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1 Introduction

Differential observables of the Drell-Yan processes and Higgs hadroproduction play paramount
roles in precisely determining the Standard Model (SM) input parameters and probing New
Physics scenarios. They have therefore drawn extensive experimental and theoretical attention
in the recent decades. The latest measurements of the Drell-Yan processes have been carried
out by the ATLAS [1–4], CMS [5–9] and LHCb [10] collaborations at the LHC at colliding
energies of

√
s = 7, 8, and 13TeV, as well as the CDF and DØ collaborations at

√
s = 1.96 TeV

at the Tevatron [11–14]. Inclusive and differential fiducial cross section measurements for
Higgs boson production, on the other hand, have been presented in [15–24]. Along with the
progress in experimental precision, strides were also made in the fixed-order calculations. The
QCD corrections are known up to third order for both the Drell-Yan processes [25–34] and
Higgs production [35–53]. Electroweak corrections have mostly been studied for Drell-Yan
production [54–60], but are known for Higgs production as well [61, 62].

Of the differential observables, the transverse momentum distribution of the colourless
final state is of the particular concern in this work. Even though fixed order calculations are
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able to produce reliable predictions in the majority of the phase space, substantial corrections
can emerge from higher perturbative order within the low qT regime, as a result of soft
and collinear radiation, where the bulk of the cross section resides. Hence, in order to
arrive at a sufficiently convergent result in perturbation theory, a variety of the resummation
techniques that are capable of exponentiating the most singular, so-called leading power (LP),
behaviour of the qT distribution at every order have been developed in the past decades.
Examples are the CSS formalism [63–68], the momentum space resummation [69–73], and the
SCET-based analyses [74–80]. The subsequent resummation improved qT distributions have
been evaluated up to approximate N4LL accuracy [32, 72–74, 81–95] for the Drell-Yan process
and N3LL′ in the case of Higgs production [50, 53, 67, 71, 73, 89, 96–101] as to the Higgs
production. Recently, to further improve the precision as well as the phase space coverage
of the qT resummation, the factorisation pattern of the subleading power contribution has
been investigated within both the non-perturbative region ΛH ≲ qT ≪ QH [102–112] and the
perturbative zone ΛH ≪ qT ≪ QH [113–115], where ΛH and QH characterise the hadronic
and hard scales in the process under consideration, respectively. At present, a resummation
of those subleading power corrections has not been accomplished yet beyond LL.

Similarly, subleading power corrections also play a role in the limit qT → 0. Here, the LP
approximation can only recover the most singular behaviour of the exact distribution at any
given order in a fixed-order expansion, leaving behind integrable (but numerically problematic)
singularities and constant terms. These non-vanishing remainders are of particular concern in
qT-based subtraction and slicing methods for higher-order calculations [73, 92, 99]. Related
results on power suppressed contribution can be found from [90, 116–119] concerning the
slicing subtraction method, the endpoint singularity in the Higgs production and decay [120–
127], the event shapes in the leptonic and hadron colliders [128–136], and the threshold
resummation [137–158].

To derive the factorisation formulae beyond the leading power approximation, one of
the prerequisites is to consistently combine the contributions from the constituent dynamic
regions, generally comprising the hard, collinear, and soft modes [102–115].1 Although
these dynamic regions are well defined in given segments of the phase space or the loop
integrals, in practical calculations one often extrapolates their contributions from their
respective intrinsic domains to the entire integration range, necessitating a robust systematic
subtraction process to remove their overlap. This procedure is frequently referred to as the
zero-bin subtraction [163–166], the soft subtraction [75, 164, 165, 167, 168], or the overlap
reduction [114, 169, 170]. At leading power, zero-bin subtraction proceeds with deducting
the soft contribution from the collinear sectors, and has been demonstrated to be valid up to
N3LO [79, 80, 171–176]. Similar conclusions can also be found in the analysis of the subleading
angular coefficients (suppressed by a factor of qT/QH w.r.t. leading singular terms) in the
Drell-Yan process and the semi-inclusive deep-inelastic scatterings [106–108, 110]. However,
for the subleading inclusive observables of the Drell-Yan process the zero-bin subtraction

1The irrelevance of the Glauber vertices is presumed in the subleading power factorisation of [102–115].
Up to now, a rigorous proof of the cancellation of the Glauber contributions beyond the leading power
approximation is still absent, to our best knowledge. The leading power discussion on inclusive observables
can be found in [159–162].
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becomes more involved, as it comprises mixed contributions in the overlapping area from
the lowest power accuracy up to NLP [114, 170].

Even though such recipes to construct zero-bin subtractions can establish a factorisation
at the NLP level, a robust algorithm that is capable of generating zero-bin subtrahends at
an arbitrary power and choice of a rapidity-divergence regularisation prescription is still
missing. Investigations towards this goal were pioneered by [177], in which a mathematically
well-defined derivation was delivered for the power series of the one-loop integrals in a variety
of kinematical limits. Therein, the analysis of the massive Sudakov form factor is intimately
related to the asymptotic behaviour of the qT distribution. Their power expansion begins
with the introduction of a group of auxiliary cutoff scales along the integration path, from
which the relevant scales of the process are well separated and the defining dynamic regions
can be prescribed accordingly. Within these regions, the expansions are straightforward and
always well-defined. This is then followed by a recombination procedure to lift all dependences
on the auxiliary scales, thereby extrapolating the expanded integrands from their intrinsic
domains to the entire integration range. During this procedure, however, a set of constituents
emerge, consisting of doubly and triply expanded integrands in line with their respective
distinct scaling laws which account for the overlapping contributions amongst different modes
and turn out to be in part the zero-bin subtrahends. While integrals with a single definite
scaling rule for every integration variable are subjected only to a single expansion, multiple
expansions can induce ambiguous interpretations of the resulting integral as the integration
variables in general observe distinct scaling rules for each dynamic mode. Subsequently,
this ambiguity limits the applicability of the formalism in [177] to only a special range of
rapidity regularisation schemes, such as the analytic regulator [74, 76] and the pure rapidity
regulator [113, 178]. When using more generic regularisation schemes, e.g. the exponential
regulator [79, 80], doubly and triply expanded integrals instead call for an unambiguous
counting rule at each power accuracy to yield results that are independent of the scheme. As
a matter of fact, any reliance on the choice of rapidity regulators in carrying out the power
expansion will hinder the establishment of the rapidity renormalisation group [77], which,
akin to the renormalisation group governing the virtuality divergence, requires the equivalence
of the power series resulting from various rapidity-divergence regularisation approaches.

In the following, we will make use of the NLO qT distribution of the process pp → H +X

as a demonstrative example to accomplish this goal. Since our derivation mainly concerns the
pattern of the denominators of the squared transition amplitudes, the conclusion here can
also be generalised to the analysis of the Drell-Yan processes, pp → V + X with V = W, Z.
We commence by following the strategy outlined in [177] to categorise the phase space
so as to detach the emerging scales and thereby carry out the expansion in momentum
space. Afterwards, instead of extrapolating the expanded integrands on the cumulative level,
in this work we shift the auxiliary boundaries at a particular power accuracy only while
maintaining the equality to the power series derived from the momentum space. As a result,
a set of multiple expanded integrals emerge to balance the overextended collinear sectors
power by power. We use these to construct the zero-bin subtrahends and thereby retrieve
the scalings for the occurring integration variables. We will demonstrate that the zero-bin
subtrahends proposed in this paper are straightforwardly applicable to all rapidity regulators
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that preserve their expressions before and after asymptotic expansions, including the analytic
regulator [74, 76], the exponential regulator [79, 80], and the pure rapidity regulator [113, 178].
In addition, with a few adaptations, our algorithm presented here can also be generalised to
use the ∆-regulator [75, 166, 171, 172, 179] and the η-regulator [77, 78]. This accommodates
the majority of the rapidity-divergence regularisation schemes in use at this time.

Our paper is organised as follows. In section 2 we develop our framework to compute, in
a general way, all power corrections to NLO accuracy. To this end, we will use section 2.1
and 2.2, taking the example of Higgs hadroproduction at LHC, to review the fixed order
calculation on the qT spectrum and thereby categorise the phase space into two sectors
according to the origins of the power corrections. The first sector, associated with the
asymptotic expansion of the boundary condition, will be investigated in section 2.3. The
other one takes in the bulk of phase space and thus forms the main concern of this paper. We
will devote section 2.4 to elaborate on its expansion procedure, in particular highlighting the
structural pattern of the emerging zero-bin subtrahends. At last, in section 2.5, we combine
the relevant ingredients and present the power series of the qT spectrum of our example
process pp → H +X. Section 3 then is dedicated to the application of the framework derived
in section 2, where the power corrections will be appraised up to N2LP for the first time.
We calculate it in three different approaches, including the momentum cutoff scales, the
homogenous regularisation scheme, and the inhomogeneous regulator, to regulate the rapidity
divergences. We will demonstrate that after appropriate combination, all three methods result
in the same analytic expressions at least up to N2LP, echoing the rapidity renormalisation
group [77]. Finally, we will scrutinise our N2LP results in section 4 by comparing to the full
QCD calculation. Eventually, we summarise our findings in section 5.

2 Theoretical framework

In this section, we introduce the formalism to be utilised in the next-to-leading and next-
to-next-to-leading power expansions, dubbed NLP and N2LP respectively. We will use the
case of Higgs production at hadron colliders, p + p → H + X, as an illustrative example.
The results we derive, however, are similarly applicable to the production of any other
colour-neutral final state.

2.1 Analysis of the NLO fixed order results

To introduce our notation, we start our analysis by recalling the general expression for
the differential cross section of the process p + p → H + X in proton-proton collisions.
According to the QCD factorization theorem [180], the differential qT spectra at NLO can
be calculated as follows,

dσH

dYH dq2
T
= 1

16π s2

∑
i,j

∫ kmax
+

0
dk+

∫ kmax
−

0
dk− δ(k+k−−q2

T)
fi/n(ξn)

ξn

fj/n̄(ξn̄)
ξn̄

∑
col,pol

∣∣M(i+j →H+k)
∣∣2

= 1
16π s2

∑
i,j

∫ kmax
+

kmin
+

dk+

k+

fi/n(ξn)
ξn

fj/n̄(ξn̄)
ξn̄

∑
col,pol

∣∣M(i+j →H+k)
∣∣2 , (2.1)

where
√

s denotes the collider centre-of-momentum energy of the incoming protons. YH

and qT stand for the rapidity and transverse momentum of the Higgs boson measured in
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the laboratory reference frame, respectively. The boundaries of the phase space integral
are given by the variables kmax

+ and kmin
+ , with

kmax
+ =

√
s − mTe−YH , kmin

+ = q2
T

kmax
−

= q2
T√

s − mTe+YH
. (2.2)

Therein, m2
T ≡ m2

H + q2
T is the transverse mass of the Higgs boson, mH being the mass

of the Higgs boson.
In the integrand of eq. (2.1), fi/n and fj/n̄ represent the parton distribution functions

(PDFs) for the partons i and j in the protons n and n̄, respectively, with the argument ξn(n̄)
encoding the momentum fractions carried by the incident particle i(j) with respect to its
mother proton n(n̄). In this paper, we will use the 5 flavour scheme, and correspondingly,
the partons {i, j, k} ∈ {u, ū, d, d̄, c, c̄, s, s̄, b, b̄, g} will be considered massless and taken fully
into account in the following analysis.

|M|2 denotes the squared amplitudes for the contributing partonic channel i+ j → H +k.
Since the main focus of this paper is on the region where qT approaches, but is not equal
to, zero, only tree level contributions will participate in eq. (2.1). In the large top mass
limit, the amplitudes for the processes i + j → H + k can be calculated in the low energy
Higgs effective field theory (HEFT) [181–187]. Therein, the creation and annihilation of the
Higgs boson are governed by the effective Lagrangian,

Leff = αs(µ)
12πv

Ct(mt, µ)Gµν,aGa
µν H , (2.3)

where αs stands for the strong coupling constant and v denotes the Higgs vacuum expectation
value, while H and Ga

µν represent the Higgs field operator and the gluon field strength tensor,
respectively. The closed top quark loop, coupling the gluons to the Higgs, is encoded by the
Wilson coefficient Ct, which, up to now, has been calculated up to the four-loop order [185, 187–
192]. In this work, we only take into account its LO contribution in accordance with the
perturbative accuracy of eq. (2.1). In writing eq. (2.3), we have omitted the operators
inducing the Higgs-light-quark interaction, as the 5 active flavour scheme is adhered to
throughout our investigation.

Combining eq. (2.3) with the QCD Lagrangian enables the generation of the squared
amplitudes for the process i + j → H + k. Having summed and averaged, as appropriate,
over all the colour and polarisation configurations, the results read [193, 194],

∑
col,pol

∣∣M(g + g → H + g)
∣∣2 = 3λ2

t

32
m8

H + s4
ij + s4

ik + s4
jk

sijsiksjk
,

∑
col,pol

∣∣M(g + q(q̄) → H + q(q̄))
∣∣2 = −λ2

t

24
s2

ij + s2
ik

sjk
,

∑
col,pol

∣∣M(q + q̄ → H + g)
∣∣2 = λ2

t

9
s2

ik + s2
jk

sij
,

(2.4)

where the parameter λt is introduced to collect the coupling constants, i.e. λ2
t ≡ 4α3

sC2
t /(9πv2).

The missing expressions for q(q̄)g and q̄q initial states can be derived from the above by
swapping the roles of i and j.
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The expressions in eq. (2.4) involve the scalar products of the momenta of the initial
and final particles,

sij = 2pi · pj =
(
k+ + mTe−YH

) (
k− + mTe+YH

)
,

sik =− 2pi · pk = −
(
k+ + mTe−YH

)
k− ,

sjk =− 2pj · pk = −
(
k− + mTe+YH

)
k+ .

(2.5)

Therein, k± denotes the light cone component of the momentum of the emitted parton k. To
be precise, with the help of the light-like reference vectors nµ and n̄µ, aligned with incoming
beams and satisfying n · n̄ = 2, it is defined as

pµ
k = pk · n

2 n̄µ + pk · n̄

2 nµ + pµ
k,⊥ ≡ k−

2 n̄µ + k+
2 nµ + kµ

⊥ ≡
[
k−, k+, k⊥

]
. (2.6)

In this notation, the momentum fractions ξn and ξn̄ of eq. (2.1) can be written as

ξn = k+ + mTe−YH

√
s

and ξn̄ = k− + mTe+YH

√
s

. (2.7)

In the following sections, we will investigate the asymptotic properties of eq. (2.1) in the
vicinity of qT = 0, adhering to the following definition of the expansion accuracy, counting
powers of q2

T, throughout,

dσH

dYH dq2
T
=
∑
m

∆(m)
LP (LH)m

q2
T︸ ︷︷ ︸

LP

+
∑
m

∆(m)
NLP (LH)m

︸ ︷︷ ︸
NLP

+
∑
m

q2
T ∆(m)

N2LP (LH)m

︸ ︷︷ ︸
N2LP

+ . . . . (2.8)

Therein, the qT differential distribution in eq. (2.1) is expanded in the low qT domain. At a
given power precision, e.g. Nω+1LP, all non-logarithmic qT dependences have been collected in
the pre-factor q2ω

T with (ω ≥ −1). They leave behind the logarithmic terms LH ≡ ln[q2
T/m2

H ]
and the coefficient functions ∆(m)

Nω+1LP ≡ ∆(m)
Nω+1LP[mH , s, YH ; fi/n, fj/n̄] which accounts for

the convolution of the PDFs fi/n and fj/n̄ as well as the functions of the hard scales s and mH .
According to this definition, the LP contribution is expected to accommodate the most singular
behaviour in the low qT regime, while the higher power corrections experience progressively
stronger suppression factor q

2(ω−1)
T . Correspondingly, ∆LP is known extremely precisely, up

to approximate fourth order [100, 173–176, 179, 187, 189–191, 195–210], while the ∆NLP has
only been computed recently to NLO accuracy [113]. All further higher-power corrections are
hitherto unknown, and we will use the remainder of this section to introduce a mathematically
well-defined approach to develop a framework to compute the ∆Nω+1LP for all ω ≥ −1 at
NLO accuracy before deriving the respective NLO-correct expression for ∆N2LP explicitly.

In the following subsections we will be evaluating the coefficients ∆(m)
Nω+1LP. In section 2.2,

we will derive additional power corrections originating from the kinematics of the process
and thereby categorise the phase space integral of eq. (2.1) into two sectors. The first
sector encompasses the domains in the vicinity of kmax

+ and kmax
− , accounting for the power

suppressed contributions induced by the boundary conditions of the phase space integral,
see eq. (2.2). We will make use of section 2.3 to discuss the asymptotic properties from this
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region. The second sector consists of the remaining regions, entailing a variety of scales along
the integration path and is therefore the main concern of this paper. We will elaborate in
section 2.4 on the power expansion of this contribution. Eventually, with the results of the
two, we are capable of deriving the power series for the qT spectrum in section 2.5.

2.2 Prerequisites for the power expansion

We start the discussion with the transformation of the squared amplitudes of eq. (2.4). As
the power expansion in the low qT domain primarily concerns the relation of the kinematic
variables k± and mTe±YH , it is beneficial for us to regroup the results in eq. (2.4) according
to their k± and mTe±YH dependences. To this end, it merits reminding that the numerators
of the |M|2 can be all recast in terms of the polynomials in the invariants sij , sik, and sjk,
on account of the on-shell condition m2

H = sij + sik + sjk. Hence, with eq. (2.5) and carrying
out the polynomial expansion, the numerators of the |M|2 are then cast into a finite series
of the products of k± and mTe±YH , more specifically,

∑
col,pol

∣∣M[κ]
∣∣2∣∣∣∣∣

Numerator

→
∑
m,n

(k+)m (k−)n cm,n
[κ] (mT, YH) , (2.9)

where the contributing partonic channels are denoted by the subscript κ={gg,gq(q̄), q(q̄)g,qq̄, q̄q}.
The coefficients cm,n

[κ] are a function of the hard scales mTe±YH , with the superscripts
{m, n} ≥ 0 corresponding to the powers of k±. Combining eq. (2.9) with the denomi-
nators of the |M|2 in eq. (2.4) and factoring out common prefactors consisting of the coupling
parameter λt and the colliding energy

√
s, it yields that,∑

col,pol

∣∣M[κ]
∣∣2 ≡16πλ2

t s
∑
{β}

∑
ρ,σ

(k+)σ

(k+ + mTe−YH )βn−1
(k−)ρ

(k− + mTeYH )βn̄−1 Hρ,σ
[κ],{β} (mT, YH , s) ,

(2.10)

where a novel hard sector Hρ,σ
[κ],{β} is introduced to assimilate the cρ,σ

[κ],{β} of eq. (2.9) as well
as the colliding energy

√
s. Based on eq. (2.4), the indices ρ and σ as well as βn and βn̄

in Hρ,σ
[κ],{β} are always integers for the process pp → H + X at NLO. At variance with m

and n in eq. (2.9), the superscripts ρ and σ in eq. (2.10) can be of negative value, as the
squared amplitudes in the g + g → H + g and g + q(q̄) → H + q(q̄) channels are both able to
contribute additional light-cone components k± from the denominators, thereby lowering the
powers of eq. (2.9). βn and βn̄, however, also following eq. (2.4), are always taken greater
than or equal to one. At last, it should be emphasised that the parameterisation in eq. (2.10)
is not unique, since one can always reweight the numerator and denominator of the results in
eq. (2.4) by a common factor, e.g. (k− + mTe+YH )2, and then expand the numerator without
modifying the fraction. Although this arbitrariness may impact the expressions of individual
Hρ,σ

[κ],{β} in eq. (2.10), but will not impact the squared amplitudes |M|2.
Substituting eq. (2.10) together with eq. (2.7) into eq. (2.1), we recast the qT spectrum as,
dσH

dYH dq2
T
= λ2

t

∑
κ

∑
{β}

∑
ρ,σ

Hρ,σ
[κ],{β} (mT, YH , s)

×
∫ kmax

+

kmin
+

dk+
k+

(k−)ρ (k+)σ F
(0)
i/n,βn

(
k+ + mTe−YH

)
F

(0)
j/n̄,βn̄

(
k− + mTe+YH

)
.

(2.11)
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Herein, the integrand contains the derivatives of the scaled PDFs of the light-cone components
(k± + mTe∓YH ), generically defined as

F
(αn)
i/n,βn

(Qn)≡
∂αn

∂Qαn
n

[
fi/n (Qn/

√
s)

Qβn
n

]
, F

(αn̄)
j/n̄,βn̄

(Qn̄)≡
∂αn̄

∂Qαn̄
n̄

[
fj/n̄ (Qn̄/

√
s)

Qβn̄
n̄

]
, (2.12)

where Qn and Qn̄ represent the two kinematic variables, αn and αn̄ determine the rank of
the derivative, and βn and βn̄ are the powers to which they scale their respective PDFs.
Collectively, we denote the latter {α} and {β}.

For the results derived in full QCD, see eq. (2.1), only the zero-rank scaled PDFs are
involved. Hence, only the αn = αn̄ = 0 case is present in eq. (2.11). The αn, αn̄ > 0
expressions, however, will enter in the higher-power qT expansion.

In the following, we will concern ourselves with the analytic properties of the functions
F

(αn)
i/n,βn

(Qn) and F
(αn̄)
j/n̄,βn̄

(Qn̄). However, due to the fact that the PDFs fi/n and fj/n̄ have
their origin in the non-perturbative regime of QCD and, thus, their analytic expressions are
not fully established, we make the following assumptions:

(a) For a given αn, αn̄ > 0 the F
(αn)
i/n,βn

(Qn) and F
(αn̄)
j/n̄,βn̄

(Qn̄), as well as their arbitrary
order derivatives, exist and are bounded over the domain ΛH ≤ Qn(n̄) ≤

√
s for all βn

and βn̄, where ΛH represents a hadronisation scale .

(b) F
(αn)
i/n,βn

(Qn + δQn) and F
(αn̄)
j/n̄,βn̄

(Qn̄ + δQn̄) have convergence radii |δQn(n̄)| < Qn(n̄) as
long as

(
Qn(n̄) + δQn(n̄)

)
and Qn(n̄) are both well within the interval [ΛH,

√
s] .

Please note, if the PDFs are fitted in a basis of Chebyshev polynomials, as proposed in [211–
213], and thereby fi/n and fj/n̄ can be then expressed in terms of lnk(ξn)/ξh

n and lnk(ξn̄)/ξh
n̄,

respectively, the second assumption is immediately fulfilled.
Equipped with the above ansatz, we are able to expand eq. (2.11) in the vicinity of

qT = 0. To this end, we start with the expansion of the kinematic variable mT in the hard
coefficient function Hρ,σ

[κ],{β}. In the small qT domain where qT ≪ mH , we can perform an
expansion of the transverse mass mT of the Higgs boson around its invariant mass mH ,

mT = mH ·
∞∑

h=0

1
h!

