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SUMMARY

Spatial transcriptomics (ST) methods unlockmolecular mechanisms underlying tissue development, homeo-
stasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable
methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational
resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In
mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary
head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diver-
sity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states
were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the
3D reconstruction andmultimodal analysis of themetastatic lymph node revealed spatially contiguous struc-
tures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols
and software are available at https://rajewsky-lab.github.io/openst.

INTRODUCTION

Recent years have witnessed a massive increase in the devel-

opment and application of spatial transcriptomics (ST)

methods.1 Unlike standard single-cell methods, ST retains the

spatial context of the captured transcriptome and thus allows

the direct observation of the arrangements of cells and their in-

teractions in tissue space. These data are fundamental for un-

derstanding molecular mechanisms in health and critical for

identifying and targeting the molecular origins of diseases.2–4

For example, tumor microenvironment interactions or the

spatial structure of lymph nodes are critical to understand func-

tion.5,6 Moreover, ST avoids biases introduced by single-cell

dissociation, which depletes certain cell types and activates

stress pathways.7–9

Commercially available ST technologies that provide non-tar-

geted capture of transcriptomes are limited by their relatively

high costs and/or limited resolution—these include Visium

(103 Genomics), CurioSeeker (Curio Bioscience), and Stereo-

seq (STOmics).10 Probe-based methods, including CosMx

Spatial Molecular Imager (Nanostring), Molecular Cartography

(Resolve Biosciences), and Xenium In Situ (103 Genomics),

target a predesigned panel of genes and are therefore not suited

for unbiased discovery or spatial genotyping.11–13 Non-commer-

cial spatial technologies are limited by inefficient capture, low

resolution, or laborious/challenging experimental setups.14–20
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Finally, although cells operate and communicate in 3D, building

up functional tissues and organs, no end-to-end platform

currently exists to generate and computationally analyze ST in

3D. Open-ST was conceived as a cost-effective method

combining high-resolution and efficient whole-transcriptome

capture, with extensive experimental resources and open-

source software for seamless data processing and analysis in

2D and 3D.

Open-ST operates by converting Illumina flow cells into ST

capture areas, an approach previously implemented in Seq-

Scope.16 Our method encompasses several key enhancements.

First, we use patterned flow cell technology to create densely

barcoded areas that capture polyadenylated RNA from a tissue

section at a capture spot resolution of �0.6 mm. To control the

fragmentation of the flow cell into distinct capture areas, we pro-

vide a 3D-printable cutting guide. Our simplified library prepara-

tion only requires standard lab equipment and comes with a total

cost of <V130 per 12 mm2 capture area.

Compared with other sequencing-based technologies, Open-

ST required the least sequencing depth to obtain equivalent tran-

scriptomic information, with a standard sample (3 3 4 mm, 400

million [M] sequencing reads, �50,000 cells) at �1,000 unique

molecular identifiers (UMIs) per cell, making it cost-effective.

Open-ST is scalable, as a single researcher can prepare 10–15

libraries in 3 days starting from prepared capture areas, and ver-

satile, as capture area size is adjustable within the limitations of

the flow cell size. Our hematoxylin and eosin (H&E) imaging pipe-

line, which we optimized for fresh-frozen samples, produces

high-resolution images from the same section, which Open-ST

uses for cell segmentation and integration with transcriptomic

data. Open-ST 2D data are robust enough to be computationally

integrated into 3D (‘‘virtual tissue blocks’’). The single-cell seg-

mentation, subcellular resolution, and 3D tissue reconstruction

and interrogation capabilities are powered by a stack of modular

and open-source computational tools designed for Open-ST

data. This yields interactive objects agnostic to the original

slicing direction, enabling the discovery of 3Dmolecular patterns

and potential biomarkers.

Open-ST recapitulates cell types and marker genes of several

tissues (mouse and human) with subcellular precision. Embry-

onic mouse head and adult mouse hippocampus were used to

benchmark the precision, sensitivity, and spatial resolution of

RNA capture against published gene expression data.

Furthermore, Open-ST can be used to study clinically relevant

tissues encompassing drastically different morphologies and

cell sizes (small immune cells to �1003 larger adipocytes). As

a proof-of-principle, we profiled patient-matched samples from

human head and neck squamous cell carcinoma (HNSCC).

This cancer type has been shown to have a high diversity of tran-

scriptional profiles and cell type composition, whose relative

abundance, spatial organization, and interaction have implica-

tions in survival and therapy response.21–24 Across all 21 sec-

tions from human samples processed with Open-ST, we repro-

ducibly captured a median of �600–2,000 spatially mapped

transcripts per cell, covering more than 25,000 genes. We also

show that our libraries were sequenced far from saturation.

For the humanmetastatic lymph node, we applied Open-ST to

serial sections spanning 350 mm.We constructed a 3D virtual tis-

sue block with over a million cells and 851 M transcripts

embedded in the H&E stainings. In the patient-matched primary

tumor, Open-ST recapitulated the transcriptomic identity of stro-

mal, immune, and tumor cell types from the metastatic tissue,

independently validated with a Xenium run. In particular, sub-

clustering identified 10 tumor cell subtypes present in both the

primary and the metastatic tumor. These subtypes, spatially

patterned in the primary tumor but not in the metastasis,

included proliferative, inflammatory, keratinizing, and invasive

phenotypes and correlated strongly to the spatial localization

of cell-cell communication hotspots, computationally predicted

by ligand-receptor analyses. With the 3D virtual tissue block of

the metastatic lymph node, we identified a spatially organized

cholesterol biosynthesis signature and a population of macro-

phages at the 3D boundary between tumor and lymphoid tissue,

as a potential 3D biomarker.

Due to its ease of use, cost-effectiveness, and wide applica-

bility, we envision Open-ST to become a valuable method for

spatial omics studies. To aid researchers in implementing

Open-ST, we have set up an online resource with detailed exper-

imental and computational protocols/software (https://rajewsky-

lab.github.io/openst, Figure 1A).

RESULTS

The Open-ST workflow
To generate the mRNA capture areas, we leverage Illumina’s

sequencing-by-synthesis technology, using a custom se-

quencing recipe (Data S1). In brief, we register spatial barcode

sequences and their associated (x and y) coordinates on the

flow cell by sequencing oligos, which comprise 32-nt barcodes,

adapters, and a poly(dT) region (Figure 1B; STAR Methods).

Bridge amplification generates densely packed spots, each

containing thousands of clonal oligonucleotides with a unique

barcode sequence. Open-ST employs NovaSeq6000 S4 flow

cells for spot generation, which contain regularly spaced nano-

wells with a center-to-center distance of �0.6 mm. Patterning

reduces the probability of mixed-barcode signals within a single

spot and yields higher spot density than non-patterned flow

cells.25

Following barcode sequencing, we process the oligonucleo-

tides to allow poly(A) transcript capture and open the flow cell

(STAR Methods). Our custom, 3D-printable tool facilitates the

cutting of the opened flow cell into small capture areas while

preventing surface scratches (Figure 1C; STAR Methods). The

dimensions of the capture area can be chosen based on

the experimental design, maximally 6.3 3 89 mm, limited by

the sequenced area of each flow cell lane (Figure 1C). At 3 3

4 mm, �360 capture areas can be made from one flow cell,

each at around V35. These showed high spatial regularity of

capture spots with few artifacts (Figures S1B and S1C) and bar-

code sequences with the expected structure (Figure S1D).

Open-ST allows the analysis of tissue morphology (H&E) and

ST from the same cryosection (Figure 1D). Pepsin and hybridiza-

tion buffer (23 saline-sodium citrate [SSC]) were combined in

one solution to promote the simultaneous tissue permeabiliza-

tion and RNA capture by reducing electrostatic repulsion of the

single-stranded DNA and RNA molecules. A qPCR assay is
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Figure 1. Open-ST workflow for high-resolution spatial transcriptomics of segmented single cells in 2D or 3D

(A) All experimental and computational resources are open-source and available under https://rajewsky-lab.github.io/openst (QR code).

(B) Sequencing designed oligos in patterned Illumina flow cells (here, NovaSeq6000 S4) allows barcode registration in regularly spaced spots (left). Oligonu-

cleotides are processed to allow capture of polyadenylated RNA (right). Flow cell image courtesy of Illumina. p5/p7: Illumina adapters.

(C) Our custom 3D-printable device guides cutting into capture areas of desired size (STAR Methods). The shaded grid indicates the imaged area of the flow cell

used for Open-ST composed of four 7 mm wide lanes (6.3 mm imaged).

(D) Transcriptomic and H&E imaging data are generated from the same fresh-frozen tissue section. Optimized RNA capture conditions and a single-amplification

library preparation result in high library complexity (STAR Methods).

(E) Tissue morphological information (imaging) is integrated with ST data from single sections with our open-source openst package, including automatic cell

segmentation, pairwise alignment of modalities, and quantification of transcripts in segmented cells (STAR Methods).

(F) Serial sections can be used for three-dimensional reconstruction of tissue histology and transcriptome, using STIM (left). Imaging and transcriptomics data can

be visualized and interrogated as a 3D virtual tissue block using any 3D rendering engine (right) (STAR Methods). The smoothed, volumetric rendering of two

genes (gene A: S100A7; gene B: FDCSP) is shown for illustration purposes.

See also Figure S1.
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used to determine optimal permeabilization conditions for

maximum mRNA capture. Implementation of a qPCR-based

quality control during library preparation allows to determine

the optimal number of PCR cycles to avoid over- or under-ampli-

fication of the library. Additionally, the one-step library amplifica-

tion reduces amplification bias or sample losses due to bead pu-

rifications between PCRs (Figures S1E and S1F; STAR

Methods).

The availability of morphological features from H&E staining

(e.g., nuclear size and aspect ratio, cellular density, or distance

between cell centroids) and molecular readouts from the same

tissue section enables cell segmentation (Figure 1E). Raw H&E

images are automatically preprocessed (Figure S1G) and

segmented into single cells using a fine-tuned Cellpose model

(Figure S1H; STAR Methods).26 Following nuclei segmentation,

radial extension of nuclei boundaries adds cytoplasmic context

(Figures S1G and S1H; STAR Methods). Using the barcode co-

ordinates from the first sequencing run, the transcriptomic

reads are processed and mapped in tissue space using

Spacemake.27 Subsequently, circular marks, visible in both

the imaging and spatial transcriptome modalities, are automat-

ically detected for unsupervised pairwise alignment, resulting in

registration at an accuracy of �1 mm (Figure S1I; STAR

Methods). Our segmentation and alignment protocol unbias-

edly adapts to tissues with heterogeneous cell sizes and den-

sities and automatically excludes areas without cells from

downstream analyses (Figure S1H; STAR Methods). Image

preprocessing and fine-tuning of the segmentation model

increased the precision of the segmentation, evidenced by

benchmarking against a manual segmentation (Figure S1J).

This pipeline is robust to the choice of radial extension dis-

tance, alignment accuracy, and other parameters; the defaults

offer a balance between the number of segmented cells, num-

ber of UMIs and genes per cell, and the accumulation of mito-

chondrial transcripts upon radial extension (Figures S1K–S1M).

In summary, Open-ST data can be analyzed at the single-cell

level and integrated with the imaging data.

Given the efficient transcript capture and integrated computa-

tional pipeline, Open-ST is suitable for 3D spatial reconstruction

of any tissue. Here, we reconstruct a metastatic lymph node,

integrating H&E staining and gene expression (Figure 1F). Serial

sections were aligned using the Spatial Transcriptomics Imaging

Framework (STIM), resulting in a 3D representation of the tis-

sue.28 Both imaging and transcriptomics modalities can be inter-

rogated at once as a 3D virtual tissue block using existing soft-

ware for scientific visualization.29

Open-ST robustly captures transcripts with high
efficiency
We successfully applied our method in diverse tissues: embry-

onicmouse head, adult mouse hippocampus, human primary tu-

mor (HNSCC), and the patient-matched healthy and metastatic

lymph nodes.

All samples exhibited a high percentage of transcripts map-

ping uniquely to the genome (65%–78%, Table S1), with only a

small percentage of reads consisting of ribosomal RNA (2.5%–

15.3%, Table S1). On average,�55% of reads mapping to genic

regions were assigned to a spatial barcode from the first

sequencing run (Table S1). Open-ST retains comparable or

more spatially mapping, deduplicated reads when benchmarked

against alternative solutions, consistently across samples (Fig-

ure S2A). The percentage of barcode reads from first sequencing

detected in the transcriptome library was related to tissue

coverage and cell density (Figure S2B). Outliers may represent

segmentation errors, capture of ambient RNA in regions without

cells, or areas with cells but no spatial barcodes due to capture

area irregularities. Figure S2C illustrates the breakdown of the to-

tal read numbers for a representative sample after alignment.

Reads were mostly assigned as coding sequences (CDSs) or

30 UTRs and, to a lesser extent, as introns, transcription end

and start sites (TES/TSS) within 10 kb of genes, and 50 UTRs.
In a sagittal E13mouseheadsection (�12mm2),wesegmented

58,881 cells from the H&E image. Sequenced at a depth of 478M

reads, 56,627 cells (96%) contained at least one transcript, and

49,048 (83%)werehigh-quality (R250UMIsand<10%mitochon-

drial counts), capturing a total of 21,609 genes (Figure 2A). Open-

ST’s efficient RNA capture resulted in a median of 621 genes and

880 UMIs (Figure 2B; Table S2), with 42%of the high-quality cells

(32% of all segmented cells) containing over 1,000 transcripts.

From all captured transcripts, 82%were found inside segmented

cells. Across the entire dataset, 10,000 genes account for 95%of

the captured transcriptomic information. Median contributions of

background transcripts were 15.4% for ribosomal proteins and

3.5% for mitochondria-encoded transcripts (Figure S2D). At the

same time, Open-ST resulted in rich quantification of all genes,

ranging from highly abundant transcripts (e.g., mt-Cytb) to lowly

expressed but highly specific gene markers (Figure S2E). Thus,

a notable portion of detected genes is well represented across

all cells.

We assessed the library complexity of Open-ST data in

comparison with existing sequencing-based ST methods by

calculating UMI counts per pseudo-cell (100 mm2) relative to

sequencing depth (Figure 2C; STAR Methods). We selected

prototype datasets generated by the respective developers

of the methods and processed all raw data with the same

computational pipeline (STAR Methods). We further selected

similar tissue types for comparison wherever feasible; howev-

er, we acknowledge that the analysis may still be influenced

by the specific choice of tissue analyzed. Open-ST consis-

tently outperformed alternative solutions in capture efficiency

for the same sequencing depth with the exception of 103 Vis-

ium, which demonstrated comparable performance. Capture

efficiency was similar across Open-ST processed samples,

despite their diverse cellular composition. Biological repro-

ducibility of Open-ST is supported by the comparable

capture efficiency (UMIs/100 mm2) of two independent E13

mouse head libraries (Figure S2G). To further evaluate library

complexity across technologies, we benchmarked the reads-

to-UMIs ratio as a function of genic reads (Figure S2F, STAR

Methods). Open-ST consistently showed the lowest ratio and

scaled best with increasing read depth, together with Slide-

seqV2. A low reads-to-UMIs ratio results from high initial tran-

script capture and efficient library amplification and is vital for

extracting new information through deeper sequencing. Since

sequencing is the largest cost per sample, Open-ST emerges

as an affordable and highly efficient solution.
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Open-ST generates 3D virtual tissue blocks
To demonstrate robustness and reproducibility of Open-ST

across multiple sections in a clinically relevant complex tissue,

we processed a human metastatic lymph node. In this proof-

of-principle, large-scale experiment, we obtained 10 mm sec-

tions spanning 350 mm of tissue depth. Our experimental design

consisted of profiling sections with Open-ST (19), H&E staining

only (11), immunofluorescence (1), and reserving for validation

(5) (Figure 2D). In total, we obtained gene expression profiles

of over 1 M cells across 19 sections, with high median capture

of genes (313–624) and UMIs (438–1,008) per segmented cell

(Figure S2I; Table S2). The samples demonstrated a similar per-

centage of reads aligning to rRNA (<15%) and mapping uniquely

to the genome (>65%) (Figure S2J; Table S1).

By leveraging STIM and the Visualization Toolkit, we aligned

the serial sections processed with Open-ST to reconstruct and

visualize a 3D virtual tissue block, a computational object

combining transcriptomics and histological modalities (Fig-

ure S2K).28,30 A smooth isosurface rendering of the spatially

mapped UMI counts indicates reproducible capture efficiency

with visible transcript enrichment in the tumor compartment (Fig-

ure 2E). Section 4was deeply sequenced (1.2B reads), exhibiting

low reads/UMIs (median = 3.04) and resulting in a median of 527

(878) genes (UMIs) per segmented cell (Figure 2F). The reads-to-

UMIs ratio per 100 mm2 was consistently low and comparable

across the 19 sections, with the exception of a single outlier,

demonstrating the technical reproducibility and cost-effective-

ness of Open-ST (Figures 2G and S2H).

