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ABSTRACT

Context. Detecting protoplanets during their formation stage is an important but elusive goal of modern astronomy. Kinematic detec-
tions via the spiral wakes in the gaseous disc are a promising avenue to achieve this goal.
Aims. We aim to test the applicability of a commonly used semi-analytical model for planet-induced spiral waves to observations in
the low and intermediate planet mass regimes. In contrast to previous works that proposed using the semi-analytical model to interpret
observations, in this study we analyse for the first time both the structure of the velocity and density perturbations.
Methods. We ran a set of FARGO3D hydrodynamic simulations and compared them with the output of the semi-analytic model in
the code WAKEFLOW. We divided the disc into two regions. We used the density and velocity fields from the simulation in the linear
region, where density waves are excited. In the non-linear region, where density waves propagate through the disc, we then solved
Burgers’ equation to obtain the density field, from which we computed the velocity field.
Results. We find that the velocity field derived from the analytic theory is discontinuous at the interface between the linear and non-
linear regions. After ∼0.2 rp from the planet, the behaviour of the velocity field closely follows that of the density perturbations. In the
low mass limit, the analytical model is in qualitative agreement with the simulations, although it underestimates the azimuthal width
and the amplitude of the perturbations, predicting a stronger decay but a slower azimuthal advance of the shock fronts. In the inter-
mediate regime, the discrepancy increases, resulting in a different pitch angle between the spirals of the simulations and the analytic
model.
Conclusions. The implementation of a fitting procedure based on the minimisation of intensity residuals is bound to fail due to the
deviation in pitch angle between the analytic model and the simulations. In order to apply this model to observations, it needs to be
revisited so that it can also account for higher planet masses.

Key words. methods: analytical – planets and satellites: formation – protoplanetary disks – planet–disk interactions

1. Introduction

The Atacama Large (sub-)Millimeter Array (ALMA) has proven
to be fundamental in the study of stars and planet formation.
Images of the millimetre dust emission have shown the pres-
ence of many substructures (rings, gaps, cavities, and spirals)
in the vast majority of targeted discs (Andrews et al. 2018).
Although these features can be associated with the presence of
unseen planets, planet–disc interaction is not the only explana-
tion behind the formation of these substructures. For instance,
rings and gaps can be due to magneto-rotational instabilities
(Flock et al. 2015) or dust sintering outside the snow line
(Okuzumi et al. 2012). It is then difficult to unambiguously asso-
ciate dust substructures with the presence of planets in a disc
and study their properties. However, ALMA opened yet another
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window to study protoplanetary discs by means of kinematic
signatures. As the planet interacts with the gas, it excites spi-
ral density waves and perturbs the disc velocity field, leaving
characteristic signatures in the molecular line emission (Disk
Dynamics Collaboration 2020; Bollati et al. 2021; Pinte et al.
2023).

Kinematic studies searching for planet–disc interaction sig-
natures in molecular line emission have been carried out in
recent years and have followed different strategies. The effects of
an embedded planet on the background velocity field may consist
of deviations from Keplerian velocity in rotation curves of the
gas (Teague et al. 2018), a Doppler flip in the first moment map
(Pérez et al. 2018), and deviations from the isovelocity curves
(so-called kinks) in the channel maps (Perez et al. 2015). A
technique based on the detection of this last deviation was suc-
cessfully used to infer the presence of protoplanets in the systems
HD 163296 (Pinte et al. 2018) and HD 97048 (Pinte et al. 2019)
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using the line emission of CO isotopologues. Currently, there
are more than ten planet candidates waiting for confirmation that
have been identified with this method (Pinte et al. 2023).

At the moment, however, the only way to obtain an estimate
of the planet mass with this technique is through a comparison
between observations and computationally expensive and time-
consuming numerical simulations (Pinte et al. 2019). In the case
of HD 163296 and HD 97048, planet mass estimates lie between
2 and 3 MJ. As this procedure relies on numerical hydrodynam-
ical simulations, it is not possible to quantify the error on this
measurement in a statistical manner due to the high computa-
tional cost. To develop a statistically significant procedure for
the evaluation of the planet mass using Markov chain Monte
Carlo methods, an analytical model for planet-produced kinks
is needed.

