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Highlights:

� Hepatic ERa is crucial for estrogen-depleted
liver reprogramming.

� Hepatic ERa is needed for OVX-dependent induction of
male-biased genes.

� MASLD development in obese women is associated with
liver masculinization.

� Targeting hepatic ERa may tackle menopause-
associated MASLD.

Impact and implications:

Despite the increased risk of developing MASLD after menopause,
the specific contribution of impaired hepatic estrogen signaling in
driving MASLD in females has not been a major research focus,
and, thus, has limited the development of tailored strategies that
address the specific mechanisms underlying MASLD in post-
menopausal women. This study reveals the functional role of he-
patic ERa in mediating liver metabolic changes in response to
estrogens loss, leading to a shift in the liver transcriptome towards
a male-like profile. In women with obesity, this shift is associated
with the development of MASLD. These findings underscore the
potential of targeting hepatic ERa as a promising approach for
developing effective, sex-specific treatments to preserve liver
health and prevent or limit the development and progression of
MASLD in post-menopausal women.
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Hepatic estrogen receptor alpha drives masculinization in
post-menopausal women with metabolic dysfunction-

associated steatotic liver disease

Clara Meda1, Valeria Benedusi2, Alessandro Cherubini3, Luca Valenti3,4, Adriana Maggi2, Sara Della Torre2,*

JHEP Reports 2024. vol. 6 j 1–11
Background & Aims: The loss of ovarian functions defining menopause leads to profound metabolic changes and heightens the
risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Although estrogens primarily act on the
female liver through estrogen receptor alpha (ERa), the specific contribution of impaired ERa signaling in triggering MASLD after
menopause remains unclear.

Methods: To address this gap in knowledge, we compared the liver transcriptomes of sham-operated (SHAM) and ovariecto-
mized (OVX) control and liver ERa knockout (LERKO) female mice by performing RNA-Seq analysis.

Results: OVX led to 1426 differentially expressed genes (DEGs) in the liver of control mice compared to 245 DEGs in LERKO mice.
Gene ontology analysis revealed a distinct ovariectomy-induced modulation of the liver transcriptome in LERKO compared with
controls, indicating that hepatic ERa is functional and necessary for the complete reprogramming of liver metabolism in response
to estrogen depletion. Additionally, we observed an ovariectomy-dependent induction of male-biased genes, especially in the liver
of control females, pointing to hepatic ERa involvement in the masculinization of the liver after estrogen loss. To investigate the
translational relevance of such findings, we assessed liver samples from a cohort of 60 severely obese individuals (51 women; 9
men). Notably, a shift of the liver transcriptome toward a male-like profile was also observed only in obese women with MASLD
(n = 43), especially in women >−51 years old (15/15), suggesting that masculinization of the female liver contributes to MASLD
development in obese women.

Conclusions: These results highlight the role of hepatic ERa in driving masculinization of the liver transcriptome following
menopause, pointing to this receptor as a potential pharmacological target for preventing MASLD in post-menopausal women.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
In comparison with men, fertile women exhibit a lower risk of
developing metabolic dysfunction-associated steatotic liver
disease (MASLD). MASLD can progress to severe liver condi-
tions and is closely linked with other cardiometabolic dis-
eases.1,2 However, after menopause, changes in estrogen
levels predispose women to hepatic steatosis, nullifying sex
differences in MASLD susceptibility.3,4

Estrogens predominantly exert their effects in the female
liver through estrogen receptor alpha (ERa), whose signaling
concurs to modulate the hepatic metabolism according to each
reproductive stage.5,6 Such a regulatory role of hepatic ERa in
metabolism and reproduction,5–8 has likely been acquired
through evolution,9,10 and contributes to sex differences in
MASLD susceptibility. Indeed, when exposed to a diet rich in
lipids, fertile female mice exhibit a greater ability, which is
largely dependent on hepatic ERa, to limit liver lipid deposition
compared with males.11 Nevertheless, estrogen’ deprivation
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impairs hepatic lipid metabolism and promotes lipid accumu-
lation in mouse models of menopause.5,12

