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Abstract: Opioids are widely used in cancer and non-cancer pain management. However, many
transporters at the blood–brain barrier (BBB), such as P-glycoprotein (P-gp, ABCB1/MDR1), may
impair their delivery to the brain, thus leading to opioid tolerance. Nonetheless, opioids may regulate
P-gp expression, thus altering the transport of other compounds, namely chemotherapeutic agents,
resulting in pharmacoresistance. Other kinds of painkillers (e.g., acetaminophen, dexamethasone)
and adjuvant drugs used for neuropathic pain may act as P-gp substrates and modulate its expression,
thus making pain management challenging. Inflammatory conditions are also believed to upregulate
P-gp. The role of P-gp in drug–drug interactions is currently under investigation, since many
P-gp substrates may also act as substrates for the cytochrome P450 enzymes, which metabolize a
wide range of xenobiotics and endobiotics. Genetic variability of the ABCB1/MDR1 gene may be
accountable for inter-individual variation in opioid-induced analgesia. P-gp also plays a role in the
management of opioid-induced adverse effects, such as constipation. Peripherally acting mu-opioid
receptors antagonists (PAMORAs), such as naloxegol and naldemedine, are substrates of P-gp, which
prevent their penetration in the central nervous system. In our review, we explore the interactions
between P-gp and opioidergic drugs, with their implications in clinical practice.

Keywords: P-glycoprotein; opioids; chronic pain; drug-drug interactions; PAMORAs; neuropathic
pain; blood brain barrier; ATP-binding cassettes; polymorphisms; inflammation

1. Introduction

Opioids still represent the cornerstone of chronic pain management; however, as pain
is a multidimensional experience, different factors may make pain management difficult,
particularly in patients with cancer [1]. Drug–drug interactions represent one of the main
difficulties in optimizing analgesia in patients with comorbidities and under polypharmacy,
therefore accurate knowledge of the pharmacokinetics of analgesics is a key point for
therapy personalization [2]. In the last few years, the importance of the interaction between
mu-opioid receptor (MOR) agonists and P-glycoprotein (P-gp), as an efflux protein limiting
access through the blood–brain barrier (BBB), has been an interesting topic of research
in terms of analgesic activity and innovative strategies for managing opioid-related side
effects. Many central nervous system (CNS) drugs, currently used by cancer pain patients,
have some affinity for P-gp, such as certain anticancer drugs, antidepressants, and HIV-
protease inhibitors. This review focuses on pre-clinical and clinical evidence on the role of
P-gp substrate activity of clinically relevant MOR agonists and antagonists.
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2. What Is P-gp?

The BBB works as an interface between blood and the brain, protecting the CNS from
pathogens, toxins, injury, and diseases [3]. The non-fenestrated endothelium of the BBB is
made of transmembrane proteins [4], creating tight junctions and thus restricting paracel-
lular movement [5]. Hence, most compounds reach the brain via the trans-cellular route,
while only lipophilic molecules can cross the endothelium via mere passive diffusion [6].
Moreover, endothelial cells are interconnected by adherens junctions and surrounded by
pericytes, astrocytes, microglia, neurons and the extracellular matrix, with all these ele-
ments contributing to creating the so-called “neurovascular unit” (NVU) [4,5]. Among all
transporters distributed along the BBB, ATP-binding cassettes (ABCs) are widely expressed
on endothelial cells and in the luminal plasma membrane of brain parenchyma, and are
responsible for transporting many different compounds [3]. P-gp is the most expressed
ABC transporter in the BBB, both in humans and in mice [7].

P-gp, the encoded product of the multidrug-resistance gene 1 (MDR1), is a 170 kDa [8]
N-glycosylated membrane protein, made of 1280 amino acids, with two halves connected
by a flexible linker and with a 65% sequence homology. Each half contains a transmembrane
domain (TMD) and a nucleotide-binding domain (NBD), the latter lying on the cytosolic
side of the cell membrane [9,10]. The two TMDs form a 6000 Å cavity, big enough for P-gp
to bind to numerous substrates concomitantly [9]. Each TMD contains six transmembrane
helices [8,11], which are connected by extracellular loops (ELs) in the periplasm and
intracellular helices (IHs), also called intracellular loops (ICLs), in the cytoplasm [12]. Each
of the two NBDs is made of a highly-conserved sequence, comprising the Walker A and
Walker B motifs, the A-, Q-, and H-loops for one NBD, and the D-loop and signature
consensus sequence (C motif) LSGGQ for the other NBD [12,13]. According to the “ATP-
switch model”, the two NBDs bind to ATP via rotational and translational movements,
and consequently dimerize, resulting in an “ATP-sandwich structure”, while the TMDs
turn outwards via reorientation of the TM helices, in order to expose and unidirectionally
extrude the substrate to the extracellular compartment. After that, ATP hydrolysis forces
the NBDs to dissociate, so that the TMDs can flip inwards again [12]. Based on the
spatial conformation of the NBDs, three general conformations of P-gp are possible: in the
“closed” conformation, the NBDs bind and hydrolyze ATP, and the cavity is exposed to
the extracellular space, where substrates are accessible; conversely, the cavity turns to the
cytosol and the NBDs separate in the “open” conformation, when ligands are not present
or act as P-gp inhibitors. When ATP is available but there are no ligands, P-gp is in an
intermediate conformation between the outward- and the inward-facing states [9]. P-gp
uses a twist-and-squeeze mechanism to export hydrophobic drugs out of cells. When a
hydrophobic substrate enters the inner cavity, through the gate open to the inner leaflet
of the membrane, it is attracted at the top of the cavity, where it binds to the aromatic
hydrophobic networks and triggers the conformational change from the inward-open to
the outward-open state [14]. P-gp works as a lipid flippase, shuttling cholesterol and
phospholipids from the inner to the outer leaflet of the cell membrane [15].

Besides being expressed on the plasma membrane (PM) of different cell types, P-gp
is also detectable in intracellular compartments, namely the nucleus, the endoplasmic
reticulum (ER) and the Golgi, where the protein itself is first synthesized and then modified.
P-gp is synthesized as a coreglycosylated compound with a 150 kDa molecular weight and
is associated with chaperons such as heat shock cognate 71 kDa protein (Hsc70) and cal-
nexin [10]. Successive transfer outside the nucleus may be cargo or Hsc70-dependent [16].
After being folded in the ER, the intermediate protein is additionally glycosylated in the
Golgi, thus resulting in the final 170 kDa form [10]. Glycosylation seems to be necessary for
P-gp to be transported to the membrane, rather than for its efflux activity [5]; nonetheless,
glycosylated P-gp is able to extrude chemotherapeutic drugs when located on the nucleus
membrane, thus resulting in resistance to chemotherapy [16]. Intracellular trafficking
between different compartments and recycling of P-gp occurs through endosomes and
vesicles and was found to be Early Endosome Antigen 1 (EEA1) or Ras-associated bind-
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ing protein (Rab)-mediated in different cell types [10,16]. Whether P-gp is expressed in
mitochondria has been quite a controversial matter: P-gp may pump compounds out of
mitochondria as a protective system or into them in order to sequester toxic molecules.
While some authors claim that detection of P-gp in these organelles derives from plasma
membrane contamination [17], other studies have assessed its presence, especially after
exposure to oxidative stress [18], and its activity has been associated with chemotherapy
resistance in tumor cell models [19]. Furthermore, P-gp is detectable in lysosomes, where
it gets degraded. P-gp may also be eliminated through ubiquitination and successive
removal in proteasomes, especially if it leaves the ER in a misfolded or non-glycosylated
form. However, exposure to P-gp substrates and its phosphorylation by kinases may
preserve it from being degraded [5,10]: in fact, mature P-gp on the plasma membrane (PM)
is phosphorylated on the linker between its two halves [5].