Planetary kinks are a result of the density wave perturbations
generated by a planet. The first linear theory describing the prop-
agation of density waves in a gaseous disc excited by a planet
was developed by Goldreich & Tremaine (1979, 1980), and
Papaloizou & Lin (1984). The perturbing planet excites density
waves at Lindblad resonant locations, which undergo construc-
tive interference and form the planetary spiral wake (Ogilvie &
Lubow 2002). Goodman & Rafikov (2001) and Rafikov (2002)
first complemented the linear theory by using a shearing box
for the excitation of planetary spiral wakes and a non-linear,
semi-analytic framework describing its propagation. Miranda &
Rafikov (2019, 2020) then generalised the linear theory, moving
from the shearing sheet approximation to a global model. Finally,
the non-linear model was expanded in order to also account for
the velocity perturbations in Bollati et al. (2021).

The linear excitation of the wake close to the planet and its
non-linear propagation in the rest of the disc can naturally be
separated into two regimes when the planet mass satisfies Mp <∼
mth, where the thermal mass mth is

mth =
2
3

c3
s

ΩG
=

2
3

(
hp

rp

)3

M⋆. (1)

Here, cs is the sound speed, Ω is the orbital frequency, hp is
the disc scale height, rp is the planet radial position, and M⋆

is the stellar mass. The thermal mass for realistic parameters
(hp/rp ∼ 0.1, M⋆ ∼ 1 M⊙) is generally on the order of a Jupiter
mass, which is in the range of the planet mass estimates obtained
from the observations (Pinte et al. 2018, 2019). The accuracy
of the model in the low planet mass limit has been tested in
Cimerman & Rafikov (2021), focusing only on the density
structure of the spiral.

However, observed planet candidates from continuum sub-
structures (Bae et al. 2023; Lodato et al. 2019) and molecular line
emission (Pinte et al. 2023) need to be massive enough to create
strong detectable signatures, often exceeding the thermal mass.
With this paper, we aim to assess the applicability of the model to
observations when approaching the thermal mass (Mp ∼ 1 mth),
a region of interest for ongoing observational surveys such as the
ALMA large program exoALMA. In contrast to previous works,
which proposed the use of the semi-analytical model to interpret
observations, we focus on the velocity field in our analysis, as
this is the quantity observed directly in the kinematic campaigns.
In order to do so, we performed 2D numerical hydrodynamical
simulations of a gaseous protoplanetary disc, considering dif-
ferent values of the planet mass, that we then compared with
the results obtained with the semi-analytical model. We quan-
titatively analysed the profiles of the azimuthal perturbations,
focusing on the pitch angle of the spirals.

This paper is organised as follows: in Sect. 2, we briefly sum-
marise the semi-analytical model, and we describe the numerical
setup we used to test its accuracy. Section 3 presents the com-
parison between the model and the hydrodynamical simulations.
Finally, we draw our conclusions in Sect. 4.

2. Methods

In this section, we summarise the key points of the semi-
analytic model and the main improvements with respect to
previous iterations. Then we introduce the numerical setup of
the hydrodynamic simulations.

2.1. Semi-analytical model

2.1.1. Background disc

We considered an unperturbed 2D disc in a cylindrical coor-
dinate system (r, φ) rotating around a star with mass M⋆.
The hydrodynamical variables needed to solve the following
equations:

∂Σ0

∂t
+ ∇ · (Σ0v) = 0, (2)

∂v
∂t
+ (v · ∇)v = −

1
Σ0
∇P − ∇Φ, (3)

where Σ0 is the surface density, v = (vr, vφ) is the velocity field, P
is the pressure of the gas, and Φ ≡ −GM⋆/r is the gravitational
potential of the star. We assumed radial power laws for the sound
speed c0 and the surface density

c0 = cp

(
r
rp

)−q

, (4)

