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Abstract

In this paper we propose a novel Bayesian methodology for Value-at-Risk compu-
tation based on parametric Product Partition Models. Value-at-Risk is a standard
tool to measure and control the market risk of an asset or a portfolio, and it is also
required for regulatory purposes. Its popularity is partly due to the fact that it is an
easily understood measure of risk. The use of Product Partition Models allows us
to remain in a Normal setting even in presence of outlying points, and to obtain a
closed-form expression for Value-at-Risk computation. We present and compare two
different scenarios: a product partition structure on the vector of means and a prod-
uct partition structure on the vector of variances. We apply our methodology to an
Italian stock market data set from Mib30. The numerical results clearly show that
Product Partition Models can be successfully exploited in order to quantify mar-
ket risk exposure. The obtained Value-at-Risk estimates are in full agreement with
Maximum Likelihood approaches, but our methodology provides richer information
about the clustering structure of the data and the presence of outlying points.
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1 Introduction

Following the increase in financial uncertainty, there has been intensive re-
search from financial institutions, regulators and academics to develop models
for market risk evaluation. A common and easily understood measure of risk
is Value-at-Risk (VaR). In particular, Basel accords impose that all financial
institutions have to meet capital requirements based on VaR estimates, see
Basel Committee (2006).

VaR is defined as the maximum potential loss of an asset or a portfolio, at
a given time horizon and significance level. An accurate estimate of VaR is
important for both banks and regulators. An underestimation of risk could
obviously cause problems for banks and other participants in financial markets
(e.g. bankruptcy). On the other hand, an overestimation of risk may cause one
to allocate too much capital as a cushion for risk exposures, having a negative
effect on profits. The Committee does not prescribe banks a special type of
model, leaving them free to specify their own model for VaR estimation. In
the literature a wide range of models to measure VaR and to determine the
level of regulatory capital are described. For a review on VaR models see e.g.
Jorion (2001), Manganelli and Engle (2004) and the remaining list of VaR
contributions at the web site http://www.gloriamundi.org.

In this paper we propose a novel Bayesian methodology for VaR estimation
based on parametric Product Partition Models (PPMs), and we compare our
results with those obtained with standard approaches based on Maximum
Likelihood (ML) techniques, see e.g. Mina and Xiao (2001), Mattedi et al.
(2004), Bormetti et al. (2007) . In our analysis we pay particular attention in
evaluating the statistical uncertainty associated with different results; in fact
a good risk management requires not only a pointwise VaR estimate but also
an assessment of how much precise the estimate is.

If the returns are independent and identically normally distributed a closed-
form and easy to implement expression for VaR can be used. Unfortunately,
these assumptions fail to be effective for low liquidity markets and short time
horizons and have to be relaxed. Possible solutions are to resort to heavy tailed
distributions or to abandon the hypothesis of identically distributed returns.
In this paper we follow the latter approach and we use a Bayesian methodol-
ogy based on parametric PPMs. We assume that the returns follow a Normal
distribution with a partition structure on the parameters of interest. We as-
sign a prior distribution on the space of all possible partitions and we identify
clusters of returns sharing the same mean and variance values. Returns be-
longing to different clusters are characterised by different values either of the
mean or the variance. The hypothesis of identical distribution holds within but
non between clusters. As a consequence we abandon the assumption of iden-
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tical distribution while preserving the Normal setting. Furthermore, the use
of a product partition approach allows us not only to accommodate anoma-
lous observations but also provides as a by-product a useful tool for their
identification; see Quintana and Iglesias (2003), Quintana et al. (2005) and
De Giuli et al. (2009) for further details.

We propose and compare two different PPMs for VaR estimation. In the first
one we impose a partition structure on the vector of means whereas the volatil-
ity is a common random variable; in the second one we impose a partition
structure on the vector of variances with common unknown mean. The first
approach is quite effective for VaR estimation, but it is very sensitive to the
values of prior parameters and even a hierarchical model can not reduce this
sensitivity. This problem can be overcame by fixing the values of the hyperpa-
rameters according to analysts’ experience about the market behaviour. This
drawback effect is strongly reduced by imposing a partition structure on the
vector of variances. Our results are compared with those obtained with the
parametric PPM developed in Loschi et al. (2003) for the identification of
change-points in financial time series.

To obtain the posterior distribution of the quantity of interest we use Markov
Chain Monte Carlo (MCMC) techniques. MCMC methods have a history
in mathematical physics dating back to the algorithm of Metropolis et al.
(1953), later generalised by Hastings (1970). In our work we extensively resort
to a specific type of Markov chain algorithm, introduced by Geman and Geman
(1984) and Gelfand and Smith (1990) and known as Gibbs sampler. The
Gibbs sampling algorithms considered here are described in details in sec-
tions 3.1 and 3.2. For a recent Bayesian application of Gibbs sampling in the
context of financial analysis, see e.g. Chang and Feigenbaum (2008).

The paper is organized as follows. In section 2 we briefly introduce VaR as a
measure of risk and parametric PPMs. In section 3 we present two models for
VaR estimate and introduce a closed-form expression for VaR computation
extending the usual Gaussian form. In section 4 we describe how to exploit
the clustering structure induced by PPMs in order to identify outlying points.
In section 5 we apply our methodologies to a Mib30 data set and provide a
sensitivity analysis of our results with respect to different choices of hyperpa-
rameters. Section 6 closes the paper with some final remarks.
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2 Background and Preliminaries

2.1 Value-at-Risk

VaR is referred to the probability of extreme losses due to adverse market
movements. In particular, for a given significance level α (typically 1% or
5%), VaR is defined as the maximum potential loss over a fixed time horizon
of individual assets and portfolios of assets as well. In the following we focus
on VaR for a single asset.

If the returns are independent and identically normally distributed with mean
µ and variance σ2, a closed-form expression for VaR normalised to the spot
price is given by

Λ

W0
= −µ+ σ

√
2 erfc−1 (2α) , (1)

where Λ is VaR, W0 is the spot price and erfc−1 is the inverse of the com-
plementary error function. In the following, with VaR we shall refer to the
quantity Λ/W0, if not specified otherwise. If this quantity is expressed in per-
centage term we name it percentage VaR, VaR(%) .