Γ[3
2 ]

Γ[3
2 − h]

(
q2

T
m2

H

)h

. (2.13)

We can use this result to expand the hard coefficient Hρ,σ
[κ],{β} around qT = 0, giving

Hρ,σ
[κ],{β}(mT, YH , s)

=
∞∑

h=0

(mT − mH)h

h!

{
∂h

∂mh
T
Hρ,σ

[κ],{β}(mT, YH , s)
∣∣∣∣
mT→mH

}

=
∞∑

h,l=0

h∑
g=0

(−1)h−g

g! l! (h − g)!
Γ[ g

2 + 1]
Γ[ g

2 − l + 1]

(
q2

T
m2

H

)l

mh
H H(h),ρ,σ

[κ],{β}(mH , YH , s) ,

(2.14)

where we have introduced H(h),ρ,σ
[κ],{β}(mH , YH , s) ≡ ∂h

∂mh
T
Hρ,σ

[κ],{β}(mT, YH , s)
∣∣∣∣
mT→mH

. An analo-

gous expansion can also be applied to the derivatives of the scaled PDFs F
(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

.
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To this end, we re-express their arguments below in order to isolate all qT dependences,

k± + mTe∓YH →
[
k± + mHe∓YH

]
+ (mT − mH) e∓YH . (2.15)

In proximity to qT = 0, the second term on the right handed side (r.h.s) is always smaller in
magnitude with respect to the first one. Therefore, we can expand F

(αn)
i/n,βn

(k+ + mTe−YH )
and F

(αn̄)
j/n̄,βn̄

(k− + mTe+YH ) around (k+ + mHe−YH ) and (k− + mHe+YH ), respectively,

F
(0)
i/n,βn

(
k+ + mTe−YH

)
=

∞∑
h=0

(mT − mH)h

h! (e−YH )h F
(h)
i/n,βn

(
k+ + mHe−YH

)

=
∞∑

h,l=0

h∑
g=0

(−1)h−g

g! l! (h − g)!
Γ[ g

2 + 1]
Γ[ g

2 − l + 1]

(
q2

T
m2

H

)l (
mHe−YH

)h
F

(h)
i/n,βn

(
k+ + mHe−YH

)
,

F
(0)
j/n̄,βn̄

(
k− + mTe+YH

)
=

∞∑
h=0

(mT − mH)h

h! (e+YH )h F
(h)
j/n̄,βn̄

(
k− + mHe+YH

)

=
∞∑

h,l=0

h∑
g=0

(−1)h−g

g! l! (h − g)!
Γ[ g

2 + 1]
Γ[ g

2 − l + 1]

(
q2

T
m2

H

)l (
mHe+YH

)h
F

(h)
j/n̄,βn̄

(
k− + mHe+YH

)
.

(2.16)

Inserting the expressions of eqs. (2.14)–(2.16) into eq. (2.11), the qT spectrum now takes
the following form,

dσH

dYH dq2
T
= λ2

t

∑
ω

(
q2

T

)ω ∑
[κ]

∑
{α,β}

∑
ρ,σ

H̃(ω),ρ,σ
[κ],{α,β} (mH , YH , s)

{
Ĩρ,σ

[κ],{α,β} +∆Ĩρ,σ
[κ],{α,β}

}
.

(2.17)
Therein, H̃(ω),ρ,σ

[κ],{α,β} is introduced to absorb the factorials, gamma functions, as well as powers
of the hard scales mH and

√
s emerging from eqs. (2.14)–(2.16),

H̃(ω),ρ,σ
[κ],{α,β} =

(
1

m2
H

)ω ω∑
ln=0

ω−ln∑
ln̄=0

∞∑
αh=0

∏
x={h,n,n̄}


αx∑

gx=0

(−1)αx−gx

gx! lx! (αx − gx)!
Γ[ gx

2 + 1]
Γ[ gx

2 − lx + 1]


×
(
mHe−YH

)αn
(
mHe+YH

)αn̄

(mH)αh H(αh),ρ,σ
[κ],{β} , (2.18)

where lh = ω − ln − ln̄ ≥ 0. The qT dependences have been factored out from H̃(ω),ρ,σ
[κ],{α,β} and

the arguments of F
(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

. The remaining ones participate through boundary
conditions as defined in eq. (2.2). To address them as well, we divide the phase space integral
of eq. (2.17) into two sectors, Ĩρ,σ

[κ],{α,β} and ∆Ĩρ,σ
[κ],{α,β}, with

Ĩρ,σ
[κ],{α,β} =

∫ k̃max
+

k̃min
+

dk+

k+
(k−)ρ (k+)σ F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
, (2.19)

∆Ĩρ,σ
[κ],{α,β} =

(∫ kmax
+

k̃max
+

+
∫ k̃min

+

kmin
+

)
dk+

k+
(k−)ρ (k+)σ F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
,

(2.20)
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by means of the following boundaries,

k̃max
+ =

√
s − mHe−YH , k̃min

+ = q2
T/(

√
s − mHe+YH ) . (2.21)

Consequently, ∆Ĩρ,σ
[κ],{α,β} contains all mT dependences. In analysing the scaling behaviour,

we find that within the central region e±YH ∼ O(1), the integration variables k± exhibit
unambiguous scaling in each integration region. Therefore, as will be illustrated in section 2.3,
the power expansion of ∆Ĩρ,σ

[κ],{α,β} follows an analogous pattern to those in eqs. (2.14)–(2.16).
Nevertheless, Ĩρ,σ

[κ],{α,β} behaves differently. From its expression in eq. (2.19), a number of
different scales have been enclosed in the integration range of Ĩρ,σ

[κ],{α,β}, starting from the
ultrasoft scale kmin

+ ∼ O(q2
T/mH), through the soft one k± ∼ O(qT), and ending up with

the hard scale kmax
+ ∼ O(mH). They all correspond to a distinct way of expanding the

integrands. To this end, in section 2.4, we will make use of a set of momentum cutoffs
to unambiguously treat them.

2.3 Power corrections on the boundary

We have mentioned above that besides the integrand itself, the integration boundaries are
other sources for power corrections. In the following, we will thus expand the integral
∆Ĩρ,σ

[κ],{α,β} within the central region e±YH ∼ O(1). As illustrated in eq. (2.20), ∆Ĩρ,σ
[κ],{α,β}

consists of the integral of k+ over two intervals, k+ ∈ [k̃max
+ , kmax

+ ] and k+ ∈ [kmin
+ , k̃min

+ ]. In
each of them, the momentum kµ of the emitted particle is subject to an unambiguous scaling,

k+ ∈ [k̃max
+ , kmax

+ ] : k+ ∼ O(mH) , k− ∼ O(q2
T/mH) , k⃗T = −q⃗T , (2.22)

k+ ∈ [kmin
+ , k̃min

+ ] : k+ ∼ O(q2
T/mH) , k− ∼ O(mH) , k⃗T = −q⃗T , (2.23)

where the transverse recoil k⃗T is determined by the momentum conservation. Considering
that the momenta k± in eqs. (2.22)–(2.23) are nearly corresponding to the hardest emission
along the beam direction that are kinematically allowed (in a logarithmic sense), henceforth,
we dub them the n-ultra-collinear and n̄-ultra-collinear modes, respectively. In the following,
we will make use of those two scaling laws to expand ∆Ĩρ,σ

[κ],{α,β} within the low qT regime.
We first consider the n-ultra-collinear contribution, applying eq. (2.22) to eq. (2.20) yields

∆Ĩρ,σ
[κ],{α,β}

∣∣∣∣∣
uc

=
∫ kmax

+

k̃max
+

dk+
k+

(k−)ρ (k+)σ F
(αn)
i/n,βn

(
k+ + mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k− + mHe+YH

)

=(q2
T)ρ

∫ (mH−mT)e−YH

0
dk̂+ (k̂+ + k̃max

+ )σ−ρ−1

× F
(αn)
i/n,βn

(
k̂+ +

√
s
)

F
(αn̄)
j/n̄,βn̄

(
q2

T
k̂+ + k̃max

+
+ mHe+YH

)

=
∞∑

α̃n,α̃n̄=0

(q2
T)ρ+α̃n̄

α̃n! α̃n̄!
F

(αn+α̃n)
i/n,βn

(√
s
)

F
(αn̄+α̃n̄)
j/n̄,βn̄

(
mHe+YH

)
Bρ,σ

+,{α,β} , (2.24)

where in the second step the integration variable is transformed such that the power suppressed
residual terms can be extracted, i.e.

k+ → k̂+︸ ︷︷ ︸
∼O(q2

T/mH)

+ k̃max
+︸ ︷︷ ︸

∼O(mH)

. (2.25)
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Based on this scaling behaviour, the functions F
(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

can be expanded around
√

s

and mHe+YH , respectively, in the last step of eq. (2.24), thereby removed from the k̂+-integral.
The remaining k̂+ dependences are collected in the function Bρ,σ

+,{α,β}, defined through

Bρ,σ
+,{α,β} ≡

∫ (mH−mT)e−YH

0
dk̂+ (k̂+ + k̃max

+ )σ−ρ−α̃n̄−1(k̂+)α̃n

=
∫ (mH−mT)e−YH

0
dk̂+ (k̂+)α̃n

(
k̃max

+

)σ−ρ−α̃n̄−1

×
{

θ(σ − ρ − α̃n̄ − 1)
σ−ρ−α̃n̄−1∑

γ=0

1
γ!

(
k̂+

k̃max
+

)γ Γ[σ − ρ − α̃n̄]
Γ[σ − ρ − α̃n̄ − γ]

+ θ̄(σ − ρ − α̃n̄ − 1)
∞∑

γ=0

(−1)γ

γ!
Γ[γ − σ + ρ + α̃n̄ + 1]
Γ[−σ + ρ + α̃n̄ + 1]

(
k̂+

k̃max
+

)γ }
.

(2.26)

Herein, we use the Heaviside theta function θ(x), with θ(x) = 1 for x ≥ 0 and 0 otherwise,
and its counter part θ̄(x) ≡ 1 − θ(x) to account for the expansion of the integrand. Even
though within the central rapidity region e±YH ∼ O(1) and thus k̃max

+ ∼ O(mHe±YH ), the
integrand of eq. (2.26) has already admitted a formally asymptotic series in (k̂+/k̃max

+ ), the
participation of mT into the upper boundary condition can invoke inhomogeneous behaviour
after completing the phase space integral. To this end, a further expansion is necessary
with the aid of eq. (2.13). It follows that∫ (mH−mT)e−YH

0
dk̂+ k̂α̃n+γ

+ =
∞∑

γ2=0

1+γ+α̃n∑
γ1=0

(−1)γ1

γ1! γ2!

(
q2

T
m2

H

)γ2

(e−YH mH)1+α̃n+γ

×
Γ[1 + γ1

2 ]
Γ[1− γ2 + γ1

2 ]
Γ[α̃n + γ + 1]

Γ[α̃n + γ − γ1 + 2] .

(2.27)

Combining eqs. (2.26)–(2.27) with eq. (2.24), we then accomplish the expansion of the n-ultra-
collinear sector in the small parameter (qT/mH). An analogous procedure can be similarly
applied onto the n̄-ultra-collinear case, with the exception of the conversion of the integration
variable k+ to k− by means of the on-shell condition k+k− = q2

T and the substitution of
e+YH for e−YH in eq. (2.27), as appropriate.

From those results, we observe that the boundary corrections here are always associated
with PDFs at the opposite end and therefore are a priori expected to play an negligible
role in comparison to Ĩρ,σ

[κ],{α,β} in eq. (2.19). While this is expected to hold for the first few
terms in the power expansion, it is possible that the higher power corrections from Ĩρ,σ

[κ],{α,β}
become of a similar size as the boundary corrections from ∆Ĩρ,σ

[κ],{α,β}, such that both parts of
contributions are essential to reproduce the desired asymptotic behaviour of the qT spectrum.
In section 4, we will deliver a quantitative assessment thereof.

2.4 Power corrections over the interior domain

2.4.1 Asymptotic expansion in momentum space

We can now perform the power expansion on the integral Ĩρ,σ
[κ],{α,β} in the low qT area within

the central rapidity region e±YH ∼ O(1). As exhibited in eq. (2.19), Ĩρ,σ
[κ],{α,β} encompasses a
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variety of scales along the integration path, including the ultra-soft scale k+ ∼ O(q2
T/mH),

the soft one k+ ∼ O(qT), and the hard one k+ ∼ O(mH). Every one of those momentum
modes in practice prompts a distinct expansion of Ĩρ,σ

[κ],{α,β}. Hence, in the spirit of the
expansion by regions method [177, 214–217] and also according to the pattern of the resulting
power series, we categorise the phase space as follows,2

n-collinear mode : νn < k+ ≤ k̃max
+ ;

transitional range : q2
T

νn̄
< k+ ≤ νn;

n̄-collinear mode : k̃min
+ ≤ k+ ≤ q2

T
νn̄

.

(2.28)

Here, a pair of auxiliary scales {νn, νn̄} are introduced to separate the n- and n̄-collinear
regions from the moderate range in between. Throughout this paper, {νn, νn̄} are chosen
to be of similar magnitudes to the hard scales mHe±YH but always small enough that in
the intermediate domain of eq. (2.28) the light-cone components k+ and k− are both well
contained within the convergence radii of F

(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

, as stipulated in section 2.2,
more specifically,

mHe−YH ≳ νn ∼ O(mH) ≫ qT , mHeYH ≳ νn̄ ∼ O(mH) ≫ qT . (2.29)

Alternative choices of those two auxiliary boundaries can be used to examine the asymptotic
behaviour of Ĩρ,σ

[κ],{α,β}. For example, the scales proposed in [222] may impact the expressions of
the individual sectors defined in eq. (2.28) but will leave the resulting power series unchanged
upon summation of all ingredients. Having chosen {νn, νn̄} according to eq. (2.29), the
momentum kµ obeys the unambiguous scaling law k+ ∼ O(mH) ≫ k− ∼ O(q2

T/mH) in the
n-collinear mode, from which we can expand F

(αn̄)
j/n̄,βn̄

around the intrinsic scale mHe+YH ,

Ĩρ,σ
[κ],{α,β}

∣∣∣∣∣
c

=
∞∑

ω=ρ

(q2
T)ω Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c

, (2.30)

where

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

≡
∫ k̃max

+

νn

dk+
k+

(k+)σ−ω

(ω − ρ)! F
(αn)
i/n,βn

(
k+ + mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
. (2.31)

Here, all qT dependences have been extracted into the prefactor of eq. (2.30) to express the
manifest power accuracy of the contribution. Ĩρ,σ,(ω)

[κ],{α,β} collects all hard scales and thus is
always of O(1). It merits noting that in the central rapidity region e±YH ∼ O(1), the lower
boundary νn in eq. (2.31) is well separated from the upper one and thus there is no need
to utilise a further expansion here, in contrast to eq. (2.24).

2It is interesting to note that the analogous strategy in refining the dynamic regions has also been utilised
previously in the literature [105, 218–222] in probing the kT factorisation in the small-x area.
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The same method can also be applied to the n̄-collinear mode, after transforming the
integration variable from k+ to k− through the on-shell condition k+k− = q2

T. It evaluates to,

Ĩρ,σ
[κ],{α,β}

∣∣∣∣∣
c̄

=
∞∑

ω=σ

(q2
T)ω Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄

, (2.32)

with

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

≡
∫ q2

T
k̃min

+

νn̄

dk−
k−

(k−)ρ−ω

(ω − σ)! F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k− + mHe+YH

)
. (2.33)

This leaves the transitional domain, as defined in eq. (2.28), to be calculated. In light
of the scaling rules of eq. (2.29), we can expand both F

(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

around the scales
mHe±YH , more specifically,

Ĩρ,σ
[κ],{α,β}

∣∣∣∣∣
t

=
∞∑

λ,η=0

∫ νn

q2
T

νn̄

dk+

k+

(k−)ρ+λ (k+)σ+η

λ!η! F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)

=
∞∑

λ,η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!η!

×
{

(q2
T)ρ+λ νσ+η−ρ−λ

n

σ+η−ρ−λ
δ̄σ+η

ρ+λ︸ ︷︷ ︸
n-col

+ (q2
T)σ+η νρ+λ−σ−η

n̄

ρ+λ−σ−η
δ̄σ+η

ρ+λ︸ ︷︷ ︸
n̄-col

+(q2
T)σ+η ln

[
νnνn̄

q2
T

]
δσ+η

ρ+λ︸ ︷︷ ︸
n-col , n̄-col , s

}
,

(2.34)

where we have already grouped the expression according to their powers in νn and νn̄. δα
β

is the Kronecker Delta, δα
β = 1 if α = β and zero otherwise, δ̄α

β ≡ 1− δα
β is its complement.

We note that even for fixed values of λ and η, the phase space integral results in terms with
a variety of power accuracies. For instance, in the first term on r.h.s. the power precision
is determined by the exponent of qT, which is identical to that of k− in the integrand.
Hence, the scaling of the emitted momentum kµ here is determined by the n-collinear mode
k− ∼ O(q2

T/mH) and k+ ∼ O(mH). Similarly, applying this scaling analysis to the second
term, its power precision is given by the exponent of k+ and the n̄-collinear mode with
k− ∼ O(mH) and k+ ∼ O(q2

T/mH). The interpretation of the scaling of the integration
variable of the last term of eq. (2.34) is more flexible due to the presence of the constraint
ρ + λ = σ + η. Hence, the emitted parton can be constituted of either the n(n̄)-collinear
particle or the soft one k− ∼ k+ ∼ O(qT). This inhomogeneity stems from our choice of the
momentum cutoffs νn and νn̄ in eq. (2.29), from which multiple dynamic modes are allowed
to participate in the transitional area, such as the n-collinear one, n̄-collinear one, or the soft
one. In principle, reducing νn and νn̄ down to O(qT) will filter out the collinear modes in the
transitional domain rendering it homogeneous again, at the price of additional soft scales
in both collinear sectors through the boundary condition, necessitating a second expansion
in the small parameters νn/mH and νn̄/mH within there. It remains to be noted, while
alternative choices of νn and νn̄ may modify the dynamics in each sector, their combined
power series is invariant under this choice. Hence, in this work we choose the prescription
of eq. (2.29), i.e. homogenous collinear sectors, for simplicity.
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By collecting and refactoring terms of a common power in qT we can recast eq. (2.34) as

Ĩρ,σ
[κ],{α,β}

∣∣∣∣∣
t

=

 ∞∑
ω=ρ

(q2
T)ω Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
cs

+

 ∞∑
ω=σ

(q2
T)ω Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄s

 , (2.35)

where

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
cs

=
∞∑

η=0

F
(η+αn)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)!η!

{
νσ+η−ω

n

σ+η−ω
δ̄σ+η

ω +ln
[

νn

qT

]
δσ+η

ω

}
,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄s

=
∞∑

λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
(ω−σ)!λ!

{
νρ+λ−ω

n̄

ρ+λ−ω
δ̄ρ+λ

ω +ln
[

νn̄

qT

]
δρ+λ

ω

}
.

(2.36)

Here we have re-organized the logarithmic terms in eq. (2.34) into the n-collinear-soft (cs)
and n̄-collinear-soft (c̄s) sectors based on their scale dependences. At variance from the
results in eq. (2.31) and eq. (2.33) in the n- and n̄-collinear sectors, where the coefficients
at each power consist of only the hard scales k±, respectively, eq. (2.36) here introduces an
additional dependence on ln

(
νn(n̄)/qT

)
. In order to facilitate numerical calculations of these

coefficients, we rewrite the infinite series in eq. (2.36) in terms of the integrals over k±, in
analogy to eqs. (2.31) and (2.33). If ω < σ in eq. (2.36), this transformation is immediate,

θ̄(ω − σ)
∞∑

η=0

F
(η+αn)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)! η!

νσ+η−ω
n

σ + η − ω

=⇒ θ̄(ω − σ)
(ω − ρ)!

∫ νn

0

dk+
k+

kσ−ω
+ F

(αn)
i/n,βn

(
k+ + mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
.

(2.37)

Here we have removed δ̄σ+η
ω from the expressions since it always equals unity while ω < σ

and η ≥ 0. The same reasoning can also be used to neglect the logarithmic contributions
in eq. (2.36). However, it is not straightforward to apply eq. (2.37) in the remaining space
with ω ≥ σ as the integrand is singular in the limit k+ → 0. To this end, we make use
of the higher-ranked star distribution,∫ Λ

0
dx

[ 1
xm

]ν

∗
f(x) ≡

∫ Λ

ν
dx

f(x)
xm

+
∫ ν

0
dx

1
xm

[
f(x)−

m−1∑
n=0

xn

n! f (n)(0)
]

, (2.38)

to maintain the end point analyticity. Therein, f(x) is assumed to be always differentiable
at x = 0. With m = 1, eq. (2.38) reduces to the customary star distribution proposed
in [223, 224]. Equipped with eq. (2.38), we are now able to convert the n-collinear-soft
contribution in the case ω ≥ σ and η > ω − σ,

θ(ω − σ)
∞∑

η=ω−σ+1

F
(η+αn)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)! η!

νσ+η−ω
n

σ + η − ω

=⇒ θ(ω − σ)
(ω − ρ)!

∫ νn

0
dk+

[
1

kω−σ+1
+

]νn

∗
F

(αn)
i/n,βn

(
k+ + mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
.

(2.39)
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The remaining contributions in eq. (2.36) include the logarithms ln (νn/qT) as well as the
first (ω − σ) terms of the Taylor series. We will refrain from transforming those contributions
here since, at a given power precision, the number of remaining terms are always finite.

Combining above results we can recast the n-collinear-soft contribution of eq. (2.36)
as follows

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
cs

= θ̄(ω−σ)
(ω−ρ)!

∫ νn

0

dk+
k+

kσ−ω
+ F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)

+θ(ω−σ)
(ω−ρ)!

∫ νn

0
dk+

[
1

kω−σ+1
+

]νn

∗
F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)

+θ(ω−σ−1)
(ω−ρ)!

ω−σ−1∑
η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
η!

νσ+η−ω
n

σ+η−ω

+θ(ω−σ)
(ω−ρ)! ln

[
νn

qT

] F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−σ)! . (2.40)

By analogy, the contribution of the n̄-collinear-soft sector in eq. (2.36) can be transformed
to finite integrals following an analogous path, giving

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄s

= θ̄(ω−ρ)
(ω−σ)!

∫ νn̄

0

dk−
k−

kρ−ω
− F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)

+θ(ω−ρ)
(ω−σ)!

∫ νn̄

0
dk−

[
1

kω−ρ+1
−

]νn̄

∗
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)

+θ(ω−ρ−1)
(ω−σ)!