Taken together, Open-ST robustly captures transcripts across

serial sections, making it well-suited for high-throughput studies

and 3D-transcriptome reconstruction of tissues.

Open-ST locally captures marker genes with high
accuracy
We corroborated localized transcript capture of Open-ST by

exploring the spatial organization of transcriptomic clusters

Figure 2. Open-ST robustly captures transcripts with high efficiency

(A) Spatial distribution of UMI counts per segmented cell in an Open-ST processed E13 mouse head sagittal section, overlaid on H&E staining of the same tissue.

(B) Distribution of genes and UMIs per segmented cell, and sample as in (A).

(C) Open-ST produces the highest transcript capture per pseudo-cell (UMIs/100 mm2) for the same number of sequencing reads compared with alternative

sequencing-based ST methods (STAR Methods).

(D) Experimental design for processing a human metastatic lymph node. 10 mm sections were profiled with Open-ST, stained with H&E or immunofluorescence

(IF) only, or reserved for validations.

(E) Aligned transcriptomic and imaging data, and rendering of transcript capture colored by UMI counts is overlaid on a 3D virtual tissue block (STAR Methods).

(F) Distributions of UMIs and gene counts per segmented cell for section 4. Median values are indicated.

(G) Total reads, median UMIs, and median reads/UMIs per segmented cell across all 19 sections.

See also Figure S2.
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and marker genes in the E13 mouse head. Clusters were anno-

tated using a developmental mouse atlas as a reference

(Table S3; see STAR Methods for what follows in this section).31

Coarse clustering of segmented Open-ST data reflects themajor

anatomical regions in the embryonic mouse head (Figures 3A

and S3A). Spatial expression of selected marker genes per

cluster co-localizes with the respective clusters (Figures 3B

and S3B).

We identified three neuronal clusters, each characterized by

Tbr1, Lhx9, or Nefl expression. A radial glia cluster, with cells

mainly located in the dorsal forebrain, was identified by

Dmrta2. The eye’s retina is distinguished by localized expres-

sion of Atoh7, and the choroid plexus is characterized by Ttr

expression. Further clusters include fibroblasts (expressing

collagens), chondrocytes (Col11a1, Sox9, and Hapln1), myo-

cytes (Actc1 and Mylpf), mesenchymal (Tsc22d1), and endo-

thelial cells (Cd34 and Kdr). Coarse clustering revealed a

group of cells with no identifiable markers. On these, we per-

formed subclustering and identified groups of cells that we

termed neural crest (Mdk), craniofacial development (Barx1,

Sp7), musculoskeletal development (Kctd12, Igf12), immune

(Selenop, Tyrobp, C1qc, Lyz2, C1qb), and early vascular

(Akap12, Gja1, Cldn11). ‘‘Blood’’ was identified based on

high expression of hemoglobin genes (e.g., Hbb-y). A cluster

highly expressing the cell cycle gene Ccnd2, with transcrip-

tomic distance closest to the neuron clusters, was termed

‘‘cycling.’’ This cluster was in spatial proximity to the blood

cluster, which could explain the contaminating expression of

hemoglobin genes (Figure S3B).

Open-ST’s capability to capture rich transcriptomic informa-

tion allowed us to achieve more refined clustering of the

segmented cells of the fore-, mid-, and hindbrain (Figures 3C,

S4B, S4D, S4E, S4G, and S4H). Cell type diversity and spatial

distribution of cells in the forebrain resembled that obtained by

integrating and transferring cell type labels from a single-cell

reference atlas (STAR Methods) (Figures 3C and S4A). This

congruence extends to marker genes identified from each un-

biased cluster in our Open-ST data, consistent with the

respective populations in the reference (Figure S4A). Clus-

tering of segmented Open-ST data provides labels akin

to those obtained through clustering of single-cell RNA

sequencing (scRNA-seq) data. Furthermore, separate clus-

tering of an independent E13 mouse head replicate resulted

in similar transcriptomic identities (Figure S4J), further

confirmed by joint embedding and integration of both E13 da-

tasets (Figure S4K). Most cell type clusters were present in

both replicates and showed similar mixing before and after

integration. Other clusters, such as ‘‘retinal progenitors,’’

were not present in the biological replicate as this structure

fell outside the capture area.

To investigate capture localization, transcripts were plotted on

the H&E as a virtual in situ, with intensity relating to gene expres-

sion, resulting in a comparable stain with chromogenic in situ hy-

bridization (ISH) staining from the Allen Developing Mouse Brain

Atlas.32,33 The expression of select marker genes showed high

accordance with ISH (Figures 3D–3F, S4C, S4F, and S4I). For

example, regionalized expression of the transcription factors

Neurod6 and Pbx3 could be detected in the forebrain (Fig-

ure 3D).34 As expected, the pan-neuronal marker Tubb3was ab-

sent in the choroid plexus while being detected in the hindbrain

(Figure 3E).

Quantifying the transcript density of Ttr, in the choroid plexus,

and Atoh7, in the retina, we observed a corresponding sharp rise

and fall of signal intensity (Figures 3F and S3G). The majority of

these transcripts were captured in regions covered by tissue.

Transcripts observed in regions without tissue may be due to in-

accuracies in manually defining the tissue boundary, or local

lateral diffusion. For Ttr, the transition between minimum to

maximum occurred within the diameter of a cell. Atoh7 exhibited

a less sharp boundary, which may be an effect of a wider region

being sampled due to overall sparser expression and/or

detection.

We further performed a crosstalk analysis to assess sources

of spatial biases that may impact our interpretation (STAR

Methods; Figure S3D). Focusing on blood and ‘‘chondrocyte’’

clusters, this analysis highlighted increased gene marker mixing

at cell pairs within 20 mm proximity, underscoring the impact of

local biases in clustering (Figures S3E and S3F).

Local capture of Open-ST reflects nuclear-cytoplasmic
cell architecture
To assess the theoretical subcellular resolution of Open-ST

based on the spots’ density, we processed a coronal section

of an adult mouse hippocampus hemisphere (Figure 3G).

Compared with other Open-ST datasets, this tissue exhibited

lower reads-to-UMIs ratio (Figure S3H; Table S2), likely due to

overall lower cell density resulting in a reduced RNA input across

the capture area. The tissue’s variety of cell densities, however,

rendered it suitable for assessing nuclear/cytoplasmic enrich-

ment. Visualization of nuclear-retained Malat1 and mitochon-

dria-encoded transcript counts within the nuclear and cyto-

plasmic regions of the cell segmentation mask showed

accurate transcript localization (Figure 3G). Average distribution

of these transcripts in nuclear and cytoplasmic compartments

was calculated for different cell densities across 1,791 regions

(5,000 mm2 each) and projected onto a standardized cell

(Figures 3H and S3I; STAR Methods).

Malat1 was significantly enriched in the nucleus (log2(odds ra-

tio [OR] cytoplasmic/nuclear) = �1.24, pFisher < 0.01), whereas

mitochondrial transcripts were enriched in the cytoplasm

(log2(OR cytoplasmic/nuclear) = 0.20, pFisher < 0.01). This was

true across regions with variable cellular densities, while no sig-

nificant enrichment was detected when offsetting the segmenta-

tionmask by 5 mm (Figures S3J and S3K). Nuclear enrichment re-

mained consistent when assessing the distribution of UMIs

relative to their distance to the segmented nuclear edge but

was depleted after offsetting the pairwise-aligned coordinates.

In summary, localized RNA capture on the high-density capture

array reflected nuclear-cytoplasmic cell architecture.

Open-ST captures spatial cell-type complexity in human
primary tissues
To showcase the ability of Open-ST to dissect transcriptomic di-

versity in structurally complex tissues, we spatially sequenced a

primary HNSCC tumor and a healthy and metastatic lymph node

from a single patient.
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Figure 3. Open-ST captures transcripts at subcellular resolution

(A) Spatial distribution of cell types of an E13 mouse head sagittal section. D, dorsal; V, ventral; R, rostral; and C, caudal.

(B) Annotation of forebrain (f), midbrain (m), hindbrain (h), and the developing eye (e) on the H&E, and localization of selectedmarker genes colored by normalized

expression.

(C) Spatial distribution of E13mouse forebrain cells colored by annotated Leiden cluster (top) or by label transfer from an E13.5 single-cell reference atlas (bottom)

(STAR Methods).31

(D) Localized gene capture of transcription factors Neurod6 and Pbx3 in the E13 mouse forebrain profiled with Open-ST (top) compared with in situ hybridization

(ISH) images from an E13.5 mouse from the Allen Atlas (bottom). High expression is colored in green (black) for Open-ST (Allen Atlas).

(E) Localized gene capture in the E13 mouse hindbrain (Tubb3) and choroid plexus (Ttr).

(F) Transcript density for Ttr in the choroid plexus and Atoh7 in the developing eye; top: transcript density in space is visualized as a 2D Kernel density estimate of

the spot coordinates weighted by transcript counts; bottom: ISH images (E13.5, sagittal) from the Allen Atlas.

(G) Subcellular transcript capture precision in an adult mouse coronal hippocampus section. Left: spatial distribution of UMIs per segmented cell reflects tissue

morphology; center: close up of H&E segmentation with thin (thick) white lines indicating nuclear (cell) boundaries; right: nuclear-enriched Malat1 and mito-

chondria-encoded transcript density plotted onto the segmentation mask.

(H) Malat1 and mitochondria-encoded transcripts are enriched in the nucleus and cytoplasm, respectively. Observed/uniform UMI per radius (nradii = 40),

visualized on a standardized cell, quantified over 22,376 cells sampled from regions where 15%–30% area is covered by nuclei. Color mapping of expression is

clipped between the 5th and 95th percentile of values (STAR Methods).

See also Figures S3 and S4.
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Annotation of cell types from unbiased clusters was performed

based on literature-informed marker genes,24 and refined by

jointly clustering the lymph node tissues of the metastatic and

healthy samples (STAR Methods). In all three datasets, we iden-

tified signatures corresponding to the transcriptional diversity of

tumor, stroma, and immune populations (Figures 4A, 4C, 4D, and

S5A–S5C; Tables S4, S5, and S6), whose spatial neighborhood

enrichments matched the annotations independently outlined

in H&E images by a pathologist (Figures S5A–S5D, S5F, and

S5H). Median number of genes and UMIs per cell in the tumor-

enriched primary sample was higher than in the healthy lymph

node (Figure 4B). Annotation of segmented cells matched the

abundance of marker genes in space (white arrowheads,

Figures 4E–4G).

The expression profile of tumor cells reflected its epithelial

origin, with high expression of keratins (KRT6A,KRT5), cell adhe-

sion (ITGB6), and desmosomal (DSG3) markers (Figures S5A

and S5C; Tables S4 and S6). Additionally, ‘‘keratin pearls’’

(KPs), which characterize squamous cell carcinomas, were

found in both the primary and metastatic tumor tissues. Neigh-

borhood analysis showed the vicinity of these cells, in line with

their known formation of compact and distinct keratinized struc-

tures in the tumor bed (Figures 4A, 4D, S5A, and S5C). These ex-

pressed the same epithelial markers found in tumor cells, but

also high levels of cornification-related molecules (S100A10)

and desmosome markers (DSP), compatible with the activation

of keratinocyte differentiation pathways (Figures S5A and S5C;

Tables S4 and S6). In the primary tumor, a cluster transcription-

ally similar to the tumor and KP was defined as ‘‘proliferating,’’

with marker genes (RRM2, HMGB2, CDCA5) implicated in cell

cycle regulation and/or DNA repair (Figures S5A and S5E).

Furthermore, tumor cells and cancer-associated macrophages

(CAMs) from both primary and metastatic tissues expressed

FABP5, suggesting a dysregulation in the lipid metabolism of

the cancer (Figures S5A and S5C).

Cancer-associated fibroblasts (CAFs) (COL1A1+) were

identified in the microenvironment of both tumor tissues, with

a subset in the metastatic tumor expressing high levels of

ACTA2, suggesting a myofibroblast phenotype.35 Endothelial

cells (PECAM1, ACTA2) were identified in the primary tumor,

while endothelial cells of the lymph nodes expressed ACKR1, a

marker for post-capillary venules, CCL21, a chemokine ex-

pressed in lymphatic endothelial cells, and PECAM1 in the met-

astatic lymph node (Figures S5A–S5C).36

Macrophages (LYZ+) were detected in all tissues. Pro-inflam-

matory M1macrophages were identified in the metastatic lymph

node, with high TIMP1 expression in a subset of the cells. CAMs

exhibited strong SPP1 expression, coding for a secreted phos-

phoprotein implicated in macrophage polarity previously associ-

ated with negative human papillomavirus status and poor

prognosis in HNSCC.37 This cluster frequently colocalized with

tumor cells, highlighting their interactive potential in the tissue

microenvironment. A cluster defined as neutrophil-recruiting,

due to high expression ofCXCL8, was detected in the primary tu-

mor, with CXCL8 expression also present in the epithelial and

CAM clusters (Figure S5A).38 Within the metastatic lymph

node, CXCL8 was expressed in the CAM population, colocaliz-

ing with the tumor and KP cluster (Table S6; Figures 4D, S5C,

S5H, and S5I). CCL21, with known expression in lymphatic

endothelial cells directing the migration of T cells and dendritic

cells, was broadly detected in the lymphatic tissues (Figures S5B

and S5C). Detection of CCL21 in the T cell, macrophage, adipo-

cyte, and plasma cell clusters may represent crosstalk resulting

from close physical proximity of these cell types in every dimen-

sion.We acknowledge that the annotationmay relate to domains

enriched in specific cell types in the case of ‘‘double-positive’’ ar-

tifacts rather than pure cell type labels.

Within both lymph nodes, we identified T cells (CD3E+) and a

cluster additionally expressing IRF8 as interferon-responsive

cytotoxic T cells. We also detected multiple germinal centers.

These exhibited localized expression of FDSCP, a protein

secreted by follicular dendritic cells, and IGHM, suggesting an

early germinal center status (Figures 4C, 4D, S5B, S5C, S5G,

and S5H).39,40 Furthermore, we classified two clusters with

strong IGHG3 or IGHA1 expression as immunoglobulin IgG or

IgA plasma cells, respectively.

White adipose tissue visibly surrounded the healthy lymph

node in the annotated H&E images (Figure S5F). In this sample,

our segmentation strategy was adapted to retain the transcrip-

tomic profiles of large unilocular adipocytes and smaller cells

of the stromal vascular fraction (STAR Methods). Unbiased

cell type markers characterization identified immune (e.g.,

IGKC-positive plasma cells) and stromal cells (e.g., collagen-ex-

pressing fibroblasts) within the adipocyte population (FABP4,

ADIPOQ, PLIN1, SORBS1, CIDEC, and SIK2) (Figures 4F, S5B,

and S5G).41,42 High expression of stromal markers within adipo-

cytes is likely an artifact of library-size normalization, which can

be mitigated using cell area/volume normalization (Table S5).

Figure 4. Open-ST accurately dissects cell-type complexity in primary human tissues

(A) Spatial distribution of cell types (top) and cluster proportions (bottom) in a primary head and neck squamous cell carcinoma (HNSCC) section.

(B) Distributions of UMI and gene counts per segmented cell in the primary HNSCC and healthy lymph node sections.

(C) As in (A), but for the healthy lymph node.

(D) As in (A), but for the metastatic lymph node. Spatial plots (A, C, and D) visualize cell centers.

(E–G) Expression of selected marker genes in space for the primary HNSCC (E), the healthy lymph node (F), and the metastatic lymph node (G). Top left: H&E

staining; top right: expression of mitochondria-encoded transcripts; second row: segmentation mask colored by cluster (left) and gene expression of a marker

from every cluster (right); third and fourth rows: gene expression of selected markers for different clusters, together with the corresponding segmentation masks.

Pseudoimages show the smoothened expression of the indicated marker genes at spot resolution for the respective cell types (STARMethods). In (F) expression

of all collagen genes is shown in fibroblasts and for 11 specific markers in ‘‘adipocyte+,’’ i.e., ADIPOQ, LEP, and CIDEC, among others. In the colored seg-

mentation masks, white cells represent those not passing filters (STAR Methods) or not annotated. CAF, cancer-associated fibroblast; CAM, cancer-associated

macrophage; Epi, epithelial; IFNr, interferon production regulator; M1, M1 macrophage; Macro, macrophage; Fibro, fibroblast; Endo, endothelial; GC, germinal

center.

See also Figure S5.
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Taken together, Open-ST accurately dissected the complex

primary human tissue composition.