Given its relevance in the regulation of hepatic metabolism,
estrogen supplementation has the potential to mitigate dysme-
tabolism and prevent liver lipid accumulation in women after
menopause.13 Although hormone replacement therapy (HRT)
can be beneficial, it cannot be considered a primary approach to
counteract MASLD in post-menopausal women. Indeed, the
restricted window of opportunity (<10 years after menopause),
the individual benefit:risk ratio, and the lowHRT prescription rate
and uptake,14 limit this approach. Because women spend more
than one-third of their lives in the post-menopausal state15 and
the global burden of metabolic diseases and MASLD,16,17 the
search for valuable alternative(s) to the classical estrogen-based
HRT is of utmost importance for women’s health. In this context,
understanding the specific contribution of hepatic ERa to liver
reprogramming after menopause may lead to the development
of more targeted pharmacological approaches that focus on the
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ERa drives masculinization in post-menopausal women with MASLD
liver, thereby overcoming the potential, systemic side-effects of
classical HRT.

Herein, we share our work aimed at investigating the impact
of hepatic ERa signaling on menopause-associated changes
by comparing the liver transcriptomes of sham-operated
(SHAM) and ovariectomized (OVX) controls as well as that of
liver ERa knockout (LERKO) female mice models.

Materials and methods

Animals and experimental design

Syngenic ERa floxed (CTRL) and LERKO mice7 both derived
from the C57BL/6 J strain. At 2 months of age, mice were
anesthetised with an s.c. injection of 70 ll volume of 109.2 mg/
kg ketamine (Ketavet 100; Intervet, Milan, Italy) and 8.4 mg/kg
xylazine (Rompun; Bayer, Milan, Italy) and were then OVX or
SHAM operated (Fig. S1). Mice were fed ad libitum with a
standard diet (#D12450B ResearchDiets; Broogarden, Lynge,
Denmark), provided with filtered water, and housed within a
temperature of 22–25 �C, relative humidity of 50 ± 10%, under
an automatic 12-h light/dark cycle. Four months after surgery,
animals were euthanized in the early afternoon after 6 h of
fasting to avoid potential confounding effects due to the
circadian rhythm or feeding status.7 SHAM females were
collected when in the estrus phase after vaginal smears anal-
ysis. All animal experimentation was done in accordance with
the ARRIVE and European guidelines. The animal study pro-
tocol was approved by ‘Istituto Superiore di Sanità - Ministero
della Salute Italiano’ (1272/2015-PR and 476/2015-PR).

RNA-sequencing and transcriptomic analysis

Mouse RNA sequencing and transcriptomics data analysis were
performed as described previously.12 Gene Ontology (GO) and
cluster analysis was performed using the Cytoscape plug-in
ClueGO, Genesis, Enrichr, and ShinyGO. A Venn diagram was
constructed with Bioinformatics and Evolutionary Genomics
software (http://bioinformatics.psb.ugent.be/webtools/Venn/).

The human RNA sequencing analysis, count normalization,
and differential gene expression (DEG) analyses were con-
ducted as previously described18 using RNA derived from liver
biopsies from severely obese individuals enrolled in the Liver
Biopsy Cohort who underwent a percutaneous liver biopsy
performed during bariatric surgery at the Milan centre for clin-
ical staging of liver disease severity (n = 125). All research was
conducted in accordance with both the Declarations of Helsinki
and Istanbul. Individuals with at-risk alcohol intake (>30/20 g
per day in men/women), viral autoimmune hepatitis, or other
causes of liver disease were excluded. Given the interaction
between female sex and the PNPLA3 p.I148M variant in
determining the predisposition to develop MASLD,19 we
excluded all samples carrying such a variant from the study,
thus limiting our analysis to 60 samples (Table S1).