In order to estimate the parameters µ and σ in equation (1), we apply a
Bayesian approach based on parametric PPMs; the details are provided in the
following section.

2.2 Parametric Product Partition Models

We now briefly review the theory of parametric PPMs with reference to our
specific problem. For a detailed and more general presentation see Hartigan
(1990), Barry and Hartigan (1992).

Let y = (y1, . . . , yt, . . . yT ) denote the vector of returns of a generic asset at
different time points t. The returns are independent, and jointly distributed
with probability density function f parameterised by the vector (θ, ψ). The
elements of θ depend on the time point t, θ = (θ1, . . . , θT ), whereas ψ is
a parameter that is common to all observations. We consider the following
model

y|(θ, ψ) ∼ f(y|θ, ψ), with yt
ind
∼ f(yt|θt, ψ) t = 1, . . . , T. (2)

4



Given the model in (2), let S0 = {t : t = 1, . . . , T} be the set of all time

periods. A partition of the set S0, ρ =
{
S1, . . . , Sd, . . . , S|ρ|

}
with cardinality

|ρ|, is defined by the property that Sd ∩ Sd′ = ∅ for d 6= d′ and ∪d Sd = S0.

The generic element of ρ is Sd = {t : θt = θ∗d}, where θ∗ =
(
θ∗1, . . . , θ

∗
|ρ|

)
is

the vector of the unique values of θ = (θ1, . . . , θT ). All θt whose subscripts t
belong to the same set Sd ∈ ρ are (stochastically) equal, in this sense they are
regarded as a single cluster.

We assign to each partition ρ the following prior distribution

P
(
ρ =

{
S1, . . . , S|ρ|

})
= K

|ρ|∏

d=1

C (Sd) , (3)

where C (Sd) is a cohesion function and K is the normalising constant. Equa-
tion (3) is referred to as the product distribution for partitions. The cohesions
represent prior weights on group formation and formalise our opinion on how
tightly clustered the elements of Sd would be.

The cohesions can be specified in different ways. A useful choice is

C (Sd) = c× (|Sd| − 1)! , (4)

where c is a positive constant and |Sd| denotes the cardinality of the set Sd.
For moderate values of c, e.g. c = 1, the cohesions in equation (4) yield a prior
distribution that favours the formation of partitions with a reduced number
of large subsets. For more details on the choice of c see e.g. Liu (1996),
Quintana and Iglesias (2003), Quintana et al. (2005) and Tarantola et al.
(2008).

If non contiguous clusters are considered we can exploit an interesting con-
nection between parametric PPMs and the class of Bayesian nonparametric
models with a Dirichlet Process prior, see Antoniak (1974). Under the lat-
ter prior, the marginal distribution of the observables is a specific PPM with
the cohesion functions specified by equation (4), see Quintana and Iglesias
(2003). In this case we can use efficient Markov Chain Monte Carlo (MCMC)
algorithms developed for Bayesian nonparametric problems.

When dealing with contiguous blocks, as in the change-point problem, this
connection cannot be exploited, and specific MCMC algorithms are required,
see e.g. Loschi et al. (2003).
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3 VaR Computation via Product Partition Models

Let y be the vector of daily returns of a generic asset. We assume that the
returns are normally distributed with parameter vector (θ, ψ). We present and
compare two different PPMs; in the first one we impose a partition structure
on the vector of means, and in the second one we consider partitions on the
vector of variances. In the following the PPM applied to the vector of means
will be shortly referred to as the µ-PPM approach, while σ2-PPM will refer
to the PPM for the vector of variances. In µ-PPM the vector θ is the vector
of means while in σ2-PPM it corresponds to the vector of variances. In the
former model ψ is the variance and in the latter it corresponds to the mean.

We consider the following hierarchical structure

yt|(ρ, (θ∗1, . . . , θ∗|ρ|), σ2)
ind.
∼ N(yt|(θt, ψ)) ,

θ∗1, . . . , θ
∗
|ρ||(ρ, ψ)

i.i.d.
∼ f(·|ψ) ,

ρ ∼ product distribution, with C(Sd) = c× (|Sd| − 1)! ,

ψ ∼ g(ψ) ,

where f and g denote generic density functions and the product distribution
is defined in equation (3).

The elicitation of a partition structure on the vector of means (or variances)
allows us to remain in a Normal setting without assuming identical distribution
of the returns. An alternative model that could be used to take into account
atypical returns when estimating VaR consists of assuming t-distributed rather
than Normal data. This analysis has been performed by Quintana and Iglesias
(2003) in the context of regression models, showing that parametric PPMs in
a Normal setting are even more effective if the purpose is to deal and identify
extreme values.

In sections 3.1 and 3.2 we describe in details our models and in section 3.3 we
propose a closed-form expression for VaR computation.

3.1 Product Partition Models on Vector of Means

In the µ-PPM approach we impose a partition structure on the vector of
means µ = (µ1, . . . , µT ). By inducing a cluster structure on the vector µ we
try to accommodate for atypical yt values. In order to achieve this goal we use
the following hierarchical model
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yt|(ρ, (µ∗
1, . . . , µ

∗
|ρ|), σ

2)
ind.
∼ N(µt, σ

2) ,

µ∗
1, . . . , µ

∗
|ρ||(ρ, σ2)

i.i.d.
∼ N(m, τ 20 σ

2) , (5)

ρ ∼ product distribution, with C(Sd) = c× (|Sd| − 1)! ,

σ2
∼ IG(ν0, λ0) ,

where µ∗ = (µ∗
1, . . . , µ

∗
|ρ|) is the vector of all entries of µ for a given partition

ρ, and IG(ν0, λ0) is an Inverted Gamma distribution with E [σ2] = λ0/(ν0−1),
ν0 > 1 and λ0 > 0.