As an ABC, P-gp is able to transport many different molecules against their con-
centration gradient via ATP hydrolysis from the BBB endothelium back to the systemic
circulation [8,20]. This unidirectional transport [21] limits the cell uptake, distribution,
bioavailability [22] and accumulation of many compounds within the brain, including
potentially toxic xenobiotics. In cancer cells, however, P-gp expressed in the lysosomal
membrane may sequester chemotherapeutics, resulting in drug resistance. This P-gp-
mediated lysosomal drug trapping has been recognized as a second-line defence in brain
capillary endothelial cells. These complexes of substrate/lysosomal P-gp are exposed at
the apical side of the cell membrane and undergo phagocytosis by neutrophils [23].

There are no data about P-gp being expressed in brain cells other than the BBB
endothelium. Nonetheless, it has been found to co-localize with glial fibrillary acidic protein,
which is expressed in astrocytes [8], and it may be present on pericyte processes reaching
endothelial cells [16]. Other than in the BBB, P-gp is expressed in the lungs [24], adrenal
glands [25], placenta and fetal membranes [26], as well as other organs with excretory
functions, such as bile and pancreatic ductules, and kidney proximal tubules, thus allowing
the secretion of metabolites and xenobiotics into the bile and urine, respectively [8,22].
In the intestine, P-gp is distributed according to an expression gradient: negligible or
very low expression in the first part of small intestine (duodenum and proximal jejunum)
and high expression in the distal tract of ileum and colon. In the small intestine, P-gp is
mainly located in the brush border surface of enterocytes where it acts as a barrier against
exogenous compounds. This implies that the impact of P-gp on oral bioavailability may also
depend on the site of drug absorption [27,28]. P-gp may limit the bioavailability of many
substrates, by pumping them out of the enterocytes into the lumen, thereby prolonging
their exposure to CYP3A4 [29]. Since transport activity of P-gp in the intestinal lumen
becomes saturated by high drug concentrations, its impact is minimum for drugs with rapid
absorption and requiring high dosages. On the other hand, P-gp considerably hampers
absorption of drugs requiring low doses or with slow diffusion rates [22]. Recent efforts
have focused on developing lipid-based formulations for oral drugs, such as liposomes,
complexes, water-soluble prodrugs, and salts, designed to rapidly dissolve in the stomach
and maintain a supersaturated state in the duodenum for an extended time, thus increasing
lymphatic absorption and/or passive diffusion [30].

An approximate 10-fold inter-individual variability exists in intestinal P-gp expression.
Different disease states are associated with altered intestinal P-gp expression and function,
such as hepatic and renal failure, diarrhea, colorectal carcinoma, inflammatory bowel dis-
ease (IBD), organ transplants, ischemia/reperfusion, and obesity. Pathological conditions
and endogenous inhibitors, such as uremic toxins and bilirubin, may hamper P-gp function,
and thus the latter does not always correlate with mRNA levels. P-gp function displays
a daily rhythm, which is not affected by sleep, but is probably influenced by neurotrans-
mitters, cytokines, and hormones [31]. Drug daily dosing time and formulations may alter
P-gp expression: for instance, drugs taken in the evening may have lower bioavailability.
Thus, personalized therapies are warranted [32].
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The mechanism of action of P-gp is still not perfectly established: two models have
been proposed. The first one refers to P-gp as an “hydrophobic vacuum cleaner”, carrying
its substrates from the lipid bilayer to the external aqueous medium. Conversely, according
to the “flippase model”, P-gp is able to flip its substrates from the inner to the outer leaflet
of the lipid bilayer of the plasma membrane or into the extracellular milieu [8,33].

Both endogenous (namely steroid hormones such as corticosteroids, bilirubin, cy-
tokines, peptides) and exogenous (e.g., drugs, such as vinca alkaloids, anthracyclines,
digoxins, opioids and so on) compounds are P-gp substrates. P-gp substrates are generally
amphipatic [5,7,8,22], positively charged at physiological pH [8] and with a molecular
weight ranging from 250 to 1202 g/mol [22]. Aromatic and hydrophobic interactions are
crucial for substrate binding to P-gp, with van der Waals and hydrophobic residues such
as phenylalanine being the main contributors [34]. P-gp substrates generally have an
efflux ratio higher than 1.5, this value decreasing to 1 when P-gp is inhibited, and their
distribution is enhanced in P-gp deficient/knockout animals; they usually upregulate P-gp
when administrated continuously [33,35].

2.1. P-gp Regulation

P-gp may be upregulated in certain pathological conditions, and/or as a consequence
of prolonged exposure to xenobiotics, including drugs. Rifampin is recognized as the most
potent P-gp inducer, with an approximate 20–67% reduction in P-gp substrate exposure,
while other inducers cause a 12 to 42% reduction [36].

Multidrug resistance is still one the main problems for cancer treatment, since many
chemotherapeutic agents are P-gp substrates and P-gp is overexpressed in cancer cells,
hampering the internalization and leading to resistance to chemotherapeutic drugs; hence,
recent research has focused on developing P-gp inhibitors [37].

P-gp is also upregulated in several neurological disorders, such as Parkinson’s dis-
ease [38], Alzheimer’s disease [39], amyotrophic lateral sclerosis (ALS) [40], and epilepsy.
Many antiepileptic drugs (AEDs) are P-gp substrates, and their repeated administration
leads to P-gp upregulation, thus resulting in drug resistance [41]. Recent clinical trials
suggest the use of cannabinoids in refractory epilepsy, although the possible mechanism
of action is still unclear [42]. In cultured vascular endothelial cells, cannabidiol has been
shown to inhibit the efflux of the P-gp dependent rhodamine-123, similarly to the P-gp
inhibitor tariquidar [43].