ω−ρ−1∑
λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!

νρ+λ−ω
n̄

ρ+λ−ω

+θ(ω−ρ)
(ω−σ)! ln

[
νn̄

qT

] F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)! . (2.41)

Using the above result we can now combine the n-collinear sector of eq. (2.30), the n̄-collinear
sector of eq. (2.32), and the transitional sector of eqs. (2.40) and (2.41), arriving at the
expansion of Ĩρ,σ

[κ],{α,β} of eq. (2.19) in powers of q2
T in the small qT domain,

Ĩρ,σ
[κ],{α,β}=

∑
ω

(q2
T)ω Ĩρ,σ,(ω)

[κ],{α,β}≡
∑
ω

(q2
T)ω

{
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c

+Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

+Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
cs

+Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄s

}
.

(2.42)
At this point it merits reminding that the pair of auxiliary scales, νn and νn̄, that we have
employed to define and separate the dynamic regions in eq. (2.28) appear explicitly in the
expressions of all three individual domains. For consistency’s sake, it is of the essence to
examine whether the combination of all domains also exhibits such a dependence, or whether
this dependence, in fact, vanishes after summing over all the ingredients. To this end, we
take the derivatives of the r.h.s. of eq. (2.42) with respect to νn, and it evaluates to

∂

∂νn
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c

=− ∂

∂νn
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
cs

=− (νn)σ−ω−1

(ω−ρ) F
(αn)
i/n,βn

(
νn+mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
,
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∂

∂νn
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄

= ∂

∂νn
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄s

=0 , (2.43)

where the results of eqs. (2.31) and (2.40) are utilised to derive the r.h.s. of eq. (2.43). In
addition, the terms arising from the derivative of the star distribution, defined in eq. (2.38),
have been cancelled against the νn dependences arising from the logarithmic term and the
truncated Taylor polynomials in eq. (2.40). A similar result can also be found for the νn̄

dependence of eq. (2.42), giving

∂

∂νn̄
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c

= ∂

∂νn̄
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
cs

=0 ,

∂

∂νn̄
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄

=− ∂

∂νn̄
Ĩρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄s

=− (νn̄)ρ−ω−1

(ω−σ)! F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
νn̄+mHe+YH

)
.

(2.44)

Combining the results of eqs. (2.43) and (2.44), respectively, we can conclude that the
coefficient Ĩρ,σ,(ω)

[κ],{α,β} in eq. (2.42) is indeed independent of the choice of the separators νn

and νn̄ at each power. This agrees with the expectation from a direct expansion of Ĩρ,σ
[κ],{α,β},

currently beyond our capabilities as the PDFs are not rigorously known analytically, that
it should be a function of qT, s, and mH only and independent of νn or νn̄.

2.4.2 Rapidity regularisation and zero-bin subtraction

In the previous section, with the help of the auxiliary scales νn and νn̄, we have derived the
power series for Ĩρ,σ

[κ],{α,β} in eq. (2.42) in the vicinity qT = 0 at central rapidities, e±YH ∼ O(1).
Even though this strategy has accomplished an asymptotic expansion of Ĩρ,σ

[κ],{α,β}, and in
turn the qT distribution, at NLO, it is not straightforward to generalise this method to
higher perturbative orders. The presence of subdivisions of phase space through the auxiliary
scales νn and νn̄, generally inducing additional scales to phase space and loop integrals,
complicates the calculations substantially. Further, the absence of additional constraints on
the integration paths is also one of prerequisites to establish the factorisation in a SCET-
based analysis. To this end, we will discuss the rearrangement of the ingredients defined
in eqs. (2.31) and (2.33) as well as eqs. (2.40) and (2.41) such that the dependence on the
auxiliary scales to subdivide the phase space is removed. In particular, recalling our findings
regarding the νn(n̄)-independence of Ĩρ,σ

[κ],{α,β}, but not its components in eqs. (2.43) and (2.44),
such a rearrangement is warranted. Although in the discussion below, we will still restrict
ourselves to the NLO constituent Ĩρ,σ

[κ],{α,β} extracted from eq. (2.4) as an illustrative example,
it is expected that the conclusion here can provide the theoretical baseline for an analysis
in more general situations.

We start by examining the collinear sectors. Here, eliminating the dependences of the
auxiliary scales νn and νn̄ amounts to reducing the lower boundaries in eq. (2.31) and eq. (2.33)
from their intrinsic domains defined in eq. (2.29) to the origin. To be precise, we split

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

− Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0

, Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

− Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0

, (2.45)
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where G̃ρ,σ,(ω)
[κ],{α,β}

∣∣
c

and G̃ρ,σ,(ω)
[κ],{α,β}

∣∣
c̄

collect the collinear contributions, integrating the light-cone
momentum over the entire range. Their expressions read

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

≡ lim
τ→0

∫ k̃max
+

0

dk+

k+
R(k−,k+, τ) (k+)σ−ω

(ω−ρ)! F
(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

≡ lim
τ→0

∫ q2
T

k̃min
+

0

dk−

k−
R(k−,k+, τ) (k−)ρ−ω

(ω−σ)! F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
.

(2.46)

Therein, in order to regularise the rapidity divergence in the limit k± → 0, we multiply
the original integrand by R(k−, k+, τ), which is a function of the light-cone momenta k±
and a real parameter τ , satisfying,

lim
τ→0

R(k−, k+, τ) =

1 k± ̸= 0 ,

0 k+ = 0 or k− = 0 .
(2.47)

For the regions k± ̸= 0, the integrands in eq. (2.46) are uniformly convergent, which permits
reducing the rapidity regulator R(k−, k+, τ) in the limit τ → 0 and restoring the integrands
to their original forms. Nevertheless, in the asymptotic area k+ = 0 or k− = 0, the role
of the rapidity regulator becomes indispensable, ensuring that the phase space integrals in
eq. (2.46) are always well defined. The discussion in this section will emphasise rapidity
regulators that are able to preserve their expressions in both the n-collinear and n̄-collinear
sectors for all powers, such as the analytic regulator of [74, 76], the exponential regulator
of [79, 80], and the pure rapidity regulator of [113, 178]. We will dub them the conservative
rapidity regulator or conservative regularisation scheme (CRa) hereafter. Other than that,
there are also alternative proposals, including the ∆-regulator [75, 166, 171, 172, 179] and
the η-regulator [77, 78]. At this point, either the rapidity regulators themselves or the
regulator-dressed propagators will participate in the power expansion such that in practice
the rapidity divergences can be regularised in varying strategies in different ingredients from
power to power. They will be called dissipative rapidity regulator (DRa) in this work. We
will postpone their investigation for now but discuss the possible prescriptions in appendix A.

In eq. (2.45), we have also introduced Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
c0 and Ĩρ,σ,(ω)

[κ],{α,β}
∣∣
c̄0 in order to restore

the equality after. Their expressions read,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0

= lim
τ→0

∫ νn

0

dk+

k+
R(k−,k+, τ) (k+)σ−ω

(ω−ρ)! F
(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0

= lim
τ→0

∫ νn̄

0

dk−

k−
R(k−,k+, τ) (k−)ρ−ω

(ω−σ)! F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
.

(2.48)

Since these functions are always associated with the k± integrals from the origin point up to
the cutoffs νn(n̄), we will make use of the subscripts “c0” (“c̄0”) to represent them hereafter.
From eq. (2.48), noting that the integration variables k± are both well situated within the
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convergence radii of Fi/n,βn
and Fj/n̄,βn̄

, according to section 2.2, we can now perform the
power expansion in k±. We then have,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0

=
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)!

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0r

+ θ (ω − σ) Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0d

 ,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0

=
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
(ω − σ)!

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0r

+ θ (ω − ρ) Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0d

 ,

(2.49)

where

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0r

=
∞∑

η=max{0,(ω−σ+1)}

νσ−ω+η
n

σ − ω + η

F
(αn+η)
i/n,βn

(
mHe−YH

)
η! ,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0r

=
∞∑

λ=max{0,(ω−ρ+1)}

νρ−ω+λ
n̄

ρ − ω + λ

F
(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ! ,

(2.50)

are the regular components, in which the regulator could be safely removed by the means
of eq. (2.47), and

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0d

=
ω−σ∑
η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
η!

{
lim
τ→0

∫ νn

0

dk+
k+

R(k−,k+, τ)(k+)σ−ω+η
}

,

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0d

=
ω−ρ∑
λ=0

F
(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!

{
lim
τ→0

∫ νn̄

0

dk−
k−

R(k−,k+, τ)(k−)ρ−ω+λ
}

,

(2.51)

contain the (regulated) rapidity divergences at k± → 0. Here, the regulator R(k−, k+, τ) is
essential and the respective integrals are therefore dependent on the choice of the regularisation
scheme. Substituting eq. (2.50) into eq. (2.49), we observe that the results for Ĩρ,σ,(ω)

[κ],{α,β}
∣∣
c0

and Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
c0 still explicitly depend on the auxiliary scales νn(n̄). However, according to

eq. (2.43), all those dependences will drop out upon combining them with the contributions
from the transitional region of eq. (2.36), and it follows that

Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
cs

+ Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄s

− Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c0

− Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄0

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
comb

, (2.52)

where on the r.h.s., G̃ρ,σ,(ω)
[κ],{α,β}

∣∣
comb

, comprises a set of one-fold integrals of k+ or k− over the
range [0,+∞]. Its precise form will be specified below.

In the literature, there are two preferences for expressing this combined result. The first
one, used extensively when using the method of expansion by regions [177, 214–217] and
SCET [225–234], comprises the soft interaction k± ∼ O(qT) in full as well as the subtraction
terms to remove the overlap with the collinear regions. Hereafter, we will refer to the results
from this formulation as the full soft ⟨FS⟩ prescription. It yields that

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
comb

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

s

− G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

cc̄s

. (2.53)
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Here G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨FS⟩
s

stands for the soft contribution, derived by expanding the integrand in
eq. (2.19) in accordance with the soft scaling k± ∼ O(qT). At the ωth-power, the result reads,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

s

= θ(ω−ρ−σ)
(ω−ρ−σ)∑

η=0
F

(αn+ω−ρ−σ−η)
i/n,βn

(
mHe−YH

)
F

(αn̄+η)
j/n̄,βn̄

(
mHe+YH

)
lim
τ→0

∫ ∞

0

dk+

k+

×R(k−,k+, τ) (k−)ρ+η−ω

η!
(k+)−ρ−η

(ω−ρ−σ−η)! , (2.54)

where we have extracted the factor of (q2
T)ω from the integrals in eq. (2.54), in line with

the definition of the power series in eq. (2.42). Given the expression in eq. (2.54), we can
obtain an expression for G̃ρ,σ,(ω)

[κ],{α,β}
∣∣⟨FS⟩
cc̄s

by comparing eq. (2.53) with eq. (2.52). As this
subtrahend at LP is intimately associated with the soft limit of the collinear functions and
thus the zeroth-bin of the label momentum within the position-momentum space hybrid
representation, G̃ρ,σ,(ω)

[κ],{α,β}
∣∣⟨FS⟩
cc̄s

is frequently dubbed the zero-bin contribution [163–166] or the
soft subtraction term [75, 164, 165, 167, 168].

On the other hand, there are also alternative proposals in the literature [106, 111, 114,
169, 170]. There, a decomposition of eq. (2.52) without an explicit soft sector is chosen. The
virtue of such a scheme is that in absence of the soft contribution the soft-collinear interaction
vertices do not need to be expanded using multiple scaling regimes, and the factorisation of
the distinct dynamic modes is thus considerably simplified. In this work, we will dub this
approach the one in the non-soft ⟨NS⟩ prescription. It follows that,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
comb

= −G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

. (2.55)

Hence, the interior contribution Ĩρ,σ,(ω)
[κ],{α,β} in eq. (2.19) consists of only the collinear sectors in

eq. (2.46) as well as G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨NS⟩
cc̄

. Since G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨NS⟩
cc̄

here effectively removes the overlap
between the n-collinear and n̄-collinear contributions, it is also named the overlap subtraction
term in [114, 169, 170]. Notwithstanding, in view of the functional similarity of G̃ρ,σ,(ω)

[κ],{α,β}
∣∣⟨NS⟩
cc̄

and G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨FS⟩
cc̄s

, we will not further distinguish the terminologies in this paper, such as the
overlapping subtraction, the zero-bin contribution, or the soft remover. Instead, they will be
all regarded to be conceptually equivalent but evaluated within different prescriptions.

Comparing eq. (2.55) with eq. (2.53), we note that the subtraction terms in those two
schemes possess the following relation,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

cc̄s

− G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

s

. (2.56)

In the following, we will be focused on the derivation of G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨NS⟩
cc̄

. The expressions within
the ⟨FS⟩ prescription can be obtained by means of the relationship above.

We begin with the transformation of Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
cs

and Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
c̄s

. As illustrated in
eq. (2.36), Ĩρ,σ,(ω)

[κ],{α,β}
∣∣
cs

comprises the logarithmic terms in the case of ω = (σ + η) and powers
of the auxiliary scales νn(n̄) otherwise. The latter contribution can be further categorised
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based on the relation between ω and (σ + η), more specifically,

∞∑
η=0

F
(η+αn)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)! η!

νσ+η−ω
n

σ + η − ω
δ̄σ+η

ω

=
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)!

{ ∞∑
η=max{0,(ω−σ+1)}

F
(αn+η)
i/n,βn

(
mHe−YH

)
η!

νσ+η−ω
n

σ + η − ω

− θ(ω − σ − 1)
ω−σ−1∑

η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
η! lim

τ→0

∫ ∞

νn

dk+
k+

R(k−, k+, τ)(k+)σ−ω+η

}
.

(2.57)

Therein, within the curly brackets, the first term collects all the contributions with ω < (σ+η),
whilst the second term collects all contributions with ω > (σ + η) and has been transformed
into its integral form. Aiming at a representation for Ĩρ,σ,(ω)

[κ],{α,β}
∣∣
cs

that can manifestly cancel
against the νn dependences in eq. (2.50) and eq. (2.51), the rapidity regulator R(k−, k+, τ)
is introduced here for bookkeeping purposes. Once the relationship ω < (σ + η) is satisfied,
R(k−, k+, τ) always stays inactive in the limit τ → 0.

An analogous rearrangement is also applicable to Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
c̄s

in eq. (2.36). It yields that

∞∑
λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
(ω − σ)!λ!

νρ+λ−ω
n̄

ρ + λ − ω
δ̄ρ+λ

ω

=
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
(ω − σ)!

{ ∞∑
λ=max{0,(ω−ρ+1)}

F
(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!

νρ+λ−ω
n̄

ρ + λ − ω

− θ(ω − ρ − 1)
ω−ρ−1∑

λ=0

F
(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ! lim

τ→0

∫ ∞

νn̄

dk−
k−

R(k−, k+, τ)(k−)ρ+λ−ω

}
.

(2.58)

We can now recast the logarithmic contributions of Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
cs

and Ĩρ,σ,(ω)
[κ],{α,β}

∣∣
c̄s

in integral
form, as presented in eqs. (2.35) and (2.36). It is worth noting at this point that the
logarithmic terms from both sectors always and only appear together once ω ≥ ρ and ω ≥ σ

simultaneously. Therefore, in the following, we cope with them simultaneously, i.e.,

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)! (ω−σ)!

{
ln
[

νn

qT

]
+ln

[
νn̄

qT

]}

=
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)! (ω−σ)!

×
{
− lim

τ→0

∫ ∞

νn

dk+
k+

R(k−,k+, τ)+ lim
τ→0

∫ ∞

0

dk+
k+

R(k−,k+, τ)− lim
τ→0

∫ ∞

νn̄

dk−
k−

R(k−,k+, τ)
}

,

(2.59)

where in the last step we reconvert the logarithms into their integral form and employ
R(k−, k+, τ) to regulate their possibly singular behaviour in the limit k± → 0.
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Comparing the above expressions with eq. (2.50), we observe that terms containing
powers of the auxiliary scale νn(n̄) take the same form in eqs. (2.57) and (2.58) and eq. (2.50),
and hence cancel upon combination. Similarly, the dependences of the integral on the auxiliary
scales through their boundaries in eqs. (2.57)–(2.59) can be assimilated in their entirety by
combining them with the corresponding integrals in eq. (2.51). Therefore, we arrive at,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c0

+ G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c̄0

, (2.60)

where

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c0

=θ (ω − σ)
ω−σ∑
η=0

ω−ρ∑
λ=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
η!λ!

× lim
τ→0

∫ ∞

0

dk+
k+

(
1− δσ+η

ω

2

)
R(k−, k+, τ) (k+)σ−ω+η δω

λ+ρ ,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c̄0

=θ (ω − ρ)
ω−σ∑
η=0

ω−ρ∑
λ=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
η!λ!

× lim
τ→0

∫ ∞

0

dk−
k−

(
1− δρ+λ

ω

2

)
R(k−, k+, τ) (k−)ρ−ω+λ δω

η+σ .

(2.61)

Here, we have divided G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨NS⟩
cc̄

into two pieces, G̃ρ,σ,(ω)
[κ],{α,β}

∣∣⟨NS⟩
c0 and G̃ρ,σ,(ω)

[κ],{α,β}
∣∣⟨NS⟩
c̄0 , inheriting

the structure from eq. (2.51). At variance with eq. (2.51), however, additional factors δσ+η
ω

and δρ+λ
ω are present in the integrands now, induced by the unbounded integrals of eq. (2.59).

During the derivation, we have evenly distributed these terms into the n-collinear and n̄-
collinear sectors symmetrically, incurring a factor 1

2 in eq. (2.61). Alternative assignments
are in principle possible, which may impact the expressions in the individual sectors but
will leave the sum in eq. (2.60) invariant.

Equipped with the collinear functions of eq. (2.46) and the subtrahends of eq. (2.61), we
are now able to re-express the interior contribution Ĩρ,σ

[κ],{α,β} as follows,

Ĩρ,σ
[κ],{α,β}=

∞∑
ω=ρ

(
q2

T

)ω

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

−G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c0

+ ∞∑
ω=σ

(
q2

T

)ω

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

−G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

c̄0

 .

(2.62)
Herein, we only show the expressions in the NS scheme for brevity, which can be straight-
forwardly converted into the FS ones through eq. (2.56). Referring back to eq. (2.42), we
have now found a formulation in which the individual terms on the r.h.s. of eq. (2.62) are
free of any dependence on the auxiliary scales νn(n̄) along the integration path. However, in
return, they are now subject to the choice of rapidity regularisation scheme implemented
through R(k−, k+, τ). As will be discussed in sections 3.2 and 3.3, the regulator R(k−, k+, τ)
also depends on scales ν̃n and ν̃n̄ in practice, which bears resemblance to those in eq. (2.28)
and can effectively concentrate the integrand in each sector onto its intrinsic domain, akin
to the conventional dimensional regularisation [235].
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(a) Subtrahends in the soft scaling.
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(b) Subtrahends in the dual scaling.

Figure 1. Organisation of zero-bin subtrahends in different scalings. Every point in the map stands
for a index-pair (λ, η) in eq. (2.61) which characterises the subtraction procedure entailed by the
expansion of Ĩλ,η

[κ],{α,β} with integer λ, η ≥ −1 in the small qT domain. As examples, the red stars
highlight the subleading (NLP) power corrections, the blue triangles represent the sub-subleading
(N2LP) ones, and the green dots indicate the sub-sub-subleading (N3LP) ones.

Finally, we can now analyse the scaling of k± in each sector on the r.h.s. of eq. (2.62).
Since the collinear functions here are derived by extrapolating the lower boundaries of
eq. (2.31) and eq. (2.33), the integration variables in eq. (2.46) observe the same scaling rule
as those in momentum space. More explicitly, we have k+ ∼ O(1) and k− ∼ O(q2

T/mH)
for the n-collinear element and k+ ∼ O(q2

T/mH) and k− ∼ O(1) in the n̄-collinear case.
To determine the scaling in the subtraction terms of eq. (2.61), it merits noting that the
integration variables k± therein have been expanded in the arguments of both Fi/n,βn

and
Fj/n̄,βn̄

, and also that the function Fj/n̄,βn̄
(Fi/n,βn

) in the “c0” (“c̄0”) sector observes the
same scaling pattern as that in the n-(n̄-)collinear contribution of eq. (2.46). Therefore,
we can interpret the variables k± in eq. (2.61) from the dual scaling, expanding first the
integrand with the collinear scaling and fixing the ωth-power correction, and then applying
a second power expansion in line with soft scaling k± ∼ O(qT) retaining all contributions
below or equal to the (2ω)th-power.

It should be emphasised that at a lower power accuracy, the dual scaling can be reduced
to the soft-only one especially in the case ρ = σ = χ with integer χ ≥ −1, which however
does not hold in general. As an example, figure 1 illustrates the case χ = −1, which is the
minimum of χ allowed by the squared amplitudes in eq. (2.4) and thus concerns the leading
power approximation in the small qT domain. We observe that, on the lowest level, both
of schemes consist of the origin λ = η = −1 and thus can be considered to be equivalent
here. However, with the power accuracy growing, the soft scaling forces the indices λ and η

to align along the diagonals, whereas the dual scaling organises the indices of the zero-bin
subtrahend along rectangular edges, clearly separating the two. Those distinct patterns
can subsequently evaluate to different zero-bin subtrahends for general choices of rapidity
regulators, which therefore defies our interpretation of the integration variables of eq. (2.61)
in a purely soft scaling prescription.