Statistical analysis

Statistical analysis was conducted using GraphPad Prism
v.8.0. Multiple testing comparisons were performed by one or
two-way ANOVA followed by Bonferroni’s post hoc test. The
two-tailed Student’s t-test was used for comparisons between
two experimental groups. All data are expressed as mean ±
SEM. A p-value <0.05 was considered statistically significant.
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Results

Estrogen loss induced liver metabolic reprogramming in a
mouse model of menopause

To investigate the impact of liver ERa on changes in hepatic
gene expression associated with estrogen deficiency, we per-
formed RNA-seq analysis comparing liver transcriptomes of
CTRL SHAM, CTRL OVX, and LERKO SHAM female mice.
Using a fold change |FC|>1.3 and a p-adj <0.05, we identified
1426 DEGs between CTRL SHAM and CTRL OVX, with 667
(47.5%) genes upregulated by ovariectomy (Fig. 1A).
Comparing CTRL SHAM and LERKO SHAM mice, 239 DEGs
were identified, with 57 (�24%) upregulated in LERKO SHAM
mice (Fig. 1B). These results suggest that estrogen deficiency
surpasses the changes in the liver transcriptome associated
with the mere absence of hepatic ERa, pointing to the
involvement of other systemic factors.

Comparing CTRL OVX/CTRL SHAM with LERKO SHAM/
CTRL SHAMmice, we identified 157 shared genes between the
two groups (Fig. 1C). Of these, 155 had similar regulation
patterns in response to both estrogen deficiency and hepatic
absence of ERa, whereas only two genes (Fig. S2A) exhibited
opposite regulation.

Cluster analysis revealed that of the 155 shared genes, 37
genes were upregulated and predominantly associated with the
triglyceride (TG) biosynthesis (Fig. 1D and E and Fig. S2B).
Among the 118 downregulated shared genes (Fig. 1F and G),
several were associated with positive regulation of transcription
(Fig. S2C), histone H3–K4 methylation, and chromatin organi-
zation (Fig. S2D), and the estrogen receptor signaling pathway
(i.e. Arid1a, AT-rich interaction domain 1a; Wbp2, ww domain
binding protein 2) (Fig. S2E). Notably, the downregulation of
Arid1a and Wbp2 has been associated with hepatic steatosis,
insulin resistance, and inflammation.20,21

We then explored the 1269 genes differentially regulated in
the OVX CTRL mice, which were unaffected by the hepatic
knockout of ERa in LERKO SHAM mice. Among the 638 genes
specifically upregulated in CTRL OVX mice (Fig. 2A and B),
several were involved in fatty acid (FA) and lipid metabolism,
particularly in mitochondrial and peroxisomal oxidation of FA
(FAO) (Fig. S3A), FA uptake, very-long and long FA metabolic
processes (Fig. S3B). Notably, several of these genes are tar-
gets of Ppara, peroxisome proliferator activated receptor alpha,
the master regulator of FAO,22 whose hepatic expression was
also enhanced in CTRL OVX mice (Fig. 2C and D). Estrogen
deficiency can potentially trigger adipose tissue lipolysis,
leading to the release of free FA, which once taken up by the
liver, may activate PPARa, thereby inducing its expression
along with that of its target genes,22 enhancing FAO and
gluconeogenesis (GNG). Consistent with this hypothesis,
mRNA levels of key genes involved in GNG (Foxo1, forkhead
box O1; Fbp1, fructose-bisphosphatase 1; G6pc, glucose-6-
phosphatase) and in the regulation of glucose metabolism
(Gk, glycerol kinase; several major urinary proteins, Mups) were
also increased in CTRL OVX mice but not in LERKO SHAM
mice (Fig. S3C and D).

Among the 631 genes downregulated by ovariectomy but
not affected by the knockout of hepatic ERa expression (Fig. 2E
and F), we identified genes associated with steroid metabolic
process, cholesterol homeostasis, and trafficking, and several
epoxygenase P450s (Fig. S4A-D). Other downregulated genes
2024. vol. 6 j 101143 2
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belonged to clusters involved in the regulation of intracellular
signaling pathways (Fig. S4E), cell communication, and
anatomical structure morphogenesis.