The complete joint distribution for the model is given by

f(y,µ, ρ = {S1, . . . , S|ρ|}, σ2) ∝ exp



−

1

2σ2

|ρ|∑

d=1

∑

t∈Sd

(yt − µ∗
d)

2





× exp




−
1

2τ 20σ
2

|ρ|∑

d=1

(µ∗
d −m)2 − λ0

σ2





1

(σ2)1+ν0+
T+ρ

2

|ρ|∏

d=1

(|Sd| − 1)! .

To fit this model we adapt an algorithm proposed by Bush and MacEachern
(1996) in the context of Bayesian nonparametric inference. Once a starting
value for the vector µ has been provided, we iteratively sample from the
joint posterior distribution of model and parameters by means of the Gibbs
algorithm described below.

Step (i) : Sample σ2 from its full conditional distribution

σ2|µ,y ∼ IG



ν0 +

T

2
+

|ρ|
2
, λ0 +

1

2τ 20

|ρ|∑

d=1

(µd −m)2 +
1

2

T∑

t=1

(yt − µt)
2



 .

Step (ii) : Update each µt, t = 1, . . . , T , by sampling from the mixture

µt|µ−t, σ
2,y ∼

∑

j 6=t

qtjδµj
(µt) + qt0 ×N

(
ytτ

2
0 +m

1 + τ 20
,
σ2τ 20
1 + τ 20

)
, (6)

where µ−t is obtained from µ by removing the t-th entry and δµj
(µt) is the

Dirac delta centered on µt.
The distribution in equation (6) corresponds to a mixture of point masses
and a Normal distribution, with weights

qtj ∝ exp
{
− 1

2σ2
(yt − µj)

2
}
,

qt0 ∝
c

√
1 + τ 20

exp
{
−(yt −m)2/[2σ2(1 + τ 20 )]

}
,

∑

j 6=t

qtj + qt0 = 1.
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Step (iii) : Before proceeding to the next Gibbs iteration we update the vector µ∗,
given the partition ρ, sampling from

µ∗
d ∼ N

(∑
t∈Sd

yt +m/τ 20
|Sd|+ 1/τ 20

,
σ2

|Sd|+ 1/τ 20

)
d = 1, . . . , |ρ|.

This last step was introduced in Bush and MacEachern (1996) to avoid
being trapped in sticky patches in the Markov space.

The weights qtj represent the finite probability of replacing µt with a value µj

already belonging to the vector of means. On the other hand qt0 represents
the finite probability of replacing the old µt value with a newly sampled one.
It is worth noticing again the role played by the constant c. A greater value
of c increases the probability to generate new values. Generally, the higher c
is, the higher the probability to obtain an elevate number of clusters will be.

As it turns out from the empirical analysis, see section 5, posterior distri-
butions are quite sensitive to the value of the parameter λ0 of the Inverted
Gamma distribution in the hierarchical model defined in (5). We tried to re-
duce this drawback effect by introducing a hyperprior distribution on λ0. This
translates into a minor modification of model (5)

yt|(ρ, (µ∗
1, . . . , µ

∗
|ρ|), σ

2, λ0)
ind.
∼ N(µt, σ

2) ,

µ∗
1, . . . , µ

∗
|ρ||(ρ, σ2, λ0)

i.i.d.
∼ N(m, τ 20 σ

2) , (7)

ρ ∼ product distribution ,

σ2|λ0 ∼ IG(ν0, λ0) ,

λ0 ∼ G(η, φ) ,

where G(η, φ) is a Gamma distribution with E [λ0] = ηφ, η > 0 and φ > 0. The
previous Gibbs sampling algorithm must be modified coherently. Now we have
to provide a starting point for σ2 too, while Step (i) splits in two sub-steps:

Step (ia) :

λ0|µ,y, σ2 ∼ G

(
ν0 + η,

σ2φ

σ2 + φ

)
. (8)

Step (ib) :

σ2|µ,y, λ0 ∼ IG


ν0 +

|ρ|
2

+
T

2
, λ0 +

1

2τ 20

|ρ|∑

d=1

(µd −m)2 +
1

2

T∑

t=1

(yt − µt)
2


 .

Step (ii) and Step (iii) do not change.
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3.2 Product Partition Models on Vector of Variances

An alternative way to relax the hypothesis of identical distribution of the
returns, without renouncing to the normality assumption, is to promote the
variance σ2 from a scalar to the vectorial quantity σ2 = (σ2

1 , . . . , σ
2
T ) and to

impose a clustering structure on σ2. Our aim is to create clusters of obser-
vations, not necessarily contiguous in time, sharing the same value σ2∗

d of the
variance.

We consider the following hierarchical model

yt |
(
µ, (σ2∗

1 . . . σ
2∗
|ρ|), ρ

)
ind.
∼ N(µ, σ2

t ) , (9)

µ |
(
(σ2∗

1 . . . σ
2∗
|ρ|), ρ

)
∼ N

(
m,

λ0
T (ν0 − 1)

)
,

σ2∗
1 . . . σ

2∗
|ρ| | ρ

i.i.d.
∼ IG(ν0, λ0) ,

ρ ∼ product distribution, with C(Sd) = c× (|Sd| − 1)! ,

with the variance of the Normal prior over µ equal to λ0/[T (ν0 − 1)], where
λ0/(ν0 − 1) is the first moment of IG(ν0, λ0) and 1/T ia a scaling factor.

The joint distribution is given by

f(y, µ, ρ = {S1, . . . , S|ρ|},σ2) ∝ exp

{
−T (ν0 − 1)

2λ0
(µ−m)2

}

× exp



−

1

2

|ρ|∑

d=1

∑

t∈Sd

(yt − µ)2

σ2∗
d

−
|ρ|∑

d=1

λ0
σ2∗
d





|ρ|∏

d=1

(
σ2∗
d

)−(ν0+1+|Sd|/2)
(|Sd| − 1)! .

In order to sample from the posterior distribution of the model and parameters
we use a Gibbs algorithm that is a generalization of the one used in the section
3.1. The algorithm consists of the three steps below.