Open-ST reveals spatially constrained heterogeneity in
primary and metastatic HNSCC
Building on our exploration of coarse cell types, we investigated

the transcriptomic heterogeneity of tumor cells in the primary

HNSCC and metastatic lymph node. By integrating and clus-

tering 42,132 tumor cells from both samples, we identified 10

distinct transcriptomic states (T1–10), providing a detailed map

of their heterogeneity, spatial distribution, and stromal interac-

tions (Figures 5 and S6) (STAR Methods).

The tumor transcriptomic states showed distinct spatial orga-

nization across the primary and metastatic samples. In partic-

ular, tumor states in the primary tumor were organized into

continuous spatial domains prevalent for a specific state (Fig-

ure 5A). By contrast, in the metastatic tissue, tumor states

appear more intermixed without clearly defined boundaries (Fig-

ure 5B), validated via neighborhood enrichment analysis (Fig-

ure 5C; STAR Methods).

Figure 5. Transcriptomic tumor heterogeneity is organized into spatial domains with distinct communication signatures

(A) Spatial and transcriptomic heterogeneity of tumor cells across the primary tumor tissue.

(B) As in (A), but in the metastatic tissue.

(C) Spatial neighborhood enrichment of tumor and stroma populations. Significant spatial interactions (permutation test p value < 0.05) between cells belonging to

a pair of clusters are depicted by gray triangles and connected by solid lines (STAR Methods).

(D) Normalized enrichment score (NES) in the tumor subclusters for the primary tumor tissue highlights differentially active gene programs. Dots are shown for

cases where NES > 1 and false discovery rate (FDR)-adjusted p value < 0.05 (STAR Methods).

(E) Cell-cell communication is organized as spatial motifs discovered with non-negative matrix factorization, and their localization corresponds with the observed

tumor cell heterogeneity in the primary and metastatic samples. Top: spatial visualization of factor contributions after z-normalization; bottom: min-max

normalized communication score for top representative ligand-receptor pairs for each factor (STAR Methods).

See also Figure S6.
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We further assessed the transcriptomic heterogeneity of these

spatially organized tumor states via differential gene expression

and gene set enrichment analysis (STARMethods). We detected

state-enriched gene programs, with non-random spatial organi-

zation across the two tissues (Figures 5D and S6B–S6E; STAR

Methods). For instance, in the metastatic lymph node, we de-

tected increased cell cycle activity at the tumor-lymphoid

boundary (T2, T3, T6, and T8) and around a region linked to hyp-

oxic response (T4 and T7). Notably, the cholesterol biosynthesis

program (HMGCR, HMGCS1, DHCR7, and DHCR24) was

spatially restricted to the tumor side of the tumor-lymphoid

boundary (Figures S6E and S6F; STAR Methods). On the other

hand, the lymphoid (peritumoral) side of the boundary was en-

riched in cells expressing markers of immune activation

(GZMA, GZMB, LYZ, CXCL9, and CXCL10) (Figure S6G).

To characterize the interplay between communication and

transcriptomic identity, we performed unsupervised discovery

of spatial hotspots for receptor-ligand interaction, based on

their expression levels (STAR Methods). This resulted in four

non-negative factors across primary tumor and metastasis

(Figures 5E and 5F), each with unique interaction signatures:

inflammation (F1), matrix stiffness (F2), adhesion (F3), and extra-

cellular matrix (ECM) remodeling (F4). These factors displayed

higher degree of spatial organization in the primary tumor

comparedwith themetastatic, following amore intermixed orga-

nization of tumor states.

Different tumor states were restricted to specific cell-cell inter-

action hotspots. In the primary tissue, T1was found in aCAF-rich

stroma and showed cell motility phenotype (LAMC2hi/PTHLHhi/

ITGB1hi) (Figure S6A), as well as spatially restricted communica-

tion events related tomatrix stiffness andmigration, e.g., integrin

and syndecan-mediated communication (Figure 5E), similar to a

previously reported partial epithelial-mesenchymal transition

(pEMT) subcluster of HNSCC LAMC2hi/TGFBIhi/SNAI2hi tumor

cells.24 This set of tumor cells was the only one with a spatial

enrichment with CAFs in the primary tumor, which subsequently

surrounded endothelial cells. T2 showed a predominant prolifer-

ation phenotype. It was enriched within a communication hot-

spot for cell adhesion mediated via desmoglein-desmocollin in-

teractions, in the primary tumor only showing spatial interactions

with tumor cells (T6, T8). T3 also had a marked proliferation

signature, additionally showing metabolic phenotypes, particu-

larly cholesterol biosynthesis, as also enriched in T10. In the pri-

mary tumor, T3 localized to the communication hotspot for ma-

trix stiffness, surrounded by amicroenvironment only composed

of other tumor cells, remarkably T6 with similar proliferation

phenotype, which neighbored macrophages. T4 and T9 showed

phenotypes involving tumor necrosis factor alpha (TNF-a)

signaling, hypoxia, and other stress-induced pathways and

localized near receptor-ligand interaction hotspots involving

metalloproteases (MMP9-CD44 and MMP12-PLAUR) and

osteopontin (SPP1-CD44), processes that collectively can

contribute to inflammation (Figures 5D, 5E, and S6C).

While T9 localized with CAM in both primary and metastatic

lymph nodes, T4 was in close proximity to the CXCL8+ neutro-

phil-attracting populations in the primary tumor and to the

SPP1+ CXCL8+ CAM population in the metastatic lymph node

(Figure 5C). SPP1+ CAMs were previously identified to be en-

riched in areas of hypoxia in HNSCC, with in vitro studies indi-

cating that hypoxia promotes SPP1 expression.43

T5 displayed significant keratinization signatures and activity

of the desmosome pathway, a known signaling mode for cell

adhesion. T7 and T8 were sparse in the primary tissue and

more prevalent in the metastasis. T10 was abundant and

spatially organized in the primary tissue, in close proximity to

cornified cells (T5) and CAMs, showing a cholesterol biosyn-

thesis phenotype similar to T3. Lastly, we globally detected

differentially expressed genes between the two samples across

all tumor cells: a strikingly strong AMTN expression was identi-

fied exclusively in the metastatic lymph node, while FGFBP1

and PRR9 were expressed in the primary tissue with minimal

detection in the metastasis (Table S7) (STAR Methods).

In summary, Open-ST reveals diverse tumor cell states coex-

isting in close proximity within the primary tumor in spatially

restricted domains whose organization closely follows that of

cell-cell communication hotspots.

Benchmarking Open-ST against imaging-based spatial
transcriptomics
We benchmarked Open-ST against an imaging-based ST

method (Xenium In Situ, 103 Genomics) on the human primary

HNSCC and patient-matched metastatic lymph node.

We used the predesigned human multi-tissue and cancer

probe panel (377 genes), mimicking a scenario with little prior

knowledge of the tissue’s molecular composition. For compari-

son, we subset the primary HNSCC and metastatic lymph

node Open-ST datasets from >20,000 genes to the 316 and

340 genes shared with the Xenium panel, respectively, reducing

from �100 to �1 M transcripts per sample. By contrast, Xenium

provided 36 and 50 M transcripts for the same gene set, a result

of the targeted and sensitive nature of imaging-based assays.

After subsetting the Open-ST data, we performed clustering

and annotation based on marker genes separately for both tech-

nologies (STAR Methods). Both resolved cell types of similar di-

versity and spatial distribution across both samples, albeit being

more than 100 mm apart in the sectioning axis (Figures 6A and

6E). Clusters independently annotated with the same identity

across modalities showed the gene expression largely agreed

(Figures 6D and 6H). However, in the (subset) Open-ST primary

HNSCC dataset, CAFs could not be clustered separately from

B cells, nor macrophages from T cells, likely a consequence of

the low capture of B and T cell markers shared with the Xenium

panel.

With a similar segmentation approach (nuclear segmentation +

3.45 mm radial extension) both methods yielded �5,200–5,500

cells per mm2. The proportion of transcripts detected inside cells

was �20% less in Open-ST compared with Xenium (Figures 6B

and 6F), regardless of subsetting. Despite these differences in

signal-to-noise, the total expression of all genes across the

whole sample was highly correlated (Figures 6C and 6G).

Furthermore, Open-ST with and without subsetting yielded

similar classification and spatial distribution of coarse cell types.

We validated the spatial localization of individual genes or

gene sets across tissues and technologies (Figure 6I). In themet-

astatic lymph node, we confirmed the layering of CXCL9 expres-

sion in proximity of the tumor-lymphoid boundary, proliferation
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markers (MKI67, TOP2A, CENPF, UBE2C, and CDK1) at the

edge of the tumor mass, and we detectedMALL expression sur-

rounding areas devoid of cells within the tissue, i.e., necrotic

areas, similar to the hypoxia spatial signature (Figure S6E).

Lastly, we compared the extent to which Xenium andOpen-ST

can identify finer transcriptomic identities of tumor cells in this

patient’s samples. Subclustering of the tumor cells from both Xe-

nium datasets identified three major classes, in addition to the

already separate KPs: (1) inflammatory response (IL1R2, MET,

and KCNMA1), (2) epithelial growth (EGFR, ERBB2.), and (3)

proliferating (CENPF, TOP2A, MKI67, UBE2C, and CDK1)

(Figures 6I and 6J). Some of the ten Open-ST tumor subclusters,

previously identified on the full data (Figure 5), were separable

with respect to these marker genes (Figures 6I and 6J). Having

the additional information of >20,000 genes, Open-ST identified

more marker genes, enabling downstream tasks such as gene

set enrichment analysis (Figure 5D), which covered more diverse

functionality, i.e., genes that can be used as proxies for receptor-

ligand activity (Figure 6K), and a higher number of genes showing

significant spatial variation, assessed by Moran’s I values (Fig-

ure 6L), with their ratio (in respect to total genes) being lower in

Open-ST compared with Xenium, as the latter uses a probe

panel optimized for capturing genes showing spatial variability

in human tissues (Figure 6L).

In summary, Open-ST yields spatial gene expression and tran-

scriptomic clusters comparable to an imaging-based, targeted

approach.

Exploring 3D virtual tissue blocks: Cell types, gene
programs, and receptor-ligand interactions in 3D
Open-ST enables the interrogation of gene expression in 3D

via volumetric renderings and smoothed representations for

enhanced clarity (STAR Methods). As an example, we visualize

the lymphoid, metastatic tumor, and stroma tissue compartments

via the expression of selected marker genes in 3D (Figure 7A).

These representations of gene expression coincide with the

surface renderings generated from transcriptomic clusters, ob-

tained after transferring the annotations from section 4 to the re-

maining 18 (STAR Methods). We classified over 1 M cells into 14

major types, spanning tumor, immune, and stromal compart-

ments. The spatial distributions and proportions of cell types in

3D were consistent across consecutive sections (Figures S7A

and S7B). Our transcriptome annotation was also in agreement

with the manual pathologist annotation of the most distant sec-

tion 36 (Figure S7C), which showed high correlation to the gene

expression from section 4, displaying reproducible RNA capture

throughout the tissue block (Figure S7D). All sections displayed a

high degree of mixing in the latent space when performing

dimensionality reduction on all sections or after projection of

principal components (PCs) from section 4 (Figure S7E), sup-

porting our clustering approach (STAR Methods).

Our reconstructed tissue can be utilized for comprehensive

exploratory 3D analysis, querying both the transcriptomic and

imaging modalities. Rendering techniques such as volume crop-

ping and plane clipping can be leveraged to explore gene

expression in any direction regardless of the sectioning plane

(Figure 7B). To illustrate, we visualized the spatial gene expres-

sion of ACKR1, an endothelial marker restricted to post-capillary

venules.45–47 Querying the tissue with a plane clip, which mimics

cutting the tissue using a different sectioning plane, allowed us to

follow a post-capillary venule (ACKR1) across the z-dimension

and reveals how its expression is confined to the immune regions

of the metastatic lymph node, forming a network-like structure

(Figure 7B, bottom right).

Furthermore,we examinedaKP,which appeared asan isolated

structure within the lymph node in the initial sections (Figure 4D).

Our 3D reconstruction revealed its connection to the metastatic

mass in the later sections, demonstrating continuity across imag-

ing and transcriptomic modalities (Figure 7C). Similarly, we could

follow the continuity of the invading tumor and its stroma within

the lymph node context via the markers SPP1 (CAMs), ACTA2

(CAFs surrounding the tumor, proximal to lymph node popula-

tions), andLYZ (macrophages), asa transcriptomic feature located

at the lymph sinus, as well on invaded tissue.48 This structure is in

general found in close proximity to afferent lymphatic vessels, and

sinusmacrophages are the first tobeexposed to themetastasis.49

The power of 3D reconstruction extends well beyond the study

of cell types and tissue structures; for instance, inspecting gene

programactivities in 3D.Wevalidated the three-dimensional orga-

nizationof cellswith high cholesterol biosynthesis gene set activity

Figure 6. Comparison of Open-ST to imaging-based spatial transcriptomics

(A) Spatial visualization of annotated Leiden clusters of human primary HNSCC, profiled with the Xenium in situ platform (103 Genomics) (left) and Open-ST

(right), subset from whole transcriptome to the genes shared with Xenium (316/377).

(B) Proportion of total detected transcripts that fall within segmented cells (subset for Open-ST).

(C) Correlation of pseudo-bulk gene expression for overlapping genes between Xenium and Open-ST, for the sections shown in (A); each point indicates the sum

of transcripts assigned to cells, for both modalities.

(D) Top: Pearson correlation coefficients, computed for the mean normalized gene expression for all pairs of clusters across Xenium and Open-ST (subset).

Values are clipped from 0.5 to 0.8. Bottom: average expression of marker genes for populations represented in the primary HNSCC section across Xenium and

Open-ST data, normalized per gene.

(E–H) As (A)–(D), but for the metastatic lymph node analyzed with Xenium and Open-ST (previously shown, section 4) subset to the same shared genes (340/377).

(I) Spatial distribution of gene expression (for MALL and CXCL9), proliferation (MKI67, TOP2A, CENPF, UBE2C, and CDK1), keratin pearl (APOBEC3A, SER-

PINB2,GPRC5A, IL1RL1, EHF, ALDH1A3, KLK11), epithelial (AQP3, EGFR,GPC1,MYC,MALL, LY6D, FSTL3, EPCAM, ERBB2), and inflammation (IL1R2,MET,

KCNMA1, RAPGEF3) gene signatures in the primary HNSCC section (right) and the metastatic lymph node (left), for Xenium (top) and Open-ST (bottom).

(J) Gene expression per tumor subcluster in the Xenium primary tissue (top) and mean Xeniummodule score (aggregate normalized expression of module genes)

per tumor subcluster from the Open-ST data with >20,000 genes (bottom).

(K) Expression of ligand-receptor genes from the liana consensus database, for the Xenium (top) and Open-ST data (bottom).

(L) Spatially variable genes in Xenium and Open-ST. CC, cell cycle; KP, keratin pearl; Endo/En, endothelial; CAF/CF, cancer-associated fibroblast; Macro/M,

macrophages; GC, germinal center; ROI, region of interest; Fi, fibroblasts; Im, immune.

See also Figure S6.
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Figure 7. 3D virtual tissue block: the metastatic lymph node

(A) 3D visualizations highlight the spatial compartmentalization and continuity of gene expression. From left to right: gene expression levels of the markers

rendered at each cell, smoothed expression, and 3D rendering of clusters as smooth surfaces. Top: immune compartment represented by the germinal center

(CXCL13), IgG plasma cells (IGHG1), and macrophages (LYZ); bottom: tumor and stroma compartments represented by epithelial cells (KRT6A), CAMs (SPP1),

and CAFs (ACTA2).

(B) Rendering techniques allow exploration of the continuity of gene expression (e.g., for venular endothelial marker ACKR1) in 3D, from the otherwise obstructed

view from a fully opaque 3D virtual block. Volume clips (box or free-form) and plane clipping showing expression across the z axis.

(C) From left to right, a volume clip of the H&E tissue block shows the continuity of a keratin pearl structure that appears disconnected from themain tumormass in

early sections. Gene expression supports this continuity along the z axis, reflected by S100A7 (specific to keratin pearls) and KRT6A (all tumor cells) over the

semi-transparent tissue block. The stroma, demarcated by SPP1 (CAMs) and ACTA2 (CAFs) expression, also follows this tumor structure penetrating the lymph

node, whose boundary is rich in LYZ. Dashed lines indicate the tumor/immune boundary as determined from the H&E.

(legend continued on next page)
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at theboundarybetween tumorand lymphoid tissue, incloseprox-

imity to the sinus, hinted by the presence of LYZ+, CXCL9+, and

CXCL10+ cells (Figure 7D; STAR Methods). The spatial activity

of the G2M checkpoint around areas with hypoxic phenotype at

the coreof the tumormass, previously hinted in a single 2Dsection

(Figure S6E), was confirmed in 3D (Figures S7F and S7G).