These findings highlight the complex interplay between
systemic estrogen deficiency and hepatic ERa signaling in
mediating metabolic reprogramming in the liver following es-
trogen loss.
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Hepatic ERa fully exploited liver metabolic reprogramming
in a mouse model of menopause

Since only a subset of genes differentially regulated by OVX
was shared between the LERKO SHAM and CTRL SHAM mice,
it is reasonable to assume that most changes in gene expres-
sion found in OVX mice can be attributed to factors other than
ERa in hepatocytes. In this perspective, if the role of ERa were
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ERa drives masculinization in post-menopausal women with MASLD
marginal in driving the changes associated with estrogen
deficiency, similar changes to those observed in CTRL would
be expected in LERKO following ovariectomy.

Analysing genes differentially regulated following ovariec-
tomy (Fig. 3A-E), we found fewer DEGs in LERKO (245)
compared with CTRL (1426) mice. Of these, 146 were shared
between CTRL OVX/CTRL SHAM and LERKO OVX/LERKO
SHAM mice, with 56 genes being upregulated and 90 down-
regulated by ovariectomy (Fig. 3C). Notably, this subset
accounted for only �10% of the genes differentially regulated
by ovariectomy in CTRL mice, arguing against the null hy-
pothesis that hepatic ERa may have a marginal role in medi-
ating changes associated with estrogen loss.

GO analysis revealed a distinct modulation of the liver
transcriptome in LERKO OVX mice. Among the 91 genes
upregulated by ovariectomy in LERKO (Fig. 3A), significant
gene enrichment was associated with lipid synthesis, droplet
organisation and storage, with some genes (e.g. Scd1,
stearoyl-CoA desaturase 1; Plin5, perilipin 5) specifically
enhanced in LERKO OVX mice, associated with a greater in-
crease in liver lipid deposition and body weight (Fig. S5A and
S6A-C). Differently from CTRL mice, genes involved in FAO
and lipid metabolism were not induced in LERKO mice
following ovariectomy (Fig. 3B), although Ppara was similarly
enhanced by ovariectomy (Fig. S5A).

In LERKO mice, ovariectomy repressed 154 genes,
including those associated with amino acid (AA) catabolism
and transmembrane transport, regulation of chemokine
biosynthesis, and hormone metabolic process (Fig. 3D). Among
them, certain genes associated with steroid metabolism
(Fig. S5B), serine and glycine metabolism (Fig. S5C), and AA
transmembrane transport (Fig. S5D) were inhibited by ovari-
ectomy in both genotypes. In contrast, other genes involved in
AA catabolism (Ido2, indoleamine 2,3-dioxygenase 2; Kyat1,
kynurenine aminotransferase 1; Bcat2, branched chain amino
acid transaminase 2) were repressed only in LERKO OVX mice
(Fig. S5E). In contrast to LERKO, we observed a repression of
genes involved in the positive regulation of transcription,
anatomical structure morphogenesis, and regulation of cell
communication only in OVX CTRL mice (Fig. 3E).

These findings indicate that hepatic ERa is crucial for the
majority of adaptative changes in the liver transcriptome in
response to estrogen deprivation.

Hepatic ERa was essential for liver masculinization in a
mouse model of menopause

The minimal overlap in gene expression between CTRL OVX/
CTRL SHAM and LERKO OVX/LERKO SHAM mice indicates
that estrogen deficiency leads to distinct transcriptome out-
comes for CTRL and LERKO. We focused on the subset of 84
DEGs between CTRL OVX and LERKO OVX mice (Fig. 4A).
Among the 22 genes upregulated in LERKO OVX mice, we
identified Gdpd3 (glycerophosphodiester phosphodiesterase
domain containing 3, known to promote hepatic steatosis23),
Lars2 (leucyl-tRNA synthetase 2), and Vldlr (very-low density
lipoprotein receptor). In addition to Esr1, which encodes for
ERa, among the 62 downregulated genes in LERKO OVX, we
found several cytochrome P450s, MUPs, and genes involved in
steroid metabolism. Specifically, the genes exhibiting the most
significant repression in the liver of LERKO OVX mice were
JHEP Reports, October
Cyp4a12b (40 × less), Cyp4a12a (32 × less), Mup7 (18.4 × less),
Hsd3b5 (16 × less), and Mup12 (9 × less) (Fig. 4A). These
genes, known to be associated with a male-specific liver
transcriptome,24,25 were upregulated by ovariectomy in CTRL
but either not or to a lesser extent in LERKO mice (Fig. S7
and S8).