Step (i) : Sample µ from its full conditional distribution

µ|σ2,y ∼ N



m+

∑|ρ|
d=1

λ0

T (ν0−1)σ2∗
d

∑
i∈Sd

yi

1 +
∑|ρ|

d=1 |Sd| λ0

T (ν0−1)σ2∗
d

,

λ0

T (ν0−1)

1 +
∑|ρ|

d=1 |Sd| λ0

T (ν0−1)σ2∗
d


 .

Step (ii) : Update each σ2
t , t = 1, . . . , T , by sampling from the mixture

σ2
t |σ2

−t,y ∼
∑

j 6=t

q̃tj δσ2
j
(σ2

t ) + q̃t0 × IG

(
ν0 +

1

2
, λ0 +

(yt − µ)2

2

)
, (10)
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where σ2
−t is obtained from σ2 by removing t-th entry and δσ2

j
(σ2

t ) is the

Dirac delta centered on σ2
t .

The distribution in equation (10) corresponds to a mixture of point masses
and an Inverted Gamma distribution, with weights

q̃tj ∝
1

√
σ2
j

e
−

(yt−µ)2

2σ2
j ,

q̃t0 ∝ c×
Γ
(
ν0 +

1
2

)

Γ(ν0)

2ν0+
1
2 (λ0)

ν0

[(yt − µ)2 + 2λ0]
ν0+

1
2

,

∑

j 6=t

qtj + qt0 = 1,

where Γ is the Euler Gamma function.
Step (iii) : In order to avoid being trapped in sticky regions of the Markov space,

resample σ2∗
d from

σ2∗
d ∼ IG



ν0 +
| Sd |
2

, λ0 +
∑

t∈Sd

(yt − µ)2

2



 d = 1, . . . , |ρ|.

A well-known stylized fact about volatilities is the bursting effect and PPMs
can be exploited to identify change points in volatility time series. This pro-
blem has been extensively considered by Loschi et al. (2003), Loschi et al.
(2007) and Loschi et al. (2008). Although we do not focus on this aspect here,
in the empirical analysis in section 5 we shall use the results from the algorithm
by Loschi et al. (2003), labelled σ2-CP, as a yardstick to be compared with
our numerical results.

3.3 VaR Estimation

We now present how the posterior distribution of VaR and consequently its
Bayesian estimate can be obtained by using the output of the MCMC algo-
rithms described in sections 3.1 and 3.2.

First we focus our attention on the PPM on the vector of means. Let indicate

with µ∗
(ℓ) =

(
µ∗
1(ℓ), . . . , µ

∗
|ρ|(ℓ)

)
and σ2

(ℓ) respectively the vector of means and

the variance sampled at the ℓ-th iteration of the Gibbs algorithm. At each
iteration we obtain a peculiar clustering structure. All returns share the same
value of σ2

(ℓ), but each cluster is characterized by a different value µ∗
d(ℓ). In order

to provide a single VaR estimate for each iteration of the chain we propose to
combine the different entries of µ∗

(ℓ) by means of an arithmetic average and
we consider the following equation
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Λ(ℓ)

W0

= −
|ρ|∑

d=1

|Sd(ℓ)|
T

µ∗
d(ℓ) + σ(ℓ)

√
2 erfc−1(2α) . (11)

It is worth noticing that for trivial partitions, i.e. |ρ| = 1, equation (11) reduces
to the usual expression given in equation (1).

If we impose a clustering structure over the vector of variances, VaR can be
computed in an analogous way but the arithmetic average is performed over
different values of σ∗

d(ℓ), that is

Λ(ℓ)

W0
= −µ(ℓ) +

|ρ|∑

d=1

|Sd(ℓ)|
T

σ∗
d(ℓ)

√
2 erfc−1(2α) . (12)

In this case all returns share the same value of µ(ℓ) but each cluster is charac-
terised by a different value of σ2∗

d (ℓ).

The resulting VaR estimate is obtained as the ergodic mean of the quantities
Λ(ℓ) in (11) or (12) for µ-PPM or σ2-PPM respectively:

Λ

W0

.
=

1

L

L∑

ℓ=1

Λ(ℓ)

W0
. (13)

Finally, VaR under the σ2-CP model is computed in a similar way via equation
(13).

4 Product Partition and Outliers Identification

PPMs can be a useful tool for outliers identification. Following Quintana and Iglesias
(2003), we work in a Bayesian decision theoretical framework and we propose
an efficient algorithm for outliers identification. We model outliers as a shift
in the mean of the data and consequently we fix our attention on µ-PPM.
The extent of that shift is indeed the criterion used by this model to induce
a new cluster on the vector of returns, as emerge from the expression of the
weights qtj and qt0.

Our aim is to select the partition that best separates the main group of stan-
dard observations from one or more groups of atypical data. Each partition
corresponds to a different model, and the best model is the one minimising a
given loss function. Let (µ, σ2) be the vector of parameters of the model and(
µρ, σ

2
ρ

)
the corresponding vector that results when fixing ρ. We consider the
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following loss function that combines the estimation of the parameters and
the partition selection problems

L(ρ,µρ, σ
2
ρ,µ, σ

2) =
k1
T

‖ µρ − µ ‖2 +k2(σ2
ρ − σ2)2 + (1− k1 − k2)|ρ|, (14)

where ‖ · ‖ is the Euclidean norm and k1, k2 are non-negative cost-complexity
parameters with k1 + k2 ≤ 1.

Minimising the expected value of (14) is equivalent to choosing the partition
that minimises the following score function

SC(ρ) =
k1
T

‖ µ̂B(y)−µ̂ρ(y) ‖2 +k2
[
σ̂2
B(y)− σ̂2

ρ(y)
]2
+(1−k1−k2)|ρ|, (15)

where the subscript “B” means that we consider the Bayesian estimates of
the corresponding parameter whereas the subscript “ρ” indicates the estimate
conditionally on a given partition ρ. Formally, we have that µ̂B(y) = E [µ|y],
µ̂ρ(y) = E [µ|y, ρ] and analogously for σ̂2

B(y) and σ̂2
ρ(y). The Bayesian esti-

mates are obtained via the Gibbs sampling algorithm described in the section
3.1. The evaluation of µ̂ρ(y) and σ̂2

ρ(y) also requires the use of the Gibbs
sampling scheme, but in a structurally simpler version. Indeed the partition
ρ is fixed and we can sample from the joint posterior distribution performing
iteratively Step (i) and Step (iii), but skipping Step (ii).