Σ0 = Σp

(
r
rp

)−p

, (5)

where cp ≡ c0(rp) and Σp ≡ Σ0(rp). We considered a polytropic
equation of state:

P = P0

(
Σ

Σ0

)γ
, (6)

with γ as the adiabatic index, which implies a perturbed sound
speed,

c2 =
∂P
∂Σ
= c2

0(r)
(
Σ

Σ0

)γ−1

. (7)

The model we introduce in Sect. 2.1.2 was built assuming
Eqs. (6)–(7). We then took the limit for γ → 1 to obtain locally
isothermal discs and fixed q = 0 to recover globally isothermal
discs.

We defined the disc aspect ratio

h
r
≡

c0

vK
=

hp

rp

(
r
rp

)1/2−q

, (8)

where we used Eq. (4) in the second equality; vK = (GM⋆/r)1/2 is
the Keplerian velocity, and we defined hp/rp ≡ cp(GM⋆/rp)−1/2.

Then, for a Keplerian power law disc, the gas rotates around
the star with sub-Keplerian velocity, with radial and azimuthal
components (Armitage 2015):

vr,0 = 0, (9)
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vφ,0 = vK

1 − a
(

hp

rp

)2 (
r
rp

)b1/2

, (10)

where we have defined the coefficient a ≡ p+ q+ 3/2, the expo-
nent b ≡ 1 − 2q, and the disc aspect ratio at the planet location
hp/rp ≡ h/r(rp).

2.1.2. Planet-induced perturbations

We modelled the density and velocity perturbations induced by
a planet embedded in a 2D gas disc starting from the semi-
analytical method outlined in Bollati et al. (2021), which is based
on the framework first introduced in Goodman & Rafikov (2001)
and Rafikov (2002). We expanded on this model by removing
some of the original approximations from Bollati et al. (2021).
In the following, we summarise the main points of this method,
the limitations of the original approach of Bollati et al. (2021),
and how we improve on it.

The shape of the wake generated by the planet in the linear
approximation resulting from constructive interference of den-
sity waves excited at Lindblad resonant locations (Rafikov 2002;
Ogilvie & Lubow 2002) is given by

φlinear
wake = φp + sgn(r − rp)

∫ r

rp

Ω(r′) −Ωp

c0(r′)
dr′, (11)

where (rp, φp) are the planet coordinates in a polar reference
frame centred on the star location; Ω(r) and Ωp ≡ Ω(rp) are the
disc and planet angular velocities, respectively; and c0(r) is the
sound speed of the unperturbed disc. Assuming Keplerian rota-
tion and a constant disc aspect ratio, by substituting the power
law prescription (Eq. (4)), Eq. (11) becomes (Rafikov 2002)

φlinear
wake = φp + sgn(r − rp)

(
hp

rp

)−1 [
(r/rp)q−1/2

q − 1/2
+

−
(r/rp)q+1

q + 1
−

3
(2q − 1)(q + 1)

]
. (12)

This linear prescription does not take into account the non-
linear effects arising after the perturbations’ shock. Cimerman
& Rafikov (2021) introduced a non-linear correction to the spiral
wake in the form

φnonlinear
wake = φlinear

wake + sgn(r − rp)∆ϕ0
hp

rp

√
t − t0, (13)

where ∆ϕ0 ≃ 1. This value is obtained from a fit on their
simulations in the range 0.05–0.5 mth.

The computation of the density perturbation was carried out
in two distinct spatial regions: in an annulus centred on the planet
position, where the density and velocity fields are obtained under
the linear approximation, and further away from it, where the
structure of the wake is calculated in the non-linear regime
(Rafikov 2002). We defined the separation between these two
regimes as follows:

r± = rp ± 2lp (14)

with

lp =
2
3

hp. (15)

This value was chosen so that the linear region is large enough
to include Lindblad resonances exciting the spiral waves, but it
limits the non-linear effects that start appearing after the shock
of the spiral waves(Goodman & Rafikov 2001)1.