Virtual tissue blocks support additional modalities beyond H&E

and transcriptomics: we aligned immunofluorescence stainings

performed on a section adjacent to section 2 from the metastatic

lymph node (Figures S7H and S7I; STARMethods). This proof-of-

principlemultimodal integration serves as an external validation of

the Open-ST capture quality (Figures S7H and S7I). Tumor cells,

expressing cytokeratins, and endothelial venules, expressing vi-

mentin (VIM), displayed good agreement of the spatial distribution

of their respectivemRNA/protein. Specifically, vimentinwas found

at the outermost layer of cells at endothelial venules in both mo-

dalities, also supported by the PECAM1 and ACKR1 markers,

with similar spatial organization (Figure S7I). On the other hand,

we observed a partial discrepancy in the levels of keratin mRNA

and protein (panCK) (arrowheads in Figure S7H), possibly due to

the necrotic nature of these areas.

In summary, Open-ST provides a versatile and powerful

framework for comprehensive analysis of gene expression

in 2D and 3D, including the unveiling of molecular and/or cellular

spatial structures obscured in traditional 2D representations.

DISCUSSION

We introduced Open-ST, a framework of experimental and

computational tools for the efficient capture and interrogation

of transcripts in tissue space at subcellular resolution.

We illustrated the quality of our data in the stereotypical devel-

oping E13 mouse head, where transcript localization showed

high accordance with ISHs from the Allen Atlas. We further

demonstrated the wide applicability of Open-ST by spatially

sequencing structurally complex primary human tissues of clin-

ical interest. Benchmarked against comparable spatial technol-

ogies (array-based), Open-ST outperforms in terms of UMI

counts per cell at similar sequencing depth while retaining a

low reads-to-UMIs ratio.

We compared Open-ST with an imaging-based technology

(Xenium), using the same human tumor samples. We subset

Open-ST to the 316 (or 344) genes common to both technolo-

gies, thus downscaling Open-ST to �1% of the captured tran-

scripts. The cellular arrangement and spatial patterns captured

by Open-ST closely align with those by Xenium, although the

signal from individual genes was sparser and thus less precise

for structural assessment. The additional information from the

>20,000 genes in Open-ST allows finer, unbiased characteriza-

tion of molecular phenotypes, a challenge for probe-based tech-

nologies: these require customized gene panels for refined ana-

lyses, increasing costs and possibly the noisiness of the data

when increasing probe number.50–52

Open-ST recapitulates tumor heterogeneity at single-cell reso-

lution from primary and metastatic lymph node samples of the

same patient. In the primary tissue, we discovered heteroge-

neous states of tumor and stromal cells, restricted to specific

spatial domains with enrichment of specific gene programs and

receptor-ligand interaction hotspots. These states involved in-

flammatory response, epithelial differentiation and keratinization,

proliferation, andmatrix remodelingwithmigratory potential. The

latter population is situated in closeproximity toCAF/endothelial-

rich stroma, suggesting a potential relationship between the

metastasis-initiating cells and the stromal compartment.24,53

Moreover, tumor cell and stromal heterogeneity weremaintained

from the primary to metastatic tissue. The differences in spatial

arrangement of tumor subclusters in the metastasis suggest

that transcriptomic states are established around specific

communication hotspots in the primary tissue and are mostly

maintained upon new microenvironments. While transcriptomic

states were generally similar for the detected subclusters, we

found unique features in the metastatic tissue, such as the upre-

gulation of AMTN, potentially caused by the differences in

signaling at the newmicroenvironment.54,55Moreover, 3D visual-

ization confirmed the spatial patterns of gene program activity in

the metastatic lymph node. At the tumor/lymphoid boundary, we

observed theupregulation of a cholesterol biosynthesis signature

and gene expression patterns (i.e., LYZ+ CXCL9+ CXCL10+

macrophages) that hint the structural integrity of the subcapsular

sinus, a structure located at the outer layer of the lymph node.

We hypothesize that the growth of the tumor mass along the

boundary pushes the lymphoid tissue rather than breaking it.

This provides mechanical cues linked to the regulation of lipid

metabolism.56,57 The upregulation of cholesterol metabolism is

an immune-evasivemechanism: tumor cells with cholesterol-en-

riched membranes have been shown to impair T cell-mediated

cytotoxicity.58 Moreover, previous studies report dysregulation

of cholesterol metabolism in HNSCC as a potential therapeutic

target, in particular, the enzyme HMGCR (3-hydroxy-3-methyl-

glutaryl-coenzyme A [CoA] reductase).59,60 Similarly, a fatty

acid metabolism signature at the tumor/peritumor boundary

was reported in liver cancer.4

All our analyses were obtained by using the Open-ST compu-

tational toolkit. We anticipate our toolkit can be applied to other

experimental setups and processed samples, requiring minimal

user intervention. Additionally, the modular approach enables

the use of alternative tools and algorithms for any (pre)process-

ing step, when necessary. Altogether, we provide detailed

experimental resources and open-source computational tools

with potential for rendering Open-ST as a standard for commu-

nity-driven generation and analysis of ST.

Limitations and future developments
Open-ST is currently limited to polyadenylated transcripts and

carries a 30 capture bias. The library preparation can be adapted

to retain entire transcript length, enabling the spatial analysis of

(D) Spatial expression of LYZ and the chemokinesCXCL9/CXCL10, and spatial activity of the cholesterol biosynthesis gene sets (Reactome), per segmented cell

(AUCell), and visualized as smoothed volumetric renderings (left).44 Tumor surface is shown as a skeletal representation (wireframe) in gray. Gene expression and

program activity are additionally shown in two cross sections (right, a and b).

See also Figure S7.
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isoform diversity. Similarly, the capture oligos can be modified

and designed to capture specific targets, such as splice variants

or bacterial 16S transcripts.

Moreover, we anticipate to render Open-ST compatible with

formalin-fixed paraffin-embedded (FFPE) tissues, widening its

applicability. FFPE tissues are well-suited for long-term storage

and better preserve tissue morphology. FFPE tissue sections

require additional steps of deparaffinization and decrosslinking

to allow RNA release. Also, FFPE processing leads to fragmen-

tation of RNA, reducing intact polyadenylated RNA available

for poly(dT) priming. To overcome limitations in poly(A) capture

due to RNA fragmentation, a probe-based approach could be

adopted, as in Visium FFPE, or in situ polyadenylation could be

performed to capture fragmented and non-polyadenylated

RNA.61,62

Open-ST requires an initial financial investment to generate

the capture areas and is therefore not well-suited for low-

throughput experiments. Collaborations or centralized capture

area generation by institutes can overcome this hurdle.

Cell segmentation is currently guided by nuclear staining,

limiting its precision and contributing to the cross-contamina-

tion of cellular transcriptomes. This can be addressed by intro-

ducing membrane staining, additionally enabling the detection

of multinucleated cells. Incorporating immunofluorescence or

immunohistochemical stainings may negatively affect RNA

quality and/or localization of RNA capture and, thus, require

separate optimization. In this regard, a comprehensive bench-

marking of segmentation tools for sequencing-based technolo-

gies is also required. The discrepancy in z- versus x-y resolu-

tion (10 mm vs. 0.6 mm) presents a complementary limitation,

as transcripts deriving from different cells layered along the

z-dimension may be captured, contributing to the presence of

double-positive signal and confounding single-cell level ana-

lyses. Future development of computational methods will allow

deconvolution of this data.

Currently, no standardized data analysis pipeline exists to

account for artifactual local biases of sequencing-based ST

methods: anisotropic lateral diffusion, spatially autocorrelated

background signal, and misassigned transcripts due to inaccu-

rate two-dimensional segmentation or the lack of resolution in

the z axis. Here, we leveraged standard workflows tailored

for scRNA-seq that rely on normalization and manifold learning

from the cells-by-genes matrix without considering spatial

autocorrelation as a source of covariance.63–65 We anticipate

that spatial autocorrelation might break the assumptions under-

lying normalization and manifold learning, leading to spurious

cell types and inaccurate differential gene expression and ac-

tivity of programs. Future developments in spatially aware

normalization, dimensionality reduction, and clustering will

address questions that rely on modeling count data in space,

such as differential expression analysis, as well as analyses

relying on manifold structure, such as cell typing, pseudotime,

and RNA velocity.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Pan Cytokeratin (panCK), mouse mAb, clones AE1

and AE3, eFluor� 570 conjugate

ThermoFisher Cat# 41-9003-82; RRID: AB_11218704

Vimentin (mouse mAb, clone V9,

Alexa Fluor� 750 conjugate

Bio-Techne Cat# NBP1-97670AF750; RRID: AB_10013743

Biological samples

Frozen sagittal E13 wild-type mouse

head sections (C57BL/6N)

This study RRID:MGI:2159965

Frozen coronal brain hemisphere sections

from male p60 wild-type mouse (C57BL/6N)

This study RRID:MGI:2159965

Human head and neck squamous cell carcinoma tissue This manuscript N/A

Human metastatic lymph node tissue This manuscript N/A

Human healthy lymph node tissue This manuscript N/A

Chemicals, peptides, and recombinant proteins

Dra I enzyme NEB Cat#R0129

Alkaline Phosphatase Calf Intestinal (CIAP) enzyme Promega Cat#M1821

Exonuclease I enzyme NEB Cat#M0293

NaOH solution, for molecular biology, 10 M in H2O Sigma Cat#72068

UltraPure�1M Tris-HCl pH7.5 Invitrogen� Cat#15567027

Tissue-Tek OCT Sakura Cat#4583

Methanol (min. 99.8%) Th. Geyer Cat#1437

2-propanol (min 99.9%) Th. Geyer Cat#1197

Haematoxylin, Mayer’s Agilent Dako Cat#S3309

Bluing buffer Agilent Dako Cat#CS702

Eosin Y, aqueous Sigma Cat#HT110216

Pepsin from porcine gastric mucosa Sigma Cat#P7000

20x SSC Sigma Cat#S6639-1L

Hydrochloric Acid (HCl), 10N AppliChem Cat#187051

BSA Molecular Biology Grade (conc. 20 mg/ml) NEB Cat#B9000S

dNTP SET 100mM 4X1Ml Life Technologies Cat#R0182

SuperScript IV Reverse Transcriptase Life Technologies Cat#18090010

RiboLock RNase Inhibitor Thermo Scientific Cat#EO0381

Tris-HCl Buffer, pH 8.0, 1M Life Technologies Cat#AM9855G

Sodium chloride NaCl (5M), RNase-free Invitrogen Cat#AM9760G

Roti�-Stock 20 % SDS ready-to-use, sterile filtered Roth Cat#1057.1

UltraPure 0.5M EDTA, pH 8.0-4 x 100 Ml Life Technologies Cat#15575020

Proteinase K (800 mU/mL) NEB Cat#P8107S

DNA Polymerase Large Fragment exo-

Klenow Fragment (3’-5’ exo-)

NEB Cat#M0212

Ampure XP beads Beckman coulter Cat#A63881

Kapa HiFi Hotstart Readymix, KK2612 Roche Cat#7958960001

1.5% Agarose Cassettes, dye-free, int. Stds BluePippin,

250bp-1.5kb, Marker R2 or 1.5% Agarose,

PippinHT, 300-1500 bp

Biozym 342BDF1550 or HTC1510

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q32854

High sensitivity DNA kit Agilent Cat#5067-4626

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HS RNA tapestation Agilent 5067-5579/ - 5580/ -5581

Blue S’Green qPCR mix Biozym Cat#331416

KAPA LQ Primer + Mastermix (Illumina/ LC480) Roche Cat#7960573001

KAPA Library Quantification DNA Standards (Illumina) Roche Cat#7960387001

Phosphate Buffered Saline (10X), pH 7.4, RNase-free Invitrogen Cat#10055154

Tween� 20 Surfact-Amps� detergent solution Thermo Scientific Cat#85113

Ethanol denatured 96% Serva Electrophoresis Cat#11096.02

Dimethyl Sulfoxide (DMSO) Sigma Cat#D8418-1L

KCl (2M), RNase-free Life Technologies Cat#AM9640G

Formaldehyde, for molecular biology, 36.5-38% in H2O Sigma-Aldrich Cat#F8775

Triton-X-100 Sigma-Aldrich Cat#T8787

Normal Donkey Serum Biozol Diagnostica Cat#SBA-0030-01

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) Bio-Trend Cat##40011

Glycerol, ROTIPURAN� R99,5 %, p.a, anhydrous Roth Cat#3783.2

DPBS, no calcium, no magnesium Gibco� Cat#14190169

Critical commercial assays

NovaSeq 6000 S4 reagent kit v1.5 (35 cycles) Illumina Cat#20044417

Xenium Human Multi-Tissue and Cancer Panel 10X Genomics Panel number 1000626

Xenium Slides & sample Prep reagents 10X Genomics 1000460

Xenium Decoding Reagent Module A 10X Genomics 1000624

Xenium Decoding Reagent Module B 10X Genomics 1000625

Xenium Decoding Consumables 10X Genomics 1000487

Deposited data

Open-ST (this publication) GEO GSE251926

10x Xenium HNSCC and metastatic

lymph node (this publication)

GEO GSE263498

Immunofluorescence images of

metastatic lymph node section #1(this publication)

Zenodo https://doi.org/10.5281/zenodo.11395256

Slide-seqV2 E9.5 mouse brain data GEO GSE197353

Seq-Scope mouse liver data GEO GSE169706

Stereo-seq CNGB Sequence Archive CNX0422301

10X Visium 10X Genomics https://www.10xgenomics.com/resources/

datasets/mouse-brain-serial-section-2-

sagittal-anterior-1-standard

DBiT-seq E11 mouse embryo GEO GSE137986

Single-cell RNA seq of primary and

metastatic tumor of HNSCC

GEO GSE103322

Allen Developing Mouse Brain Atlas ISH data Allen Institute http://developingmouse.brain-map.org/;

RRID: SCR_002990

Oligonucleotides

HDMI32-DraI: CAAGCAGAAGACGGCATACGAGAT

TCTTTCCCTACACGACGCTCTTCCGATCTNNVNBV

NNVNNVNNVNNVNNVNNVNNVNNNNNTCTTGTGA

CTACAGCACCCTCGACTCTCGCTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTAAAGACTTTCACCAGTCCATG

ATGTGTAGATCTCGGTGGTCGCCGTATCATT

Cho et al.16 N/A

Randomer: TCAGACGTGTGCTCTTCCGATCT

NNNNNNNNN

Cho et al.16 N/A

Read1-DraI: ATCATGGACTGGTGAAAGTCTT

TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

GCGAGAGTCGAGGGTGCTGTAGTCACAAGA

Cho et al.16 N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents may be directed to Nikolaus Rajewsky (rajewsky@mdc-berlin.de).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

P5 Fwd:

AATGATACGGCGACCACCGAGATCTACACT

CTTTCCCTACACGACGCTCT*T*C

Cho et al.16 N/A

P7 Rev indexing:

CAAGCAGAAGACGGCATACGAGAT

[8-mer index sequence] GTGACTGGA

GTTCAGACG TGTGCTCTTCC*G*A

Cho et al.16 N/A

Software and algorithms

IdeaMaker v4.3.2 Raise3D https://www.raise3d.com/download/

Fiji v1.53t Schindelin et al.66 https://imagej.net/software/fiji/

BZ-X Viewer 1.3.1.1 Keyence N/A

BZ-X Analyzer 1.4.1.1 Keyence N/A

Paraview v5.11.0 Ahrens et al.29 https://www.paraview.org/

Cellpose v2.2 Pachitariu and Stringer26 https://github.com/MouseLand/cellpose

STAR v2.7.10b Dobin et al.67 https://github.com/alexdobin/STAR

Bowtie2 v2.5.1 Langmead et al.68 https://github.com/BenLangmead/bowtie2

Drop-seq tools v2.5.1 Broad Institute69 https://github.com/broadinstitute/Drop-seq

spacemake v0.7.3 Sztanka-Toth et al.27 https://github.com/rajewsky-lab/spacemake

scanpy v1.9.3 Wolf et al.70 https://github.com/scverse/scanpy

scikit-image v0.19.3 van der Walt et al.71 https://github.com/scikit-image/scikit-image

STIM v0.2.0 Preibisch et al.28 https://github.com/PreibischLab/STIM

samtools v1.17 Li et al.72 https://github.com/samtools/samtools

microfilm v0.2.1 N/A https://github.com/guiwitz/microfilm

scipy v1.10.0 Virtanen et al.73 https://github.com/scipy/scipy

Kornia v0.7.0 Riba et al.74 https://github.com/kornia/kornia

openst v0.1.0 This publication https://github.com/rajewsky-lab/openst

squidpy v1.3.0 Palla et al.75 https://github.com/scverse/squidpy

QuPath v0.4.0 Bankhead et al.76 https://qupath.github.io/

scvi-tools v1.0.2 Gayoso et al.77 https://github.com/scverse/scvi-tools

liana-py 1.0.1 Dimitrov et al.78 https://github.com/saezlab/liana-py

decoupler-py 1.4.0 Badia-I-Mompel et al.79 https://github.com/saezlab/decoupler-py

Xenium Ranger 103 Genomics https://www.10xgenomics.com/support/

software/xenium-ranger/latest

Kneed 0.8.5 N/A https://github.com/arvkevi/kneed

RSeQc 5.0.3 Wang et al.80 https://rseqc.sourceforge.net

napari 0.4.19.post1 Chiu et al.81 https://napari.org/stable/

Leica Application Suite X (LAS X) with Leica

Thunder widefield deconvolution software

Leica v.3.9.0.28093

Other

16-Well ProChamber Microarray System Grace Bio-Labs Cat#645508

Tungsten Carbide Tip Scriber For example, BioTrend Cat#MD9-29

Glass cutter, 138� Toyo Cat#TC17B

Cutting guide 3D-print.stl file for

NovaSeq S4 flow cell (Illumina)

This publication https://rajewsky-lab.github.io/openst
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Materials availability
The design of the 3D-printed cutting guide is provided in our online resource (https://rajewsky-lab.github.io/openst). All other mate-

rials used are commercially available.