An exhaustive search on the space of all possible partitions is infeasible. In fact,
for a set with T elements, the number of all possible partitions is equal to B(T ),

the Bell number of order T , recursively defined by B(T +1) =
∑T

k=0

(
T
k

)
B(k),

with B(0) = 1. This quantity is extremely large even for moderate values of a,
therefore we need to restrict our search to a tractable subset of all partitions.

In order to find the minimum of the score function in equation (15), we perform
an exhaustive search over the partitions with cardinality up to three, selected
as follow.

i) Let µB = (µ1, . . . , µT ) be the vector of the Bayesian estimates of the returns
means, and µ̃B = (µ̃1, . . . , µ̃T̃

) be the vector of the unique entries of µB

sorted in increasing order, with µ̃1
.
= min (µt), µ̃T̃

.
= max (µt), and T̃ ≤ T .

ii) We perform our search of the optimal partition over the set of the partitions
ρ = {S1, S2, S3}, where S1 = {t : µt < µ̃i}, S2 = {t : µ̃i ≤ µt ≤ µ̃j}, and
S3 = {t : µt > µ̃j} with i, j = 1, . . . , T̃ . We select as optimal partition the
one for which the score function achieves the minimum value in (15).

When i 6= 1 and j 6= T̃ , ρ is a genuine cardinality-3 partition. The indexes in S1

and S3 may be considered as representative of those returns being in the “left
tail” and the “right tail” of the empirical distribution of y. S2 corresponds
to elements occupying the central region of this distribution. When i = 1
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and j = T̃ , we are exploring the trivial partition, S1 = S3 = ∅. If i = 1
or j = T̃ , partitions have just two clusters. However, there is an alternative
way to generate cardinality-2 partitions. Given every cardinality-3 partition
ρ, we consider the new partition ρ̂ = {S1, S2}, with S1

.
= S1 ∪ S3. This step is

necessary for our search to be exhaustive also over the space of cardinality-2
partitions.

Once the optimal partition has been found, we identify the outliers with those
elements in y whose indexes belong to the sets with lowest cardinality.

5 Empirical Analysis of Financial Data

5.1 The Data

The methodologies described in the previous sections are now illustrated and
tested over the MIB30 index and its three components with the highest excess
of kurtosis, where standard approaches based on Normal distributions usually
fail. In particular we apply our analysis to the Italian assets Lottomatica
(LTO.MI), Mediobanca (MB.MI) and Snam Rete Gas (SRG.MI). We consider
time series of daily returns from April 2004 to March 2008. All time series are
made of 1000 daily returns. The data are freely downloadable from the site
http://it.finance.yahoo.com.

5.2 Choice of Hyperparameters and Computational Details

In the examples below we use the following values of the hyperparameters.
In models (5), (7) and (9) we set m = 0, while τ 20 = 103 in (5). The choice
for m can be motivated by the fact that in VaR estimation for short time
horizon, typically from one day until one week, the value of the mean is usually
neglected, see e.g. Mina and Xiao (2001). In the Inverted Gamma distribution
we set λ0 = 0.0101 and ν0 = 2.01. With these choices we have prior expectation
and variance 0.01 for σ2, reflecting what is known from the past experience
about the volatility behaviour for equity assets. The value of c that controls
the clustering structure over the vector of parameters is set to 1, in order
to favour the creation of a small number of large clusters. As far as concern
the score function parameters of equation (15) we set k1 ∼ 0.996 and k2 ∼
0.002, giving priority to the estimation of µ, and imposing little restriction
on the estimation of the other parameters. For the σ2-CP model that we use
as yardstick model we set the priors’ parameters following the suggestions
given in Loschi et al. (2003). In particular we consider the conjugate Normal-
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Inverted-Gamma model, with the probability p that a change occurs at any
instant in the sequence equal to 0.1.

The programs are written in Fortran 77 language, with basic function of linear
algebra provided by BLAS and SLATEC libraries. Random number genera-
tors, Normal and Gamma sampling are based on the algorithms implemented
in the RANDOM library. The interested reader can download them and find
more detail browsing the Netlib repository at http://www.netlib.org. The al-
gorithm proposed by Loschi et al. (2003) is freely available at the web site
ftp://ftp.est.ufmg.br/pub/loschi/.

We run the MCMC algorithms with 10000 sweeps and a burn-in equal to
1000. Convergence of the MCMC algorithm is assessed using diagnostics im-
plemented in the package BOA, see Smith (2001). All the numerical compu-
tations are performed with an AMD Athlon 64 X2 3800 2.0 GHz processor
and 2.0 GByte of RAM, OS Gentoo Linux kernel 2.6.22. Each program takes
nearly 15 minutes to generate the ergodic sample and to compute the pa-
rameters posterior distributions. The clustering structure for each step of the
chain and the relative frequencies of the partitions are computed by means of
sorting algorithms. It takes further 10 minutes to accomplish this task. In our
programs we use sorting algorithms implementing strategies of O(T 2) com-
putational complexity. It is possible to reduce the computational burden by
means of O(T log T ) algorithms. However it is crucial that sorting preserves
relative order of records with equal keys, but this in general requires storage
of an auxiliary amount of memory.

5.3 VaR Results

In table 1 we report Bayesian estimates of percentage VaR for α = 1% and
α = 5% and the 68% posterior credible interval.

TABLE 1 ABOUT HERE

The estimates of VaR obtained with σ2-PPM and σ2-CP are in good agree-
ment even if the two approaches are quite different in spirit. The former ap-
proach is a natural extension of the µ-PPM to the vector of variances while
the latter one is specific for change point identification.