Treatment of infectious conditions may fail since antimicrobials are P-gp substrates:
coadministration with P-gp inhibitors may be a solution to reduce the minimum inhibitory
concentrations (MICs) of antimicrobials and increase the susceptibility of microorganisms
towards antimicrobial drugs [22]. P-gp overexpression may also complicate antiretroviral
therapies (ARTs), since many antiretrovirals (ARVs), such as protease inhibitors (PIs), non-
nucleoside reverse transcriptase inhibitors (NNRTIs), and nucleoside/nucleotide reverse
transcriptase inhibitors (NRTIs/NtRTIs), are P-gp substrates and may also enhance its
expression [44,45]. P-gp regulation by PIs may be cell-type-dependent and “biphasic”:
ritonavir caused an initial 2.8-fold increase in fexofenadine (a P-gp substrate) area under the
curve (AUC) in vivo, while this became lower after 2 weeks in the steady state, stabilizing
at a 1.4-fold increase. These results are unlikely due to effects on CYP3A4 and renal P-gp,
while they are more probably due to P-gp affecting enterocytes and the canalicular side of
hepatocytes. Similar results were obtained with verapamil and lopinavir/ritonavir towards
fexofenadine AUC and are attributed to a mild P-gp induction in the steady state [46]. When
co-administrated, PIs may have different effects on P-gp, either inhibiting or increasing
it [45]. Since HIV is among the infectious complications of intravenous drugs use (IDU),
and with the rise of the “opioid epidemic”, ARVs may often be administrated alongside
methadone for OUD maintenance therapy [47], either leading to opioid withdrawal and/or
a change in drug plasma concentrations [45].

Similarly, when opioids are administrated for chronic pain management, P-gp upregu-
lation was found to play a role in opioid tolerance development [3].
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2.2. P-gp Inhibition

Inhibiting or “by-passing” P-gp may be a valid therapeutic strategy in many clinical
conditions [48]. However, use of known P-gp inhibitors is associated with high risk of
infection and systemic toxicity, with possible fatal outcomes [4,49]. Nowadays, no P-gp
inhibitors have been approved for clinical use [50].

Inhibiting P-gp may significantly increase the amount of drugs available in the CNS.
Mdr1a (−/−) knockout mice have been shown to have higher brain levels of several drugs
(digoxin, vinblastine, cyclosporine A) [51], supporting the hypothesis that the transport of
P-gp substrates to the brain is enhanced in case of P-gp deficiency/absence [7].

P-gp can be inhibited by blocking the drug binding site either competitively, non-
competitively, or allosterically [22], as well as by interfering with ATP hydrolysis and
ATP-dependent thermostabilization of P-gp [52]. Since most P-gp inhibitors are also P-gp
substrates, specific compounds should be created with large molecular differences from
therapeutic drugs, so that P-gp shall be able to discriminate between these two compounds.

P-gp inhibitors can be classified into four generations, based on their selectivity,
potency, and drug–drug interaction (DDI) potential [50].

First generation inhibitors include cyclosporine A, quinidine, verapamil (VRP), and
tamoxifen. Since their affinity for P-gp is low, they only inhibit P-gp when administrated
at doses much higher than the therapeutic ones, with consequent high risk for toxicity
and DDIs. Second-generation compounds, namely PSC833 (valspodar) and (R)-verapamil,
have been derived from structural modifications of first-generation inhibitors, and showed
greater affinity to P-gp; still, pharmacokinetic interactions via cytochrome P450 enzymes
and/or ABC transporters were detected. Third-generation inhibitors with high affinity
and potency have been developed, including laniquidar (R101933), tariquidar (XR9576),
zosuquidar (LY335979), encequidar (HM30181), and elacridar (GF120918) [22,50]. However,
these compounds display toxicity and scant clinical benefits. Finally, fourth-generation
inhibitors have been developed, including: (1) peptidomimetics; (2) molecules isolated
from natural sources, and their derivatives (i.e., polyphenols, coumarins, terpenoids);
(3) “dual” ligands, which are able to inhibit both P-gp and other targets, such as tyrosine
kinase inhibitors (TKIs) [50,53]. Other molecules, namely A3 adenosine receptor agonists,
have been developed as treatment options for specific conditions, e.g., cancer, chronic pain,
and immune disorders, and they coincidently also inhibit P-gp [13]. Ideal P-gp inhibitors
shall be able to selectively counteract it in pathological circumstances, while maintaining its
basal activity under normal conditions, in order to eject pathogens and toxic compound out
of the CNS [16]. Recent literature has focused on the role of nanocarriers [54,55] and small
interfering RNA (siRNA) [56,57] in P-gp inhibition. Moreover, inducing structural changes
in the lipid composition of plasma membranes, they may impact P-gp conformation and
activity [58,59]. Monoclonal antibodies against P-gp/MDR1, namely MRK-16, MRK-17,
IUC2, 4E3 [22,60], and conjugated antibodies [61,62], have been investigated to overcome
drug resistance. Modulating P-gp synthesis and regulatory pathways or keeping P-gp
bound to caveolar proteins may avoid monomers becoming liberated and active. Forc-
ing intracellular accumulation of inactive P-gp by inhibiting its maturation could be an
alternative [10,63,64].

2.3. P-gp and Pain/Inflammation

Λ-Carrageenan (CG)-induced hindpaw inflammation is a useful rat model of localized
inflammatory pain and thermal hyperalgesia, which can be used to elucidate the impact
of peripheral inflammatory pain (PIP) on P-gp expression and activity [64], mainly via
post-transcriptional phenomena [16].

Normally, P-gp is located in caveolae throughout the PM of endothelial cells, along-
side caveolin1 (CAV-1), polymerase 1 and transcript release factor (PTRF/cavin1), serum
deprivation response protein (SDPR/cavin2), and protein kinase C delta binding protein
(PRKCDBP/cavin3), all contributing to the regulation of signaling pathways and protein
trafficking [63]. The N-terminal portion of P-gp contains CAV1-binding motif. When
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CAV-1, which is a key trafficking protein, binds to P-gp, this is negatively regulated, as
CAV-1 facilitates the sequestration of P-gp as a high-molecular-weight (>250 kDa), disulfide-
bonded complex. The interaction between P-gp and CAV-1 is enhanced by tyrosine-14-
phosphorylation of CAV-1 and negatively regulates P-gp [65].

Inflammatory conditions and PIP-induced CAV1 phosphorylation on tyrosine-14 and
a reduction in disulphide-bond complexes, with consequent dynamic redistribution of P-gp
between subcellular compartments, especially from the nucleus towards lower density and
cholesterol-rich membrane sections, lead to a nearly 40% P-gp activity enhancement [63,64].
In summary, peripheral inflammatory hyperalgesia promotes significant changes in the P-
glycoprotein trafficking at the BBB, leading to a pathological increase in the P-gp expression,
which could affect the efficacy of drugs that need to enter the CNS to perform their
therapeutic effect.