Data and code availability
Open-ST RNA-seq and microscopy data, and 10x Xenium data generated in this study, have been deposited at GEO (accession

numbers GSE251926 and GSE263498) and Zenodo (https://doi.org/10.5281/zenodo.11395256) and are publicly available as of

the date of publication. This paper also analyzes existing, publicly available data. Accession numbers for all datasets are listed in

the key resources table. All original code has been deposited at https://github.com/rajewsky-lab/openst (accessed 3 November

2023) and is publicly available as of the date of publication. DOIs are listed in the key resources table. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse tissue sample
Mouse adult brain was collected from a postnatal-day 60 C57BL/6N wild-type male mouse (RRID:MGI:2159965). Embryonic stage

13 (E13) mouse heads were collected from C57BL/6N wild-type mice (RRID:MGI:2159965). Tissue was immediately embedded in

Tissue-Tek� O.C.T.� Compound (Sakura, 4583) on powdered dry ice and stored at -80�C. The left hemisphere of the adult brain

was embedded and sectioned coronally. Mouse E13 head was embedded and sectioned sagittally.

Animal care and mouse work were conducted according to the guidelines of the Institutional Animal Care and Use Committee of

theMax Delbrück Center for Molecular Medicine and the Landesamt für Gesundheit und Soziales of the federal state of Berlin (Berlin,

Germany).

Human patient characteristics and sample collection
The resected head and neck tumor, as well as a normal and ametastatic lymph node, were collected from a 56 year-old male patient

with a moderately differentiated, keratinizing squamous cell carcinoma (SCC) in the larynx.

Staging workup by cranial computed tomography (CCT) and Positron emission tomography–computed tomography (PET-CT)

showed bilateral cervical lymph node metastases, but no distant metastases. A laryngectomy and bilateral neck dissection was per-

formed and the patient received an ambulant adjuvant radiotherapy.

The pathological examination revealed tumor infiltration of the supraglottis, glottis, subglottis regions, pre-epiglottic soft tissue,

and two cervical lymph node metastases with a maximum diameter of 12 mm and without extracapsular invasion.

A part of the primary tumor, as well as half of resected level III cervical lymph nodes with and without metastasis, were snap-frozen

after surgery and embedded in pre-cooled Tissue-Tek�O.C.T.�Compound (Sakura, 4583) on powdered dry ice. Tissue was stored

at -80�C before and after embedding and used for Open-ST.

The remaining resected specimen was formalin-fixed, decalcified, cut and paraffin-embedded (FFPE) for histological examination.

The pathological tumor classification was as follows: pT3 pN2c (2/29) L0 V0 Pn0 G2 R0 (according to the 8th edition of the TNM clas-

sification (AJCC)). The FFPE tissue was stored at room temperature at the archive of the Institute of Pathology at the Charité Univer-

sity Hospital, Campus Mitte. The study was performed according to the ethical principles for medical research of the Declaration of

Helsinki and approval was approved by the Ethics Committee of the Charité University Medical Department in Berlin (EA4/082/22).

METHOD DETAILS

Capture array generation and disassembly
The capture array was generated as in Cho et al. with several protocol adaptations.16 The synthetic HDMI32-DraI library was pro-

duced using the Ultramer service from IDT. The library was sequenced on an Illumina� NovaSeq 6000 S4 flow cell (35 cycles), at

a loading concentration of 200 pM. A single-end 37 cycle read was sequenced, using Read1-DraI (IDT) as a custom primer. A custom

sequencing recipe was used, stopping the run immediately after read 1 prior to on-instrument washes (Data S1). The custom

sequencing recipe was used in a sequencing run with the following versions and may require adjustment for use with different

consumable or software versions: RTA v3.4.4, Flow Cell Consumable v1, Sbs Consumable v3, NovaSeq control Software v1.7.5.

After sequencing, enzymatic reactions were performed by pipetting reaction mixes into the flow cell lanes, covering the inlets/out-

lets with tape for the incubations. First, the flow cell was washed by flowing through 500 uL ultrapure water, then incubated overnight

with DraI mix (2 U/mL DraI enzyme (NEB, R0129) in 1X CutSmart buffer) at 37�C. A repeat 5h incubation at 37�C with fresh mix was

done, to ensure efficient digestion in all areas. The DraI cuts the double stranded DNA of the clusters after the poly-d(T) tail. After

washes with 80% ethanol, then ultrapure water, the flow cell was incubated with Exonuclease I mix (1 U/mL Exo I (NEB, M0293L),

0.05 U/mL CIAP (Cat#M1821) in 1x Exo I buffer) for 45 min at 37�C. Subsequently, the flow cell was washed three times with ultrapure

water before separating the two glass surfaces by scoring along the sides with a scalpel (Video S1).

The second strand was denatured by washing the opened flow cell in a beaker of 0.1 N NaOH for 5 min. After denaturation three

washes each with 0.1M Tris HCl (pH 7.5) and ultrapure water were performed.
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Using a glass cutter and a 3D-printed tool (available at https://rajewsky-lab.github.io/openst), scoresweremade along the flow cell

top or bottom pieces at the desired breaking points. The cutting tool allows clean scores on the surface without oligos, without

damaging the capture area surface. By applying even pressure at the scored sites, the flow cell was broken into approximately

3x4 mm capture area pieces. The first and last 1.5 cm of the S4 flow cell was removed, as these areas are not images by the

sequencer and thus do not contain registered barcodes. The opening, scoring and breaking of the flow cell into capture areas is

demonstrated in Video S1. Capture area pieces were stuck (with oligos facing up) on a sticky tape to facilitate the handling (Video S2).

The cutting guide was printed with 1.75 mm polylactic acid (PLA) filament on the Pro 3 Dual Extruder 3D printer from Raise 3D.

The.stl file was prepared for printing using IdeaMaker v.4.3.2 as the 3D slicing software. Capture areas from three different flow cells

were used for experiments: fc_1 (human samples, embryonic mouse head) and fc_2 (mouse hippocampus), fc_3 (embryonic mouse

head replicate).

RNA quality control
To assess RNA quality, total RNA was extracted from cryosections lysed in Trizol using the Direct-zol RNA Miniprep kit (Zymo

Research, R2050) according to the manufacturer’s instructions. Concentrations were measured using the Nanodrop-1000 spectro-

photometer (Thermo Fisher) and RIN values assessed using the Agilent 2200 TapeStation (High sensitivity RNA kit, Agilent). Tissues

used in this study had RIN values ranging from 6.7 - 8.9 (Table S1); the E13mouse head replicate 2 was not assayed for RNA integrity.

Cryosectioning and fixation
OCT-embedded fresh frozen tissue was sectioned at 10 mm thickness using a CryoStar NX70 cryostat (Epredia�). Tissue sections

were placed and melted onto the capture area (Video S3) and fixed in methanol at -20�C for 30 min.

H&E staining and imaging
The section was dried before H&E staining by 1 min incubation with isopropanol and air-drying at room temperature. For H&E stain-

ing, Mayer’s haematoxylin (Agilent, S3309) was applied for 5 min, the section was washed ten times in water and incubated with

bluing buffer (Agilent, CS702) for 2 min. After washing in dH20, the tissue was treated with a 1:1 dilution of eosin Y (Sigma,

HT110216) and 0.45 M tris-acetic acid pH 6 for 1 min. The sections were washed in water and left to air-dry completely before im-

aging. The tissues were imaged in brightfield with a 20x objective on the Keyence BZ-X710 inverted fluorescence phase contrast

microscope, placed dry onto a # 1.5 coverslip. Handling of capture areas during staining and imaging is demonstrated in Videos

S4 and S5, respectively.

Permeabilization time optimization
To select a suitable permeabilization condition we firstly tried the tissue optimization assay.82 Fluorescently labeled nucleotides are

integrated into the cDNA during RNA retrotranscription; the signal intensity should correspond to the amount of RNA captured, with

localization of signal indicating possible diffusion. In our experience this assay was not reliable to quantify capture efficiency, so

instead we define RNA capture efficiency using qPCR, where low amplification cycling numbers correspond to a higher concentra-

tion of starting material.

We tested different concentrations of pepsin (0.7- 1.4 U/mL) for different incubation times (0, 15, 30, 45, 60 min) at 37�C. Library
preparation was done as for a regular Open-ST assay, but only until second strand synthesis. A qPCR was performed as described

in the methods section ‘‘PCR cycling number assessment’’. If multiple samples amplified earliest together, we chose the shorter time

or lower pepsin concentration for permeabilization.

mRNA release and capture
Reactions on the capture array were performed in a 16-well ProChamber microarray gasket (GraceBiolabs, 645508). Each flow-cell

piece was placed in one gasket well with the tissue on the capture area facing up. To cover the entire surface a volume of 100 ml was

used for all subsequently described reactions. mRNA was released by treating the tissue with pepsin (P7000, Sigma) in 2x SSC (pH

2.5) at 37�C, with time and concentration differing between the tissue. The primary human samples were permeabilized for 45 min

with 1.4 U/mL pepsin. The mouse hippocampus and E13 head were permeabilized with 0.7 U/mL pepsin for 30 min (or 15 min for the

E13 mouse head replicate).

The tissue was washed with a reverse transcription buffer (1x SuperScript IV buffer (Thermo Fisher), 1 U/mL Ribolock RNase inhib-

itor (Thermo Fisher)). Next, an overnight incubation was done at 42�C with reverse transcription mix (6.67 U/mL SuperScript IV

(ThermoFisher), 1x SuperScript IV buffer, 5 mM DTT 0.187 mg/mL BSA, 1 mM dNTPs, 1 U/mL Ribolock (ThermoFisher). The wells

of the gaskets were sealed with strips of plate sealing tape to prevent evaporation.

Tissue removal
Tissue removal was done as in Cho et al., but with 100 mL mix or wash per sample to completely cover the flow cell piece.16 Tissue

digestionwas added after the reverse transcription reaction (100mMTris-HCl pH 8.0, 200mMNaCl, 2%SDS, 5mMEDTA, 16mU/mL

proteinase K (NEB, P8107S)). An incubation for 40min at 37�Cwas followed by three ultrapure water washes, three 5min 0.1 NNaOH
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incubations to denature the hybridized mRNA, three 0.1 M Tris (pH 7.5) washes for neutralization and finally three ultrapure water

washes. The capture area was visually inspected to confirm tissue removal before proceeding with 2nd strand synthesis.

Second strand synthesis and purification
Following the permeabilization step, the tissues were incubated with a Second Strand Synthesis mix for 2h at 37oC. Themix contains

1x NEBuffer-2 (NEB, #B7002S), 10 mM of Randomer (custom DNA oligo, IDT), 1 mM of dNTPs mix, 0.5 U/ml Klenow exo (-) Fragment

(NEB, #M0212L). The random priming site serves as a UMI in downstream analysis.

The slides were washed three times with ultrapure water and incubated twice for 5 min with 100 uL 0.1 N NaOH to elute the strand.

To neutralize the product Tris-HCl pH 7.5 was added to reach 0.125 M. AMPure XP magnetic beads (BeckmanCoulter, #A63881)

were used to clean up and concentrate the second strand eluate to 82.5 mL, following the manufacturer’s instructions.

PCR cycling number assessment
qPCR was performed on the StepOne� Real-Time PCR System (Applied Biosystems) to assess the number of amplification cycles

needed (Figure S1F).

Around 3% of the purified Secondary Strand (2.5 mL) was used as input, in a mix of 1x Blue S’Green qPCR mix plus ROX (Biozym,

#331416) and 1 mMp5 Fwd and p7 Rev indexing primers (CustomDNA oligo, IDT). Cycling conditions were as follows: 95�C for 2min,

followed by 40 cycles of 95�C for 5 sec and 60�C for 30 sec.

The threshold was set at 50% of the peak DRn. For each sample the cycle number at the intersection of the threshold and ampli-

fication curve was determined. Five cycles less were considered for the Secondary Strand amplification, to account for the input. For

all the samples 12 or 13 cycles were selected for amplification.

Library construction
The libraries were prepared for amplification, combining 80 mL of purified second strand with a final 1x KAPA HiFi Library Amp kit

(Roche, #07958960001), 1mM of p5 Fwd primer and p7 indexing Rev primer in a volume of 200 mL, split into 4 PCR tubes of 50 mL

each. The following cycling conditions were used: initial denaturation for 3 min at 95�C, x cycles of 95�C for 30 sec, 60�C for

1 min and 72�C for 1 min, a 2 min final elongation at 72�C and hold at 4�C.
The AMPure XP magnetic beads (BeckmanCoulter, #A63881) were used at a 1:1 ratio to clean and concentrate the library into a

final volume of 20 ml following the manufacturer’s instructions. To completely remove short artifacts, such as primer dimers, libraries

were selected to have a length from 300-400 bp to 1100 bp, according to library composition and shape (Figure S1E). Size selection

was performed using 1.5% agarose gel cassettes on the BluePippin or PippinHT (Sage science, BDF1510 or HTC1510) following the

manufacturer’s instructions. The product was quantified using the Qubit� dsDNA HS Kit (Invitrogen, Q32851) and the Bioanalyzer

Agilent High Sensitivity DNA Kit (Agilent, 5067-4626).

Spatial transcriptome sequencing
Libraries were quantified for sequencing using the KAPA Library Quantification Kit (optimized for Roche� LightCycler 480,

07960298001). Sequencing was performed on the Illumina� NovaSeq 6000 and NextSeq 2000 sequencing systems, with 130 pM

and 650 pM loading, respectively, and 1-5% PhiX spike-in. A minimum of 28 cycles for read 1 and 90 cycles for read 2, as well as

an 8-cycle index 1 read, were used.

Xenium In Situ Workflow
Xenium in situ analysis (10x Genomics) was performed on the fresh-frozen primary HNSCC and patient-matched metastatic lymph

node samples, previously processed with Open-ST. The sections analyzed with the two methods were over 100 mm apart. A 10 mm

section of each tissue was sectioned and placed onto one Xenium slide according to specifications delineated in the 10x Genomics

protocol CG000579 (Rev C). Fixation and permeabilization was performed as described in protocol CG000581 (Rev C, 10x Geno-

mics). Probe hybridization, ligation, amplification, as well as autofluorescence quenching and nuclei staining was performed as spec-

ified in CG000582 (Rev E, 10x Genomics) using the pre-designed Xenium Human Multi-Tissue and Cancer Panel (10x Genomics,

1000626). The slide was loaded onto the Xenium analyzer and the regions of interests (ROIs) selected according to the 10x Genomics

protocol CG000584 (Rev E). All user-supplied and 10x Genomics reagents used in the run are listed in the key resources table.

Immunofluorescence staining
Immunofluorescent (IF) staining was performed on the first cryosection of the metastatic lymph node reserved for validations, as

shown in the experimental setup in Figure 2D. This slide was reserved at -80�C for �15 months, before proceeding to IF staining.

Steps were performed at room temperature unless stated otherwise. Upon drying the slide, the OCT was removed in a 10-minute

PBS wash. Next, the section was fixed with 4% formaldehyde (Sigma-Aldrich, F8775) for 15 minutes and then washed with DPBS

(no calcium, no magnesium, Gibco�, 14190169) three times. Blocking and permeabilization was done by incubating in 0.25%

Triton-X (Sigma-Aldrich, T8787) and 5% normal donkey serum (Biozol Diagnostica, SBA-0030-01) in DPBS for 1 hour.