In order to systematically implement these scaling rules, we introduce the power expansion
operator T̂(ω)

i , with the subscript i running over the sectors {c, c̄, s}, acting on the object
following it and projecting out the contribution at the ωth-power in line with the scalings
indicated by i. In this way, the components of eq. (2.62) can be recast into,

(
q2

T

)ω
G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c

= lim
τ→0

∫ k̃max
+

0

dk+
k+

R(k−, k+, τ) T̂(ω)
c Iρ,σ

[κ],{α,β} ,
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(
q2

T

)ω
G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄

= lim
τ→0

∫ q2
T

k̃min
+

0

dk−
k−

R(k−, k+, τ) T̂(ω)
c̄ Iρ,σ

[κ],{α,β} , (2.63)

and

(
q2

T

)ω
G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c0

= θ (ω−σ) lim
τ→0

∫ ∞

0

dk+
k+

R(k−,k+, τ)
2ω∑

ω=(ρ+σ)

(
1− δ2ω

ω

2

)
T̂(ω)

s T̂(ω)
c Iρ,σ

[κ],{α,β} ,

(
q2

T

)ω
G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
c̄0

= θ (ω−ρ) lim
τ→0

∫ ∞

0

dk−
k−

R(k−,k+, τ)
2ω∑

ω=(ρ+σ)

(
1− δ2ω

ω

2

)
T̂(ω)

s T̂(ω)
c̄ Iρ,σ

[κ],{α,β} ,

(2.64)

where Iρ,σ
[κ],{α,β} is the integrand of Ĩρ,σ

[κ],{α,β} defined in eq. (2.19),

Iρ,σ
[κ],{α,β} ≡ (k−)ρ (k+)σ F

(αn)
i/n,βn

(
k+ + mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k− + mHe+YH

)
. (2.65)

We note that after the re-arrangements of eqs. (2.48)–(2.52) and eqs. (2.57)–(2.59), the results
in eqs. (2.63)–(2.64) present a form that is distinct from that observed in eqs. (2.31)–(2.33)
as well as eqs. (2.40)–(2.41) obtained via the momentum cutoffs νn and νn̄. This is relevant
in particular for the “sc” and “sc̄” sectors in eqs. (2.40)–(2.41), despite hybrid scaling having
been used in the transitional range. As illustrated in eq. (2.34), the resulting coefficient
Ĩρ,σ,(ω)

[κ],{α,β}
∣∣
t

invokes only the integrands at the same power accuracy once the scaling for the
integration variable is given. Contrarily, the situation in eq. (2.64) is quite different, where,
after applying the soft scaling, the results G̃ρ,σ,(ω)

[κ],{α,β}
∣∣
c0 and G̃ρ,σ,(ω)

[κ],{α,β}
∣∣
c̄0 comprise not only

corrections at the ωth-power, but also those on a lower level.
In order to interpret this structural difference, it merits recalling that in deriving eqs. (2.31)

and (2.33) as well as eqs. (2.40) and (2.41) we have introduced a set of dynamic regions,
see eq. (2.28), such that within these restricted phase space domains the assigned scalings
are always effective before and after the phase space integration. However, in calculating
the subtrahends in eq. (2.64), in particular after the combination with eqs. (2.57)–(2.59), all
boundaries that separate the different scalings of the integration variables cancel out. As a
result, the “c0” and “c̄0” expressions of eq. (2.64) mainly comprise contributions from the
rapidity extremities k± → ±0, correlated to the same positions of the collinear functions in
eq. (2.63), rather than emphasising any integration segments in the physical domain. In light
of this, the scaling laws implemented in eq. (2.64) should be conceived more of a prescription
guiding us to organise the zero-bin subtrahends in order to subdue any unphysical asymptotic
behaviour in the collinear sectors and averting the possibility of these sectors generating
any non-trivial remainders for the resulting power series.

It is worth noting that the integrands in eq. (2.64) appear to contradict the homogeneity
condition from the method of expansion by regions [177, 214–217]. In this method, the
asymptotic behaviour of the Feynman or phase space integrals is associated with a set of
regions along the integration path. From this one is able to expand the integrands before
completing the integration and at a given power precision, the resulting power coefficients
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only concern the expanded integrands of the same power accuracy, more specifically,

F̃ (ω) ∼
∑

i

∫
dΦ T̂(ω)

i f , (2.66)

where F̃ (ω) denotes the ωth term in the power series, with f standing for a given integrand and
Φ encoding a group of integration variables. In this paper, such a one-to-one correspondence
between the power accuracy of the integrands and that of F̃ (ω) will be referred to as the
homogeneity of the asymptotic expansion hereafter.

On the contrary, a region analysis where the dimensional regulator uniquely governs the
divergences incurred by the reduced integrands, such homogeneity is found to generally hold
in a variety of kinematical limits, such as the off-shell large-momentum expansion and the
large-mass limits with either an internal or external heavy parton [217]. The reason comes
in part from the fact that the overlapping sectors for those asymptotic regimes, according
to [177], admit the unbounded integrals over the multiple-expanded integrands, which, using
dimensional regularisation, are all scaleless and thus vanish. In principle, if the homogeneity
is also desired for the small qT expansion, one can embed a special group of rapidity operators
into eq. (2.64), such as the analytic [74, 76] and pure rapidity [113, 178] cases, from which,
mimicking the dimensional regulator, the integrals in the zero-bin subtrahends of eq. (2.64)
become scaleless and are thus eliminated. Subsequently, homogeneity is restored in the
small qT expansion and the power coefficients are thereby recast as,

Ĩρ,σ,(ω)
[κ],{α,β} = G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
⟨hom.rap.⟩

c

+ G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨hom.rap.⟩

c̄

. (2.67)

This work will dub this set of rapidity regulators the homogeneous ones, as labeled in the
superscripts above. However, the above form is not generic. For instance, once the exponential
regulator [79, 80] is put in place, both the “c0” and “c̄0” sectors in eq. (2.64) will make
non-trivial and indispensable contributions, from which all unphysical singularities generated
in the collinear sectors of eq. (2.63) can be eliminated at each power, according to eq. (2.45).
In this sense, the decomposition in eq. (2.67) can only be appropriate for the asymptotic
expansion with a homogeneous regulator, while the generalised recipe, that will hold on a
generic choice of rapidity regulators, is presented in eq. (2.62).

2.4.3 Comparison with existing results

We will now confront the zero-bin subtrahend derived in eqs. (2.62)–(2.64) with those
proposed in the literature.

At LP, the zero-bin contribution at NLO involves only the master integral Ĩρ,σ,(ω)
[κ],{α,β} with

ρ = σ = ω = −1 in the process pp → H + X, and it has been demonstrated in [75, 163–166]
that the zero-bin subtrahend can be constructed by taking the soft limit of the integrand.
It follows that,

1
q2

T
G̃−1,−1,(−1)

[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

soft====⇒ lim
τ→0

∫ ∞

0

dk−
k−

R(k−,k+, τ)
F

(αn)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
mHe+YH

)
k− k+

.

(2.68)

This result can also be reproduced from eq. (2.64). At LP, the repeated application of the
expansion operators in eq. (2.64) does not produce any power of the integration variables

– 24 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
5

k± and therefore yields the same powers of k± as that in eq. (2.68). Moreover, owing to
the relation 2ω = ω = −2, the δ-functions in eq. (2.64) are both contributing a factor of
(1/2) from each sector, which add up to unity after combining the results. This thus leads
to the exact same expression of eq. (2.68).

An alternative scheme to calculate the zero-bin subtraction up to NLP was proposed
in [114, 115]. In this method, the asymptotic behaviour of the small qT regime is assumed
to be entirely governed by the n- and n̄-collinear momenta. Subsequently, in order to
remove the redundant overlapping contributions, each collinear ingredient is expanded in
accordance with the scaling of the other one in the opposite direction and then their sum
is averaged, more specifically,

(
q2

T

)ω
G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

opp.col.=======⇒ θ (ω − ρ) θ (ω − σ)
2 lim

τ→0

∫ ∞

0

dk+
k+

R(k−, k+, τ) (2.69)

×
{(

ω∑
ω=σ

T̂(ω)
c̄

)
T̂(ω)

c +

 ω∑
ω=ρ

T̂(ω)
c

 T̂(ω)
c̄

+ T̂(ω)
c

(
ω−1∑
ω=σ

T̂(ω)
c̄

)
+ T̂(ω)

c̄

ω−1∑
ω=ρ

T̂(ω)
c

} Iρ,σ
[κ],{α,β} .

Using this result to calculate I−1,−1
[κ],{α,β}, we observe that only the first two terms in the

curly brackets can give non-vanishing contributions at LP as the range of summation in
the last two terms is more restricted. In addition, due to the fact that the product of
two collinear expansion operators in the opposite collinear directions is equivalent to one
single soft expansion operator in this case, eq. (2.69) evaluates to the identical expression
to that in eq. (2.68).

At NLP, all terms of eq. (2.69) contribute to the zero-bin subtraction. While in the first
two terms in the curly brackets the NLP collinear sectors have been expanded in line with
the counting rule in the opposite direction, the last two terms recover the power corrections
that did not contribute to the LP result, but re-enter the zero-bin subtraction procedure
here. Thus, retaining all terms up to NLP, this yields,

G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

opp.col.=======⇒ θ (ω − ρ) θ (ω − σ) lim
τ→0

∫ ∞

0

dk+
k+

R(k−, k+, τ)
{
1 + 1

k−
+ 1

k+

}
× F

(αn)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
mHe+YH

)
.

(2.70)

This result agrees with the expectation from the dual scaling. Please note, LP-like terms
have now entered the subtraction term at NLP, constituting the inhomogeneity we alluded
to earlier. More explicitly, substituting the integrand I−1,−1

[κ],{α,β} into eq. (2.64), we obtain,

G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
c0

= θ (ω−σ) lim
τ→0

∫ ∞

0

dk+

k+
R(k−,k+, τ)

{
1
2+

1
k+

}
F

(αn)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
mHe+YH

)
,

G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
c̄0

= θ (ω−ρ) lim
τ→0

∫ ∞

0

dk−

k−
R(k−,k+, τ)

{
1
2+

1
k−

}
F

(αn)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
mHe+YH

)
.

(2.71)
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Recalling that additional constraints on the exponents ρ and σ have already been imposed in
the definition of the power series in eq. (2.62), combining both contributions above precisely
reproduces the results of eq. (2.70).

Furthermore, even though eq. (2.69) is obtained by summarising the asymptotic properties
of the NLP ingredients in [114, 115], it is very interesting to note that eq. (2.69) is in fact
still useful in organising the overlap removal for N2LP and beyond. To see this, we note
that the collinear expansion operators T̂c and T̂c̄ commute. Hence, we can drop the factor
of 1

2 and recast the r.h.s. of eq. (2.69) below,

(
q2

T
)ω G̃ρ,σ,(ω)

[κ],{α,β}

∣∣∣∣∣
⟨NS⟩

cc̄

opp.col.=======⇒θ (ω−ρ)θ (ω−σ) lim
τ→0

∫ ∞

0

dk+

k+
R(k−,k+, τ)

×
{

T̂(ω)
c̄ T̂(ω)

c +T̂(ω)
c

(
ω−1∑
ω=σ

T̂(ω)
c̄

)
+T̂(ω)

c̄

ω−1∑
ω=ρ

T̂(ω)
c

}Iρ,σ
[κ],{α,β} .

(2.72)

Plugging the expressions of eq. (2.65) into eq. (2.72), we then obtain,

r.h.s. of eq. (2.72) = θ (ω − ρ) θ (ω − σ) lim
τ→0

∫ ∞

0

dk+
k+

R(k−, k+, τ)

×
{

kω
− kω

+
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
(ω − σ)!

F
(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω − ρ)!

+ kω
−

ω−σ−1∑
η=0

kσ+η
+

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
η! (ω − ρ)!

+ kω
+

ω−σ−1∑
η=0

kρ+λ
−

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!(ω − σ)!

}
.

(2.73)

Extracting a common factor of (q2
T)ω from the curly bracket above, we observe its coincidence

with the sum of eq. (2.61) and thus the equivalence with eq. (2.64).
We will now compare our results with the results obtained through employing the method

of expansion by regions [177, 214–217] and focus in particular on the formalism proposed
in [177]. Therein, the mathematical foundation behind the expansion by regions has been
discussed via examples for the one-loop integrals in different kinematic limits. Of them,
the analysis of the Feynman integrals in the Sudakov limit [177] is intimately related to
the qT spectra within the asymptotic regime. Therefore, after appropriate adaptations, the
techniques proposed in [177] can also be exploited to compute the zero-bin subtraction here.
In the following, we will elucidate this application.

The starting point of the formalism in [177] is to work out a group of dynamic regions
that are able to encompass the entire phase space and also separately accommodate the
contributions from all involved scales. In our case, this goal can be accomplished by the
dynamic modes presented in eq. (2.28). The next task is to extrapolate the bounded integrals
contained in each region so as to remove all auxiliary cutoff scales along the integration
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paths. This procedure can be illustrated by using the expansion operators introduced in
eqs. (2.63) and (2.64), i.e.

Ĩρ,σ
[κ],{α,β} =

∑
ω

∫ k̃max
+

νn

T̂(ω)
c +

∫ νn

q2
T

νn̄

T̂(ω)
s +

∫ q2
T

νn̄

k̃min
+

T̂(ω)
c̄

 dk+
k+

Iρ,σ
[κ],{α,β} , (2.74)

and then extrapolating the integral boundaries νn and νn̄,

∑
ωc

∫ k̃max
+

νn

T̂(ωc)
c → lim

τ→0

∑
ωc

∫ k̃max
+

0
RT̂(ωc)

c −
∑

ωc,ωs

∫ νn

q2
T

νn̄

RT̂(ωs)
s T̂(ωc)

c −
∑

ωc,ωc̄

∫ q2
T

νn̄

0
RT̂(ωc̄)

c̄ T̂(ωc)
c

 ,

∑
ωs

∫ νn

q2
T

νn̄

T̂(ωs)
s → lim

τ→0

∑
ωs

∫ ∞

0
RT̂(ωs)

s −
∑

ωc,ωs

∫ ∞

νn

RT̂(ωc)
c T̂(ωs)

s −
∑

ωs,ωc̄

∫ q2
T

νn̄

0
RT̂(ωc̄)

c̄ T̂(ωs)
s

 ,

∑
ωc̄

∫ q2
T

νn̄

k̃min
+

T̂(ωc̄)
c̄ → lim

τ→0

[∑
ωc̄

∫ ∞

k̃min
+

RT̂(ωc̄)
c̄ −

∑
ωc̄,ωs

∫ νn

q2
T

νn̄

RT̂(ωs)
s T̂(ωc̄)

c̄ −
∑

ωc,ωc̄

∫ ∞

νn

RT̂(ωc)
c T̂(ωc̄)

c̄

]
.

(2.75)

Therein, in order to render the integrals still well-defined after extrapolating the boundaries,
the rapidity regulator R has been put in place. Since the discussion here is focused on the
conservative rapidity regularisation prescription that preserves the expression of R in all
the involved sectors, in writing eq. (2.75), we pull all regulators R in front of the expansion
operators. We note that the r.h.s. of eq. (2.75) still depends on the cutoff scales νn and νn̄.
This dependence can be eliminated through the following identity,

∑
ωc,ωc̄,ωs

∫ ∞

0
R T̂(ωc)

c T̂(ωs)
s T̂(ωc̄)

c̄ →
∑

ωc,ωs

∫ q2
T

νn̄

0
R T̂(ωs)

s T̂(ωc)
c +

∑
ωc,ωc̄

∫ νn

q2
T

νn̄

R T̂(ωc̄)
c̄ T̂(ωc)

c

+
∑

ωc̄,ωs

∫ ∞

νn

R T̂(ωs)
s T̂(ωc̄)

c̄ .

(2.76)

In its derivation, we have used the commutativity of the power projection operators T̂c, T̂s,
and T̂c̄. Combining eq. (2.76) with eq. (2.75), we have,

Ĩρ,σ
[κ],{α,β}= lim

τ→0

[∑
ωc

∫ k̃max
+

0
RT̂(ωc)

c +
∑
ωs

∫ ∞

0
RT̂(ωs)

s +
∑
ωc̄

∫ ∞

k̃min
+

RT̂(ωc̄)
c̄

−
∑

ωc,ωs

∫ ∞

0
RT̂(ωc)

c T̂(ωs)
s −

∑
ωc,ωc̄

∫ ∞

0
RT̂(ωc)

c T̂(ωc̄)
c̄ −

∑
ωs,ωc̄

∫ ∞

0
RT̂(ωs)

s T̂(ωc̄)
c̄

+
∑

ωc,ωs,ωc̄

∫ ∞

0
RT̂(ωc)

c T̂(ωs)
s T̂(ωc̄)

c̄

] dk+
k+

Iρ,σ
[κ],{α,β} .

(2.77)

Taking into account the facts that expanding in the collinear scalings following the soft
power-projection operator T̂s can only result in delta functions as well as that two consecutive
expansions in the collinear scalings are equivalent to one single expansion in the soft scaling
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upon having summed all power contributions, we see that the doubly and triply expanded
terms in eq. (2.77) are equal to an expansion in the soft scaling. To this end, we obtain,

Ĩρ,σ
[κ],{α,β} =

∑
ω

lim
τ→0

[ ∫ k̃max
+

0
R T̂(ω)

c +
∫ ∞

k̃min
+

R T̂(ω)
c̄ −

∫ ∞

0
R T̂(ω)

s

] dk+
k+

Iρ,σ
[κ],{α,β} . (2.78)

Comparing with eqs. (2.63) and (2.64), we observe that the first two terms in eq. (2.78) and the
collinear functions in eq. (2.63) are equivalent. To explore the relationship of the third term in
eq. (2.78) and the sum of eq. (2.64), we note that after bringing in the expression in eq. (2.65)
the soft sector in eq. (2.78) evaluates to an infinite sum of the unbounded integrals, i.e.,

∞∑
η,λ=0

lim
τ→0

∫ ∞

0

dk+
k+

R (k−, k+, τ)
kσ+η

+ kρ+λ
−

η!λ! F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
,

(2.79)

which is exactly equal to the result from eq. (2.64) upon summing up all power contributions.
Therefore, we can conclude at least the correspondence of eq. (2.78) and eqs. (2.63) and (2.64)
on the cumulative level.

Notwithstanding, once a power-by-power comparison is being considered between both
results, the analysis becomes more subtle. In [177], the analytic regulator is applied throughout
the calculation of the Sudakov form factors. Implementing this scheme into eq. (2.77) (or
eq. (2.78)), the integrals that are expanded in the soft scaling or comprise double or triple
expansions all vanish. Then, eq. (2.77) and eq. (2.78) both reduce into the same decomposition
we found in eq. (2.67) induced by the homogeneous regulators. However, if the inhomogeneous
regularisation scheme is of one’s particular interest, the soft function and the doubly and
triply expanded constituents of eq. (2.77) can make non-trivial contributions at a given
power accuracy, for which an unambiguous counting rule is required in order to produce
the correct power coefficient Ĩρ,σ,(ω)

[κ],{α,β}.

2.5 Discussion and extrapolation

In the previous subsections, we have carried out the power expansion of the double-differential
observable dσH/dYHdq2

T in the low qT domain. The result reads,

dσH

dYHdq2
T
= λ2

t

∑
ω,ω

(
q2

T

)ω+ω ∑
[κ]

∑
{α,β},ρ,σ

H̃(ω),ρ,σ
[κ],{α,β} (mH , YH , s)

{
Ĩρ,σ,(ω)

[κ],{α,β} +∆Ĩρ,σ,(ω)
[κ],{α,β}

}
.

(2.80)

Therein, H̃(ω),ρ,σ
[κ],{α,β} is a function of the hard scales mH and s. Its expression has been presented

in eq. (2.18) on a power-by-power basis. ∆Ĩρ,σ,(ω)
[κ],{α,β} accounts for the power corrections induced

by the boundary conditions of the phase space integral. The results in the n-ultra-collinear
limit can be extracted from eqs. (2.24)–(2.27), while those in the n̄-direction can be derived by
exchanging the light-cone coordinates in eqs. (2.26)–(2.27), as appropriate. Finally, eq. (2.80)
contains Ĩρ,σ,(ω)

[κ],{α,β} which comprises the contribution from the bulk of the phase space. In
section 2.4.1 and section 2.4.2, we made use of two strategies to evaluate the expansion
coefficients Ĩρ,σ,(ω)

[κ],{α,β}. In section 2.4.1, owing to the fact that our integration region comprises
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multiple scales, we re-categorised the integration path via two of auxiliary cutoff scales, νn and
νn̄. A dedicated method is applied for each subregion to perform the expansion within the low
qT domain. The quoted power series following this approach is illustrated in eq. (2.42). Then,
in order to pave the way for future investigations of the power expansion at N2LO and beyond,
we recombined the individual terms of eq. (2.42), eliminating any dependence on the auxiliary
scales. The rearranged expansion coefficients are given in eq. (2.62). Equipped therewith, we
are able to calculate the power series of dσH/dYH dq2

T at an arbitrary power accuracy.
During our analysis, in order to facilitate the establishment of the relevant scaling

relations, we concentrated on the central rapidity region where e±YH ∼ O(1). As it turns
out, the expression in eq. (2.80) can also be extrapolated to the domain

min{
√

s − mHeYH ,
√

s − mHe−YH} > max{mHeYH , mHe−YH} . (2.81)

This extrapolation is straightforward to achieve in the kinematical reduction in section 2.2,
since the expansion parameter therein is (q2

T/m2
H).

Regarding ∆Ĩρ,σ
[κ],{α,β}, it is worth reminding the reader that the power expansion in

section 2.3 primarily builds on the hierarchies,

√
s − mHe±YH ≫ |mH − mT| e±YH , mHe±YH ≫ q2

T√
s − mHe∓YH

. (2.82)

Both relations are maintained by eq. (2.81) in the low qT domain, and therefore the power
expansion of ∆Ĩρ,σ

[κ],{α,β} proceeds as before. A similar situation can be found in the interior
contribution Ĩρ,σ

[κ],{α,β}, in which the categorisation and the subsequent expansion base on
the following relationship,

√
s − mHe−YH > mHe−YH ≳ νn ≫ q2

T
νn̄

≳
q2

T
mHeYH

>
q2

T√
s − mHeYH

. (2.83)

These inequalities ensure the integration variable k± is always comparable to mHe∓YH in
magnitude in the collinear sector, while that in the transitional domain is small enough to
perform the power expansion. Eq. (2.83) is manifestly satisfied by the domain of eq. (2.81)
for the small qT regime, from which there exists a sufficiently wide window to introduce
the auxiliary cutoff scales νn and νn̄. Hence, the subsequent power series of Ĩρ,σ

[κ],{α,β} can
be derived as in section 2.4.

Following the above consideration, we can implement the expansion of eq. (2.80) within
the full range of eq. (2.81). At the LHC with a colliding energy

√
s = 13TeV, this interval

corresponds to the rapidity region |YH | ≲ 4 and, thus, enables a reliable power expansion
in the bulk of the accessible phase space. Moving from |YH | ≈ 0 to |YH | ≲ 4, it is possible
that novel hierarchies emerge from H̃(ω),ρ,σ

[κ],{α,β} or any of the contributions in Ĩρ,σ
[κ],{α,β}. For

instance, mHeYH ≫ qT ≫ mHe−YH at YH = 3.5 and qT = 30GeV, which may alter the
relative size of the coefficients at each power. It will not, however, impact the convergence
of the power series of eq. (2.80) as a whole.

Eventually, it should be emphasised that our derivation of the power series expansion of
the process pp → H + X primarily replies on the factorisation of the light-cone momenta
in eq. (2.10). An analogous situation can also be found in the NLO squared amplitudes

– 29 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
5

for the Drell-Yan process viewed in terms of the decomposed scalar products in eq. (2.5).
Therefore, our results for Ĩρ,σ

[κ],{α,β} and ∆Ĩρ,σ
[κ],{α,β} obtained in this section are straightforwardly

applicable onto the Drell-Yan process. After combining with its respective hard sector H̃, it
will in turn generate a power series via eq. (2.80) in the low qT domain. Beside those two
process classes, producing a single colour singlet boson, after appropriate generalisation of
the kinematics, eq. (2.80) can in part also be used to describe the hadroproduction of the
multiple colourless bosons, pp → B1 + B2 . . . Bn + X(n ≥ 2), as well. We will elaborate
on this procedure in appendix C.