To investigate the extent to which estrogen loss may
reprogram liver transcriptome towards a male-like pattern, we
cross-referenced the DEGs obtained from the comparisons
CTRL OVX/CTRL SHAM and LERKO OVX/CTRL OVX mice with
a list of 274 well-established sex-biased genes.26 In the liver of
CTRL, 97 OVX-altered genes were identified as known sex-
biased genes; notably, the majority of male-biased genes (46/
50, 92%) were upregulated by ovariectomy, whereas most
female-biased genes (41/47, 87%) were downregulated by
ovariectomy (Fig. 4B and Fig. S7A). In LERKO, 40 OVX-altered
genes were identified as sex-biased genes; among these, 12/
16 (75%) male-biased genes were upregulated by ovariectomy,
while all female-biased genes were downregulated by ovari-
ectomy (Fig. 4C and Fig. S7B).

While these findings suggested that ovariectomy repro-
grams the liver transcriptome towards a male-like pattern, the
effect appeared to be slightly attenuated in LERKO compared
with CTRL mice. To explore the contribution of hepatic ERa in
the male-like liver reprogramming after estrogen deprivation,
we focused our analysis on the 84 DEGs identified in the
comparison of LERKO OVX and CTRL OVX mice. Among these,
26 (31%) were identified as sex-biased genes; notably, all the
21 male-biased genes were upregulated in CTRL OVX mice
compared with LERKO OVX mice (Fig. 4D and Fig. S8A-C),
confirming hepatic ERa relevance in liver masculinization
following estrogen loss.

In the liver, growth hormone (GH) stimulates the nuclear
translocation of STAT5B (signal transducer and activator of
transcription 5 b) in a sex-specific manner, strongly contrib-
uting to sex differences in gene expression.24,27 To gain further
insights into STAT5 signaling, we examined the overlap be-
tween DEGs found in the comparison of LERKO OVX and CTRL
OVX that are also known sex-biased genes, and a list of STAT5
responsive genes.26 Only seven genes were unresponsive to
STAT5, while 19 genes were altered in the STAT5 KO mice
(Fig. 4E and F and Fig. S8A-E). Among the STAT5 responsive
genes, 13 male-biased genes (Cyp4a12b, Cyp4a12a, Col27a1,
Cyp7b1, Hsd3b5, Mup3, Mup7, Mup11, Mup12, Mup21, Nat8,
Slco1a1, and Slc22a28) were upregulated in CTRL OVX mice.
Interestingly, all these genes were also expressed at low levels
in LERKO OVX mice compared with CTRL OVX mice, as well as
in STAT5 KO males compared with controls (Fig. 4F and
Fig. S8A and B). Among the STAT5 responsive genes, two
female-biased genes (Serpina3h, Vldlr) were upregulated in
LERKO OVX mice as well as in STAT5 KO mice compared with
their counterparts (Fig. 4F and Fig. S8D).

These findings underscore the crucial role of hepatic ERa in
fully reprogramming the hepatic transcriptome of OVX females
towards a male-like profile.

MASLD development in women was associated with liver
masculinization

To investigate the translational relevance of such findings, we
enquired liver samples from a cohort of 60 severely obese
2024. vol. 6 j 101143 6
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ERa drives masculinization in post-menopausal women with MASLD
individuals not carrying the PNPLA3 genetic risk variant, who
underwent a percutaneous liver biopsy for confirming and
staging MASLD. We classified women according to age,
assuming 51 years as the discriminant age between pre-
menopausal and post-menopausal stages, as suggested by
the Endocrine Society guidelines.28 We also differentiated
women according to MASLD status.