Not only do inflammatory acute conditions upregulate P-gp, but they also induce
other extensive changes in the structure of the BBB, for instance by altering expression
of occludins, claudins, and zonula occludens-1 (ZO-1) [3,66]. Whether inflammatory
acute pain also affects the integrity of the blood–spinal cord barrier (BSCB) is still un-
clear. Interestingly, perineural administration of local anesthetics, such as bupivacaine
0.75%, in the lambda-carrageenan PIP model, was shown to prevent the aforementioned
structural changes in the BBB and to significantly reduce thermal allodynia [67]. These
observations suggest a possible role of nociceptive signaling for the alteration of BBB under
inflammatory conditions.

The non-steroidal anti-inflammatory drug (NSAID) diclofenac was associated with
P-gp overexpression at the BBB in a λ-carrageenan-induced PIP rat model, thus hampering
morphine intake to the brain, when this opioidergic drug was administrated 3 h after
diclofenac exposure. Conversely, morphine-induced antinociception was not hindered
when both drugs were administrated simultaneously. Similar findings were detected in
Caco-2 human intestinal cells. Diclofenac may regulate P-gp through at least two mecha-
nisms. Diclofenac is a well-known COX-2 enzyme inhibitor, thus it reduces prostaglandins
levels and shifts towards lipoxygenase-mediated production of leukotrienes, which are
able to promote P-gp expression after binding to their nuclear receptors [68]. Moreover,
diclofenac may induce overexpression of TNF-α, which, by binding to TNF receptor
1 (TNF-R1), increases the production of endothelin-1 (ET-1). ET-1, by binding to ETB
receptor, activates protein kinase C (PKC) and nitric-oxide synthase (NOS) enzymes and
eventually increases the transcription nuclear factor NF-κB, which was found to act on
the BBB as a protector against brain damage (e.g., hypoxia, stroke) and toxicity [69] and
may promote MDR1 transcription through the PGE2-EP1-PI3K/Akt pathway [70]. The
activation of this signaling cascade was associated with higher P-gp expression 6 h after
exposure to TNF-α or ET-1; conversely, when different steps of this pathway were blocked
or inhibited, Pgp upregulation was avoided or reverted [69].

The activation of other signaling pathways, namely the glucocorticoid receptor (GR),
constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR), and pregnane
R receptor (PXR), leads to P-gp upregulation via enhanced nuclear transcription of the
MDR1 gene [3,7,71]. Administration of different substrates of these receptors, including
both natural compounds and drugs [72,73], led to increased P-gp activity in a time- and
dose-dependent, reversible manner in animal models [20,74].

Moreover, MDR1 mRNA and P-gp protein expression were found to be enhanced after
1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]-mediated activation of the vitamin D receptor
(VDR) [75]. Osteoporosis is widely recognized as a cause of chronic skeletal pain, especially
when bone fractures occur, often resulting in the need for strong analgesic prescription [76],
presumably alongside vitamin D replacement. If vitamin D does upregulate P-gp, then
tolerance to opioids may occur, potentially forcing physicians to increase opioid dosage.
Several in vitro and in vivo studies in the last years have pointed out that opioids them-
selves may hamper bone formation and healing with a dose-dependent pattern [77]. Even
though data on this matter are still quite controversial, maintaining opioid doses as low as
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possible throughout the duration of the therapy is unanimously acknowledged as the best
way to avoid opioid-related adverse effects [78].

2.4. P-gp Polymorphisms

Genetic variants of the MDR1 gene may alter the expression and/or activity of P-
gp [3], thus interfering with the absorption, distribution and excretion of P-gp substrates [8].
Thirty-eight single nucleotide polymorphisms (SNPs) on the coding region of ABCB1
have been reported: the C3435T on exon 26 (rs1045642) [11,79], G2677T (rs2032582) on
exon 21 [11,45], and C1236T (rs1128503) on exon 12 [11] are the most common and most
studied variants until now, with diverse allelic frequencies in different populations [11,79].
Low-haplotype diversity was observed in Caucasians. A haplotype containing the subset
1236T-2677T-3435T is highly represented among non-African populations, while the sub-
haplotype 1236C-2677G-3435C is common in African-American populations. The three
most common SNPs in the ABCB1 gene are well represented both in Caucasians and
Ashkenazi Jewish. Frequency of the 3435T allele in Ashkenazi, Yemenite, North American
and Mediterranean Jewish populations is similar; the 3435T allele is more frequent in
near Eastern Jews [11]. The 3435G allele is associated with higher P-gp mRNA levels in
human enterocytes, while 3435TT carriers have a 2-fold reduced expression of duodenal
P-gp [11,45]. A haplotype with the promoter SNP 129T > C (rs3213619) was correlated
with high levels of P-gp expression and its increased activity, independent of 3435C > T.
Variants 1236T, 2677T and 3435T lowered P-gp activity in vitro in a substrate-specific
manner [11]. P-gp co-localizes with CYP3A4 in enterocytes, and both were found to be
induced after xenobiotic exposure. Moreover, MDR1 2677TT carriers had higher CYP3A4
expression [45]. P-gp and CYP3A4 share common substrates, and are both responsible
for their distribution, metabolism, and elimination. Their polymorphisms were associated
with higher risk of chemotherapy-induced peripheral neuropathy (CIPN) in taxane-treated
patients. Particularly, ABCB1 3435 and 1236 TT genotypes were associated with reduced
P-gp expression and consequent higher taxane plasma levels and taxane-related adverse
effects, such as diarrhea and neutropenia [80,81].

Allelic variants of P-gp are also associated with altered P-gp expression at the BBB,
thus affecting drug delivery to the CNS [7], as is the case for opioids, hence resulting in inter-
individual variability in pain relief [3]. 1236TT, 2677TT, and 3435TT carriers (also referred to
as “TT-TT-TT” haplotype) need higher methadone doses to avoid withdrawal [11], probably
associated with faster metabolism and consequent lower methadone plasma levels [79];
conversely, heterozygous subjects for these three SNPs have an approximately 3-fold possi-
bility of stabilizing at lower methadone dosage. SNP 1236C > T is a synonymous variant,
located in one of the intracellular loops of the protein, next to an ATP-binding/utilization
domain. 1236C > T may not change the protein sequence, but it may affect P-gp translation
regulation and RNA stability [11]. On the other hand, homozygous C3435T TT carriers
also had better analgesic effects with morphine administration, compared to wild-type
CC subjects [82]; however, they were found to have higher risk of persistent postopera-
tive pain [83]. These apparently controversial findings derive from studies conducted on
subjects of different races.