2.1.3. Linear region

In the original model of Bollati et al. (2021), the density and
velocity perturbations in the linear regime were obtained assum-
ing the linear and shearing sheet approximations, following the
procedure from Goodman & Rafikov (2001). However, by def-
inition of the shearing sheet approximation, this linear solution
is valid only in a square box centred on the planet position with
sides on the order of lp. As a result, we find that the azimuthal
extent of the box is not large enough to fully capture the density
profile needed, which is an initial condition to solve Burgers’
equation in the non-linear regime.

An alternative approach has been presented in Miranda &
Rafikov (2019, 2020). In their framework, the authors provide
linear global density and velocity fields by solving a master equa-
tion for the enthalpy of the disc. In this way, it is then possible to
extract the density profile along the entire azimuthal range and
use it as the initial condition for the computation of the density
field in the non-linear regime.

A third option consists of using both the density and veloc-
ity fields retrieved from numerical hydrodynamic simulations.
Cimerman & Rafikov (2021) showed that the global linear solu-
tion is in good agreement with the simulation in the linear region
and used the profile from the simulation as an initial condition
to solve Burgers’ equation. In this paper, we follow the same
approach and use the density and velocity fields from our hydro-
dynamical simulations (see Sect. 2.2) in the annular region of
width 4lp centred on the planet.

2.1.4. Non-linear region

In the non-linear regime, the equations are solved in a polar ref-
erence frame co-rotating with the planet. Rafikov (2002) showed
that the structure of the density perturbation outside the linear
region is described by the inviscid Burgers’ equation in a specific
reference system with coordinates t, η

∂tχ + sgn(r − rp)χ∂ηχ = 0, (16)

where

t ≡ −
rp

lp

mp

mth

∫ r

rp

Ω(r′) −Ωp

c0(r′)g(r′)
dr′, (17)

η ≡
rp

lp
[φ − φwake(r)], (18)

χ ≡
γ + 1

2
Σ − Σ0

Σ0
g(r), (19)

g(r) ≡
21/4

rpcpΣ
1/2
p

 rΣ0c3
0

|Ω −Ωp|

1/2

, (20)

with γ as the adiabatic index, χ representing the density pertur-
bation, and the (t, η) coordinates representing the distance along
the spiral wake and in the azimuthal direction with respect to
the centre of the wake, respectively. In the case of a power-law

1 This criteria was obtained for a specific case. A detailed study of its
dependence on disc parameters is still missing.
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Keplerian disc, using Eqs. (4)–(5), we can write Eqs. (17) and
(20) as

t ≡ −
3

25/4(hp/rp)5/2

mp

mth

∫ r/rp

1
(1 − x3/2)|1 − x3/2|1/2xwdx, (21)

g(r) ≡ 21/4
(

hp

rp

)1/2 (r/rp)5/4−(p+3q)/2

|1 − (r/rp)3/2|1/2
, (22)

where w = −11/4 + (p + 5q)/2.
The radial and azimuthal velocity perturbations can be

related to the density perturbation χ with the following
expressions:

vr(r, φ) = sgn(r − rp)
2c0

γ + 1
ψ (23)

vφ(r, φ) =
c0

(Ω −Ωp)r
vr, (24)

where we defined the mathematical quantity

ψ ≡
γ + 1
γ − 1

c − c0

c0
. (25)

By substituting Eq. (7), we can express ψ as a function of Σ

ψ =
γ + 1
γ − 1

( ΣΣ0

)(γ−1)/2

− 1

 . (26)

In the original model of Bollati et al. (2021), they assumed
that the sound speed perturbation is a fraction of the unperturbed
sound speed (ψ ≪ 1) and expanded Eq. (26) to the first order,
obtaining approximate formulas for Eqs. (23)–(24). We found
that the condition ψ ≪ 1 is not always satisfied, so we considered
the exact transformation Eq. (26) to compute the velocity field in
this paper.