As shown in Fig. 5, the expression of genes affected by
ovariectomy and hepatic ERa absence in mice was also altered
in human liver samples. In particular, for most of the genes
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Fig. 5. MASLD in women is associated with a male-like liver transcriptome pr
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analysed, the mRNA expression profile in the liver of women
aged >−51 years old was similar to that exhibited in men, sug-
gesting a masculinization of the liver transcriptome profile after
menopause, as observed for mice. Notably, for women aged
<51 years with MASLD the expression of these genes was in-
termediate between that of women aged <51 years without
MASLD and that of women aged >−51 years women with
MASLD, suggesting that beyond obesity an impaired hepatic
estrogen signaling promotes liver masculinization and raises
the risk of developing MASLD in women.
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With this study, we found that hepatic ERa fully exploits liver
metabolic reprogramming following estrogen loss, pointing to
this receptor as a valuable pharmacological target for the post
menopause-associated MASLD.

Estrogen loss following ovariectomy surpasses the changes
observed in the hepatic transcriptome due to the simple lack of
hepatic ERa, a finding not surprising, as estrogen deficiency
affects the entire organism, including signaling pathways in
organs cross-talking with the liver. It could be hypothesized
that the absence of hepatic ERa represents an intermediate
phenotype between the SHAM and OVX mice, while most of
ovariectomy-induced changes in the liver transcriptome may
be ascribable to factors other than ERa in hepatocytes. How-
ever, if ovariectomy-induced changes were primarily hepatic
ERa-independent, we would expect similar changes in CTRL
and LERKO after ovariectomy. Nonetheless, the ovariectomy-
induced changes were limited in LERKO mice and exhibited
significant differences compared with CTRL mice (Fig. 3),
arguing against this hypothesis.

In our study, ovariectomy led to the over-expression of
genes involved in lipid storage and deposition in the liver of
both genotypes. However, ovariectomy inhibits the expression
of genes involved in AA catabolism, particularly in LERKO OVX
mice (Fig. 3D), an effect that may be linked to liver lipid depo-
sition.11,29 Notably, liver lipid sequestering and storage were
particularly amplified in LERKO OVX mice (Fig. S5A), suggest-
ing a counteractive role of hepatic ERa in limiting lipid depo-
sition even after estrogen loss. Accordingly, the upregulation of
PPARa target genes associated with FAO and lipid metabolism
mainly occurred in CTRL OVX mice (Fig. 3B), suggesting that
hepatic ERa may concur to the adaptive response to estrogen
loss, possibly through interactions with other nuclear receptor
signaling pathways.

If hepatic ERa were marginal in exploiting OVX effects, we
would have expected similar transcriptomeprofiles for CTRLOVX
and LERKO OVX mice. Conversely, the comparison between
LERKO OVX/CTRL OVX mice confirms the unique role of hepatic
ERa in reprogramming the liver transcriptome according to hor-
monal changes. In CTRL mice, ovariectomy led to the over-
expression of STAT5B-dependent male-biased genes, an effect
greatly attenuatedornullified inLERKOOVXmice, highlighting the
specific involvement of hepatic ERa in liver masculinization
following estrogen depletion (Fig. 4 and Fig. S8).

Likely through epigenetic mechanisms, the loss of estrogens
may render ‘male’ chromatin regions more accessible to tran-
scription factors such as STAT5B, thereby promoting the tran-
scription of their target genes. In line with this, the promoters of
several STAT5B-dependent male-biased genes over-expressed
in CTRL OVX mice (i.e. Cyp7b1, Hsd3b5, Slco1a1) resulted
unmethylated in the liver of masculinized female mice.30 In CTRL
OVX mice, the hepatic over-expression of Cyp7b1, Hsd3b5, and
Slc10a1may represent a counter-regulatory adaptation aimed at
minimising changes in the estrogen/androgen ratio and/or pro-
moting cholesterol conversion into bile acids, therefore limiting
MASLD progression to steatohepatitis.31–33