2.5. Opioids and P-gp

Opioids are the stronger analgesic drugs available for treating moderate to severe acute
and chronic pain. They work as analgesics, by potentiating the physiological endogenous
modulating system through their interaction mainly with the mu-opioid receptor (MOR).
Opioid receptors are located on the primary afferent fibers (PAF), where they prevent
calcium influx in the first-order neuron and the release of excitatory neurotransmitters,
such as glutamate and substance P. Opioid receptors are also expressed by second-order
neurons, in the dorsal horn, where they activate G protein gated inwardly rectifying
potassium (GIRK) channels, which hyperpolarize neurons [84]. Their analgesic reward
effects are dependent on the rate and speed of drug crossing the BBB and accessing the
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CNS. Lipophilicity of the different compounds contributes to differences in the speed at
which opioids can cross the BBB. Similarly, P-gp may play a central role in opioid analgesia,
according to its ability to extrude the drug from the CNS [85].

P-gp limits opioid distribution in the brain (Figure 1). On the other hand, both endoge-
nous and exogenous opioidergic compounds were found to regulate P-gp activity. Among
endocannabinoids, anandamide (AEA) inhibited P-gp in HK-2-immortalized cells, which
have similar characteristics to in vivo proximal tubules. Conversely, 2-arachidonoylglycerol
(2-AG) and palmitoylethanolamide (PEA) did not inhibit P-gp [86].
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Figure 1. Modulation of P-gp expression at the BBB by analgesics. P-gp limits opioid distribution in
the brain. (Right Side) Most opioids are known to be P-gp substrates (red arrow), therefore, increased
expression of P-gp potentiates their efflux and prevents their delivery in the central nervous system.
Other opioids are not P-gp substrates (green arrow) and this could explain the faster onset of action.
(Left Side) Chronic opioid exposure may also modulate P-gp activity: morphine and oxycodone are P-
gp inducers (green arrow), while buprenorphine and methadone are inhibitors (red inhibition arc) of
ATP-Binding Cassette (ABC) trasporters at the blood-brain barrier (BBB). Other drugs commonly used
in pain management may modulate P-gp expression at the BBB, through intracellular mechanisms of
nuclear transcription. Dexamethasone and paracetamol bind the nuclear receptor (NR), which, after
dephosphorylation by a protein phosphatase (PP), translocates to the nucleus and binds its response
element on a target gene, leading to protein transcription and overexpression of ABC transporters,
such as P-glycoprotein (P-gp) on the membrane of brain microvascular endothelial cells.

Chronic exposure to opioids may result in P-gp overexpression in different areas
of the brain, especially the cortex, hippocampus and blood vessels [48], and consequent
extrusion of opioids themselves outside of the CNS, leading to opioid tolerance, with
higher doses needed to achieve analgesia [7]. Opioid administration is associated with P-gp
overexpression via activation of several signaling pathways. For instance, opioids activate
toll-like receptors (TLRs), especially TLR4 and its coreceptor myeloid differentiation factor-2
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(MDF-2). Consequent astrocyte and microglia activation leads to secretion of inflammatory
cytokines, which upregulate P-gp in a species- and time-dependent manner. Eventually,
these events are associated with opioid tolerance and withdrawal. On the contrary, high
doses (100 mg/Kg) of naloxone were found to inhibit TLR4, thus attenuating allodynia
and hyperalgesia, and enhancing opioid-derived analgesia [3,87]. Naloxone-precipitated
morphine withdrawal in animal models was the result of a NMDA-mediated increase in
extracellular glutamate concentrations in several brain areas, such as the locus coeruleus,
hippocampus and nucleus accumbens [3,7,82]. Such glutamate increase led to COX-2
signalling activation and, eventually, P-gp overexpression, the latter being reversible after
administration of NMDA or COX-2 antagonists and inhibitors [3,7,70].

Most studies regarding the relationship between P-gp and opioids revolve around
morphine, which acts as a P-gp substrate both in vitro [88] and in vivo [89].

P-gp knockout (KO) mice displayed higher brain levels of morphine, compared to
wild-type mice, thus resulting in enhanced morphine-induced analgesia [33], the latter
being negatively correlated with cortical P-gp expression and activity [89]. Accordingly,
P-gp inhibition resulted in increased transport rates of morphine through the BBB, thus
enhancing its analgesic and acute locomotor effects [21], and preventing tolerance [33].
On the other hand, P-gp inhibition was associated with morphine-induced reinforcement
processes in the nucleus accumbens and the dorsal striatum in mice models [21].

Intestinal P-gp impedes oral morphine absorption, reducing its bioavailability [7]: this
effect can be reverted by coadministration of a P-gp inhibitor, which results in increased
morphine plasma concentrations [3,33] and antinociceptive effects [83].

Morphine does not act as a P-gp inhibitor [7]. Its administration leads to increased
mRNA and protein P-gp levels [3], as well as enhanced PIP-mediated transport of P-
gp reservoirs from the nucleus to the PM [48]: consequent P-gp overexpression [33,45]
and enhanced ATPase activity results in reduced morphine-induced analgesia. Opioid
suspension brings P-gp back to normal levels [89]. Morphine-induced P-gp upregulation
may be cell-type- and time-dependent. A 5-day treatment with morphine upregulated P-gp
mRNA levels by 1.2-fold, in rat brain microvessels, even after treatment discontinuation.
This suggests that P-gp upregulation may be correlated with morphine withdrawal, rather
than cause tolerance development [3,87].

Data regarding active morphine metabolite morphine-6-glucuronide (M6G) are still
controversial since it was not found to be a P-gp substrate in mice and humans. On the
other hand, P-gp inhibition increased its spinal cord levels in rats, and it seems to act as a
P-gp inhibitor in vitro [3]. M6G could still be a substrate for other efflux transporters at the
BBB [4].

Conversely to morphine, codeine is not a P-gp substrate, since verapamil does not alter
its transport in Caco-2 cells and immortalized rat brain endothelial cells (RBE4) [7]. Codeine
stimulates P-gp mediated hydrolysis, but it is not actively effluxed by P-gp; therefore, it
should be considered a nontransported P-gp substrate [90], and this feature could explain
the faster onset of action compared to an equianalgesic dose of morphine [91].

Whether oxycodone is a P-gp substrate is still unclear, since different P-gp inhibitors
have contradictory effects on its brain disposition and analgesic effects [3,33]. P-gp inhibi-
tion did not alter the apical-basolateral (A-B) absorption of oxycodone, but let to reduced
basolateral-apical (B-A) secretion, suggesting that only the P-gp located at the apical layer
of Caco-2 cells could affect oxycodone transport. In P-gp KO mice, brain levels of oxy-
codone were increased compared to wild-type animals. Oxycodone may also upregulate
P-gp in a dose-dependent manner, as shown by a higher rate of ATP consumption. Ad-
ministration of oxycodone induces P-gp approximately by 2-fold, 4-fold, 1.6-fold, and
1.3-fold in the intestine, liver, kidney, and brain, respectively, thus resulting in lower absorp-
tion and increased elimination of oxycodone itself, with possible tolerance development.
Oxycodone-induced P-gp upregulation may be the source of chemotherapy resistance,
since its co-administration with paclitaxel, a P-gp substrate, was associated with reduced



Int. J. Mol. Sci. 2022, 23, 14125 10 of 21

concentrations of this chemotherapeutic drug by 90% in the liver, 87% in the kidney, 38% in
the brain, and 70% in plasma [35].