3 Implementation up to N2LP

In this section, we will analyse the asymptotic behaviour of the qT spectrum on the process
pp → H + X, and present the analytic expressions for the power corrections up to N2LP. As
illustrated in eq. (2.80), the power expansion within the small qT domain comprises two sectors,
the interior contribution Ĩρ,σ

[κ],{α,β} and the boundary corrections ∆Ĩρ,σ
[κ],{α,β}. In the following,

we will make use of three different methods to evaluate the interior sector. In section 3.1, the
expressions in eqs. (2.30)–(2.33) and (2.40)–(2.41) that are derived via the momentum cutoff
scales νn(n̄) in eq. (2.28) will be implemented. The results of eq. (2.46) and eq. (2.61) using a
homogeneous regulator will be detailed in section 3.2 while an inhomogeneous prescription
is used in section 3.3. It will be demonstrated that all three methods result in identical
expressions for the interior contribution after combining all relevant terms. We expect the
comparative study here can help the interpretation of the rapidity-divergence regularisation
and present a viable prescription in the resummation beyond the leading power in the future.

3.1 Power expansion with momentum cutoffs

In line with the categorisation of phase space in eq. (2.28), the interior contributions are
decomposed in terms of the collinear and transitional sectors, from which we can re-write
eq. (2.80) here,

dσH

dYHdq2
T
= dσ

⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c

+ dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
cs

+ dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄s

+ dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄

+ dσH

dYHdq2
T

∣∣∣∣∣
b.c.

. (3.1)

Therein, the ingredients with the subscripts “c” and “c̄” account for the collinear pieces
defined in eqs. (2.31) and (2.33), respectively, while those indicated by “cs” and “c̄s” encode
the transitional elements from eqs. (2.40)–(2.41). In all these four terms, the superscript
“m.c.” is introduced to manifest the fact that the momentum cutoffs νn and νn̄ are utilised
during the power expansion. At last, we take account of the boundary corrections derived
in section 2.3, termed “b.c.”.

In the last section, the power expansions on those sectors are performed directly in
the momentum space. To render their expressions more compact, we here recast them in
terms of dimensionless parameters,

xn ≡ mH e−YH

√
s

≡ 1− x̄n , xn̄ ≡ mH e+YH

√
s

≡ 1− x̄n̄ , (3.2)
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and those related to the integration variables,

k+ ≡ mH e−YH

(1− zn

zn

)
, k− ≡ mH e+YH

(1− zn̄

zn̄

)
, (3.3)

νn ≡ mH e−YH

(1− z̃n

z̃n

)
, νn̄ ≡ mH e+YH

(1− z̃n̄

z̃n̄

)
. (3.4)

Implementing this parameterisation is straightforward in the boundary corrections of eq. (2.24),
the collinear sectors of eqs. (2.31) and (2.33), and the regular terms in the transitional
contributions of eqs. (2.40)–(2.41). For contributions involving the star-distribution, e.g.
eq. (2.38), we first make use of the method of integration by parts to reduce the higher ranked
contributions to lower ones, and then introduce the dimensionless kinematic variables defined
above to convert the star-distribution to the customary plus-distribution. Up to N2LP, the
identities relevant to the reduction of the star-distributions read,∫ Λ

0
dx

[ 1
x2

]ν

∗
f(x) =

∫ Λ

0
dx

[1
x

]ν

∗
f ′(x)− f(Λ)

Λ + f ′(0) + f(0)
ν

,

∫ Λ

0
dx

[ 1
x3

]ν

∗
f(x) =1

2

∫ Λ

0
dx

[1
x

]ν

∗
f ′′(x)− f(Λ)

2Λ2 − f ′(Λ)
2Λ + 3

4 f ′′(0) + f ′(0)
ν

+ f(0)
2ν2 ,

(3.5)

where f(x) stands for a generic function sufficiently differentiable at x = 0. Regarding the
transformation of the star-distributions to the plus distribution, the following relationships
are used during our calculation,∫ √

sx̄n

0
dk+

[ 1
k+

]νn

∗
f(k+) =

∫ 1

xn

dzn

[ 1
1− zn

]
+

f(zn) +
∫ 1

xn

dzn

zn
f(zn) + ln

[√
s xn

νn

]
f(0) ,

∫ √
sx̄n̄

0
dk−

[ 1
k−

]νn̄

∗
f(k−) =

∫ 1

xn̄

dzn̄

[ 1
1− zn̄

]
+

f(zn̄) +
∫ 1

xn̄

dzn̄

zn̄
f(zn̄) + ln

[√
s xn̄

νn̄

]
f(0) ,

(3.6)

where the plus-distribution is defined as,∫ 1

x
dz

[ 1
1− z

]
+

f(z) =
∫ 1

x
dz

f(z)− f(1)
1− z

−
∫ x

0
dz

f(1)
1− z

. (3.7)

Transitional domain. We have now all tools in place to present the respective expressions
for each term on the r.h.s. of eq. (3.1). We begin with the transitional contributions that
are associated with n-collinear and soft scalings,

dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
cs

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ 1

z̃n

dzn

[
Fi/n

(
xn

zn

)]T

×
{

R(ω),ij
cs (zn)+P(ω),ij

cs

[ 1
1−zn

]
+
+D(ω),ij

cs δ (1−zn)+B(ω),ij
cs (z̃n)δ (z̃n−zn)

}
×Fj/n̄(xn̄) .

(3.8)
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Therein, the qT spectrum is expanded in the small parameter (q2
T/m2

H) on the r.h.s., and at
each power of the resulting series, the coefficient comprises the convolution of the PDFs and
the reduced squared amplitudes over the domain zn ∈ [z̃n, 1]. To facilitate the discussion,
we here express the power series for each PDF in array form, more explicitly,

[
Fi/n(ξn)

]T
≡
[
fi/n(ξn) , ξn f ′

i/n(ξn) ,
(ξn)2

2! f ′′
i/n(ξn) , . . . ,

(ξn)k

k! f
(k)
i/n(ξn) , . . .

]
,

Fj/n̄(ξn̄) ≡
[
fj/n̄(ξn̄) , ξn̄ f ′

j/n̄(ξn̄) ,
(ξn̄)2

2! f ′′
j/n̄(ξn̄) , . . .

(ξn̄)k

k! f
(k)
j/n̄(ξn̄) , . . .

]T
,

(3.9)

where the superscript T denotes the transposition operation. The shorthands f
(k)
i/n and f

(k)
j/n̄

are employed to represent the k-th derivative of the PDFs,

f
(k)
i/n(ξ̃n) ≡

∂k

∂ξk
n

fi/n(ξn)
∣∣∣∣
ξn=ξ̃n

, f
(k)
j/n̄(ξ̃n̄) ≡

∂k

∂ξk
n̄

fj/n̄(ξn̄)
∣∣∣∣
ξn̄=ξ̃n̄

. (3.10)

Further, the reduced squared amplitudes R(ω),ij
cs are matrices in the rank of the PDF derivative

encoded in Fi/n. They characterise the ωth-power regular contributions from the transitional
domain initiated by the partons i and j. For the partonic channel gg → Hg, the results
up to N2LP read,

R(−1),gg
cs = −zn + 1− 1

zn
+ 1

z2
n

,

R(0),gg
cs =

−
3z2

n
2 − 4zn − 1

2 + 1
2z2

n

3z2
n

+ 5zn
2 + 3

2 + 1
2zn

+ 1
2z2

n

z2
n
2 + 3zn

2 + 1
2zn

−z2
n − zn − 1

 ,

R(1),gg
cs =



− 27z3
n

2 + 3z2
n

8 − 15zn
4 − 19

8
− 1

8z2
n

27z2
n

4 + 45zn
8 + 29

8 + 5
8zn

+ 1
8z2

n

3zn
4 − 3

4 + 3
4zn

+ 1
4z2

n

−6z3
n+3z2

n

27z3
n

4 + 13z2
n

8 + 25zn
8 + 7

4
+ 1

8zn

−9z2
n

4 − 11zn
4 − 3 + 1

4zn
3z3

n

−9z3
n

4 − 7z2
n

4 − 5zn
2 − 2 0 −z3

n − z2
n − zn − 1


.

(3.11)

Here, all the entries that will vanish in the following are omitted for brevity. In the case
of i = q(q̄) and j = g, we have,

R(−1),q(q̄)g
cs = 2

9 − 4
9zn

+ 4
9z2

n

,

R(0),q(q̄)g
cs =

−2zn
9 + 1

3 + 2
9z2

n
−1

9 + 2
9zn

+ 2
9z2

n

zn
9 − 2

9 + 2
9zn

0

 ,

R(1),q(q̄)g
cs =


z2

n
6 − zn

6 + 1
36 − 1

18z2
n

5zn
9 + 1

4 + 5
18zn

+ 1
18z2

n

4zn
9 + 5

18 + 1
3zn

+ 1
9z2

n

− z2
n
9 + 5zn

36 − 1
18 + 1

18zn
−5zn

18 − 2
9 + 1

9zn
−2zn

9 − 2
9

z2
n

18 − zn
9 + 1

9 0 0

 .

(3.12)
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Finally, those for the qq̄ initial state read as follows,

R(−1),qq̄
cs = 0 , R(0),qq̄

cs = 16
27zn

− 16
27 , R(1),qq̄

cs =

 16zn
27 − 16

27
8
27 + 8

27zn

8
27 − 8zn

27 0

 .

(3.13)

We next advance to the singular terms on the r.h.s. of eq. (3.1). P(ω)
cs , consisting of only

the constant coefficients, captures the contribution associated with the plus-distribution in
eq. (3.7). Up to N2LP, they evaluate to,

P(−1),gg
cs = 1 , P(0),gg

cs =

 4 −1
2

−1
2 1

 , P(1),gg
cs =


3 −13

8
9
4

−13
8

13
4 0

9
4 0 1

 ,

P(−1),q(q̄)g
cs = 0 , P(0),q(q̄)g

cs =
[

2
9

2
9

]
, P(1),q(q̄)g

cs =

 0 2
9

2
9

1
9

1
3

2
9

 ,

P(−1),qq̄
cs = 0 , P(0),qq̄

cs = 0 , P(1),qq̄
cs = 0 .

(3.14)

Herein, due to the finiteness of the squared amplitude of eq. (2.4) (qq) in the limit k± → 0,
the P(ω),qq̄

cs all vanish in the first few power corrections.
The remaining singular terms of eq. (2.4) are governed by the delta function and the

coefficients D(ω)
cs . Their expressions for LP, NLP, and N2LP are,

D(−1),gg
cs =Lcs P(−1),gg

cs , D(−1),q(q̄)g
cs =D(−1),qq̄

cs =D(0),qq̄
cs =D(1),qq̄

cs =0 ,

D(0),gg
cs =Lcs P(0),gg

cs +
[

3 −3
−1 +1

]
, D(0),q(q̄)g

cs =Lcs P(0),q(q̄)g
cs ,

D(1),gg
cs =Lcs P(1),gg

cs +


9 −9 0

−13
2 +7

2 −3
2

7
2 −1

2
3
2

 , D(1),q(q̄)g
cs =Lcs P(1),q(q̄)g

cs +

 0 −4
9 −4

9

0 2
9

2
9

 ,

(3.15)
where the logarithm Lcs ≡ ln[

√
sxn/qT] results from the logarithmic contributions in the

transitional sectors of eqs. (2.40) and (3.6). We note that all Lcs dependences in D(ω)
cs

are correlated to the coefficients P(ω)
cs at each power. To interpret this phenomenon, it

merits recalling that in eq. (2.40), the coefficient function that is convoluted in the star-
distribution reads F

(αn)
i/n,βn

F
(αn̄+ω−ρ)
j/n̄,βn̄

, which, after reducing the rank with the help of eq. (3.5),
is recast into F

(αn+ω−σ)
i/n,βn

F
(αn̄+ω−ρ)
j/n̄,βn̄

, corresponding to the coefficient of the logarithmic term.
During the subsequent transformation in eq. (3.6), this correspondence is inherited by the
coefficient associated with the plus distribution, which, within the parametrisation of eq. (3.8),
correlates P(ω)

cs to the logarithmic terms in D(ω)
cs .
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The last constituent in eq. (3.8) is B(ω)
cs . It accommodates the boundary terms on the

r.h.s. of eq. (3.5), as a result of using an integration by parts in its derivation. The outputs
for the first three orders read,

B(−1),gg
cs = B(−1),q(q̄)g

cs = B(−1),qq̄
cs = B(0),q(q̄)g

cs = B(0),qq̄
cs = B(1),qq̄

cs = 0 ,

B(0),gg
cs =

[
− z̃4

n
z̃n−1

z̃4
n

z̃n−1

]
,

B(1),gg
cs =

 z̃4
n[(11−6z̃n)z̃n−8]

2(z̃n−1)2
z̃4

n(5z̃n−4)
2(z̃n−1)2

z̃4
n[(8−3z̃n)z̃n−6]

2(z̃n−1)2

z̃5
n

z̃n−1 0 z̃5
n

2(z̃n−1)

 , B(1),q(q̄)g
cs =

[
0 2z̃3

n
9(z̃n−1)

2z̃3
n

9(z̃n−1)

]
.

(3.16)

Since this contribution primarily arises from the reduction of the higher ranked star-
distributions, B(ω),qq̄

cs vanishes for ω ∈ [−1, 0, 1], similarly to the P(ω),qq̄
cs earlier. The other

part of the transitional region is subject to the n̄-collinear and soft scalings, which can be
organised in an analogous manner to eq. (3.8), more specifically,

dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄s

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ 1

z̃n̄

dzn̄

[
Fi/n (xn)

]T
×
{

R(ω),ij
c̄s (zn̄)+P(ω),ij

c̄s

[ 1
1−zn̄

]
+
+D(ω),ij

c̄s δ (1−zn̄)+B(ω),ij
c̄s (z̃n̄)δ (z̃n̄−zn̄)

}

×Fj/n̄

(
xn̄

zn̄

)
. (3.17)

Herein, eq. (3.17) comprises the matrices Rc̄s, Pc̄s, Dc̄s, and Bc̄s to likewise encapsulate the
different facets of partonic contributions, akin to those in eq. (3.8). Of them, the matrices
for the partonic processes gg → Hg and qq̄ → Hg can be immediately derived from those
appearing in eq. (3.8), as the squared amplitudes for these channels in eq. (2.4) (gg and qq)
are symmetric under the exchange of their initial states, more explicitly,

X(ω),ij
c̄s =

[
X(ω),ij

cs

]T ∣∣∣∣∣zn→zn̄ , z̃n→z̃n̄

Lcs→Lc̄s

, where X∈{R,P,D,B} and {ij}∈ {gg,qq̄} . (3.18)

An analogous strategy can also be applied to evaluate the matrices P(ω),q(q̄)g
c̄s that are induced

by the initial state q(q̄)g. As discussed before, P(ω),q(q̄)g
c̄s is associated with the coefficient

of the logarithmic term of Ĩρ,σ
[κ],{α,β}|c̄s in eq. (2.41), which, by comparison, is same as that

from Ĩρ,σ
[κ],{α,β}|cs in eq. (2.40). To this end, we have,

P(ω),q(q̄)g
c̄s = P(ω),q(q̄)g

cs . (3.19)

This correspondence also holds for the logarithmic contributions in D(ω),q(q̄)g
c̄s ,

D(−1),q(q̄)g
c̄s = 0 ,

D(0),q(q̄)g
c̄s = Lc̄s P(0),q(q̄)g

cs +
[
−2

9 +2
9

]
,

D(1),q(q̄)g
c̄s = Lc̄s P(1),q(q̄)g

cs +

 0 0 2
9

−2
9

2
9

1
3

 ,

(3.20)
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where Lc̄s ≡ ln[
√

sxn̄/qT]. Comparing with eq. (3.15), the constant terms in eq. (3.20) are
very different, mirroring the asymmetry of the matrix element of q(q̄) + g → H + q(q̄) in
eq. (2.4) (gq) under the n-collinear and n̄-collinear scalings.

Unsurprisingly, this asymmetric behaviour also emerges from the regular coefficients,

R(−1),q(q̄)g
c̄s = 0 ,

R(0),q(q̄)g
c̄s =

[
2
9 + 2

9zn̄
−2

9

]
,

R(1),q(q̄)g
c̄s =

 1
9 − 2zn̄

9
2zn̄

9 − 1
9 −2zn̄

9 − 2
9

−2zn̄
9 + 1

3 + 1
9zn̄

2zn̄
9 − 1

3 −2zn̄
9 − 2

9

 ,

(3.21)

and the boundary corrections,

B(−1),q(q̄)g
c̄s = 0 , B(0),q(q̄)g

c̄s = 2z̃2
n̄

9(z̃n̄ − 1) , B(1),q(q̄)g
c̄s =

 − (z̃n̄−2)z̃2
n̄

9(z̃n̄−1)
z̃3

n̄
9(z̃n̄−1)

− z̃2
n̄[(z̃n̄−5)z̃n̄+5]

9(z̃n̄−1)2
z̃3

n̄
9(z̃n̄−1)

 .

(3.22)

Collinear and ultra-collinear regimes. The collinear contributions governed by eq. (2.31)
and eq. (2.33) are formally aligned with the integrals from the transitional sectors as exhibited
in eqs. (2.40)–(2.41). This correspondence even holds after reducing their rank using eq. (3.5)
and transforming them with the help of eq. (3.6) if the plus distribution terms are treated to
be regular functions and the boundary terms emerging from the integration by parts are all
adapted to the collinear regimes as appropriate. The results then read,

dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ z̃n

xn

dzn

[
Fi/n

(
xn

zn

)]T

×
{

R(ω),ij
cs (zn) +

P(ω),ij
cs

1− zn
+ B(ω),ij

cs (zn)
[
δ (xn − zn)− δ (z̃n − zn)

]}
× Fj/n̄ (xn̄) ,

dσ
⟨m.c.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ z̃n̄

xn̄

dzn̄

[
Fi/n (xn)

]T

×
{

R(ω),ij
c̄s (zn̄) +

P(ω),ij
c̄s

1− zn̄
+ B(ω),ij

c̄s (zn̄)
[
δ (xn̄ − zn̄)− δ (z̃n̄ − zn̄)

]}

× Fj/n̄

(
xn̄

zn̄

)
.

(3.23)

Combining this result with the results from the moderate domain in eqs. (3.8) and (3.17),
we observe that all the dependences on the parameters z̃n and z̃n̄, which are associated
with auxiliary cutoff scales νn and νn̄, drop out. This cancellation is in agreement with the
vanishing derivatives in eqs. (2.43) and (2.44) as well as the expectation from a direct power
expansion on the analytic expressions of the qT spectrum (if they are known).

Finally, we move to the ultra-collinear contributions, which contains the maximal longi-
tudinal momentum of an emitted parton allowed by the colliding energy. As discussed in
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section 2.3, this sector stems from the power expansion on the boundary conditions in eq. (2.2).
Therefore, the resulting expression will be proportional to the derivatives of the respective
PDFs at the end point. Moreover, since, as defined in eqs. (2.22) and (2.23), the phase space
integrals of this region are all restricted in the boundary strips of power-suppressed sizes, the
ultra-collinear contribution will not invoke any singular behaviour in the low qT region but
can be relevant starting from NLP as a non-logarithmic power correction. The expression
up to N2LP can be organised as,

dσH

dYHdq2
T

∣∣∣∣∣
b.c.

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω { [
Fi/n (1)

]T
· B(ω),ij

uc (xn) · Fj/n̄ (xn̄)

+
[
Fi/n (xn)

]T
· B(ω),ij

uc̄ (xn̄) · Fj/n̄ (1)
}

.

(3.24)

Therein, the leading power coefficients all vanish,

B(−1),ij
uc = B(−1),ij

uc̄ = 0 . (3.25)

The partonic matrices at the (sub-)subleading power induced by the n̄-collinear mode
evaluate to,

B(0),gg
uc̄ (xn̄) =

[(xn̄ − 1)xn̄ + 1]2

2(xn̄ − 1) ,

B(1),gg
uc̄ (xn̄) =


−3x6

n̄+11x5
n̄−12x4

n̄+17x3
n̄−10x2

n̄+xn̄−1
8(xn̄−1)2

xn̄[(xn̄−1)xn̄+1]2
8(xn̄−1)

− (xn̄+1)[(xn̄−1)xn̄+1]2
4(xn̄−1)2 0

 ,

B(0),q(q̄)g
uc̄ (xn̄) = B(0),qq̄

uc̄ (xn̄) = 0 ,

B(1),q(q̄)g
uc̄ (xn̄) = − xn̄

9(xn̄ − 1)2 ,

B(1),qq̄
uc̄ (xn̄) =

8
27(xn̄ − 1)xn̄ .

(3.26)

Those from the n-collinear mode can be derived from the relation below,

B(ω),ij
uc (xn)=

[
B(ω),ij

uc̄ (xn̄)
]T ∣∣∣∣∣

xn̄→xn

, where ω ∈{−1,0,+1} and {ij}∈ {gg,qq̄} , (3.27)

together with,

B(0)q(q̄)g
uc = 1

9[−(xn − 2)xn − 2] ,

B(1)q(q̄)g
uc =

 [xn(2xn−5)+5]x2
n+2

36(xn−1)
1
18

(
x2

n + 2
xn−1

)
− 1

36xn[(xn − 2)xn + 2] 0

 .
(3.28)

We have presented here the analytic expressions of the first three terms in the power series
of dσH/(dYHdq2

T) in the vicinity of qT = 0, using pp → H + X with the partonic channels
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gg → Hg, q(q̄)g → Hq(q̄), and qq̄ → Hg as an example. In addition, the qT distribution also
comprises the channels gq(q̄) → Hq(q̄) and q̄q → Hg, for which the partonic matrices from
the corresponding sectors can be derived from those in the q(q̄)g → Hq(q̄) and qq̄ → Hg

processes by exchanging the labels n ↔ n̄ as appropriate.
In the previous investigations on the process pp → H + X, the ingredients contributing

to the leading singular behaviour of the qT distributions are known up to N3LO [100, 173–
176, 179, 187, 189, 195–206]. Comparing the NLO expressions in [80, 174] derived with
the exponential rapidity regulator with the leading terms of the sum of eqs. (3.8), (3.17),
and (3.23), we find perfect agreement between the two upon performing an inverse Fourier
transformation. In addition, the NLP power corrections have also been evaluated in [113]
via the η- and pure rapidity regularisation schemes. Here as well, we have verified that the
sum of eqs. (3.8), (3.17), and (3.23) can exactly reproduce the expressions in [113], except
for the boundary terms encoded in the Bcs matrix in eq. (3.8), Bc̄s in eq. (3.17), and Buc,uc̄

in eq. (3.24). The reason for the difference in the boundary terms is that all PDFs in [113]
are assumed to vanish at end point, i.e. fi/n(1) = fj/n̄(1) = 0, thereby setting all boundary
corrections to zero by default. However, in this paper, all contributions from the boundary
regions are retained for completeness and generality, and we find non-vanishing boundary
terms at least in the PDF set MSHT20nlo_as118, which is used in section 4. Further details
of this comparison can be found in appendix B.

