended in
the lateral directions). This, in turn, makes the distribution of
occupied momentum states in experimental systems behave
in a more continuum-like manner, which makes the oscilla-
tions in measured properties not visible. As a result of all these
facts, it was observed in [44] (cf the supplementary informa-
tion therein), that, on the example of phonons in ultra-thin ice
films, there is no discretization of the wavevector kz along the

confinement direction, even when the film thickness is lower
than 1 nm.

The key fact that kz is not discretized, for the reasons repor-
ted above, explains the absence of oscillations in the Tc vs
L experimental data for both Pb and Al thin films presented
above in figures 2 and 4. This is because, if kz were discretized
as a good quantum number, in the presence of hard-wall BCs,
it would lead to strong oscillations in g(EF) vs L, which, in
turn, would produce strong oscillations in Tc vs L. This is evid-
ent since, e.g. in the simplest BCS theory, Tc ∼ exp(− 1

Ug(EF)
).

This fact is well known from the numerical solutions obtained
long ago by Blatt and Thompson [16], who numerically solved
the BCS theory for thin films with a discretized kz and vanish-
ing BCs at the boundaries. Indeed, they obtained very large
oscillations in their predicted ∆ vs L, which are not suppor-
ted by the experimental data. For a thorough discussion of
these issues from the numerical point of view, we refer the
interest readers to the recent work of Valentinis et al [18].
These authors found, indeed, that, for more realistic condi-
tions, there are no oscillations in the Tc vs L behavior, in agree-
ment with our theoretical predictions above.

5. Conclusions

We have provided a formulation of the Eliashberg theory
of superconductivity in real solids, which, for the first time,
accounts for quantum confinement effects on the electron
states due to nanometric confinement in thin films. This the-
ory, for the first time, has been shown here to be able to quant-
itatively predict the size-dependent superconducting critical
temperature as a function of film thickness, with no adjustable
parameters. The comparison has been successfully presented
for two key real solids such as Pb and Al thin films, and the
agreement is excellent. Theory also predicts that the magnetic
field penetration depth decreases markedly with increasing the
film thickness, in qualitative agreement with recent experi-
mental data. This result opens up the way for unprecedented
opportunities to quantitatively design and engineer supercon-
ducting thin films for a number of applications ranging from
superconducting qubits, Dayem bridges, electric-field driven
quantum gated devices and single-photon detectors.

Data availability statement
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