The impact of P-gp on the pharmacokinetics of fentanyl is still unclear since some
studies have not identified this strong opioid as a P-gp substrate [3], and data about its P-gp-
mediated transport are contradictory. While some studies did not find a correlation between
P-gp levels and fentanyl transport [4,7], others showed that P-gp inhibition increased the
passage of fentanyl through the BBB towards the CNS, with consequent enhancement
of its antinociceptive and side effects (e.g., dose-dependent respiratory depression and
prolonged duration of the loss of righting reflex). Similar findings have been shown in P-gp
KO animals. P-gp inhibition also leads to increased oral fentanyl absorption and plasma
concentrations [92]. While in vitro studies suggest fentanyl to be a P-gp inhibitor [83], it
has been found to activate P-gp ATPase activity [92].

Fentanyl derivatives such as alfentanil and sufentanil do not act like P-gp substrates
in vitro [3]. However, alfentanil was proved to be a P-gp substrate in P-gp KO mice [93].
Similarly to fentanyl, these derivatives inhibited P-gp in Caco-2 cells [83]. To the best
of our knowledge, there are no data suggesting sufentanil may act as a P-gp substrate
in vivo. Sublingual sufentanil, indeed, displays fast and repetitive onset of action and
rapid equilibrium between plasma and CNS concentrations, providing clinical evidence for
the rationale behind its use in post-operative patient-controlled analgesia (PCA) [94,95].
The rate of equilibrium between the plasma and the effector site is a key parameter to be
considered in the choice of the optimal opioid for PCA, because a delayed equilibration
may lead to an initial overshoot of drug administration, which significantly increases the
risk of opioid-related side effects [96].

Hydrocodone seems to act as a P-gp substrate, as shown in P-gp deficient mice;
however, this finding was not confirmed in bidirectional transport assays on MDR1 and
Mdr1a-MDCK transfected cells. Hydrocodone does not inhibit human P-gp mediated
efflux of calcein-AM even at high concentrations (>100 µM) [7].

Tramadol and O-desmethyl-tramadol do not act as P-gp substrates in Caco-2 cells [97,98].
Buprenorphine does not act as a P-gp substrate in a bidirectional transport assay with

either human MDCKII-MDR1 or Caco-2 cells, nor in P-gp deficient mice [7]. Nonetheless,
P-gp inhibition led to increased brain uptake of buprenorphine and respiratory depression
in animals [99]. Injection of cyclosporine A, quinidine and verapamil, increased brain
uptake of [3H] buprenorphine by 1.5-fold, while vinblastine and vincristine at 0.1 mM
did not have this effect; elimination of [3H] buprenorphine from the brain was inhibited
by 32–64% after administration of cyclosporin A, quinidine, verapamil, or vinblastine.
Buprenorphine has a molecular weight of 467.6 and is a highly lipophilic, organic cationic
drug, positively charged at physiological pH; therefore, it may potentially act as a P-gp
substrate [100]. On the other hand, norbuprenorphine was found to be an avid P-gp
substrate both in vitro [7] and in vivo [101]. Whether tapentadol is a P-gp substrate is
still unknown.

Pentazocine (PTZ), an opioid agonist/antagonist, was proved to be a P-gp substrate
in vivo [102].

Loperamide is a potent opioid receptor agonist, but shows no remarkable CNS effects,
because of its poor absorption in both the gastroenteric tract and the brain. In fact, P-gp
hinders the entrance of loperamide in the CNS and the intestine with an efflux/influx
ratio of 10. For this reason, loperamide is used in clinical practice only as an antidiarrheal
agent. Administration of P-gp inhibitors leads to increased transport of loperamide in the
CNS and caused opioid-related side effects (respiratory depression). On the other hand,
tariquidar-induced P-gp inhibition does not alter loperamide effects on the CNS when
administrated at 2 mg/Kg: this dose was probably too low to inhibit P-gp at the BBB, while
8 mg/Kg tariquidar generated a variation in brain uptake of 11C-loperamide as its ra-
dioactivity was increased by 3-fold [7,103]. Coadministration with spironolactone resulted
in antinociceptive effects in rats, suggesting that P-gp inhibition may allow loperamide
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to pass across the BBB and act centrally [104]. P-gp knockout mice had a 13-fold higher
accumulation of loperamide in the brain [33].

Meperidine is believed to be a P-gp substrate in vitro but not in vivo: P-gp knockout
mice had no greater antinociception [33].

Methadone is approved for opioid-use disorder (OUD) maintenance therapy. Specific
ABCB1 polymorphisms are associated with variability in serum methadone concentration
over the 24 h dosing interval for subjects on methadone maintenance therapy (MMT) [105].
In fact, methadone was proved to be a P-gp substrate, with an efflux ratio of 2.61. When a
P-gp inhibitor and methadone were coadministrated in P-gp KO mice, opioid-induced anal-
gesia improved because its brain concentrations increased [33]. Accordingly, methadone-
induced antinociception in mice was reduced after induction of P-gp in brain capillaries [20].
Despite its stereoselectivity for methadone enantiomers being slight, P-gp transports the
(+) S-enantiomer 10% more than the (R)-enantiomer [33], the latter being accountable for
methadone MOR agonism at the CNS [4]. Furthermore, P-gp interferes with the intestinal
absorption of orally administrated methadone: this may account for the inter-individual
variability in methadone-induced clinical effects. On the other hand, quinidine-induced
P-gp inhibition did not affect the PK of intravenous methadone [7]. Methadone also inhibits
P-gp activity in vitro [7,45].

P-gp-mediated transport of nalbuphine is inhibited by elacridar, so it is believed to be
a P-gp substrate at the BBB. This agonist–antagonist, however, does not inhibit P-gp [7].

Diprenorphine, a non-selective opioid receptor antagonist, is believed not to be a
P-gp substrate since elacridar and verapamil do not alter its transport in Caco-2 cells.
Diprenorphine seems to be transported by P-gp in MDCKII-MDR1 cells. These results were
not confirmed in mice and there are no data on humans [7].

MOR antagonists naloxone and naltrexone do not act as P-gp substrates [106,107];
naloxone was found to weakly inhibit P-gp, only at high doses (>100 µM) and with very
low affinity [107]. However, data about naloxone are contradictory. Naltrexone does not
inhibit P-gp [7].

2.6. The Role of P-gp in Drug–Drug Interactions

In the last few years, most of the literature concerning drug–drug interactions (DDI)
has focused on the key role of the cytochrome P450 system. The risk of DDI when treating
chronic pain in patients with comorbidities has been mainly attributed to drugs acting on
the metabolizing enzymes CYP2D6 and CYP3A4, in terms of genetic variability, metabolizer
status, effects of inducers and inhibitors, and the risk of interaction in polypharmacy [108].
In chronic pain patients with comorbidities, opioids without or with a minor impact on the
cytochrome P450, such as morphine, hydromorphone, and tapentadol, can be considered a
first choice of treatment [109,110]. The role of P-gp in drug–drug interactions is an emerging
topic in clinical practice.