The section was incubated overnight at 4�C in the dark, with primary-conjugated antibodies diluted in a DPBS buffer with 0.1%

Triton-X and 5% normal donkey serum, as follows: 1:100 for Pan Cytokeratin (mouse mAb, clones AE1and AE3, eFluor� 570
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conjugate, ThermoFisher, Cat# 41-9003-82), 1:50 for Vimentin (mousemAb, clone V9, Alexa Fluor� 750 conjugate, Bio-Techne, Cat#

NBP1-97670AF750). Following three 5-minute DPBS washes, DAPI staining was performed with 1 ug/mL DAPI (Bio-Trend, #40011)

in DPBS for 10 min in the dark. After three DPBS rinses, the section was dried and then mounted with 85% glycerol.

Images were acquired on the Leica Thunder DMi8 imager using a Leica DFC 9000GT sCMOS fluorescence camera, a 20X objec-

tive and the Leica Application Suite (LAS) X software (v.3.9.0.28093). Thunder instant computational clearing was performed on the

image. Images were converted to pyramid ome.tiff files using QuPath v0.4.0, and aligned to the H&E staining image of the Open-ST

metastatic lymph node (section 2) via manual selection of landmarks with napari.81 The IF stack was warped into the Open-ST co-

ordinates via an affine transformation matrix.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial reconstruction of barcode sequencing
The barcode sequencing for capture area generation enables the mapping of spatial barcodes to their corresponding spatial coor-

dinates within the flow cell. Per flow cell, we processed each of the 3,744 tiles leveraging bcl2fastq v2.20.0.422. Subsequently, the

barcode_preprocessing function from our openst tools was used to trim barcodes, compute their reverse complement ("cell_bc"),

and supplement these with spatial coordinates ("xcoord" and "ycoord"), ultimately generating a single coordinate file per tile.

Notably, the spatial coordinates acquired with bcl2fastq are in a tile-specific coordinate system. Consequently, mapping to a global

coordinate systembecomes necessary for samples spanningmultiple tiles. This was donewith the puck_collection functionality from

spacemake v0.7.3, using the provided NovaSeq S4 coordinate system.

Processing of transcriptomic reads
The transformation of raw sequencing data into spatially-mapped expression matrices was carried out utilizing spacemake,27 an

automated pipeline designed for the preprocessing, alignment, and quantification of single-cell and spatial transcriptomics data.

Preprocessing

Raw basecalls were demultiplexed with bcl2fastq v2.20.0.422, yielding two FASTQ files per sample: the Read 1 (R1) file, containing

the spatial barcode, and the Read 2 (R2) file, containing the unique molecular identifier (UMI) and transcriptomic data. The R1 and R2

FASTQ pairs were merged into a single bam file per sample. Finally, the consolidated bam files underwent trimming of p5 adapter

sequences and polyA tails using TrimStartingSequence and PolyATrimmer from Drop-seq tools v2.5.1, respectively. In spacemake,

this preprocessing strategy is represented by the ‘‘open-st’’ barcode_flavor and run_mode.

Mapping

Initially, preprocessed and trimmed reads were aligned to the PhiX reference sequence, with aligned reads subsequently discarded.

Remaining reads were subjected to alignment against the corresponding rRNA reference, dependent on the sample’s origin (mouse

or human). Aligned rRNA reads were discarded. These two steps were performed with bowtie2 v2.5.1 for fast alignment. The final

step involved mapping the remaining unmapped reads to the species genome using STAR v2.7.10b, adhering to default parameters

within spacemake v0.7.3. For mouse-origin reads, GRCm39 primary assembly with the Gencode vM30 annotation was utilized. Like-

wise, the GRCh38 genome reference with the Gencode v43 basic annotation was utilized for alignment of human-origin reads. The

above mapping strategy can be reproduced in spacemake >=v0.7 by specifying a map_strategy as follows: ‘‘bowtie2:phiX->bow-

tie2:rRNA->STAR:genome:final’’.

Quantification

Uniquely mapped reads were spatially matched against a library of spatial barcodes derived from the initial flow cell sequencing.

Multi-mapping reads were discarded, except for the cases where a readmapped to one genic and one intergenic locus only; in these

cases the genic reads were retained. Spatial tiles were designated as part of a specific sample, if >=10% of spatial barcodes of the

sample match to the tile. The aligned reads were subsequently distributed across their corresponding spatial tiles per sample. Only

zero Hamming distance matches between the known barcodes and the sequenced library barcodes were considered. The gene

expression of tile-specific bam files was quantified with DigitalExpression from Drop-seq Tools (v2.5.1). The resulting quantified

gene expression data was then transformed into a single h5ad file per sample, via outer merge of features (genes).

The percentage of spatially mapping reads was computed as follows. First, only uniquely mapped reads were retained, containing

both genic and non-genic sequences. Quantifying gene expression via the DigitalExpression tool for all barcodes present in the bam

file provided the total number of genic reads. Calculating gene expression in the same manner, but only for the sample barcodes,

provided the total number of spatially mapping genic reads, and therefore the spatially mapping percentage. Additionally, the number

of tags (3’UTR, 5’UTR, CDS, intron, and distance from TSS/TES) found for each uniquely mapping read was computed using

RSeQc 5.0.3.80

H&E image preprocessing and cell segmentation
Tile-scan images of H&E-stained tissue sections were stitched together using the Grid/Collection stitching plugin included in Fiji

1.53t, generating a composite image of the entire section.66 RGB color tile-scans were converted to a HSV (Hue/Saturation/

Value) image; then, the saturation channel was blurred with a Gaussian filter, and binarized with Otsu thresholding. This delivers a

mask used to isolate the tissue from the background, mostly consisting of the flow cell piece. Optionally, tile-scans were further
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preprocessed by style transfer with a fine-tuned Contrastive Unpaired Translation (CUT) model, trained with default parameters on

unpaired 512x512 pixel patches from tile-scans imaged with high noise/variance (source style), and low noise/variance (destination

style).83 This model was specifically applied to the metastatic lymph node H&E imaging data to equalize the style between sections

and remove artifacts due to low aperture size during acquisition.

Then, nuclei were segmented with cellpose 2.2, upon fine-tuning the cyto2 model on pairs of H&E images from the metastatic

lymph node sample (section 4) and manually refined segmentation masks from the same pretrained model.26,84 Segmentation of

all images was performed with –diameter 20 (�7 mm), –flow_threshold 2, and –cellprob_threshold –1, unless otherwise stated.

Segmented nuclei were extended 10 pixels (�3.45 mm), radially and in a non-overlapping manner, using the function segmentatio-

n.expand_labels from scikit-image (v0.19.3).71 In samples with adipocytes (e.g., healthy human lymph node sample), a second round

of segmentation with our fine-tuned cellpose model was carried out, with –diameter parameter set to 100 pixels (�34.5 mm). Seg-

mentation masks were similarly extended 50 pixels (�17.25 mm) radially. To keep all small and large segmented cells, two rounds

of segmentation were performed in the same image. Then, the two segmentation masks (one with and other without adipocytes)

weremerged by removing segmented cells from themask with small diameter using the segmentation with large diameter as a nega-

tive binary mask. Then, the filtered small-nuclei mask and adipocyte mask were combined via AND operation.

We benchmarked the segmentation model on three randomly-selected 512x512 px regions of interest from the metastatic lymph

node (section 4) tile scan. Manual nuclei segmentations, carried out with QuPath, were used as ground truth masks.76 Average pre-

cision at different Intersection over Union (IoU) thresholds were quantified as previously described.85

Pairwise alignment of data modalities
A two-step protocol was designed to align spatial transcriptomics data to tile scans of tissue staining (H&E in this study) from the

same section, such that capture spot data can be aggregated into (segmented) single cells, instead of using arbitrary grids. This pro-

tocol relies on the generation of pseudoimages from the spatial transcriptomics data (see ‘‘generation of Open-ST pseudoimages’’),

using libraries from scikit-image. First, rescaled H&E images (�7 mm/pixel) were coarsely aligned to low-resolution (�7 mm/pixel)

pseudoimages of ST data via the pre-trained Detector-Free Local Feature Matching with Transformers (LoFTR) outdoor model,

from kornia (v0.7.0). A robust transformation model was estimated with Random Sample Consensus (RANSAC). For a more precise

alignment (�1 mmerror, spot resolution), fine registration was performed, leveraging featurematching onH&E images and pseudoim-

ages with higher resolution (�1.5 mm/pixel). Fiducial markers visible on both modalities were detected on the full-resolution images

(0.345 and 0.5 mm/pixel) and appended to the features used for fine registration. The detection of fiducial marks was carried out auto-

matically with custom YOLO-based object detection models. Likewise, the LoFTR-detected features and YOLO-detected marks

were matched across modalities via brute-force and nearest neighbors matching, followed by RANSAC estimation of the transfor-

mation model. Since pairwise alignment is performed between an H&E image and ST data from the same section, rigid models were

used to transform ST coordinates into H&E image space, as no distortions were expected. Finally, we used the GUI provided by our

openst package (manual_pairwise_aligner_gui) to visually assess andmanually refine the results of the automatic alignment pipeline.

The code for alignment, GUI for visual validation, feature detection models and examples for Open-ST pairwise registration are pub-

licly available at https://github.com/rajewsky-lab/openst.

Finally, spatial cell-by-gene expression matrices were created by aggregating the initial NxG matrix (N, capture spots; G genes)

into a MxG matrix (M, segmented cells; G, genes), where the mapping of N to M takes place via the segmentation mask. That is,

for all segmented regions (see ‘‘H&E image preproccesing and cell segmentation’’), spots falling within the spatial coordinates of

a segmented region are aggregated into a single ‘‘segmented cell’’ with identifier equal to the cell mask label.

We assessed the accuracy of the pairwise alignment based on fiducial marks by calculating the reproducibility of twomanual align-

ments performed on the same randomly chosen sample, (section #9 of the metastatic lymph node). Two independent annotators

(L.M.S. andD.L-P.) selected at least two pairs of corresponding points per tile, using theGUI tool (manual_pairwise_aligner_gui) start-

ing from the same automatic coarse alignment, that was performed with pairwise_aligner. Similarity matrices were computed for

each tile from both lists of keypoints and applied to the coarse-aligned barcode coordinates. Lastly, the distribution of euclidean dis-

tances across annotators was calculated.

Generation of Open-ST pseudoimages
The generation of pseudoimageswas tailored to distinct visualization needs, encompassing twomethodologies. On the one hand, for

aggregated cell-level depictions in 2D, the pl.spatial function from the scanpy v1.9.3 package was used.

On the other hand, higher-resolution visualizations focusing on individual transcripts (typically, at �100x100 mm zoom) relied on

local 2D Kernel Density Estimation (KDE) of UMI-scaled spatial coordinates, for any chosen transcript. The KDE was performed

with a bandwidth of�1 mm. For visualization, the KDE is treated as image data visualized with the microshow function frommicrofilm

v0.2.1 package. Intensity limits were adjusted from the 5th to the 95th percentile. These renderings are useful to visualize and quantify

transcript density in space, rather than the sparser raw counts.

Alternatively, raw UMI counts can be displayed as an image by producing an empty canvas defined by re-centered coordinate

bounds, mapping coordinates onto the canvas, and aggregating UMIs within pixel bins. These resultant images resemble conven-

tional pixel-based grids and can be readily subjected to standard image processing techniques.
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3D reconstruction
The Spatial Transcriptomics ImgLib2/Imaging Project (STIM, v0.2.0) was leveraged for the alignment of the 19 Open-ST sections of

the metastatic lymph node dataset. For alignment purposes, we treated sections as sequential. First, the coordinates of each pair-

wise-aligned and segmented h5ad file were rescaled by a factor 1:2. The coordinate and gene expression information of these data-

sets were converted into the n5 format, optimized for efficient image processing, via the st-resave function. The st-align-pairs func-

tion was subsequently used for pairwise alignment of three sections below and above each section (r=3), by creating image channels

of the expression of prespecified genes, aggregated per cell as a Gauss rendering around centroids, parametrized with a smooth-

ness factor. We qualitatively assessed KRT6A, KRT6B, S100A2, LYZ, CD74, IGKC, IGHG1, IGHA1, JCHAIN, CD74 and AMTN to

have high expression and spatial variation within sections. This function results in a set of feature matches between pairs of sections,

filtered via affine model; st-align-pairs was parameterized with—minNumInliers 15, –scale 0.03, and -sf 4.0 (smoothness factor).

Finally, we ran st-align-global to find affine transformations that globally minimize the distances of featurematches between sections,

across the entire stack. The n5 container was then converted back to the h5ad format, for subsequent downstream analyses. We

additionally transferred the resultant affine transformation matrices onto preprocessed and background-removed H&E images, re-

scaled to an equivalent 1:4 factor. An aligned imaging volume, used for subsequent 3D visualization, was created via the transform.-

warp function from scikit-image. This can be reproduced with the from_3d_registration program from our openst package.

3D renderings
Three-dimensional rendering was used to display the two raw data modalities comprising Open-ST data (tissue staining images and

spatial transcriptomics data), and results from downstream analyses (i.e., cell clustering).

Tissue staining renderings were generated with ParaView v5.11, from the rescaled image stack resulting from the 3D alignment

(see STAR Methods section ‘‘3D reconstruction’’). The x-y axes were scaled 1:4 with respect to the physical dimensions, and the

z axis was scaled 7:1. The x-y coordinates of the volume were clipped into a box of 4x3x0.36 mm, to remove empty areas outside

of the tissue block, as well as areas with low section coverage along the z axis.

Raw or normalized gene expression of individual genes was visualized upon downscaling the expression levels per cell by a factor

1:40. Then, volumes of �500x500x19 voxels were generated by concatenating �500x500 pixel pseudoimages of the selected gene

at each section. Upon concatenation, values were interpolated by summing the pixel-wise values from section n-1 to section n,

removing spatial irregularities due to uneven coverage along the z-axis. The voxelized volume data was smoothed with a gaussian

filter (sigma=2), and exported as a TIFF file. Volume renders of gene expression were visualized with ParaView v5.11.

Surfaces of unsupervised, annotated clusters were generated from similarly constructed pseudoimages of categorical variables,

with gaussian filtering and linear interpolation. This resulted in volumes of �500x500x19 voxels, one per annotated cluster. Within

ParaView v5.11, voxel data was thresholded for isosurface extraction. Surfaces were smoothed for 1,000 iterations.

Clustering analysis & cell typing
We performed cell type annotation of the E13 embryonic mouse brain, human primary head and neck squamous cell carcinoma, and

matched healthy andmetastatic lymph node samples, by following standard practices for single-cell analysis and by using scanpy. In

the case of the metastatic lymph node, the following steps were performed on one section (#4), used to build a reference annotation

that was subsequently transferred to the remaining 18 sections. Data preprocessing involved applying unique molecular identifier

(UMI) thresholds per segmented cell (at least 250, at most 10,000), mitochondrial count filtering (at most 10% of the counts for

the mouse sample, 20% of the counts for the human sample), and retaining genes expressed in a minimum of 10 cells. In the human

primary tumor sample, we adjusted the cell filtering thresholds to at least 500, at most 10,000 UMIs per cell, and at most 15% of

mitochondrial counts per cell. Then, we normalized the raw counts per segmented cell employing the scanpy functions sc.pp.nor-

malize_total and sc.pp.log1p. Concurrently, we identified the top 2,000 highly variable genes through sc.tl.highly_variable_genes us-

ing the ‘seurat’ method. Following normalization, we performed dimensionality reduction via Principal Component Analysis (PCA) on

the normalized counts of the selected highly variable genes. The subsequent construction of a nearest neighbor graph in the PC

space, encompassing the first 30 principal components, was accomplished using sc.tl.neighbors. Then, we leveraged the

Leiden algorithm for community clustering (sc.tl.leiden). We mapped Leiden clusters to cell types by identifying marker genes via

sc.tl.rank_genes_groups, using the ‘Wilcoxon’ method, with a filter for log2FC (fold change) R 1 and Bonferroni-adjusted

p-value < 0.05. Subsequently, we visualized marker genes with sc.pl.rank_genes_groups_dotplot, normalizing expression per

gene feature (standard_scale=‘var’). We annotated cell types from Leiden clusters by incorporating these unbiased marker genes

and literature-informed markers.