The PPM on the vector of means in general underestimates VaR with respect
to the values given by the PPMs applied to the variances. This fact can be
empirically justified noticing that for daily time horizons the contribution to
VaR due to the volatility σ is of order ten greater than that due to the mean
µ.
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Figure 1 depicts posteriors distributions for VaR estimates at level α = 1%. In
the first row we present the results based on the µ-PPM approach, while the
second corresponds to σ2-PPM. The posterior distribution of VaR presents a
higher variability under the σ2-PPM approach than under the µ-PPM VaR
one.

The posterior expectation of the number of clusters is low for both the µ-PPM
and σ2-PPM approaches and, moreover, the partitions are characterised by a
very large cluster and few small ones. The results are presented in table 2.

TABLE 2 ABOUT HERE

The arithmetic average in equations (11) and (12) is therefore dominated by
the values of µ∗

d(ℓ) and σ2∗
d (ℓ) that correspond to the largest cluster, while

outlying clusters introduce corrections to VaR.

FIGURE 1 ABOUT HERE

We now compare our results with those obtained with standard parametric
approaches based on ML estimators for the mean and variance. In particular
we consider results obtained with a Normal model and with the generalised
Student-t (GST) distribution, see e.g. Bormetti et al. (2007). In the GST
we set the tail index ν > 2, in order to keep the variance finite, see last
column of table 3. In the following we consider the GST as the benchmark
for our analysis since it presents a good agreement with historical simulations,
see Bormetti et al. (2007). For the daily returns under study we report in
figure 2 ML estimates and their 68% confidence intervals computed from the
cumulative function obtained generating 1000 bootstrap copies of the original
time series. Numerical details are reported in tables 1 and 3. The solid line in
figure 2 joints the estimated values of VaR(%) while the dashed lines connects
the boundaries of the 68% credible/bootstrap intervals.

TABLE 3 ABOUT HERE

FIGURE 2 ABOUT HERE

At α = 1% the results obtained with σ2-PPM and σ2-CP are the ones in
best agreement with the GST distribution, while Normal and µ-PPM un-
derestimate VaR. The situation is different if we consider α = 5%. In this
case µ-PPM is the only one in agreement with the GST distribution, while
σ2-PPM and σ2-CP overestimate VaR.

For time horizons longer than one-day, we focus mainly on the 10-day hold-
ing period, as required by Basel Committee for the computation of regulatory
VaR. Indeed, the Committee prescribes the following formula for the calcula-
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tion of regulatory capital for market risk

MRCt = max

(
h

60

60∑

i=1

Λ0.01
t−i (10),Λ

0.01
t (10)

)
,

where MRCt is the market risk capital at time t, Λ0.01
t−i (10) is VaR (not nor-

malized by W0, see equation (1)) at α = 1% for 10-day ahead computed using
past returns up to time t − i and h is a penalty multiplier ranging from 3
to 4, fixed according to the traffic light rule, see Basel Committee (2006) for
more details. From the original daily returns time series we compute the series
of non-overlapping 10-day returns to have the 10-day VaR forecast for both
µ-PPM and σ2-PPM. This approach can be easily generalised to an arbitrary
holding period.

TABLE 4 ABOUT HERE

In table 4 we report the estimated 10-day ahead VaR(%) for the standard
significance levels α = 1% and α = 5% with their 68% credible intervals.
Basel regulations recommend to use the so-called square-root-of-time rule to
obtain the 10-day VaR from the one-day VaR. However, as already pointed out
in Dańıelsson et al. (1998), this rule strongly depends on the assumption of
normally i.i.d. returns. The ratio between 10-day and one-day VaR estimated
with parametric PPMs is readily computed and indeed our results confirm a
statistically significative violation of the square root scaling law, thus high-
lighting the ability of our approach to better capture the properties of returns
time series.

5.4 Sensitivity Analysis and Outliers Detection

Although the choices of parameters value used in the previous sections rep-
resent our prior knowledge and beliefs about the problem, it is illustrative to
assess the sensitivity of the results to other choices of the hyperparameters.

We first consider the dependence of VaR estimates on the value of the c in the
cohesion function in (4). In figure 3 we plot the results for the µ-PPM model
for α = 1% and c = 0.1, 0.5, 1, 5, 10, 50.

FIGURE 3 ABOUT HERE

Note that for MIB30 and SRG.MI, the results are remarkably robust for a
wide range of values of c. For MB.MI and LTO.MI the estimated value of VaR
exhibits a slightly decreasing trend.

To study the sensitivity of our results to the parameters λ0 and ν0 of the
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Inverted Gamma distribution it is convenient to re-express them in terms of a
common parameter a. We set λ0 = a(a+ 1) and ν0 = 2+ a in order to obtain
prior expectation and variance for σ2 both equal to a. In figure 4 we present
the results for a = 0.0001, 0.001, 0.01, 0.1, 1. For a = 1 we have completely
out-of-scale results.

FIGURE 4 ABOUT HERE

In this paper we use a = 0.01, reflecting past knowledge regarding the problem
at hand. For this reason we focus on a region around this value. The high-
est stability is reached when the PPM approach is applied to the vector of
variances. In fact for a ≤ 0.01 the results within the 68% credible intervals
are almost identical. The µ-PPM is less stable. These results are confirmed in
figure 5 where we plot the posterior distributions for LTO.MI α = 1% VaR,
with a = 0.0001, 0.001, 0.01, 0.1.

FIGURE 5 ABOUT HERE

We note that for a = 0.0001 and a = 0.001 the distributions obtained with
the σ2-PPM are almost overlapping. A similar behaviour is observed for the
other three time series.

We also explored separately the role played by λ0 and ν0 and we found that
λ0 assumes a crucial role. We than tested the effects of an hyperprior over
the scale parameter λ0. We considered various combination of the η and φ
parameters, as given in equation (8). For all the tested values we were not
able to achieve a reasonable sensitivity reduction. For the sake of parsimony
we do not report here our results.

FIGURE 6 ABOUT HERE

In order to identify outlying points we apply the procedure described in section
4. The results are reported in figure 6. Returns corresponding to atypical
values are represented by a small triangle (gains) or a small circle (losses).
Their identification represents a by-product result of our approach to VaR
computation. It could be interesting to investigate the economical reasons
responsible for the anomalous fluctuations of assets price, along the same lines
depicted in De Giuli et al. (2009). Finally it is interesting to investigate the
stability of our procedure with respect to the value of c. Table 5 summarizes
the results of our analysis when increasing c from 0.1 until 50.