Many drugs acting as substrates for P-gp are also substrates of CYP3A4. However,
there are some drugs, such as dabigatran, which are exclusively substrates of P-gp and
for which the severity of the interaction on the clinical level is unclear. In a recent study
by Akamine et al., 2019 [111], authors showed on the basis of the available data that
the exclusive inhibition of P-gp, for those drugs that are not substrates of CYP450, or
the P-gp inhibition in the absence of a CYP450 inhibition, have modest effects on the
pharmacokinetics of the substrate drug and very little clinical relevance. Conversely, the
induction of P-gp by rifampicin and some anticonvulsants (including carbamazepine and
phenytoin) has significant clinical effects on drugs which are exclusively substrates of P-gp.
Therefore, extrapolating, one must pay attention mainly to the phenomena of induction
rather than inhibition of P-gp in case of potential DDI. However, the clinical consequences
of P-gp inhibition also depend on the severity of the pathologies affecting the liver, kidney,
and heart of the specific patient.

Another relevant issue is whether the P-gp expressed in the intestine, liver, kidney, and
BBB are identical, have the same affinity for the same substrate, and are equally affected
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by the interactions with the same inhibitor, normalizing for the different concentrations
of inhibitor that occur in the different districts, or if there are differences. In a study
based on the use of KO mice for P-gp, the administration of risperidone caused identical
plasma concentrations compared to wild-type mice, suggesting the lack of any role for
intestinal, hepatic, and renal P-gp. By contrast, the brain concentration of risperidone and
its metabolite was 10-times higher in KO mice than wild-type mice, thus suggesting that
risperidone is a substrate for the brain P-gp only [112]. Therefore, transporter-mediated
DDIs at the BBB may occur in some cases without changes in drug plasma pharmacokinetics,
so that drug concentrations in the brain need to be considered in order to assess such
DDIs [113].

2.7. Expression of P-gp during Aging

In PET human studies, it is known that the non-marketed third-generation ABCB1
inhibitor tariquidar, which inhibits ABCB1 at the human BBB, is able to cause up to fourfold
increases in (R)-[11C]verapamil brain uptake [114]. The same experiment carried out in
young and elderly people showed that the passage of verapamil, thus the intensity of P-gp
inhibition, was significantly higher in elderly than in young subjects, because of a reduced
expression of P-gp in the former [115]. Therefore, greater attention must be paid in the
elderly patients.

2.8. P-gp and Peripherally Acting Mu-Opioid Receptors Antagonists (PAMORAs)

Opioid-induced bowel dysfunction (OIBD) is one the most frequent adverse effects
when engaging in opioid prescription for both chronic cancer and non-cancer pain (CNCP):
it includes various signs and symptoms, namely nausea, vomiting, xerostomia, gastro-
esophageal reflux, and constipation. Unlike many other opioid-related side effects, opioid-
induced constipation (OIC) is particularly bothersome since tolerance is rarely reached,
potentially leading to opioid discontinuation and consequent poor pain control [116,117].
Since OIBD is mainly caused by opioid agonism towards µ receptors (MOR) located
throughout the whole gastrointestinal tract, peripherally acting mu-opioid receptors an-
tagonists (PAMORAs) have been developed in order to avoid or revert these troublesome
effects while sparing central analgesia. Currently available PAMORAs include naldeme-
dine, methylnaltrexone, and naloxegol. Naldemedine is an amide derivative of naltrexone,
added with a side chain (2-(3-phenyl-1,2,4-oxadiazol-5-yl)propan-2-yl)acetamide increas-
ing both its polar surface and molecular weight, thus hindering its passage through the
BBB [118]. Naldemedine is indeed a P-gp substrate, since its Cmax and AUC were increased
when coadministered with cyclosporine, most likely due to inhibition of intestinal P-gp and
consequent enhanced bioavailability of naldemedine; higher frequency of naldemedine-
induced adverse effects confirmed these findings, although the administrated dosage of
naldemedine was higher (0.4 mg) than the recommended dose [119]. In fact, clinical trials
enrolling subjects with both cancer and non-cancer pain showed naldemedine is effective
and well tolerated when administrated at a 0.2 mg once daily dosage [118]. On the other
hand, the role of P-gp in expelling naldemedine out of the CNS seems to be only marginal,
since mdr1a/b KO mice showed low naldemedine brain-to-plasma concentration ratio
(brain Kp < 0.1), even if brain Kp itself was relatively higher (4-fold) when compared
to wild-type mice [120]. Naldemedine does not inhibit P-gp [121]. Hence, its use may
minimize the risk of drug–drug interactions (DDIs) when administrated alongside other
P-gp substrates. Moreover, naldemedine could prevent or reduce opioid-induced nausea
and vomiting (OINV), given its ability to act in certain brain regions, namely the area
postrema, that are not protected by the BBB [120].

Methylnaltrexone is not a P-gp or a CYP3A4 substrate [116]. Therefore, its activity is
confined outside the CNS, because of its chemical structure, where a quaternary ammonium
has been added to naltrexone to limit its ability to cross the BBB. When subcutaneously
or orally administrated, methylnaltrexone does not induce opioid withdrawal or interfere
with opioid analgesia [122].
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Conversely, naloxegol, which is a PEGylated derivative of naloxone, is a P-gp substrate:
hence, its penetration in the CNS is scarce, allowing it to reduce OIC while preserving
central analgesia [123]. Transport by intestinal P-gp is saturable at high naloxegol concen-
trations. Caution must be observed when administrating naloxegol alongside P-gp and
CYP3A4 inducers and inhibitors, since the possibility of DDIs is relevant [124].