For the E13 embryonic mouse head, we further clustered the cells at the forebrain, midbrain and hindbrain, separately, using the

same dimensionality reduction and community clustering approach. For this, wemanually generated three sets of cells based on their

brain location, by filtering their x-y coordinates, and excluded cells that were annotated as chondrocytes, fibroblast, endothelial,

mesenchyme, myocytes and blood. Then, clusters were annotated using literature markers. We compared our unsupervised clus-

tering and annotation to the annotation from a reference atlas of the E13 mouse brain.31 We used the scVI and scANVI models from

scvi-tools v1.0.2 to perform label transfer of the reference atlas to the segmented cells from our Open-ST dataset, using default set-

tings.77 The degree of mixing before and after integration was measured as the fraction of k-nearest neighbors (k-NN) in the embed-

ding space (scVI latent space) with different batch labels, via sklearn.neighbors.kneighbors_graph.
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For the human primary HNSCC, metastatic and healthy lymph node samples, in a secondary pipeline we refined cell type labels by

aggregating subsets of cells from different samples and performing joint annotation. This allowed us to validate the robustness of our

annotation regardless of the sample of origin. For the metastatic and lymph node samples, we aggregated cells not previously an-

notated as tumor and excluding adipocytes, which we integrated with scvi-tools v1.0.2 on raw counts of the 2,000 most variable

genes. We used the default scVI model trained for 100 epochs, with 2 hidden layers and 30 latent dimensions. Similarly, we ap-

proached tumor cell sub-clustering by consolidating tumor cells from primary and metastatic samples, followed by scVI integration

for batch correction on the 2,000 highly variable genes. Tumor labels were identified through Leiden cluster numbers. Lastly, cell type

annotations from the metastatic lymph node section 4 were transferred across the whole dataset (rest of sections) by projecting the

PCs fitted on section 4 and using a Nearest Neighbors classifier to map cluster labels, via sc.tl.ingest with default parameters.

Gene set and communication analysis
We explored gene programs and cell-cell communication within the primary HNSCC, healthy, and metastatic lymph nodes starting

from a Differential Gene Expression (DGE) analysis, by merging the samples following a pseudobulk approach. We iteratively

computed the DGE between tumor subclusters (after reclustering of tumor cells annotated as ‘tumor’, ‘keratin pearl’ or ‘proliferating’)

versus rest, using the sample of origin and binary indicator of cluster as design matrix, with pydeseq2.86 We discerned differentially

expressed genes per cell type (one versus rest) within each sample by including features with an absolute log2FC > 0.5 and an

adjusted p-value < 0.05.

Subsequently, the identified differentially expressed genes per cluster underwent Gene Set Enrichment Analysis (GSEA) using the

dc.get_gsea_df from the decoupler-py package. The Reactome pathway gene set signatures were employed, filtering for a FDR

p-value < 0.05 and retaining programs with a NES (Normalized Enrichment Score) > 1. This analysis was executed on the various

tumor cell subclusters from metastatic and primary samples, shedding light on the active pathways within unbiased clusters. We

additionally validated the localization of these programs in space through AUCell scores (implemented in decoupler-py) for the

respective signature gene sets.

Moving to spatial receptor-ligand analysis, we utilized the liana-py package, specifying a distance of 50 mmon amanually-curated

consensus database of interactions.78 Spatial hotspots were approached as non-negative factors, computed from normalized

communication scores via the decomposition.NMF function from scikit-learn, on tumor and stromal cells. The optimal number of fac-

tors was automatically selected upon the elbowmethod, with the kneed package, from the reconstruction error of the inferred factors

and the training data. Factors were literature-informed annotated based on the top ligand-receptor pairs contributing to the non-

negative factors.

Resolution analysis
Pseudoimages were generated for the E13 mouse head dataset through the 2D KDE protocol at specific ROIs. The detectable scale

of changes of transcript density was analyzed along manually selected lines, drawn to pass from tissue regions with baseline (off) to

high levels (on) of expression of a specific marker. This assesses the scale at which changes from off to on can be detected, as a

proxy for the effective resolution of the method (upper bound). Spatial density changes along the lines were measured via the meas-

ure.profile_line function from the scikit-image v0.19.3 library. Notably, for transcripts like Ttr (choroid plexus region), a line width of 10

pixels was employed, while forAtoh7 (eyemarker), a linewidth of 50 pixels was utilized. The findings of this analysis were subjected to

qualitative comparison with analogous regions from a sagittal E13.5 brain, as cataloged via in-situ hybridization in the Allen Devel-

oping Mouse Brain Atlas as of 20 December 2023, for Neurod6 (Image 2), Pbx3 (Image 2), Tubb3 (image 7), Atoh7 (image 1), Ttr (im-

age 7), Cnr1 (Image 3), Dbi (Images 1 and 4), Eomes (Image 4), Tbr1 (Image 5), Pax6 (Image 2), Shox2 (Image 8), Npy (Image 8), Six3

(Image 10), Enc1 (Images 3 and 5), Nes (Image 6), Htr2c (Image 5), Cyp26b1 (Image 6), and Foxp2 (Image 5).

Subcellular localization analysis
To study the average subcellular localization patterns of transcripts, the adult mouse hippocampus dataset, consisting of transcript

locations at�0.6 mmspots and the pairwise-aligned segmentationmask, was partitioned into a regular grid of 70x70 mmsquares. The

cellular density of all patches was assessed by computing the proportion of nuclear segmentation mask coverage over total patch

area. Patches were further categorized into three tiers: 10-15%, 15-30%, and 30-50% mask coverage, or nuclei density.

The same process was applied within each density group, for three transcript or transcript families: Malat1 (nuclear), mt-* (all mi-

tochondrially-encoded transcripts), andmt-Tt (a transcript with similar total UMIs toMalat1). A 3.5 mm extension surrounding the nu-

clear segmentation mask was enacted, and for distinct cells, distance transforms were calculated utilizing the ndimage.distance_

transform_edt function from scipy v1.10.0.73 Through a linear rescaling and inversion, these distance transform values were mapped

to the continuous [0, 2] interval, wherein 0-1 corresponds to the nuclear core and 1-2 pertains to the extended boundary. This allows

for a standardized comparison across cells. For bothMalat1 and mitochondrial transcripts, the coordinates were projected onto the

rescaled distance transform, producing the ‘‘observed’’ distributions that encapsulate the spatial behavior of the transcripts

within cells.

An "uniform" distribution was generated by shuffling the location of transcripts prior to projection to the distance transform, for later

statistical comparisons. Kernel density estimation was performed, utilizing 40 bins within the [0, 2] interval, to approximate a smooth

distribution shape. Measurements from all cells were aggregated, and an observed-to-uniform ratio was computed for each
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transcript or transcript family. These ratios were visualized within standardized cells, via polar projection of the density estimates at

each rescaled distance value, equivalent to radii of a standardized (circular) cell. As an additional validation, the histogram and kernel

density estimate of Malat1 and mt-* counts respect to the distance to nuclear edges was computed. To this end, we projected the

points into a distance-transformedmask, where zero values correspond to the nuclear edge (pixels delimiting the boundary between

nuclear segmentation and background), negative values point towards the centroid of the nucleus, and positive values diverge from

the edge to the outside of nuclei.

Crosstalk and spatial bias analysis
To evaluate the impact of spatial biases of Open-ST data on the transcriptomic profiles of identified cell types, especially in spatial

locations with high transcriptomic diversity, we quantified crosstalk in the E13 mouse head. More specifically, we examined the

biases in transcriptomic profiles of cells by the spatial biases in transcript capture by defining crosstalk as how the expression

from a cell of population a has components of cell of population b, depending on their pairwise spatial distance.We define a crosstalk

coefficient kab as the expression of markers from cell type b measured at cells a:

ka;b =

Za2

a1

HbðaÞda

where a1 and a2 are the expression (or gene set score) limits for population a, and Hb is a function that returns the amount of expres-

sion (or gene set score) for population b, measured at level a in population a.

We subset the E13 mouse head data to the cells of the clusters labeled as ‘Blood’ and ‘Fibroblast’ due to their widespread pres-

ence across the sample and their distinct marker expression, determined through unbiased clustering (detailed in the ‘Clustering’

section). We performed the following analysis on specific cell pairs using either a segmentation mask or a hexagonal grid with a

7 mm radius: first, we calculated marker gene set scores for these clusters using the scanpy function scanpy.tl.score_genes; then,

we calculated pairwise spatial distances between ‘Blood’ and ‘Fibroblast’ cells. Employing a spatial filtering criterion of a center-

to-center distance under 20 mm,we generated 2D contour plots of kernel density estimates, portraying gene set scores of ‘Fibroblast’

and ‘Blood’ markers in the x and y axes grouping the density clouds based on the label of the cells of origin. In practice, the crosstalk

coefficient kab measures the overlap of the two KDE clouds. Finally, to extend the analysis, we performed this analysis on a dataset

with simulated lateral diffusion for individual transcript coordinates, with an equivalent diffusion coefficient D= 1 mm/s2 for 100 sec-

onds, via random walk (dt = 1 s).

We start from the assumption that (segmented) cells should be unique sources of transcriptomic information in the dataset,

whose location in the transcriptomic manifold can be clustered into distinct populations or types. Within a proximity of 20 mm

or less, we observed a higher degree of mixing of cell signatures than at greater distances, suggesting the existence of local

biases in transcript capture, which may lead to unexpected gene expression patterns. Specifically, cells labeled as ‘Chondrocyte’,

characterized by markers Col2a1, Col9a1, Col11a1, Sox9 and Col9a3, often exhibited expression of markers Hbb-y, Hbb-bt, Hbb-

bs, Hba-a1 and Hba-a2 (associated with cluster ‘Blood’) when in close spatial proximity to cells annotated as ‘Blood’ (Figure S3D).

We validated our quantification of crosstalk in two ways. Simulated diffusion of transcripts resulted in the merging of distinct cell

populations, even at larger distances. Moreover, using a regular hexagonal grid as a segmentation mask led to the emergence of a

mixed state corresponding to the merging of two cells under the same spatial location (Figure S3E). In datasets with perfect seg-

mentation and no prior local biases in transcript capture, we expect to find no signal of the program A at cell b, and vice versa; that

is, a scenario comparable to scRNA-seq data. These findings emphasize that our method may encounter limitations when dealing

with closely spaced cell populations, where segmentation is more challenging and lateral diffusion can have a stronger effect.

Importantly, spatial bias can impact current dimensionality reduction and normalization approaches, as borrowed from single-

cell analyses toolboxes.63–65

Neighborhood analysis
We quantified the spatial relationships between distinct cell types in primary HNSCC and metastatic samples by studying local

cellular neighborhoods. Utilizing a Delaunay triangulation, we computed interaction graphs where two cells are connected if they

share an edge. This provided a quantitative measure of the frequency of cell type neighborhoods, that further allows to assess

the enrichment of neighborhoods via permutation tests. For this purpose, we employed the squidpy and CellCharter frameworks75,87

and binarized the asymmetric neighborhood enrichmentmatrix to keep valueswith p-value < 0.05 and relative enrichment > 0, i.e., we

ignore neighborhood depletion events.

Tumor boundary analysis
To define the boundary between the tumor mass and lymph node in the metastatic sample, we start from the radius neighborhood

graph and define edges for pairs of cells with center-to-center distance smaller than 50 mm. The value for a node is then computed as

the number of edges connecting to a cell type from the lymph node, if the node is a tumor cell, and vice versa. The set of these values
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along all nodes is the boundary strength S. To calculate the correlation of two signals in space, e.g. gene expression to a boundary,

we compute a value (I) inspired by the bivariate counterpart of Moran’s I:

I =
X
i

X
j

wijSiX
+
j

where w is the weighted adjacency matrix from the spatial graph, X+ is the query signal, and S is the boundary strength. X+ results

from setting negative values from X, the normalized and z-scored gene expression matrix, to zeroes. We analyzed the 9,000 genes

with highest mean expression, and reported the ranking of top-50 genes with highest I� values, computed as I� = 1+ðIÞ =1�ðIÞ, where

1c is an indicator function setting ones where the values fulfill the comparison term c. We computed the score of the set of top-50

genes sorted by highest I� values with scanpy.tl.score_genes and visualized it in space to validate the enrichments.

Flow cell imperfection analysis
To quantify macroscopic imperfections exceeding 2 mm, an iterative approach was employed, separately for each tile at the the top

and bottom parts of the S4 flow cell. First, a pseudoimage of the flow cell was generated by rescaling the coordinates of individual

capture areas sourced from spatial barcodes (see STARMethods section ‘‘Spatial reconstruction of barcode sequencing’’) by a fac-

tor of 0.1. This rescaling aligns consecutive spatial points to an interval of one unit length (1, 2, 3... corresponding to sequential po-

sitions), resulting in a 4430x4600 pixel image. Gaussian blurring, with a sigma of 5, was applied to the pseudoimage, followed byOtsu

thresholding. The outcome is a segmentation of space filled by barcoded spots, wherein pixel values are either 1 (presence of spatial

barcodes) or 0 (absence). By implementing this procedure, high-frequency fluctuations were suppressed, isolating larger-scale

spatial voids.

This sequence of operations was replicated for all tiles within the flow cell. Subsequently, the proportion of pixels with a value of

0 within the segmentation mask is computed against the total pixel count. This value, termed the ‘percentage of irregularities,’ char-

acterizes regions with deviations in the flow cell surface. Such irregularities may stem from diverse factors, including fiducial marks

whose contrast is enhanced following blur and thresholding.

Comparison to Xenium
We ran the segmentation and transcript aggregation with Xenium Ranger 1.7, with nuclear masks + 3.45 mm extension, equivalent to

the settings used by the Open-ST segmentation pipeline – otherwise, by default, Xenium output consists of 15 mm radial extensions

from nuclear masks. Cells with less than 50 transcripts, and genes appearing in less than 10 cells, were removed from processing.

Open-ST datasets were subset to the overlap of genes with the Xenium data (i.e., 316 for the primary HNSCC and 340 for the met-

astatic lymph node). Similarly, cells with less than 15 transcripts and 10 genes, and genes appearing in less than 5 cells were removed

from further processing. The threshold for these filterswere lower than for Xenium, as themedian amount of transcripts and genes per

cell was similarly lower (�225 in Xenium, vs�30 in subset Open-ST). Then, both Xenium and the subset Open-ST data underwent the

same normalization, dimensionality reduction, clustering and cell type annotation workflow as previously described (see STAR

Methods section ‘‘clustering analysis & cell typing’’). These were applied independently, without integration – specifically, annotation

of transcriptomic clusters was performed using literature informed marker genes, on a per-sample and per-technology basis. Sub-

clustering and marker gene analysis of tumor cells from Xenium data was run independently (i.e., without integration). Correlation of

cell types was computed as the pairwise Pearson correlation coefficients of bulk profiles for all annotated clusters. Correspondence

of ROIs between Xenium andOpen-STwas definedmanually, based on visual features and the knowledge from tissue sectioning. For

the ligand-receptor (LR) comparison, we computed total counts (sum across all cells) for the genes from the consensus database

available in liana-py v1.0.1, across the Xenium and Open-ST primary HNSCC samples. The amount of LR genes with non-back-

ground expression was estimated via the knee point of the cumulative counts of ranked LR total counts, using the kneed python

package. For the comparison of spatial patterns, Moran’s I values for all genes were computed for Xenium and Open-ST data using

squidpy v1.3.0.

Benchmarking analysis
Slide-seq, Seq-Scope and DBiT-seq data were downloaded from the Gene Expression Omnibus (accession codes: GSE197353

(sample GSM5915059), GSE169706 (sample GSM5212844, runs SRR14082753-SRR14082757), and GSE137986 (sample

GSM4364242), respectively. Visium data was downloaded from the 10x Genomics website and Stereo-seq data from the CNGB

Nucleotide Sequence Archive (experiment ID: CNX0422301).10,16,88 All barcode files were formatted to: bc \t x_pos \t y_pos. To

reduce computational costs for the Stereo-seq data the barcode file was split into chunks of 10 M barcodes each and 1.5 billion

of the 5.2 billion total reads were randomly sampled. The Seq-Scope data were downsampled to a total of 570M total reads. All data-

sets were processed using Spacemake (v0.7.3).27 Seq-Scope, Stereo-seq and Open-ST data were binned into hexagons with 7 mm

edge length, resulting in an area of 127.3 mm2 per spatial unit. To remove background signal and low quality beads cutoffs of 20, 180,

800, 5000, 200, 700, 700, 350, 600 UMIs per spatial unit were applied to Slide-seq, Seq-Scope, DBiT-seq, Visium, Stereo-seq, and

Open-ST mouse brain, healthy lymph node, metastatic lymph node, primary tumor data, respectively. A field of view with high tissue

coverage, high total UMI counts and, if possible, a moderate variance in UMI count distribution per spatial unit to account for

ll
OPEN ACCESS

e12 Cell 187, 3953–3972.e1–e13, July 25, 2024

Article



differences in e.g. cell type composition was chosen (Methods S1). Assuming sizes of 78.5 mm2, 625 mm2, 2,376 mm2 and 127.3 mm2

for Slide-seq, DBiT-seq, Visium, and Seq-Scope, Stereo-seq, Open-ST, respectively, spatial units within the field of view were

randomly sampled such that the total covered area corresponds to 1 mm2, resulting in 12,738, 1,600, 420 and 7,855 spatial units,

respectively. For each dataset, reads belonging to the sampled spatial units were extracted from the output.bam file created by

spacemake with samtools (v1.17) view -D and afterwards shuffled using samtools collate. The shuffled reads were downsampled

in steps of 4 M reads up to a maximum of 40 M. All the downsampling files were processed using the DigitalExpression function

from Drop-seq tools (v2.5.1) to obtain the genic reads and transcript numbers per barcode from the resulting summary files. These

were summed to get the total number of genic reads and transcripts in the 1 mm2 area. The total number of transcripts was divided

by 10,000 to get the average number on a 100 mm2 area. The total number of reads was computed as: total reads = total genic reads /

(1 - PhiX mapping%) / (1 - rRNAmapping%) / spatial mapping%, where PhiX, rRNA and spatial mapping%where obtained as spec-

ified in Quantification. Code to reproduce this analysis and the spacemake configuration file are provided in our repository (https://

github.com/rajewsky-lab/openst/).