The incomplete liver masculinization in LERKO OVX mice
underscores the essential role of hepatic ERa in liver sexual
differentiation.8,34 An intriguing hypothesis suggests that he-
patic ERa might enhance the transcription of male-biased
JHEP Reports, October
genes by facilitating the binding of STAT5B and coactivators,
like the glucocorticoid receptor (GR), to DNA,35 potentially
through an ‘assisted loading’ mechanism.36 Supporting this,
some of the male-biased genes (Cyp7b1, Hsd3b5, Mups,
Serpin1e) upregulated by OVX in CTRL mice but not or to a
lesser extent in LERKO mice are known to be responsive
to GR.37,38

In the absence of estrogens, hepatic ERa can be activated by
various factors and extracellular signals, including AA, growth
factors, and cytokines.7,39 The cross-talk between ERa and the
insulin signaling pathway (INS) represents one potential mecha-
nism involved in this process. Besides classical activation,
STAT5B can also be activated through phosphorylation by the
insulin receptor (IR) or downstream components of INS.40 Studies
in mice treated with agonist/antagonist for GR and IR or in liver-
specific KO mice for GR and IR demonstrated that GR and INS
cooperate to regulate the hepatic metabolism in response to the
feeding/fasting status.41 Notably, several male-biased genes
(Alas2, Cyp4a12a, Cyp4a12b, Hsd3b5, Mup3, Mup21, Nat8, and
Slco1a1) upregulatedbyovariectomy inCTRLmice, but not or toa
lesser extent inLERKOunder short-term fasting,were also among
the most downregulated genes in liver-specific IR KO mice.42

These data support the idea of a cross-talk among hepatic ERa,
INS and GR in reprogramming female liver metabolism based on
estrogen levels and nutritional status.

In this study, the comparison between OVX and SHAM mice
was limited to the estrus phase characterized by low estrogen
levels, to specifically assess the broader impact of long-term es-
trogen deficiency on hepatic gene expression.We cannot rule out
that several other or more marked differences may exist during
different phases of the estrous cycle, particularly at proestrus
when estrogen levels are the highest. It is also possible that the
timing and duration of ovariectomymay contribute to some of the
observed differences, while other differences may be masked.
Considering the role of hepatic ERa in sensing nutritional status, it
is plausible to speculate that liver reprogramming may be influ-
encedby various nutritional conditions. Nevertheless, we focused
our investigation on control-fed mice to evaluate the extent to
which estrogen loss alone induces alterations in hepatic gene
expression that could predispose to MASLD development. Our
datashowthatovariectomyper se leads toagreat reprogramming
of liver transcriptome and to a significant increase (+45%) in liver
lipid deposition even in control-fed mice. Finally, we could not
examine the impact of gene expression on protein and lipid levels
and metabolic fluxes. Despite all these limitations, it is most
noteworthy that liver transcriptomics confirmed that MASLD in
obese women was associated with a similar shift toward a male-
like metabolic profile in key genes. These results are concordant
with several clinical observations that have reported sexual hor-
mone abnormalities and dysfunctions, including masculinization/
defeminization, in women with liver diseases.43–45 To our knowl-
edge, however, this is the first study reporting amasculinization of
liver transcriptome in obese women with MASLD.

Since the Liver Biopsy Cohort did not include information on
the hormonal status of participants, we utilized the age of 51
years as a cutoff to distinguish between pre- or post-
menopausal stages, following guidelines from the Endocrine
Society. We observed a masculinization of the liver tran-
scriptome specifically in women with MASLD, particularly
pronounced in those aged >−51 years. Notably, obese women
2024. vol. 6 j 101143 9



ERa drives masculinization in post-menopausal women with MASLD
<51 years without MASLD did not exhibit liver masculinization.
In our experimental mouse model, the complete liver mascu-
linization was due to estrogen loss and relies on hepatic ERa.
Consequently, our findings suggest that, besides obesity, the
impairment of hepatic ERa signaling following menopause may
serve as a primary factor driving liver masculinization and the
development of MASLD in women.
JHEP Reports, October 2
In summary, this study unravels the peculiar role of hepatic
ERa signaling in fully mediating the reprogramming of the fe-
male liver following estrogen loss toward a male-like profile,
modelling MASLD development in women after menopause
and, thereby, pointing to hepatic ERa as a valuable target
for precision pharmacological therapy approach for post-
menopause-associated MASLD.
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