3.2 Power expansion with the pure rapidity regulator

In this part, we re-derive the power series of dσH/(dYHdq2
T) up to N2LP with the interior

contribution evaluated from the rearranged ingredients, as illustrated in section 2.4.2. An
appropriate regularisation scheme is required to be put in place to tame the rapidity diver-
gences emerging from the domains k± → 0. In the following, the pure rapidity regularisation
prescription proposed in [113, 178] will be employed to facilitate our calculation. In this
regard, the regulator R takes the form

R =
∣∣∣∣ ν̃n

k+

k−
ν̃n̄

∣∣∣∣τ . (3.29)

Here ν̃n and ν̃n̄ represent two auxiliary scales, from which an effective cutoff can be imposed
upon the rapidity of the emitted partons [113], akin to dimensional regularisation. In this
paper, for simplicity, we take ν̃n = ν̃n̄ = mH throughout the calculation.

Applying eq. (3.29) onto the n-collinear function defined in eq. (2.46) concerns only the
integrand with σ ≤ ω in the limit τ → 0, more explicitly,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨p.ra.⟩

c

= θ̄ (ω−σ)
(ω−ρ)!

∫ k̃max
+

0

dk+

k+
(k+)σ−ωF

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
+ θ (ω−σ)

(ω−ρ)! lim
τ→0

∫ k̃max
+

0

dk+

k+
(k+)σ−ω

∣∣∣∣ q2
T

k2
+

∣∣∣∣τ F
(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
.

(3.30)

To compute the second term on the r.h.s., we make use of the generalised star-distribution
of eq. (2.38) to regularise all singular contributions, and then, within the pure rapidity
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regularisation scheme, we complete the phase space integrals over those singular terms.
The result reads,

θ (ω−σ) lim
τ→0

∫ k̃max
+

0

dk+
k+

(k+)σ−ω

∣∣∣∣∣ q2
T

k2
+

∣∣∣∣∣
τ

F
(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
= θ (ω−σ)

∫ k̃max
+

0
dk+

[
1

kω−σ+1
+

]νn

∗
F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)

+θ (ω−σ−1)
ω−σ−1∑

η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
η!

νσ+η−ω
n

σ+η−ω

+θ(ω−σ)
{
ln
[

νn

qT

]
− 1
2τ

} F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−σ)! ,

(3.31)

where we have expanded in the small parameter τ and kept only contributions up to O(τ0).
From eqs. (3.30) and (3.31), we note that except for the pole term, the recombined collinear
sector here exactly reproduces the sum of eqs. (2.31) and (2.40) constructed via the explicit
cutoffs. Likewise, the first term of eq. (3.30), proportional to θ̄ (ω − σ), and the term
containing the star-distribution in eq. (3.31) are equivalent to the sum of eq. (2.31) and
the first two lines of eq. (2.40), as can be seen with the help of eq. (2.46) and the fact that
the integrands in those sectors are all regular in the limit k+ → 0. In order to interpret
the correspondence between the last two lines of eq. (2.40) and eq. (3.31), it is beneficial to
recall that the νn-dependent terms in eq. (2.40) in fact stem from the boundary condition
in the phase space integral of eq. (2.34), which, through applying the star distribution in
eq. (2.38), is entirely inherited by the singular terms in eq. (3.31) and then mostly preserved
in evaluating the k+ integral within the pure rapidity regularisation scheme. Therefore,
an analogous pattern is presented by the expressions in eqs. (3.30) and (3.31) and those
in eq. (2.31) and eq. (2.40).

A similar strategy can also be used to calculate the n̄-collinear term in eq. (2.46), which
evaluates to,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨p.ra.⟩

c̄

= θ̄(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0

dk−

k−
kρ−ω
− F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)

+ θ(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0
dk−

[
1

kω−ρ+1
−

]νn̄

∗
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
+ θ(ω−ρ−1)

(ω−σ)!

ω−ρ−1∑
λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ!

νρ+λ−ω
n̄

ρ+λ−ω

+ θ(ω−ρ)
(ω−σ)!

{
ln
[

νn̄

qT

]
+ 1

2τ

} F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)! .

(3.32)

In comparison with eq. (3.31), we note that the sign in front of the pole term is reversed.
This indicates that the rapidity regulator in appraising the n̄-collinear sector is in practice
activated in a distinct extremal region than in the n-collinear case. Combining the n-collinear
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function in eq. (3.31) with the n̄-collinear piece of eq. (3.32), it is immediate to find that all
poles cancel, fully reproducing our previous results summing eqs. (2.31) and (2.33) as well
as eqs. (2.40) and (2.41) derived using the momentum cutoffs.

In fact, this agreement suggests that within the pure-rapidity regularisation scheme, the
soft contribution of eq. (2.54) and zero-bin subtrahends of eq. (2.61) could be redundant. To
confirm this, it is worth noting that the phase space integrals in these two functions are all
unbounded by definition, such that applying the pure rapidity regulator here only results
in vanishing quantities in the limit τ → 0. It thus leads to,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩,⟨p.ra.⟩

s

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨p.ra.⟩

c0

= G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨p.ra.⟩

c̄0

= 0 . (3.33)

In absence of the soft function and the zero-bin subtraction within the pure-rapidity reg-
ularisation scheme, we can then skip indulging in the inhomogeneous behaviour induced
by the doubly and triply projected integrands of eq. (2.77). Similarly, we can also freely
switch from Jantzen’s formalism [177] in eq. (2.78) to our proposal in eq. (2.67) to perform
the power expansion. This forms in part the reason why R in eq. (3.29) is categorised to
be one of the homogeneous regulators here.

Applying the expressions of eqs. (3.30)–(3.33) to eq. (2.62) or eq. (2.67), we arrive at the
expression of the interior contribution and, in turn, the power expansion of dσH/(dYHdq2

T). To
make their expressions more compact, we recast them once again in terms of the dimensionless
parameters defined in eq. (3.2) by means of the identities in eq. (3.5). Up to N2LP, the
results can be organised below,

dσH

dYHdq2
T
= dσH

dYHdq2
T

∣∣∣∣∣
b.c.

+ dσ
⟨p.ra.⟩
H

dYHdq2
T

∣∣∣∣∣
c

+ dσ
⟨p.ra.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄

, (3.34)

where the first term on the r.h.s. accounts for the boundary correction as illustrated in
eq. (3.24). The second and third terms govern the n-collinear contributions in eqs. (3.30)–
(3.31) and the n̄-collinear case in eq. (3.32), respectively. Their expressions read,

dσ
⟨p.ra.⟩
H

dYHdq2
T

∣∣∣∣∣
c

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ 1

xn

dzn

[
Fi/n

(
xn

zn

)]T

×
{

R(ω),ij
cs (zn)+P(ω),ij

cs

[ 1
1−zn

]
+
+
(
S(ω),ij

c +D(ω),ij
cs

)
δ (1−zn)

+B(ω),ij
cs (zn)δ (xn−zn)

}
Fj/n̄(xn̄) ,

(3.35)

and
dσ

⟨p.ra.⟩
H

dYHdq2
T

∣∣∣∣∣
c̄

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ 1

xn̄

dzn̄

[
Fi/n (xn)

]T

×
{

R(ω),ij
c̄s (zn̄)+P(ω),ij

c̄s

[ 1
1−zn̄

]
+
+
(
S(ω),ij

c̄ +D(ω),ij
c̄s

)
δ (1−zn̄)

+B(ω),ij
c̄s (zn̄)δ (xn̄−zn̄)

}
Fj/n̄

(
xn̄

zn̄

)
,

(3.36)

– 39 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
5

where the matrices R, P, D, and B have been previously displayed in section 3.1. The novel
ingredients here are Sc and Sc̄, characterising the pole terms in eqs. (3.31) and (3.32). The
coefficients of these singularities in the n-(n̄-)collinear sector are of opposite (same) sign, but
otherwise identical, to those associated with the logarithmic contributions. The latter are, as
discussed in section 3.1, associated with the partonic matrices in front of the plus distributions.
Hence, we can now express Sc and Sc̄ in terms of Pcs in eqs. (3.14), more specifically,

S(ω),ij
c =−S(ω),ij

c̄ =− 1
2τ

P(ω),ij
cs , where ω ∈{−1,0,1} and {ij}= {gg,q(q̄)g,qq̄} . (3.37)

3.3 Power expansion with the exponential rapidity regulator

In order to explore the pattern of the power expansion of dσH/(dYHdq2
T) in a more generic

way, in the following we re-appraise the interior region with the aid of the exponential
regulator [79, 80]. As will be illustrated below, the zero-bin subtrahends at this moment
are non-trivial and play an important role in the cancellation of the pole terms, at variance
to those derived in section 3.2. We will use the ⟨NS⟩ prescription here and make use of
eq. (2.61) to establish them.

The exponential regulator takes the form,

R = exp (−τ b0 k0) , (3.38)

where b0 = 2e−γE . At LP, where non-Abelian exponentiation [80, 173] holds, this type of
regularisation scheme has been extensively utilised to calculate the fixed-order ingredients
related to qT resummation. For instance, the leading power beam and soft functions are now
available up to N3LO [79, 80, 173–176], while the anomalous dimensions are available at N4LO
accuracy [207, 208]. In the following, we will implement this method to the NLO qT spectrum
up to N2LP, for the first time. Our deliberations may also be useful for future analyses of power
suppressed contribution at N2LO and beyond, within an inhomogeneous regularisation scheme.

We start our discussion by considering the collinear sectors of eq. (2.46). Applying the
exponential regularisation method here follows an analogous pattern to our steps leading
up to eqs. (3.30) and (3.31). First, we use the star-distribution of eq. (2.38) to separate the
regular and singular terms in the limit k± → 0. The regular terms maximally preserve the
form of eq. (2.46), while the singular ones contain rapidity divergences under the phase space
integral necessitating the exponential regulator. Here we use the functions Υ(h)

n and Υ(h)
n̄ to

collect those singular contributions in the n- and n̄-collinear sectors, respectively. Within
the exponential regularisation scheme, their expressions read,

Υ(h)
n ≡ lim

τ→0

∫ νn

0
dk+

e−τb0k0

kh+1
+

, Υ(h)
n̄ ≡ lim

τ→0

∫ νn̄

0
dk−

e−τb0k0

kh+1
−

= Υ(h)
n

∣∣∣∣∣
νn→νn̄

. (3.39)

As for the first few ranks, Υ(h)
n evaluates to,

Υ(0)
n = ln

[
νn

qT

]
− Lτ , Υ(1)

n = 1
q2

T τ̃
− 1

νn
, Υ(2)

n = 1
q4

T τ̃2 − 1
2 ν2

n

− 1
q2

T
,

Υ(3)
n = 2

q6
T τ̃3 − 1

3 ν3
n

− 1
q4

T τ̃
, . . . . . . ,

(3.40)

where Lτ = ln(qTτ) and τ̃ = τe−γE . The expression of Υ(h)
n̄ can be derived from Υ(h)

n by the
replacement n ↔ n̄. Thus equipped, we are now poised to establish the collinear contribution
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of eq. (2.46) within the exponential regularisation scheme, more explicitly

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨exp⟩

c

= θ̄ (ω−σ)
(ω−ρ)!

∫ k̃max
+

0

dk+

k+
(k+)σ−ωF

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)

+ θ (ω−σ)
(ω−ρ)!

∫ k̃max
+

0
dk+

[
1

kω−σ+1
+

]νn

∗
F

(αn)
i/n,βn

(
k++mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
+ θ (ω−σ−1)

(ω−ρ)!

ω−σ−1∑
η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
η! Υ(ω−σ−η)

n

+ θ(ω−σ)
(ω−ρ)!

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−σ)! Υ(0)

n , (3.41)

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨exp⟩

c̄

= θ̄(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0

dk−

k−
kρ−ω
− F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)

+ θ(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0
dk−

[
1

kω−ρ+1
−

]νn̄

∗
F

(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄)
j/n̄,βn̄

(
k−+mHe+YH

)
+ θ(ω−ρ−1)

(ω−σ)!

ω−ρ−1∑
λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ! Υ(ω−ρ−λ)

n̄

+ θ(ω−ρ)
(ω−σ)!

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
(ω−ρ)! Υ(0)

n̄ . (3.42)

By comparison with the expressions in eqs. (3.30)–(3.32) evaluated in the pure-rapidity
regularisation scheme, the above expressions possess the same regular contributions in the
first two lines, as the regulator has no relevance in the absence of rapidity divergences. In
their third lines, aside from identical νn and νn̄ dependences residing in Υn(n̄) compared
to those in eqs. (3.31)–(3.32), the power series in terms of qT and τ̃ is appearing. This
behaviour stems from the definition of the exponential regulator in eq. (3.38), comprising
the temporal component k0 = k+ + (q2

T/k+) as a whole. In deriving the n-collinear function,
for instance, its second part (q2

T/k+) suppresses the rapidity divergences, thereby yielding
the leading singularity in the limit τ̃ → 0, whilst the first part k+ gives rise to corrections
of O(τ̃) and in turn generates subleading singular terms and the constant contributions, as
exhibited in eqs. (3.40). Ultimately, confronting the fourth line of eqs. (3.31)–(3.32) to the
results in eqs. (3.41)–(3.42), we observe that addition logarithms Lτ = ln(qTτ) emerge in
the exponential regularisation scheme. In the limit τ → 0, those logarithms in practice play
an equivalent role to the pole term in eqs. (3.31)–(3.32).

Combining the collinear functions we have derived using the exponential regulator above,
a cancellation of all pole terms is not found, at variance with our earlier findings for eqs. (3.30)–
(3.32). This therefore calls for the zero-bin subtraction procedure derived in eq. (2.61) to
remove all overlapping contributions. Implementing the exponential regulator in eq. (2.61)
prompts the k±-integrals over the interval k± ∈ [0,∞], which are encoded by the function
Υ(h)

zb in this paper, more specifically,

Υ(h)
zb ≡ lim

τ→0

∫ ∞

0
dk±

e−τb0k0

(k±)h+1 . (3.43)
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The results for the first few ranks read,

Υ(0)
zb = −2Lτ , Υ(1)

zb = 1
q2

T τ̃
, Υ(2)

zb = 1
q4

T τ̃2 − 1
q2

T
, Υ(3)

zb = 2
q6

T τ̃3 − 1
q4

T τ̃
, . . . . . . .

(3.44)

With the help of eq. (3.43), the zero-bin subtrahends in the exponential regularisation can
be written as,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c0

= θ (ω−σ)
ω−σ∑
η=0

F
(αn+η)
i/n,βn

(
mHe−YH

)
F

(αn̄+ω−ρ)
j/n̄,βn̄

(
mHe+YH

)
η! (ω−ρ)!

(
1− δσ+η

ω

2

)
Υ(ω−σ−η)

zb ,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c̄0

= θ (ω−ρ)
ω−ρ∑
λ=0

F
(αn+ω−σ)
i/n,βn

(
mHe−YH

)
F

(αn̄+λ)
j/n̄,βn̄

(
mHe+YH

)
λ! (ω−σ)!

(
1− δρ+λ

ω

2

)
Υ(ω−ρ−λ)

zb .

(3.45)

At leading power ω = −1, where the integrand of eq. (2.65) with ρ = σ = −1 is the relevant
contributor, the sum of the contribution above amounts to the leading soft function in
eq. (2.54), agreeing with the assertion made in [79]. Nevertheless, it is worth emphasising
that this coincidence will not hold in general. At NLP, for instance, the zero-bin subtrahends
here comprise the terms

G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c0

+G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c̄0

=F
(αn+1)
i/n F

(αn̄+1)
j/n̄ Υ(0)

zb

+F
(αn)
i/n F

(αn̄+1)
j/n̄ Υ(1)

zb +F
(αn+1)
i/n F

(αn̄)
j/n̄ Υ(1)

zb .

(3.46)

Recalling the definition in eq. (2.54), the soft sector at the same power accuracy reads,

G̃−1,−1,(0)
[κ],{α,β}

∣∣∣∣∣
⟨FS⟩

s

= F
(αn+1)
i/n F

(αn̄+1)
j/n̄ Υ(0)

zb +
F

(αn)
i/n F

(αn̄+2)
j/n̄

2 Υ(2)
zb +

F
(αn+2)
i/n F

(αn̄)
j/n̄

2 Υ(2)
zb . (3.47)

Comparing those two expressions, with the exception of the first term on the r.h.s. of eq. (3.47),
the other constituents in eq. (3.47) both differ from those in eq. (3.46). This discrepancy
highlights the structural differences between the soft function and zero-bin subtrahends
beyond leading power. Indeed, both of them contain unbounded integrals over integrands
expanded in line with soft scaling. However, the soft function consists of all ingredients at a
given power, whereas the zero-bin subtrahends concern only those associated with the collinear
functions from the lowest power accuracy up to the current power under consideration.

Combining the results in eq. (3.45) with their corresponding collinear ingredients in
eqs. (3.41) and (3.42), we observe that all the τ -dependences will drop out as they should, from
which we can separately reproduce the n- and n̄-collinear contributions in eqs. (2.31)–(2.33)
and eqs. (2.40)–(2.41) derived via the momentum cutoffs, more explicitly,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨exp⟩

c

− G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c0

= Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c

+ Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
cs

,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨exp⟩

c̄

− G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨exp⟩

c̄0

= Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄

+ Ĩρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
c̄s

.

(3.48)
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Now we are ready to use the zero-bin subtracted collinear contributions to evaluate the
internal region in eq. (2.62) and in turn the qT spectrum. Akin to the previous subsections,
to make our results more compact, we rewrite the momentum space expressions in eqs. (3.41)–
(3.42) and eq. (3.45) in terms of the dimensionless parameters defined in eq. (3.2). Up
to N2LP, this kind of transformation can be always achieved through eqs. (3.5) and (3.6).
Collectively, we express the result below,

dσH

dYHdq2
T
= dσH

dYHdq2
T

∣∣∣∣∣
b.c.

+ dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c

− dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c0

+ dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c̄

− dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c̄0

, (3.49)

where the term with the subscript “b.c.” indicates the ultra-collinear contributions as presented
in eq. (3.24). The following four terms in eq. (3.49), marked by the superscripts “⟨exp⟩”,
stand for the collinear sectors and their corresponding zero-bin subtrahends evaluated within
the exponential regularisation scheme. Of them, the constituents dressed with the subscripts
“c” and “c̄” are induced by eq. (3.41) and eq. (3.42), respectively. Their expressions read,

dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω ∫ 1

xn

dzn

[
Fi/n

(
xn

zn

)]T

·
{

R(ω),ij
cs (zn)+P(ω),ij

cs

[ 1
1−zn

]
+
+
(

T(ω),ij
c +D(ω),ij

cs

)
δ (1−zn)+B(ω),ij

c (zn)δ (xn−zn)
}

·Fj/n̄(xn̄) , (3.50)
dσ

⟨exp⟩
H

dYHdq2
T
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≡ α3
sC2

t

192π2sv2

∑
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(
q2
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m2

H

)ω ∫ 1
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dzn̄

[
Fi/n (xn)

]T
·
{

R(ω),ij
c̄s (zn̄)+P(ω),ij

c̄s

[ 1
1−zn̄

]
+
+
(

T(ω),ij
c̄ +D(ω),ij

c̄s

)
δ (1−zn̄)+B(ω),ij

c̄s (zn̄)δ (xn̄−zn̄)
}

·Fj/n̄

(
xn̄

zn̄

)
. (3.51)

Here the partonic matrices R, P, D, and B are same as those in eq. (3.8) and eq. (3.17).
The new ingredients are Tc and Tc̄, accommodating all the τ -dependences from Υn and Υn̄

in eq. (3.39) and (3.40). Up to N2LP, the results for Tc read,

T(−1),q(q̄)g
c = T(−1),qq̄

c = T(0),qq̄
c = T(1),qq̄

c = 0 ,

T(−1),gg
c = −Lτ P(−1),gg

c , T(0),q(q̄)g
c = −Lτ P(0),q(q̄)g

c ,

T(0),gg
c = −Lτ P(0),gg

c +
[
− rn

qTτ̃
rn

qTτ̃

]
,

T(1),gg
c = −Lτ P(1),gg

c +

 3r2
n

q2
Tτ̃2 − 3r2

n − 7rn
2qTτ̃ − r2

n

q2
Tτ̃2 + r2

n + 7rn
2qTτ̃

r2
n

q2
Tτ̃2 − r2

n

+ 5rn
2qTτ̃ − rn

2qTτ̃
rn

qTτ̃

 ,

T(1),q(q̄)g
c = −Lτ P(1),q(q̄)g

c +
[
0 2rn

9qTτ̃
2rn

9qTτ̃

]
,

(3.52)

where rn = xn
√

s/qT and rn̄ = xn̄
√

s/qT. As for the partonic processes gg → Hg and
qq̄ → Hg, the expressions for Tc̄ can be derived by Tc via the following relationship,

T(ω),gg
c̄ =

[
T(ω),gg

c

]T ∣∣∣∣∣
rn→rn̄

, T(ω),qq̄
c̄ =

[
T(ω),qq̄

c

]T ∣∣∣∣∣
rn→rn̄

. (3.53)
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For those induced by the channel q(q̄)g → Hq(q̄), they evaluate to

T(−1),q(q̄)g
c̄ = 0 , T(0),q(q̄)g

c̄ = −Lτ P(0),q(q̄)g
c̄ + 2rn̄

9qTτ̃
,

T(1),q(q̄)g
c̄ = −Lτ P(1),q(q̄)g

c̄ +


rn̄

9qTτ̃
rn̄

9qTτ̃

2r2
n̄

9q2
Tτ̃2 − 2r2

n̄
9 + rn̄

3qTτ̃
2rn̄

9qTτ̃

 .

(3.54)

On the other hand, eq. (3.49) also includes the components “c0” and “c̄0”, accounting for
the zero-bin subtraction terms in eq. (3.45). Their results are,

dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c0

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
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(
q2

T
m2

H

)ω [
Fi/n (xn)

]T
·T(ω),ij

c ·Fj/n̄(xn̄) ,

dσ
⟨exp⟩
H

dYHdq2
T

∣∣∣∣∣
c̄0

≡ α3
sC2

t

192π2sv2

∑
i,j={g,q,q̄}

∞∑
ω=−1

(
q2

T
m2

H

)ω [
Fi/n (xn)

]T
·T(ω),ij

c̄ ·Fj/n̄(xn̄) .