2.9. P-gp and Neuropathic Pain Medications

Neuropathic pain is defined as “pain caused by a lesion or disease of the somatosen-
sory nervous system” and is characterized by typical features, such as hyperalgesia and
allodynia. Many painful conditions may be associated with neuropathic components, so
that 7–10% of the general population is believed to suffer from neuropathic pain [125].
Structural changes and permeability of the blood–spinal cord barrier (BSCB) [126], the
blood nerve barrier [127], and the BBB [128] may be crucial factors for development of
neuropathy in several pathological states, ranging from diabetic neuropathy [129], trigem-
inal neuralgia [130], radiculopathies [131], and migraine [66,132]. Particularly, abnormal
expression of BBB proteins, namely laminin and ZO-1, has been described during cortical
spreading depression (CSD), the latter typically occurring during migraine attacks [66].
Several antimigraine drugs were found to be P-gp substrates [9,133]: for instance, P-gp
may be in an “intermediate” conformation when binding to both sumatriptan (STT), the
first triptan drug to ever be developed, and eletriptan (ETT), a second generation triptan
drug. Nonetheless, STT acts as a weak P-gp substrate (efflux ratios from 1.1 to 2.9) and
inhibitor, with a <10% reduction in ATP hydrolysis: this phenomenon is probably due to a
“conformational barrier” to ATP hydrolysis. Conversely, ETT is a stronger P-gp substrate
(efflux ratios from 11 to 46.7), and is associated with a 2-fold enhancement in P-gp activity,
with no more structural impediments to ATP hydrolysis [9]. As one would anticipate,
several double-blinded placebo-controlled studies have assessed the superiority of ETT
to STT in terms of relief of headache and associated symptoms (e.g., nausea, photopho-
bia/phonophobia), improvement of functioning and consequent reduction in use of rescue
medications, and so on. Nonetheless, these head-to-head comparisons enrolled cephalalgic
patients with no other clinically relevant comorbidities [134–138], thus likely excluding the
possibility of drug–drug interactions: this kind of scenario is unfortunately quite rare in
clinical practice. Hence, assessment of mere relative superiority of one drug to another
could turn out to be limiting when choosing appropriate therapies, while a “patient-based”
approach is preferred. The use of non-pharmacological options for neuropathic pain,
namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation
(tDCS), could rely on their impact on nervous system barriers.

Subjects with both cancer and non-cancer pain may present with a neuropathic com-
ponent (so called “mixed pain”). For instance, almost 80% of patients suffering from
non-malignant back pain experience neuropathic signs and symptoms [139]. Neuropathic
features are also commonly reported in cancer patients, and they can either be adverse
effects of chemotherapeutic drugs (chemotherapy-induced neuropathic pain, CINP) or
be the indirect consequence to immunosuppression. According to guidelines, first-line
treatment of neuropathic pain includes antidepressants, such as tricyclic antidepressants
(TCAs), venlafaxine and duloxetine, and antiepileptic drugs, namely gabapentin and prega-
balin [140]. In particular, pregabalin binds to voltage-gated calcium channels alpha2-delta
(α2δ) subunits and is indicated in epilepsy, diabetic neuropathy, fibromyalgia (FM), and
trigeminal neuralgia [141]; moreover, recent findings suggest its potential benefit for post-
operative pain management [142]. However, recent findings hint that pregabalin may act
as a P-gp substrate in mice, since pretreatment with P-gp inhibitors prolonged the anti-
hyperalgesic effects of intraperitoneally (i.p.)-administrated pregabalin from 3 h to 72 h in
an intermittent cold stress (ICS)-induced FM-like pain animal model. Still, studies assessing
whether P-gp is directly responsible for efflux of pregabalin out of the CNS are needed [141].
Efficacy and tolerability of opioid analgesics in treating neuropathic pain are still under
open debate [140]. “Dual” opioids may help control neuropathic features, as is the case
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for tramadol [143] and tapentadol. The latter was found to be beneficial for patients with
back and neck pain presenting with neuropathic components [139]: particularly, tapentadol
was superior to oxycodone/naloxone with regard to neuropathic features control, and in
terms of tolerability, since classical opioid-induced adverse effects, namely constipation
(OIC), nausea and vomiting (OINV), were much less frequent [144]. Similarly to tramadol,
tapentadol has a dual mechanism of action: still, given its negligible effect on the serotonin
transporter (SERT), only norepinephrine reuptake is inhibited, giving tapentadol a better
tolerability profile [145]. Besides, serotonin is known to have pronociceptive qualities
and is commonly released in injured sites in the case of acute pain, thus predisposing a
patient to pain sensitization [146,147]. Hence, tapentadol may have an important role in
reducing incidence of pain sensitization and chronicization, compared to other opioids.
Furthermore, affinity of tapentadol to MOR (“µ-load”) is 50-times lower than morphine,
thus reducing the rate of classical opioid-related adverse effects [145]: this is particularly
important for subjects dealing with cancer pain, since they often experience constipation,
nausea, vomiting and a lowered quality of life generally, not only due to opioid use, but
also because of chemotherapy-induced side effects [148].

2.10. P-gp and Non-Opioidergic Pain-Relievers

Besides opioids, ABC transporters, including P-gp, on brain microvascular endothelial
cells, may be modulated by other drugs that are commonly used for pain management,
namely dexamethasone and acetaminophen (APAP; i.e., N-acetyl-p-aminophenol, paraceta-
mol). These compounds are able to activate nuclear receptors, such as the above-mentioned
constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR), thus resulting in
P-gp overexpression and consequent reduction in blood-to-brain transport of opioidergic
drugs that act as P-gp substrates [149]. This may account for the effectiveness of certain
fixed combinations between opioid and non-opioid drugs, such as codeine, hydrocodone,
and oxycodone, which are available as immediate release formulations in combination
with acetaminophen. According to the dosage of opioids, these fixed combinations can
be used for mild to moderate (codeine/acetaminophen) [91] and for moderate to severe
(hydrocodone/acetaminophen and oxycodone/acetaminophen) [150,151] chronic pain
management. Since these opioids are not P-gp substrates, acetaminophen-induced P-gp
upregulation should not have detrimental effects on opioid-induced analgesia when these
drugs are combined in fixed formulations.

3. Conclusions

The importance of P-glycoprotein as the main obstacle to drug delivery to the brain
and CNS has been widely demonstrated, particularly by using knockout animals. De-
spite, in physiological conditions, its role being essential for preventing toxins and other
potentially harmful agents to cross the BBB, in pathological conditions its activity may
represent a severe limiting factor to adequate analgesia. This efflux protein is, indeed,
the main molecular cause for pre-clinical and clinical drug failure. However, probably in
clinical practice, this concern is still widely underestimated. Physicians should be aware
of the possible negative consequences of using polypharmacy, including molecules with
different activities on P-gp in cancer pain patients. Limiting the efficacy of chemotherapy
or impairing the analgesic activity of opioid analgesics may significantly affect expectancy
and quality of life of chronic pain patients suffering from cancer.

Most opioids are known to be P-gp substrates; therefore, increased expression of
P-gp potentiates their efflux and prevents their delivery in the central nervous system
(right side). Opioids may also modulate P-gp activity: morphine and oxycodone are P-gp
inducers, while buprenorphine and methadone are inhibitors of ATP-Binding Cassette
(ABC) transporters at the blood–brain barrier (BBB). Other drugs commonly used in pain
management may modulate P-gp expression at the BBB, through intracellular mechanisms
of nuclear transcription. Dexamethasone and paracetamol bind the nuclear receptor (NR),
which, after dephosphorylation by a protein phosphatase (PP), translocates to the nucleus
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and binds its response element on a target gene, leading to protein transcription and
overexpression of ABC transporters, such as P-glycoprotein (P-gp), on the membrane of
brain microvascular endothelial cells (left side).
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