TABLE 5 ABOUT HERE

The outliers identification algorithm appears to be quite stable. As expected,
on average the number of outlying points increases for increasing values of c.
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5.5 Backtesting Procedures

The current internal model verification procedure of the Basel II framework
consists of recording the daily exceptions of the 1% VaR over the last year.
We apply standard coverage tests to assess the accuracy of our VaR model; in
particular we consider the unconditional coverage (UC) test by Kupiec (1995)
and the conditional coverage (CC) one by Christoffersen (1998). Kupiec’s
test focuses on whether the actual number of VaR exceptions is equal to their
expected number. Assuming that the probability of observing an exception
is p, the number of exceptions out of a sample of N observation follows a
Binomial distribution Bin(N, p). The null hypothesis p = α can be assessed
by using the following generalised likelihood ratio test

LRUC = −2 log
[
(1− α)N−nαn

]
+ 2 log

[
(1− n/N)N−n(n/N)n

]

where n is the observed number of exceptions. This quantity is asymptotically
distributed chi-square with one degree of freedom under the null hypothesis,
and allows us to reject the model at 5% significance level when LRUC > 3.84.
The LRUC can be extended to test the serial independence of deviations, intro-
ducing a deviation indicator which is equal to 0 if VaR is not exceeded and 1
otherwise. We consider the following combined test statistics (Christoffersen’s
test)

LRCC = LRUC + LRIND

LRIND = −2 log
[
(1− n/N)N00+N10(n/N)N01+N11

]

+ 2 log
[
(1− π0)

N00πN01
0 (1− π1)

N10πN11
1

]

whereNij is the number of days in which state j occurred in one day while was i
the previous day, and πi the probability of observing an exception conditional
on the state i the previous day, that is π0 = N01/(N00 + N01) and π1 =
N11/(N10 + N11). The null hypothesis for the independence test states that
the violation occurred one day does not depend upon the indicator state the
previous day. Under this hypothesis, the LRCC statistics is distributed chi-
square with two degrees of freedom and the VaR model will be rejected at 5%
significance level if LRCC > 5.99.

We perform the validation tests described above to all our data series, using
a rolling window of returns to compute the VaR estimate by our models and
comparing this estimate with the realized return. More precisely, at each stage
J = 1, . . . , N , our Gibbs sampling algorithms compute the ex ante VaR esti-
mate V aRα

MAXJ
using the returns yi with i = J, . . . ,MAXJ ; then we check

V aRα
MAXJ

against the ex post realized return yMAXJ+1. An exception occurs
when yMAXJ+1 < −V aRα

MAXJ
. A state indicator IJ is set equal to 1 if we reg-

ister an exception, and equal to 0 otherwise. This way we obtain the numbers
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n and N ij needed to compute the LRCC statistics.

TABLE 6 ABOUT HERE

Choosing MAXJ = J + 744, we are able to use all the information from our
original series of 1000 returns and to obtain N = 255 VaR estimates, roughly
corresponding to one trading year. In table 6 are reported the results for the
LTO.MI series. Our VaR models perform reasonably well with respect to both
Kupiec’s and Christoffersen’s tests; the only exception is represented by the
σ2-PPM model with α = 5%, which produced n = 5 exceptions, fairly low
with respect to the expected number E [n] = 255 × 0.05 ≈ 13. The reason of
this pitfall has to be located in the behaviour of our returns series; actually,
an empirical study of that series has shown that the associated high frequency
volatility decreases almost monotonously with time. Since the algorithm is
trained with those returns corresponding to the high volatility regime and is
tested against returns in a low volatility regime, this consequently results in a
quite conservative evaluation of VaR. A similar behaviour is noticed also for
the other series.

6 Concluding Remarks and Future Research

In this paper we have presented a novel Bayesian methodology for VaR com-
putation based on parametric PPMs. The main advantages of our approach
are that it allows us to remain in the Normal setting, to identify anomalous
observations and to obtain a closed-form expression for the VaR measure.
This expression generalizes the standard parametric formula that is used in
the literature under the normality assumption. By means of PPMs we induce
a clustering structure over the vector of means (µ-PPM) and we find the best
agreement with ML approaches for significance level of order 5%. For lower
values of α we obtained the best result by applying the PPMs to the vector
of variances (σ2-PPM).

We are currently working on the extension of the σ2-PPM approach to the
portfolio analysis. The increase in the number of assets translates into an
augmented dimensionality of the problem. In fact, the vector of variances is
now replaced by the vector of covariance matrices. In order to reduce the
number of involved parameters we are exploring several filtering techniques,
see e.g. Laloux et al. (1999), Plerou et al. (1999), and Tumminello et al.
(2007).
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Table 1
Daily estimated VaR (%) values at 5% and 1% significance level with 68% credible
intervals.

VaR(%) α=5% α=1%

µ-PPM σ2-PPM σ2-CP µ-PPM σ2-PPM σ2-CP

MIB30.MI 1.45+0.05
−0.05 1.74+0.11

−0.12 1.76+0.01
−0.01 2.07+0.06

−0.06 2.48+0.16
−0.17 2.49+0.01

−0.01

LTO.MI 2.08+0.07
−0.07 2.78+0.15

−0.16 2.66+0.02
−0.02 2.95+0.09

−0.09 3.94+0.21
−0.21 3.78+0.03

−0.03

MB.MI 1.91+0.07
−0.08 2.40+0.12

−0.12 2.36+0.01
−0.01 2.72+0.11

−0.11 3.40+0.17
−0.17 3.35+0.02

−0.02

SRG.MI 1.58+0.05
−0.05 1.97+0.12

−0.13 2.01+0.01
−0.01 2.26+0.06

−0.06 2.81+0.17
−0.17 2.87+0.02

−0.02

Table 2
Posterior mean of the number of clusters and relative weight of the largest cluster
for µ-PPM and σ2-PPM.