(3.55)

Since Υzb in eqs. (3.43) and (3.44) exactly reproduces all the τ -dependent contributions
from Υn and Υn̄ in eqs. (3.39) and (3.40), respectively, the partonic matrices Tc and Tc̄

governing the zero-bin subtrahends here are identical to those in the collinear sectors in
eqs. (3.50) and (3.51).

4 Numerical results

Having introduced all building blocks in the previous sections, we will now present numerical
results for the qT spectrum for the process pp → H + X at LHC by the means of the power
expansion derived in section 3. Since we have shown that this power series is equivalent
whether it is computed using momentum cutoffs to regulate rapidity divergences, as in
eq. (3.1), the pure-rapidity regulator in eq. (3.34), or the exponential rapidity regulator in
eq. (3.49), any one can be employed. We would like to stress again, though, that although
individual constituents are dependent on the rapidity regularisation scheme, the sum of all
sectors is identical in all three choices with no scheme-dependent power-suppressed terms
remaining. Hence, it is scheme-independent sum of sectors that we implement.

During our calculation, we take the mass mH of the Higgs boson and the vacuum
expectation value v from PDG [236]. As to Wilson coefficient Ct, although it is known up
to four-loop order [185, 187–192], we only consider its LO contribution here in accordance
with the perturbative accuracy of the amplitudes presented in eqs. (2.4). In this paper,
we use the MSHT20nlo_as118 [237] PDF set, with the associated value and evolution of
αs, interfaced through LHAPDF [238, 239]. We set the renormalisation scale to µR = mH ,
entering our calculation only as the scale we evaluate the strong coupling at. In implementing
MSHT20nlo_as118 for eq. (3.1) particular attention should be paid to the fact that the PDFs
and their higher order derivatives are both involved in the power correction expansion, as
illustrated in eq. (3.9). As LHAPDF does not offer direct access to the PDFs’ derivatives, in
this work, we make use of the method of [212, 213] and fit MSHT20nlo_as118 in terms of
Chebyshev polynomials at the factorisation scale µF = mH first, from which the derivatives
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of the PDFs can be evaluated analytically. The virtue of this strategy is that the robustness
of the PDFs’ derivatives is maintained in regards to the fitted PDFs throughout our numerical
calculation, which, as a matter of fact, is one of prerequisites for our validation procedure. To
examine our fitted PDFs, we compare the qT distributions generated by SHERPA [240–242] and
RIVET [243, 244] with LHAPDF against those from the fitted ones, finding only per-mill level
discrepancies between them. The above ansatz, however, proves challenging once dynamical
scales are considered and, potentially, different solutions must be sought.

Equipped with those inputs, we are capable of calculating the power series of the
qT distribution via eq. (3.1). In the following, we will emphasis three types of results, i.e.,

dσ
⟨asy⟩
H

dYH dq2
T

∣∣∣∣∣
LP

=
∑
m

∆(m)
LP
q2

T
(LH)m ,

dσ
⟨asy⟩
H

dYH dq2
T

∣∣∣∣∣
NLP

=
∑
m

∆(m)
LP
q2

T
(LH)m +

∑
m

∆(m)
NLP (LH)m ,

dσ
⟨asy⟩
H

dYH dq2
T

∣∣∣∣∣
N2LP

=
∑
m

∆(m)
LP
q2

T
(LH)m +

∑
m

∆(m)
NLP (LH)m +

∑
m

q2
T ∆(m)

N2LP (LH)m ,

(4.1)

where the superscript “asy” signifies the truncated asymptotic series in the low qT domain.
∆NkLP stands for the partonic contribution at the k-th power convoluted with PDFs and
their derivatives, which can be extracted from the power coefficients in eq. (3.1), eq. (3.34),
or eq. (3.49). In eq. (4.1), the qT spectrum at LP encodes the most singular behavior in
the low qT domain, consisting of the first term of the power series in eq. (2.8). The NLP
result in eq. (4.1) includes also the first power correction term, comprising the first two
constituents of eq. (2.8) in total. Our most precise result is calculated at N2LP, given in
the last line of eq. (4.1). It includes the contributions from ∆LP up to ∆N2LP in eq. (2.8).
Moreover, in order to deliver a quantitative assessment of the quality of these approximate
results, we also showcase the exact fixed-order qT distribution below as a benchmark. It is
derived based on eq. (2.1) and dubbed “F.O.” hereafter.

We start the discussion of our results by considering the qT spectrum at central rapidities,
setting YH = 0 for definitiveness. Figure 2 therefore details a comparison of our power-
expanded approximate result of sections 2 and 3 including terms up to LP (blue), NLP (red),
and N2LP (green) to its exact fixed-order counter-part (black) for all three partonic channels,
gg → Hg (left), q(q̄)g → Hq(q̄) (center), and qq̄ → Hg (right). Generally, the main plot
focusses on the absolute values of the qT distribution, while the ratio plot shows the ratio
of each of the approximate results to the exact one, allowing to judge the quality of the
individual approximation. We will retain this pattern of visualisation throughout this section.

Examining our results in more detail, we begin by discussing the gg → Hg subprocess,
shown in figure 2(a). This process dominates the inclusive cross section and any improvements
in the quality of the power-expanded approximation will be exceedingly beneficial to the
description of the inclusive qT spectrum. Due to the presence of singular terms, see eq. (2.8),
the qT spectrum is divergent as qT → 0, hence we limit our deliberations to qT > 1GeV. In
this limit, the LP contribution is, of course, dominant and the approximated calculations,
independent of the number of higher-power terms included, reproduce the exact result.
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Figure 2. Comparisons of the qT spectra between the exact fixed-order calculation (black) and
approximations constructed using the power expansion up to LP (blue), NLP (red), and N2LP (green)
for different partonic processes at |YH | = 0. While the upper plot contains the absolute differential
cross sections, the lower plot contains the ratios of the approximations w.r.t. the exact fixed-order
result. Throughout we include the boundary corrections Bcs, Bc̄s, and Buc(c̄).

Nevertheless, departing from the low qT domain towards higher values of our observable, the
power corrections manifest themselves progressively. More specifically, the LP-only result
deteriorates in quality the quickest, failing to describe the exact spectrum by about 4% at
qT = 10GeV and increasing to about 30% near qT = 30GeV. Including the NLP terms
alleviates this deviation somewhat, decreasing it to about 1% at qT = 10GeV and about
10% at qT = 30GeV. The best approximation provided in this work, including terms up to
N2LP, reproduces the qT spectrum on level of 1% up to values in excess of 30 GeV, leaving
higher-power corrections to contribute more than percent level only for qT ≳ 40GeV.

Figure 2(b) now shows the contributions from the partonic channel characterised by
q(q̄)g initial states. This channel contributes on the 10% level to the inclusive spectrum.
Our results here in general demonstrate an analogous behaviour to those of gg → Hg in
the vicinity of qT = 0GeV, including the presence of a divergence for qT → 0 as well as the
mutual agreement between the fixed-order and approximate curves in that limit. However,
advancing to the intermediate qT range, distinct features are found between the two in regard
to the relative magnitudes of subleading and sub-subleading power corrections. While in
figure 2(a), these two terms observe convergent but still comparable magnitudes, respectively
accounting for 20% and 10% contributions of the full theory in the vicinity of qT = 30GeV,
the NLP terms in figure 2(b) play a dominant role and relegate the terms at N2LP and
beyond to an almost insignificant role.

Moving onto the last partonic process contributing at our accuracy, qq̄ → Hg, depicted
in figure 2(c), a very different scenario presents itself. For lack of the LP contributions and
the associated singularity at qT → 0, the fixed-order and approximate results here both
approach constants in the low qT region. In particular, the NLP spectrum here takes the
leading role and remains constant throughout the qT interval of our interest. The N2LP
corrections, meanwhile, exhibit the linear dependences on the variable qT as the logarithmic
contributions in eqs. (3.14) and (3.15) vanish. Comparing with the fixed-order spectrum,
the NLP and N2LP results both yield the correct regular behaviour in the small qT range
but give oscillatorily converging power corrections for moderate qT. For instance, the NLP
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Figure 3. Difference of the exact spectra and the approximations for the three different partonic
processes at |YH | = 0. The solid (dashed) lines present the results including (excluding) the boundary
corrections Bcs in eq. (3.8), Bc̄s in eq. (3.17), and Buc(c̄) in eq. (3.24). The blue, red, and green lines
detail the LP, NLP, and N2LP approximations, respectively.

approximation overshoots the full theory by about 20% near qT = 30GeV, whilst incorporating
N2LP corrections underestimates the exact one by a few percent here.

In pursuit of further examining the higher-power correction terms derived in section 3,
we look into the differences between the fixed order results and the approximate ones. We
note at this point that although we have already seen that their respective ratios approach
unity in the limit qT → 0, finite differences in this limit play an important role when the
approximants are used to subtract or replace the exact spectrum in higher-order calculations
where the divergences cancel against the virtual corrections in the qT = 0 bin. Similarly,
while the ratio tests above emphasise the relative sizes between the full theory and the sum
of all corrections to each power considered, their differences allow to examine the individual
term of the power series. To this end, according to the power series in eq. (2.8) as well
as the definitions in eq. (4.1), the differences between the two are expected to take the
following asymptotic behaviour,
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dYHdq2
T
− dσ
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∣∣∣∣∣
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NLP (LH)m + . . . ,
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− dσ

⟨asy⟩
H

dYHdq2
T

∣∣∣∣∣
NLP

=
∑
m

q2
T ∆(m)

N2LP (LH)m + . . . ,

dσ
⟨F.O.⟩
H

dYHdq2
T
− dσ

⟨asy⟩
H

dYHdq2
T

∣∣∣∣∣
N2LP

=
∑
m

q4
T ∆(m)

N3LP (LH)m + . . . .

(4.2)

The numerical results for the magnitudes of these missing, or yet uncalculated, higher-power
corrections are presented in figure 3 for all three partonic processes at YH = 0. Therein, the
solid lines denote our results including both the interior contribution from section 2.4 and
the boundary correction discussed in section 2.3. Due to the presence of the logarithmic
contributions in eqs. (3.15) and (3.20), the differences between the exact qT spectra and
its LP approximations (blue solid line) experience mild enhancements in magnitude in the
low qT regime, agreeing with the expectation in eq. (4.2).3 After incorporating the NLP
corrections, as exhibited in the red solid line, the difference between the full theory and our

3In fact, the difference between the LP expression and the exact result forms an integrable divergence as
qT → 0. This integrable divergence is removed once NLP corrections are introduced.

– 47 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
5

NLP-correct approximation starts to decrease as qT → 0 for all three partonic channels. This
echoes again, our NLP expectation of eq. (4.2) that, starting at this order, the difference
vanishes in this limit. This also demonstrates that at least up to NLP, the power coefficients
of the qT distribution can be reproduced as appropriate by the expressions in section 3.
Similarly, including the power corrections up to N2LP results, detailed by the green line,
results in the difference vanishing twice as fast.

On the other hand, figure 3 also depicts our results for which we have removed the
boundary contributions of eq. (3.24), induced by expanding the integral boundaries of
eq. (2.2) as well as those in eq. (3.8) and eq. (3.17) which arise from integrating the preceding
expressions by parts, in dashed lines. Since those boundary corrections will start at NLP
accuracy, our LP result (blue) remains unchanged. At NLP, these boundary impacts play only
a small role in both the gg and qq̄ channels, but manifest themselves in the q(q̄)g-initiated
process for qT ≲ O(10−2). The resulting expression then ceases to reproduce the entire
NLP coefficient of eq. (2.8), halting the ∝ q2

T behaviour we would expect the difference with
the exact result to exhibit. At N2LP, the sensitivity of the result to the presence of these
boundary contributions is even larger, being noticeable already for qT of O(10−1) in the
gg-initiated and O(1) for the q(q̄)g-initiated partonic channels. In both cases, the respective
power accuracy is lost in that domain, and only LP accuracy is maintained, exemplifying
the necessity of the boundary corrections.

It is worth noting that despite their indispensable effects in reproducing the power
coefficients at a given power, at least up to N2LP, those boundary terms can only generate
constant corrections of comparably small magnitude. They may therefore not play a role
of phenomenological interest when the larger qT region, where power corrections are larger
by construction, is being investigated, and our results may form the basis of a subleading
power resummation. However, it should be stressed that, from a theoretical point of view,
the emergence of the boundary corrections highlights one of the main differences between
the asymptotic expansion of loop integrals and phase space integrals in the small qT regime.
While the loop integrals generally involve unbounded integrals and, thus, only incur relevant
power expansions of the integrand within a variety of scalings, the expansion of phase space
integrals in the small, but finite, qT regime additionally induces phase space boundaries
through eq. (2.2), from which the appearance of hierarchies qT ≪ mH (and the application of
the integration by parts identities) will introduce a novel type of power corrections associated
with the PDFs at the end point, as shown in eqs. (2.24) and (3.6).

To scrutinise the power correction at N2LP, we investigate the differences between
the weighted qT distribution in the full theory and the power-expanded approximations
below. From eqs. (2.8) as well as (4.1), we expect these differences to exhibit the following
asymptotic properties,

1
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(4.3)
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Figure 4. Difference of the weighted exact spectra and the approximations for the three different
partonic processes at |YH | = 0. The solid (dashed) lines present the results including (excluding) the
boundary corrections Bcs in eq. (3.8), Bc̄s in eq. (3.17), and Buc(c̄) in eq. (3.24). The blue, green,
and red lines detail the LP, NLP, N2LP approximations, respectively.
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Figure 5. Comparisons of the qT spectra between the exact fixed-order calculation (black) and
approximations constructed using the power expansion up to LP (blue), NLP (red), and N2LP (green)
for different partonic processes at |YH | = 1 (top) and |YH | = 3 (bottom). Throughout we include the
boundary corrections Bcs, Bc̄s, and Buc(c̄).

Comparing with eqs. (4.2), the remainders on the r.h.s. of eq. (4.3) are generally one power
lower. Their numeric results are displayed in figure 4. Our attention is immediately drawn to
the observation that the difference between the exact and approximate weighted spectrum
diverges at LP as qT → 0 whereas it approaches a constant at NLP. Only once the N2LP
corrections are taken into account, including the boundary terms, does the difference of the
weighted spectra vanish in the qT → 0 limit, in line with the N2LP expectation of eq. (4.3)
justifying (at least the first three terms of) our power series derived in section 3.

In the previous figures we have focussed on the qT spectra at central rapidities, |YH | = 0,
where e±YH ∼ O(1). We now increase the rapidity of the Higgs boson to affect the scaling
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of the relevant light cone momenta k±, associated momentum fractions of eq. (3.2), and
phase space boundaries of eq. (2.2). To this end, figure 5 displays the qT spectra at |YH | = 1
and |YH | = 3. We observe that the qT distributions at |YH | = 1 generally observe similar
patterns to those at |YH | = 0 from figure 2 for all three partonic channels, as e±YH is still
more or less of O(1). At |YH | = 3, where e|YH | is now of O(10), even though ability of
the LP approximation to reproduce the exact result is further reduced in the moderate
domain, the higher power corrections are still convergent as before. More specifically, nearing
qT = 30GeV, the LP contribution to the process gg → Hg accounts for less than 60% of
the full theory, which is raised to nearly 80% after including the NLP corrections and about
97% with the N2LP terms. A marked difference, even at N2LP, w.r.t. the central rapidity
region is only observed at very high qT around 50 GeV. We would like to note that the
non-monotonous behaviour of the NLP result in figure 5(d) around qT ∼ 45GeV is caused
by a changing sign of the NLP approximants.

Finally, to assess the coefficients at each power, we investigate the difference between
the exact (weighted) qT spectra and their approximations on different levels of the power
expansion in figure 6. We find that the power series appraised in section 3 is capable of
reproducing the asymptotic behaviour of the full theory for both |YH | = 1 and |YH | = 3.
Moreover, an interesting phenomenon can be observed here: the ranges that are sensitive to the
boundary corrections grow with increasing rapidity |YH | for all three partonic processes. For
instance, the N2LP accurate computation, represented by the green curves, shows discrepancies
between the solid and dashed lines, which are driven by the boundary corrections, arise below
qT ≈ 0.4GeV in the |YH | = 1 case in the gg channel but already below qT ≈ 1GeV in the
|YH | = 3 case. To interpret this behaviour, it merits recalling that in the central rapidity
regime where e±YH ∼ O(1), the momentum fractions xn and xn̄ in eq. (3.2) both approach
zero. Hence, while the interior contribution experiences no suppression from the PDFs, the
boundary correction in eq. (2.24) does, suppressing it in the majority of the phase space.
However, nearing the rapidity extremes YH → ±4.5, one of xn and xn̄ approaches unity.
Now, the interior contribution will be suppressed by one of the PDFs, analogous to that in
eq. (2.24), thereby losing its predominant role, relatively enlarging the boundary terms.

5 Conclusions

In this paper, we constructed a systematic and mathematically well-defined framework to
construct a small-qT expansion at NLO up to arbitrary power accuracy. This framework is
applicable to all possible conservative regulators of the emerging rapidity divergences, and we
have shown that the results are identical for three radically different choices. In our power
expansion we have refactored all qT dependences from the transition amplitudes and PDFs,
except for those residing in the integration path and phase space boundaries. To achieve
this, we have divided the phase space into two sectors, the interior of the integration domain
and the segments in the vicinity of the integration boundaries.

The contributions originating from the integration boundaries, which we have evaluated
in this paper for the first time, are always associated with the PDF of the beam at the
opposite side and, ultimately, give rise to power suppressed constant corrections at NLO. We
have summarised their analytic expressions in eqs. (2.26) and (2.27). The analysis of the
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Figure 6. Differences of the qT (1st &2nd row) and weighted qT (3rd &4th row) spectra between
the exact fixed-order calculation and the approximations for the three different partonic processes at
|YH | = 1 (1st &3rd row) and |YH | = 3 (2nd &4th row). The solid (dashed) lines present the results
including (excluding) the boundary corrections Bcs in eq. (3.8), Bc̄s in eq. (3.17), and Buc(c̄) in
eq. (3.24). The blue, green, and red lines detail the LP, NLP, and N2LP approximations, respectively.

contributions from the interior domain, on the other hand, is more involved due to the number
of scales that are enclosed in the phase space integral. To derive the asymptotic series of the
interior contributions, we have introduced a set of auxiliary cutoff scales to disentangle the
scale hierarchies and in turn perform the appropriate power expansion. The recombination of
all artificially separated contributions at each power removes all dependence on the auxiliary
scales, such that the final result is independent of them. In any case, the contributions from
the interior domain are comprised of three sectors, the n- and n̄-collinear domains, and the
zero-bin subtrahends. At a given ω-th power, for example, the two collinear contributions
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can be derived by expanding the integrands according to the respective collinear scaling
of the integration variable and projecting onto the ω-th power contributions. Conversely,
the zero-bin subtrahends are organised by dual-scalings, in which a second expansion of the
ω-th power collinear functions needs to be performed according to the soft scaling, giving
contributions from the lowest power precision up to the ω-th power. This algorithm is
presented in eqs. (2.63) and (2.64) in terms of the expansion operators.

To demonstrate the applicability of our algorithm, two additional fundamentally different
rapidity regulators, the pure-rapidity and exponential regulators, in addition to the above
cutoff scale regulator, have been embedded into eqs. (2.63)–(2.64) in order to calculate the
power corrections from the interior domain up to N2LP accuracy, which we present here for
the first time. We found that even though substantial differences emerge from the individual
sectors in those two regularisation schemes, after summing all contributions both results
produce the same power series as we have obtained via the momentum cutoffs. Together with
the correction terms induced by the kinematical variables and the integral boundaries, we
have derived analytic expressions for the expanded qT distribution for Higgs hadroproduction
up to N2LP, following eq. (2.80).

To validate our results, we confronted the resulting power series approximation to the
full QCD calculation at the same order. We have shown that our expanded qT spectra can
satisfactorily replicate the desired qualities of the full theory for all contributing partonic
channels at three different rapidity slices, |YH | = 0, 1, 3. In particular, when including N2LP
corrections, the approximate predictions can capture the exact ones within (sub)percent
level accuracy up to qT = 30GeV. In addition, to explore the relationship between the sizes
of the different ingredients at a given power, we produced results without accounting for
contributions stemming from the integral boundaries, a situation that may arise if PDFs
and their derivatives are considered to vanish at the opposite in these regions. We found
that the boundary contributions are generally small at qT larger than a few GeV, but can
play a decisive role as qT → 0. Here, their omission effectively degrades the NLP and N2LP
results to LP accuracy. To give an example, the N2LP corrections in the partonic process
q(q̄)g → Hq(q̄) are driven by the boundary corrections already at qT ≲ 10GeV at YH = 3.

At last, it is worth emphasising that although Higgs hadroproduction is used as an
example here to illustrate the capabilities and practicability of our results in eq. (2.80), the
algorithm developed in this paper is expected to be directly applicable to the Drell-Yan
family of processes and other colour-singlet processes containing similar denominators in the
transition amplitudes. Furthermore, during our investigation, except for the indispensable
ansatz made on the analytic properties of the PDFs, the power expansions are all carried
out following a mathematically well-defined manner. Therefore, we expect the conclusions
from this work can not only serve as a robust recipe to derive the power series of the qT
distribution at NLO, but also offer the theoretical baseline for exploring the asymptotic
properties of contributions at higher perturbative order.
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A Application and adaptation of the dissipative regulators

Here we will demonstrate that, after suitable adaptation, our zero-bin subtrahends in
eqs. (2.64) can also be utilised in the power expansion governed by the dissipative reg-
ulators. In the followings, we will illustrate this by implementing the ∆- and η-regulators.

A.1 The ∆-regulator

The ∆-regulator was proposed in [166] to regulate the rapidity divergence in the massive
Sudakov factor, which was afterwards generalised in [75, 171, 172, 179] for fulfilling the restric-
tions from the non-abelian exponentiation theorem in higher-perturbative order calculation.
The method behind this regularisation scheme is to shift the mass of the mediating particles
in the transition amplitudes by an infinitesimal amount, such that when approaching the
rapidity extrema, i.e. yk → ±∞, the involved propagators can never go on-shell and thus
are always insulated from the rapidity divergences.

The ∆-regulator is dedicated to the rapidity divergences at LP, as extra residual momenta
can be generated during the expansion of the squared amplitudes beyond LP [114], which
are singular in the limit yk → ±∞ and stay unprotected by the ∆-regulator. To this end,
in the following discussion, we will focus on the LP contribution only.