Additional resources
We have set up an online resource with detailed descriptions of all experimental and computational steps: https://rajewsky-lab.

github.io/openst.

ll
OPEN ACCESS

Cell 187, 3953–3972.e1–e13, July 25, 2024 e13

Article

https://github.com/rajewsky-lab/openst/
https://github.com/rajewsky-lab/openst/
https://rajewsky-lab.github.io/openst
https://rajewsky-lab.github.io/openst


Supplemental figures

Figure S1. Open-ST: quality control and image processing, related to Figure 1

(A) A NovaSeq S4 flow cell consists of 4 lanes with a top and bottom surface, each with 6 columns (c) and 78 rows (r) per lane, totaling 3,744 tiles. Tiles are discrete

sections of the flow cell imaged during sequencing. Distance between tiles is 55.5 mm in the x and 5.3 mm in the y axis.

(legend continued on next page)
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(B) Representative example of tiles with average number of irregularities (left) and higher number of irregularities (right). Blue star: space without spots due to

fiducial markers; red arrowhead: imperfections that may result from flow cell manufacturing errors (small black dots), bubbles during sequencing (medium black

areas), or dust obstructing the imaging (large black areas).

(C) Frequency of irregularities (>2 mm) on the flow cell fc_1 from the 1st sequencing. The top flow cell surface contains fewer irregularities (CDF, cumulative density

function).

(D) Per base sequence content of 1st sequencing of fc_1. Bases 1–32 correspond to the barcodes, with drops in ‘‘A’’ or ‘‘T’’ at expected sites in sequence (B or V in

IUPAC nucleotide code).

(E) Automated electrophoresis profiles of the primary HNSCC library before and after size selection. Fluorescent units (FUs) relate to bioanalyzer input and not

total sample concentration. Peaks at 35 and 10,380 bp are the upper and lower markers.

(F) Comparison of tissue permeabilization conditions via qPCR assay (STAR Methods). Example data with two pepsin concentrations tested per tissue type:

permeabilization with higher concentration captured more mRNA.

(G) Image restoration and segmentation pipeline: raw images after stitching (upper) and restored images after applying a contrastive unpaired translation (CUT)

model (STAR Methods). Left: H&E images used as input; middle: segmentation masks generated by Cellpose 2.0; right: segmentation masks via our fine-tuned

version trained on manually annotated raw and CUT images (STAR Methods).

(H) Robustness of segmentation for different cell densities; two regions with �65% (upper) and �99% density (bottom) shown for the metastatic lymph node.

CUT-restored images (left) were segmented with our fine-tuned (FT) model (right). Each segmented cell (nucleus with a 3.5 mm extension) is depicted with a

different color. A regular lattice of hexagons (7 mm side) is overlaid onto the segmentation masks, illustrating the difference between data meshing and

segmentation.

(I) Accuracy of the spatial, pairwise alignment between staining image and barcoded spots, measured as the pairwise Euclidean distance of barcoded spot

coordinates after two independent manual selections of correspondences (STAR Methods).

(J) Benchmark of the segmentationmodels, measured as the average precision of the restoration + segmentation models at different intersection over union (IoU)

thresholds (STAR Methods).

(K) Effect of user-defined cellpose parameters (Prob., cell probability threshold; Diam., expected cell diameter; Flow, flow threshold) on the median number of

UMIs and genes per cell and % of mitochondrially encoded transcripts (mt). Parameters are indicated by the color-coded x axes (bottom). The number of

segmented cells for each parameter combination is given above the top heatmap. Different non-overlapping expansion radii (in mm) are applied after nuclear

segmentation and visualized in the y axis. The default parameters for the openst pipeline are highlighted using dotted lines (Prob., Diam., Flow) = (�1, 7, 2).

(L) Distributions of UMIs, genes, and%mitochondrial transcripts per cell for the default parameters used in the openst package. Three conditions are displayed:

after pairwise alignment of segmentation masks and spatially mapped transcripts (aligned), after applying an offset to the pairwise alignment (offset), and after

uniform shuffling of the location of all transcripts (shuffled).

(M) Qualitative assessment for the overlap of captured transcripts with respect to the cells segmented from H&E images (as nuclei + radial extension, with default

parameters). (K), (L), and (M) show data from the mouse hippocampus.
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Figure S2. Reproducibility and performance of Open-ST, related to Figure 2

(A) Reads retained across different technology datasets after discarding those aligning to PhiX and rRNA, multi-mappers, reads not associated with a spatial

barcode, and removing PCR duplicates. Coloring as in (F).

(B) Percentage of spatial barcodes with captured transcripts relative to the area covered by cells at non-overlapping �5,000 mm2 square regions. Diagonal

dashed line: y = x; horizontal dashed line: ymax across the dataset. Color gradient shows point density.

(C) Left: stacked barplot of input reads filtered out during two-stage alignment against PhiX and human rRNA, and summarized STARmapping statistics from the

remaining reads, for the E13mouse brain dataset (replicate 1); right: distribution of tags assigned to uniquelymapped reads—a single readmay containmore than

one tag (these are later quantified as ambiguous) (STAR Methods).

(D) Percentage of total unique molecular identifiers (UMIs) per segmented cell accounting for several gene sets: top n genes by total UMIs, mitochondrially

encoded transcripts (mt-*), and ribosomal protein transcripts (Rps*/Rpl*).

(E) Transcriptomic information measured as the observed/uniform ratio of cells expressing a gene, over the total UMIs of that gene across cells.

(F) Library complexity measured as reads/UMIs ratio over number of genic reads across samples.

(legend continued on next page)
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(G and H) Distribution of UMIs/pseudo-cell (100 mm2) over total reads per mm2 for the two biological replicates of the E13 head sample (G) and over spatially

mapped reads for all 19 sections of the metastatic lymph node sample (H).

(I) Distribution of UMIs and genes captured per segmented cell, as well as%UMIs mapping to the mitochondrial genome, across all 19 sections of the metastatic

lymph node.

(J) Left: % reads mapping to rRNA after excluding PhiX-mapping reads; right: % reads uniquely mapping to the genome after excluding rRNA-mapping reads.

Data shown across all 19 sections of the metastatic lymph node.

(K) Stacked 3D rendering of H&E images before (top) and after global alignment with STIM (bottom).
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Figure S3. Localized transcript capture yields accurate annotation of mouse head cell types, related to Figure 3

(A) Uniform manifold approximation and projection (UMAP) visualization of the E13 mouse head clusters.

(B) Normalized expression of selected marker genes across the annotated Leiden clusters of the mouse E13 head.

(C) Distributions of UMIs, % of mitochondria-encoded transcripts, and genes per segmented cell for the mouse E13 head.

(D) Crosstalk analysis between blood and fibroblast clusters. Left, top: sketch of two cell types (a: circle, b: square) with their expression of marker genes in space

(gene Y: orange, gene X: blue), alongside dashed outlines indicating cell segmentation. Left, bottom:measurement of gene expression of X and Y, in cells of types

(legend continued on next page)
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a and b. Right: quantifications of the blood and fibroblast marker gene sets at cells. From left to right, cells are delimited via a regular grid (hexagons of 7 mm side)

or via nuclear segmentationmasks with radial extension. Additionally, lateral diffusion of transcripts is simulated and grouped into the same segmentationmasks.

Measurements focus on cells with neighboring blood or fibroblast cells at less (top) or more (bottom) than 20 mm center-to-center distance (STAR Methods).

(E) A region of the E13 mouse head with blood and ‘‘chondrocyte’’ cells in close proximity on the H&E staining with the segmentation mask outline (top) and the

expression of marker gene sets in space (bottom). Cells clustered as blood but with low expression of blood and high expression of chondrocyte markers are

indicated as ‘‘ambiguous.’’

(F) UMAP for the subset of fibroblast cells. From top to bottom, gene set scores for fibroblast markers, distance of cells to the nearest cell classified as blood in

space, and gene set score of blood markers.

(G) Linear intensity profile of Ttr and Atoh7 transcript density across selected tissue regions indicated by lines in Figure 3F Local maxima and minima used for

distance measurement are depicted by the vertical dotted lines. Proportion of area under the curve within tissue boundaries (green) is given (STAR Methods).

(H) Distributions of UMI, gene, and read counts per segmented cell in a coronal section of the adult mouse hippocampus hemisphere (left) and the relative

distribution of UMIs corresponding to mitochondria-encoded or ribosomal proteins (right).

(I) Outline of the method for mapping and counting spatial UMIs at a standardized (circular) cell.

(J) Observed over uniform UMI per radius (nradii = 40) at two cellular densities, for Malat1, all mitochondrially encoded transcripts, and mt-Tt (STAR Methods).

(K) Distribution of UMI counts with respect to the nuclear edge. Left: spatial distribution of UMIs for Malat1, mt-Tt, and all mitochondria-encoded transcripts.

Right: distribution profile after applying a two-dimensional offset of 5 mm to the pairwise-aligned spatial coordinates. Negative distances correspond to space

within the nucleus (STAR Methods).
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(legend on next page)
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Figure S4. Marker gene localization in E13 murine brain regions and reproducibility on independent biological replicate, related to Figure 3
(A) Normalized expression of selectedmarker genes of the E13mouse forebrain in the segmented cells of theOpen-ST data (red, top) and in the cells from the E13

reference atlas (blue, bottom), grouped by the labels in the published atlas (STAR Methods).31

(B) Normalized expression of selected marker genes of the E13 mouse forebrain subclusters, grouped by the cluster annotation labels. Genes shown in (C) are

indicated in bold.

(C) Localized capture of selected marker genes in the E13 mouse forebrain profiled with Open-ST (top) compared with in situ hybridization images of the E13.5

mouse from the Allen Developing Mouse Brain Atlas (bottom). High expression is colored in green (black) for Open-ST (Allen Atlas).

(D) Spatial distribution of E13 mouse midbrain subclusters (top) and corresponding region with annotation of morphological regions from the Allen Developing

Mouse Brain Atlas (bottom).

(E and F) As in (B) and (C), but for the midbrain.

(G–I) As in (D)–(F), but for the hindbrain.

(J) Clustering and annotation of segmented cells of an independently Open-ST processed biological replicate of the E13 mouse head (sample 2; sample 1 was

introduced in Figures 2 and 3). Left: distributions of the number of UMIs and genes per segmented cell. Center: spatial distribution of clusters overlaid on the H&E

of the tissue. Forebrain (f) and hindbrain (h) locations are indicated by the boxes. Right: top-1 marker per cell type.

(K) Integration of the two E13 mouse head samples with scvi, using the sample of origin as batch label (see STAR Methods). Left top: uniform manifold

approximation and projection (UMAP) computed from scvi embeddings, colored by sample of origin. Left bottom: sample mixing in latent space (before: 30D

principal components [PCs] of both samples; after: 30D scvi embeddings). Right: localization of specific transcriptomic clusters in the joint embedding. RetPr,

retinal progenitors; ChP, choroid plexus; IntPro, intermediate progenitors; NeuPro, neural progenitors.

ll
OPEN ACCESS Article



(legend on next page)
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Figure S5. Transcriptomic clusters are consistent with pathologist’s annotation, related to Figure 4

(A–C) Normalized expression of selected marker genes (top) and neighborhood enrichment (bottom) across the annotated Leiden clusters of the primary HNSCC

(A), the healthy lymph node (B), and the metastatic lymph node (C).

(D) Left: pathologist’s manual annotation of tissue domains superimposed on the H&E image of the HNSCC section. Right: relative abundance of Open-ST

transcriptomic clusters at manually annotated areas. Values are normalized per column.

(E) Spatial distribution of gene expression in the primary HNSCC section. Representative gene markers depict the molecular landscape of distinct tissue regions.

Visualized as a merged representation of intensity channels, the coexpression of genes manifests as a ‘‘sum’’ of different colors (white) (STAR Methods).

Pseudoimages show the smoothened expression of the indicated marker genes at cellular resolution (STAR Methods).

(F) As in (D), but in the healthy lymph node.

(G) As in (E), but in the healthy lymph node.

(H) As in (D), but in the metastatic lymph node section 4.

(I) As in (E), but in the metastatic lymph node section 4. Prolif, proliferating; KP, keratin pearl; NeuR, neutrophil-recruiting; Epi, epithelial; CAM, cancer-associated

macrophage; Macro, macrophage; Endo, endothelial; CAF, cancer-associated fibroblast; GC, germinal center; Fibro, fibroblast; Cyto, cytotoxic T cell; M1, M1

macrophage; Fibro, fibroblast; Endo, endothelial; Adipo, adipocyte.
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Figure S6. Tumor subclusters are linked to distinct spatial activity of gene programs, related to Figure 5

(A) Normalized expression of selected marker genes across the annotated Leiden clusters of tumor cells in the primary HNSCC (red) and the metastatic lymph

node (blue).

(B) Top five reactome pathways sorted by normalized enrichment score per subclusters of the primary andmetastatic HNSCC tumor cells, with NES > 1 and FDR-

adjusted p value < 0.05 (STAR Methods).

(C) Top hallmark pathways sorted by normalized enrichment score per subclusters of the primary and metastatic HNSCC tumor cells (STAR Methods).

(D) Spatial activity of reactome programs in the primary tissue, depicted as AUCell Z scores higher than 2 (STAR Methods).44

(E) As in (D), but for the metastatic lymph node tissue.

(F) Gene expression enrichment in cells located at the tumor-immune boundary of metastatic lymph node section 4. Left: the defined boundary at the lymph node

side (STAR Methods); center: aggregated expression score of the top-50 genes, sorted by boundary enrichment values (I*); right: sorted rank of boundary

enrichment values, across the 9,000 genes with the highest mean expression.

(G) As in (F), but for cells residing in the tumor side of the tumor-immune boundary.
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(legend on next page)
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Figure S7. Dissecting the multimodal 3D virtual tissue block, related to Figure 7
(A) 3D rendering of tumor, stromal, and immune clusters as smooth surfaces overlaid on the virtual tissue block. Remaining clusters are shown as skeletal

representation (wireframe) in the background.

(B) Cell type composition across the 19 sections of the metastatic lymph node.

(C) Tissue domains of a section as identified by Open-ST (left) and manually annotated by the pathologist, superimposed on H&E image (right). Open-ST clusters

were merged for comparing to pathologist-annotated domains: carcinoma (tumor), strongly keratinizing (keratin pearl), stroma (CAF, CAM), healthy lymphatic

(T cells, IgA/IgG plasma cells, macrophages, endothelial, germinal center, Mast cells, cytotoxic T cell, and CCL21-expressing), lymph node capsule (fibroblasts),

adipose (adipocytes).

(D) Correlation of gene expression between section 4 and section 35 for cell type markers, illustrating the relationship of mean gene expression levels (depth-

corrected and log-normalized) across cells of spatially distant sections. Diagonal dashed line: y = x.

(E) Sample mixing in latent space, expressed as the fraction of neighbors in the k-NN graph (of PCs) that have different section identifiers—values closer to 1

indicate better mixing. Before: 50D PCA computed jointly for all samples; after: 50D PCA computed on section 4, then projected to the rest of sections (STAR

Methods).

(F) Two clipping planes orthogonal to the cutting direction (a, b) taken from the staining channel, used to project gene set activity and gene expression.

(G) Spatial activity of the G2M checkpoint and hypoxia hallmark gene sets, quantified per segmented cell with AUCell and visualized as smoothed volumetric

renderings.44 Tumor surface is shown as a skeletal representation (wireframe) in gray.

(H) Comparison of Open-ST to immunofluorescence staining of a consecutive, 10 mm-thick section (IF section #1, aligned onto Open-ST section #2). Arrowheads

indicate necrotic areas in the tissue showing discordant mRNA and protein levels.

(I) Close-up views of two ROIs, indicated in (H) with white rectangles, for a region with an endothelial venule (left) and a region containing tumor and lymph node

tissues (right). Scale bars: 100 mm. Macro, macrophage; Endo, endothelial; CAM, cancer-associated macrophage; CAF, cancer-associated fibroblast; GC,

germinal center; Fibro, fibroblast; Cyto, cytotoxic; M1, M1macrophage; Fibro, fibroblast; Endo, endothelial. Keratins: combined expression of KRT1/2/3/4/5/6A/

6B/7/8/10/14/15/16/19.
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