Number of Clusters Largest Cluster Weight

µ-PPM σ2-PPM µ-PPM σ2-PPM

MIB30.MI 3.11 3.39 0.986 0.990

LTO.MI 5.02 4.52 0.963 0.944

MB.MI 4.11 3.72 0.968 0.970

SRG.MI 3.44 3.59 0.984 0.978

Table 3
Daily ML estimated VaR(%) values at 5% and 1% significance level with 68%
bootstrap intervals. In the last column we report central value and 68% bootstrap
interval for the tail index ν of the GST.

VaR(%) α=5% α=1%

Normal Student-t Normal Student-t ν

MIB30.MI 1.38+0.05
−0.07 1.27+0.04

−0.06 1.95+0.07
−0.09 2.22+0.09

−0.10 4.16+0.43
−0.48

LTO.MI 2.50+0.14
−0.15 2.15+0.08

−0.09 3.55+0.19
−0.20 4.05+0.19

−0.22 3.26+0.28
−0.30

MB.MI 2.07+0.06
−0.09 1.89+0.05

−0.07 2.95+0.09
−0.11 3.37+0.12

−0.14 3.93+0.35
−0.38

SRG.MI 1.62+0.05
−0.08 1.48+0.04

−0.07 2.32+0.08
−0.10 2.65+0.11

−0.12 3.97+0.44
−0.44
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Table 4
Estimated 10-day VaR(%) values at 5% and 1% significance level with 68% credible
intervals.

VaR(%) α=5% α=1%

µ-PPM σ2-PPM µ-PPM σ2-PPM

MIB30.MI 4.19+0.41
−0.40 4.43+0.46

−0.46 5.98+0.51
−0.51 6.33+0.59

−0.61

LTO.MI 6.35+0.69
−0.70 7.59+0.83

−0.85 9.08+0.89
−0.90 10.90+1.11

−1.13

MB.MI 6.55+0.65
−0.65 7.03+0.70

−0.71 9.41+0.82
−0.80 10.07+0.92

−0.91

SRG.MI 4.49+0.47
−0.47 4.83+0.54

−0.55 6.60+0.59
−0.59 7.06+0.70

−0.72

Figure 1. VaR posterior distribution for α = 1%.
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Figure 2. Comparison between classical and Bayesian estimates of VaR(%). We
consider two values for the levels α = 1% (top panel) and α = 5% (lower panel).
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Figure 3. Sensitivity of α = 1% VaR(%) estimates for the µ-PPM model with
respect to the value of the hyperparameter c in the cohesion function (4). The other
hyperparameters assume the values quoted in the main text.
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Figure 4. Sensitivity of α = 1% VaR(%) estimates with respect to the value of the
hyperparameters λ0 = a(a+1) and ν0 = 2+ a. The other hyperparameters assume
the values quoted in the main text.
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Figure 5. Posterior distributions for VaR at level α = 1% for Lottomatica as a
function of a. The other hyperparameters assume the values quoted in the main
text.
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Figure 6. Detected outliers.
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Table 5. Sensitivity analysis of outliers detection with respect to the value of c. a, λ0, ν0 assume the values quoted in the main text.
Subscripts 1,2,3 mean the corresponding cluster being equal to S1, S2, and S3 respectively (see section 4).

c MIB30 SRG.MI

0.1 {(46, 48, 155, 476)1(37, 275)2} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
0.5 {(46, 48, 155, 476)1(37, 275, 479, 761)2} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
1 {(37, 46, 48, 155, 275, 476)1(5, 45)3} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
5 {(37, 46, 48, 155, 275, 476)1(5, 45)3} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
10 {(37, 46, 48, 155, 275, 476)1(5, 45)3} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
50 {(37, 46, 48, 155, 275, 476, 479, 761)1(5, 32, 45)3} {(6, 7, 46, 47, 108, 155, 271, 782)1(3, 138, 164, 633, 827)3}
c LTO.MI

0.1 {(7, 11, 422, 464, 742, 787)1(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 733, 777, 794)3}
0.5 {(7, 11, 422, 464, 742, 787)1(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 733, 777, 794)3}
1 {(7, 11, 422, 464, 742, 787)1(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 724, 733, 777, 794)3}
5 {(7, 11, 422, 464, 742, 787)1(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 724, 733, 777, 794)3}
10 {(7, 11, 422, 464, 742, 787)1(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 724, 733, 777, 794)3}
50 {(7, 11, 110, 134, 155, 181, 189, 291, 422, 464, 742, 787)1

(2, 51, 131, 227, 326, 461, 551, 553, 664, 679, 724, 733, 777, 794)3}
c MB.MI

0.1 {(48, 106, 237, 370, 515, 530, 540, 573)2(5, 8, 161, 403, 667, 668, 711, 722)3}
0.5 {(9, 49)1(5, 8, 48, 106, 161, 237, 370, 403, 515, 530, 540, 573, 667, 668, 711, 722)3}
1 {(9, 49)1(5, 8, 48, 106, 161, 237, 370, 403, 515, 530, 540, 573, 667, 668, 711, 722)3}
5 {(9, 49, 721)1(5, 8, 48, 106, 161, 237, 370, 403, 515, 530, 540, 573, 667, 668, 711, 722, 813)3}
10 {(9, 49, 721)1(5, 8, 48, 106, 161, 237, 370, 403, 515, 530, 540, 573, 667, 668, 711, 722, 813)3}
50 {(9, 49, 721)1(5, 8, 46, 48, 106, 161, 237, 370, 403, 428, 515, 530, 540, 573, 667, 668, 710, 711, 722, 813)3}
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Table 6
Backtesting results: the model is rejected at 5% significance level if LRUC > 3.84
(unconditional coverage test), or LRCC > 5.99 (conditional coverage test).

LTO.MI α=1% α=5%

# Exceptions LRUC LRCC # Exceptions LRUC LRCC

µ-PPM 5 1.857 2.057 9 1.288 1.947

σ2-PPM 1 1.237 1.245 5 13.873 14.073
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