At LP, the zero-bin subtraction for the small qT expansion primarily concerns the
process gg → Hg up to NLO, which, as presented in eq. (2.4), corresponds to the integrand
I−1,−1

[κ],{α,β} based on the definition in eq. (2.65). Applying the ∆-regulator onto eq. (2.65) with
ρ = σ = −1 amounts to re-weighting the squared amplitudes by a factor of,

R(k−, k+, τ) = q2
T

(k+ + τ) (k− + τ) , (A.1)

where τ denotes an infinitesimal parameter, τ > 0. It is seen that R in eq. (A.1) indeed
satisfies the criteria of eq. (2.47), which keeps void for the rapidity-safe integrands but
becomes activated for the singular transition amplitudes.

Substituting eq. (A.1) into eqs. (2.63) and (2.64) and then truncating out the corrections
beyond LP, it yields,

G̃−1,−1,(−1)
[κ],{α,β}

∣∣∣∣∣
⟨∆⟩

c

=
∫ k̃max

+

0
dk+

[ 1
k+

]νn

∗
F

(β2)
i/N,β1

(
k+ + mHe−YH

)
F

(α2)
j/N̄,α1

(
mHe+YH

)
+ F

(β2)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
mHe+YH

)
ln
[

νn

τ

]
, (A.2)

G̃−1,−1,(−1)
[κ],{α,β}

∣∣∣∣∣
⟨∆⟩

c̄

=
∫ q2

T
k̃min

+

0
dk−

[ 1
k−

]νn̄

∗
F

(β2)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
k− + mHe+YH

)
+ F

(β2)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
mHe+YH

)
ln
[

νn̄

τ

]
, (A.3)

and

G̃−1,−1,(−1)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨∆⟩

c0

= G̃−1,−1,(−1)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨∆⟩

c̄0

= F
(β2)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
mHe+YH

)
ln
[

qT
τ

]
.

(A.4)
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It is immediate to find that the difference between eqs. (A.2)–(A.3) and eq. (A.4) exactly
replicates the leading power outputs in eqs. (2.31)–(2.33) and eqs. (2.40)–(2.41) derived via
momentum cutoffs, those in eqs. (3.30)–(3.32) by means of the pure-rapidity regulator, or
those in eqs. (3.41)–(3.45) from the exponential one, after setting ω = ρ = σ = −1 therein.

A.2 The η-regulator

The η-regulator was devised by [77, 78] to facilitate the establishment of the rapidity renormali-
sation group equations in the SCETII-based analysis of the jet broadening and qT distributions.
Akin to the analytic regularisation prescription [74, 76], the η-regulator concerns the mo-
menta of the emitted partons raised by the power of τ as well. However, in place of the
light-cone component k+ or k− entailed in [74, 76], the η-regulator puts the magnitude of
the longitudinal one into the base, namely,

R(k−, k+, τ) = |k− − k+|−τ . (A.5)

Implementing the η-regularisation scheme is rather subtle. In its original definition [77, 78]
and the recent review of [113], the calculation on the collinear sector calls for the expansions
of both the rapidity regulator in eq. (A.5) and the integrand of eq. (2.65), which, based on
the notation in eq. (2.63), requires that R always appears to the right hand side of T̂(ω)

c and
T̂(ω)

c̄ . In doing this, a set of evanescent power corrections can be generated from eq. (A.5),
which are proportional to τ (or its higher powers) and will make non-trivial contributions
in combination with the pole terms. Those evanescent influences have not been taken into
account during the derivation of eqs. (2.63)–(2.64), and therefore, it is not straightforward
to apply eq. (A.5) here until appropriate adaptations are put in place.

In the following, we will introduce one of strategies to adapt the η-regulator to our
formalism in eqs. (2.63)–(2.64). Considering that the main obstacle hindering this application
comes from evanescent contributions, it could be beneficial to maintain the regulator in
eq. (A.5) always to the left of the operators T̂(ω)

c and T̂(ω)
c̄ in practical calculations. In

this way, eq. (A.5) abides by the criteria of eq. (2.47) and can still serve as a qualified
rapidity-divergence regularisation scheme at any power accuracy. Furthermore, since the
η-regulator at this moment does not participate into the expansion governed by T̂(ω)

c and
T̂(ω)

c̄ , one can save efforts in coping with the evanescent contribution.
Now applying the η-regulator onto eqs. (2.63)–(2.64) becomes immediate, which eval-

uates to,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨η⟩

c

= θ̄ (ω−σ)
(ω−ρ)!

∫ k̃max
+

0

dk+
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(k+)σ−ωF

(β2)
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(
k++mHe−YH

)
F
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j/N̄,α1

(
mHe+YH

)

+ θ (ω−σ)
(ω−ρ)!
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+

0
dk+

[
1

kω−σ+1
+

]νn

∗
F
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(
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)
F
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(
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)
+ θ (ω−σ−1)

(ω−ρ)!
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η=0

F
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(
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)
F
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(
mHe+YH

)
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n

σ+η−ω

+ θ(ω−σ)
(ω−ρ)!

F
(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2+ω−ρ)
j/N̄,α1

(
mHe+YH

)
(ω−σ)!

{
ln
[

νn

q2
T

]
+ 1

τ

}
, (A.6)
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G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨η⟩

c̄

= θ̄(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0

dk−

k−
kρ−ω
− F

(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
k−+mHe+YH

)

+ θ(ω−ρ)
(ω−σ)!

∫ q2
T

k̃min
+

0
dk−

[
1

kω−ρ+1
−

]νn̄

∗
F

(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2)
j/N̄,α1

(
k−+mHe+YH

)
+ θ(ω−ρ−1)

(ω−σ)!

ω−ρ−1∑
λ=0

F
(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2+λ)
j/N̄,α1

(
mHe+YH

)
λ!

νρ+λ−ω
n̄

ρ+λ−ω

+ θ(ω−ρ)
(ω−σ)!

F
(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2+ω−ρ)
j/N̄,α1

(
mHe+YH

)
(ω−ρ)!

{
ln
[

νn̄

q2
T

]
+ 1

τ

}
, (A.7)

together with the subtraction terms,

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨η⟩

c0

=θ (ω − σ)
F

(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2+ω−ρ)
j/N̄,α1

(
mHe+YH

)
(ω − σ)! (ω − ρ)!

{
ln
[ 1

qT

]
+ 1

τ

}
,

(A.8)

G̃ρ,σ,(ω)
[κ],{α,β}

∣∣∣∣∣
⟨NS⟩,⟨η⟩

c̄0

=θ (ω − ρ)
F

(β2+ω−σ)
i/N,β1

(
mHe−YH

)
F

(α2+ω−ρ)
j/N̄,α1

(
mHe+YH

)
(ω − σ)! (ω − ρ)!

{
ln
[ 1

qT

]
+ 1

τ

}
.

(A.9)

Subtracting eqs. (A.8)–(A.9) from eqs. (A.6)–(A.7), it reproduces the results in eqs. (2.31)–
(2.33) and eqs. (2.40)–(2.41) obtained from momentum cutoffs, and also those in section 3
by means of pure-rapidity and exponential regularisation schemes.

B Comparison of the NLP results with the previous literature

Subleading power corrections of the process pp → H+X have been investigated in [113] as well
by means of the η- and pure rapidity regulators. Here we take the partonic process qq̄ → Hg

as an illustrative example to compare the expressions in [113] and those in eq. (3.8), (3.17),
and (3.23). Over the course, we will particularly emphasise the interior contributions encoded
by the partonic matrices P, D, and R, as the boundary corrections in B are related to the
PDFs at the opposite end, which are all assumed to be vanishing in [113].

In [113], the analytic results for the channel qq̄ → Hg entail the expanded amplitudes of
eq. (2.4) sandwiched by the (derivatives of) PDFs. Recasting their expressions into matrix
form according to the bases in eq. (3.9) and also synchronising the pre-factors in line with
eq. (3.8), we obtain

P̂(0),qq̄
cs = P̂(0),qq̄

c̄s = D̂(0),qq̄
cs = D̂(0),qq̄

c̄s = 0 , (B.1)

R̂(0),qq̄
cs =

−32
27 + 16

27zn
+ 16

27z2
n

16
27 − 32

27zn
+ 16

27z2
n

 , (B.2)

R̂(0),qq̄
c̄s =

[
−32

27 + 16
27zn̄

+ 16
27z2

n̄

16
27 − 32

27zn̄
+ 16

27z2
n̄

]
, (B.3)
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where the hatted bold matrices encode the results of [113]. It is immediate to see that the
matrices in eq. (B.1) associated with the plus distribution and delta function are all zero,
echoing the outputs from this work in eqs. (3.15), (3.14), and (3.18), whereas, due to the
emergence of the extra off-diagonal entries in eqs. (B.2)–(B.3), the regular contributions
from [113] appear to observe distinct patterns from ours in eq. (3.13) and eq. (3.18).

As a matter of fact, this kind of difference can be resolved by applying the method of
integration by parts as appropriate. From eq. (3.9), the off-diagonal terms in eqs. (B.2)–(B.3)
always invoke the derivatives of one of the PDFs, which, via the integration by parts, can be
in turn transformed into the PDFs multiplied by the derivatives of the original integrands,
up to a few of boundary terms, more specifically,∫ 1

xn

dzn
xn

zn
f ′

i/N

(
xn

zn

)
fj/N̄ (xn̄) g(zn) =

∫ 1

xn

dzn fi/N

(
xn

zn

)
fj/N̄ (xn̄)

∂ g(zn)
∂ ln(zn)

− fi/N (xn) fj/N̄ (xn̄) gn(1) + b.c. , (B.4)∫ 1

xn̄

dzn̄ fi/N (xn)
xn̄

zn̄
f ′

j/N

(
xn̄

zn̄

)
gn(zn̄) =

∫ 1

xn̄

dzn̄ fi/N (xn) fj/N̄

(
xn̄

zn̄

)
∂ gn̄(zn̄)
∂ ln(zn̄)

− fi/N (xn) fj/N̄ (xn̄) gn̄(1) + b.c. , (B.5)

where gn(zn) and gn̄(zn̄) represent the two regular functions with finite derivatives across
the domains zn ∈ [xn, 1] and zn̄ ∈ [xn̄, 1], respectively.

Applying those two relations onto eqs. (B.2)–(B.3), the off-diagonal entries therein are
both eliminated, replicating our results in eq. (3.13) and eq. (3.18). Analogous strategy can
also be utilised in comparing the expressions of the processes gg → Hg and q(q̄)g → Hq(q̄).

C Small qT expansion for multi-boson hadroproduction

Here we will demonstrate that, after appropriate generalisations, the method presented in
this paper in section 2 can also be used in the power expansion on the hadroproduction of
multiple colour-singlet bosons, i.e. pp → {Bn} + X. Here a set of electroweak (or Higgs)
bosons are collected within the set {Bn} ≡ {B1, B2, B3, . . . Bn} (n ≥ 2).

We start with the analysis of the fixed-order results. According the QCD factorization,
the differential qT distributions at NLO can be expressed as,

dσB

dΦn d2q⃗T
= 1
24n π3n−1 s2

∑
i,j

∫ kmax
+

kmin
+

dk+
k+

fi/n(ξn)
ξn

fj/n̄(ξn̄)
ξn̄

∑
col,pol

∣∣M(i + j → {Bn}+ k)
∣∣2 .

(C.1)

Now qT represents the transverse momentum of the whole colourless system {Bn}. The
differential dΦn collects the differentials for the rapidity yi and transverse momentum k⃗i

⊥
of the ith boson,

dΦn =
(

n∏
i=1

dyi

)(
n−1∏
i=1

d2k⃗i
⊥

)
. (C.2)

– 56 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
5

Here only the transverse momenta of the first n − 1 partons have been spelled out, as the
last one is subjected to the momentum conservation condition,

k⃗n
⊥ = q⃗T −

n−1∑
i=1

k⃗i
⊥ . (C.3)

On the r.h.s. of eq. (C.1), the integrand concerns the momentum fractions ξn and ξn̄, which
can be determined by the momentum conservation condition on the longitudinal direction,

ξn = 1√
s

(
k+ +

n∑
i=1

mi
Te−yi

)
, ξn̄ = 1√

s

(
k− +

n∑
i=1

mi
Te+yi

)
. (C.4)

Here k± stands for the light-cone components of the emitted colourful particle as defined
in eq. (2.6). mi

T reveals the transverse mass for the ith boson. According to the conditions
ξn ≤ 1 and ξn̄ ≤ 1, we can then evaluate the boundaries for the k+-integral in eq. (C.1),

kmax
+ =

√
s −

n∑
i=1

mi
Te−yi , kmax

− = q2
T

kmin
+

=
√

s −
n∑

i=1
mi

Te+yi . (C.5)

The calculation on eq. (C.1) also entails the squared amplitudes for the ensuing partonic
process i + j → {Bn} + k. On the tree level, the Feynman diagrams presiding over this
transition can be categorised into two groups: (A) topologies in which the final colour-singlet
bosons are not directly connected to final colourful particle; (B) topologies in which at least
one of the final colour-singlet bosons is emitted from the finial QCD parton. The representative
circumstances on those two topologies have been illustrated in figure 7 and figure 8. The
topology (A) is, for instance, expected to govern the partonic channel qq̄ → {Bn} + g

with {Bn} comprising only the electroweak vector bosons. In the other circumstances, the
contributions from topology (B) can be relevant and therefore have to be addressed as
appropriate. However, it merits noting that in topology (B), the emission off the QCD parton
will leave all the propagators in the ensuing Feynman diagrams away from the threshold by
O(mi

B), where mi
B indicates the mass of the ith final colourless boson, such that the leading

singular behaviour of the process pp → {Bn}+X is entirely captured by the configuration (A).
Without any loss of generality, the matrix elements induced by those two topologies

can be recast in the following forms,∑
col,pol

∣∣M(i+j →{Bn}+k)
∣∣2∣∣∣∣∣

(A)

=
∑

F∈TA

λijk(F )

card[IF ]∏
n=1

pi−
∑

l∈I
(n)
F

kl


−2

card[JF ]∏
m=1

pj−
∑

l∈J
(m)
F

kl


−2∑

ρ,σ

kρ
−kσ

+

(
K̃⊥·Ẽρσ

F

)
,

(C.6)∑
col,pol

∣∣M(i+j →{Bn}+k)
∣∣2∣∣∣∣∣

(B)

=
∑

F∈TB

λijk(F )

card[IF ]∏
n=1

pi−
∑

l∈I
(n)
F

kl


−2

card[JF ]∏
m=1

pj−
∑

l∈J
(m)
F

kl


−2

card[KF ]∏
h=1

k+
∑

l∈K
(h)
F

kl


−2

×
∑
ρ,σ

kρ
−kσ

+

(
K̃⊥·Ẽρσ

F

)
. (C.7)
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pi

kk1 k2

· · · · · · · · · · · ·

kn−1 kn

pj

Figure 7. Representative diagram of the topology that the final colour-singlet bosons are all directly
connected to the initial partons. Here the dashed lines stand for the colourful particles, while wave
lines indicate the colour-singlet bosons.

pi

kk1 k2

· · · · · · · · · · · ·

kn−1 kn

pj

Figure 8. Representative diagram of the topology that the final colour-singlet bosons are in part
connected to the finial QCD parton. Here the dashed lines stand for the colourful particles, while
wave lines indicate the colour-singlet bosons.

Here F denotes the Feynman diagrams driving the process i + j → {Bn}+ k, which, at LO,
belongs to either topology TA or TB. λijk(F ) collects the coupling constants, colour factors,
and average factors for the initial states and the final identical particles. IF and JF encode
two sets of colourless particles emitted from the initial partons i and j, respectively. For
instance, if the squared amplitudes are induced by the configuration in figure 7 and its complex
conjugate, we have IF = {I

(1)
F , I

(2)
F } with I

(1,2)
F = B1 and JF = {J

(1)
F , J

(2)
F , J

(3)
F , J

(4)
F , . . . }

with J
(1,2)
F = Bn, J

(3,4)
F = {Bn−1, Bn}, etc. The number of the elements in each set is

evaluated by the cardinality operator card. With the help of IF and JF , one can specify
the expressions of the denominators in a given Feynman diagram as presented in the square
brackets in eqs. (C.6)–(C.7).

To express the numerators of the squared amplitudes, we introduce the arrays K̃⊥ and Ẽρσ
F ,

K̃⊥ =[1, (q⃗T)i1 , (q⃗T)i2(q⃗T)j2 , (q⃗T)i3(q⃗T)j3(q⃗T)k3 , . . . ] , (C.8)

(Ẽρσ
F )T =

[
E

ρσ,(0)
F ,

∑
l

(k⃗l
⊥)i1 E

ρσ,(1S)
F,l +

∑
l

(k̃l
⊥)i1 E

ρσ,(1A)
F,l , ϵi2j2

⊥ E
ρσ,(2AA)
F

+
∑
l1,l2

(k⃗l1
⊥)i2 (k⃗

l2
⊥)j2 E

ρσ,(2SS)
F,l1,l2

+
∑
l1,l2

(k̃l1
⊥)i2 (k⃗

l2
⊥)j2 E

ρσ,(2AS)
F,l1,l2

+
∑
l1,l2

(k⃗l1
⊥)i2 (k̃

l2
⊥)j2 E

ρσ,(2SA)
F,l1,l2

, . . .

]
. (C.9)

Here K̃⊥ consists of the tensors constructed by the momentum q⃗T in different ranks, while Ẽρσ
F

collects those formed by kµ
i with i ∈ [1, n]. To accommodate the asymmetric behaviour induced

by the Dirac traces that contain γ5, we introduce ϵρσ
⊥ = ϵµνρσnµn̄ν and (k̃⊥)ρ = ϵρσ

⊥ k⃗⊥,σ

in eq. (C.9), where ϵµνρσ denotes the customary anti-symmetric tensor. The coefficients
E

ρσ,(m)
F,{l} in charge of tensor structures as specified in “(m)” encode the hard scales mi

Te±yi ,(
k⃗i
⊥ ·⃗k

j
⊥

)
, and

(
k̃i
⊥ ·⃗k

j
⊥

)
.
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In the following, we will show that the qT spectra induced by the topology (A) can be
all expanded following the method developed in section 2. First of all, it should be noted
that in eq. (C.6), all the dependences on the integration variable k± have been taken out
from the numerator, while the denominators, after evaluating the scalar products, present
only the linear dependences on k±, more explicitly,pi −

∑
l∈X

kl

2

≡ (pi − kX)2 = −mX
T eyX

k+ +
∑
l /∈X

ml
Te−yl + |⃗kX

⊥ |2

mX
T eyX

 , (C.10)

pj −
∑
l∈X

kl

2

≡ (pj − kX)2 = −mX
T e−yX

k− +
∑
l /∈X

ml
Teyl + |⃗kX

⊥ |2

mX
T e−yX

 . (C.11)

Therein, kX represents the total momentum of the particles belong to the set X, from which
we are able to calculate the transverse mass mX

T and rapidity yX for this colourless system.
The factorised form in eqs. (C.10)–(C.11) then allows us to recategorise the dominators

in eq. (C.6) according to their k±-dependences, more explicitly,

dσB

dΦn d2q⃗T

∣∣∣∣∣
(A)

=
∑

F∈TA

∑
ρ,σ

(
K̃⊥·H̃ρσ

F

) ∫ kmax
+

kmin
+

dk+
k+

(k−)ρ (k+)σ F̂
{0}
i/n,{βn} (k+, {Qn}, {IF })

× F̂
{0}
j/n̄,{βn̄} (k−, {Qn̄}, {JF }) ,

(C.12)

where the novel array H̃ρσ
F emerges, which is defined analogously to eq. (C.9) but can absorb

extra hard scales as a result of the denominator decomposition in eqs. (C.10)–(C.11). Within
the integral, all the k± reliances from the PDFs and denominators of the squared amplitudes
have been collected in the generalised functions F̂

{αn}
i/n,{βn} and F̂

{αn̄}
j/n̄,{βn̄},

F̂
{αn}
i/n,{βn} (k+,{Qn},{IF })

≡ ∂α
(−1)
n

∂(k+)α
(−1)
n


card[IF ]∏

l=0

∂α
(l)
n

∂(Q(l)
n )α

(l)
n


fi/n

(
k++Q

(0)
n√

s

)
k++Q

(0)
n

card[IF ]∏
h=1

(
k++Q(h)

n

)−β
(h)
n

, (C.13)

F̂
{αn̄}
j/n̄,{βn̄} (k−,{Qn̄},{JF })

≡ ∂α
(−1)
n̄

∂(k−)α
(−1)
n̄


card[JF ]∏

l=0

∂α
(l)
n̄

∂(Q(l)
n̄ )α

(l)
n̄


fj/n̄

(
k−+Q

(0)
n̄√

s

)
k−+Q

(0)
n̄

card[JF ]∏
h=1

(
k−+Q

(h)
n̄

)−β
(h)
n̄

, (C.14)

where {Qn, Qn̄} signify two sets of hard scales. Q
(0)
n and Q

(0)
n̄ can be extracted from the

fractions in eq. (C.4), while Q
(l)
n and Q

(l)
n̄ with l ≥ 1 are derived by matching onto eqs. (C.10)–

(C.11). In comparison with the functions F
(αn)
i/n,βn

and F
(αn̄)
j/n̄,βn̄

in eq. (2.12), eqs. (C.13)–(C.14)
here observe structural similarity but call for more indices to accommodate the input scales,
such as α

(h)
n/n̄ presiding over the orders of the derivatives of the kinematics variables and β

(h)
n/n̄

controlling the exponents of the various denominators (k± + Q
(h)
n/n̄). Equipped with those
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results, in eq. (C.12), we manage to transform the qT distribution into its k+/k−-factorised
formulation as in eq. (2.11), for which the power expansion can be carried out by repeating
the procedures in section 2.2, section 2.3, and section 2.4.

However, if the contribution related to TB is of one’s concern, the small qT expansion
becomes more involved. To see this, it is worth recalling that extra type of propagators
appear from the third square bracket of eq. (C.7), which prompts the quadratic dependences
on k± upon evaluating the scalar products,k +

∑
l∈X

kl

2

≡ (k + kX)2 = k+mX
T eyX + k−mX

T e−yX + m2
X − 2q⃗T · k⃗X

⊥ . (C.15)

At this moment, it is not straightforward to derive the factorised form for the squared
amplitudes of eq. (C.7) as in eq. (C.12), which therefore defies an immediate implementation
of the frameworks in section 2. Promisingly, the power series of the TB-induced contributions
can also be derived via a set of dynamic regions from the phase space. However, more
considerations and efforts should be paid to work out a group of auxiliary cutoffs that are
capable of unambiguously and consistently separating all the relevant scales embedded by
eq. (C.15). Hence, we postpone this part of discussion to the further investigations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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