We solved Eq. (16) following the method outlined in
Bollati et al. (2021), using the density perturbation profile eval-
uated at the edge of the linear annulus as an initial condition.
However, Bollati et al. (2021) solved Burgers’ equation only in
the outer disc (i.e. for r > rp) and then copied the result in
the inner disc (i.e. for r < rp). We improved on their approach
by solving Burgers’ equation both in the outer and the inner
disc, using as an initial condition, the density perturbation pro-
file evaluated at the outer and inner edge of the linear annulus,
respectively. The model was implemented in an open source
code, WAKEFLOW2 (Hilder et al. 2023), which is used in the
following analysis.

2.2. Numerical setup

We performed 2D hydrodynamical simulations using the code
FARGO3D (Benítez-Llambay & Masset 2016; Masset 2000).
We used the same setup described in Cimerman & Rafikov
(2021) in order to compare our results in the low planet mass
limit. Simulations were run in cylindrical coordinates on a
meshed domain that extends radially between 0.2rp and 4rp with
logarithmic spacing and uniformly over the full disc azimuthal
extension. The grid resolution is Nϕ × Nr = 14400 × 6896, cor-
responding to a minimum of 50 cells per scale height at all
simulated radii for each of our setups. We initialised each simu-
lation in an axisymmetric state. To achieve centrifugal balance,

2 https://github.com/DanieleFasano/wakeflow

Table 1. Simulation disc parameters.

Model Mp Mp hp/rp α q p rp
(MJ) (mth) (au)

1 0.0218 0.25 0.05 1e-4 0 1.5 100
2 0.0872 1.00 0.05 1e-4 0 1.5 100
3 0.0218 0.25 0.05 1e-3 0 1.5 100
4 0.0872 1.00 0.05 1e-3 0 1.5 100
5 0.667 1.00 0.1 1e-3 0 1.5 100

we set the azimuthal component of the gas initial velocity to the
Keplerian solution with the pressure support correction, while
we set the radial component to zero. We initialised the surface
density prescribing the radial profile as a power law of index
−p. We used closed boundary conditions, implementing wave-
killing zones near the radial boundaries for 0.2 ≤ r/rp ≤ 0.28
and 3.4 ≤ r/rp ≤ 4 to avoid reflections. In these regions, the gas
density and radial velocity were relaxed towards their initial con-
ditions, analogously to Val-Borro et al. (2006), on a timescale
τ = 0.3/Ω(r).

We considered five simulations of a gas disc rotating around
a 1 M⊙ star hosting a non-migrating and non-accreting planet
with mass {0.25, 1.0} mth to study the behaviour of the semi-
analytic model in the low and intermediate mass regimes,
respectively. To avoid spurious shocks, the planet mass was
gradually increased up to its target value over ten orbits in the
same way as in the work of Cimerman & Rafikov (2021). The
planet potential (Φp) was smoothed near the planet position as
Φp = −GMp/

√
r2 + s2 with the smoothing length s = 0.6×H(r).

We included the indirect term that arises from the acceleration
of our non-inertial frame of reference centred on the star. We
set the gas viscosity, adopting the Shakura & Sunyaev (1973)
α-prescription with constant α = {10−4, 10−3}. We simulated the
disc aspect ratios hp/rp = {0.05, 0.1}, fixed the surface density
power law index p = 1.5, and used a globally isothermal equa-
tion of state to be able to directly compare with the fiducial
simulation in Cimerman & Rafikov (2021). We summarise the
parameters we used in our simulations in Table 1. We evolved
the simulated discs for 100 orbits of the planet.

For each simulation, we used the semi-analytical model
method outlined in Sect. 2.1.2 to calculate the correspond-
ing density and velocity perturbations. We used the same disc
parameters and planet position of the simulations, fixing q = 0
and γ = 1, to reproduce the globally isothermal model. As ψ
(Eq. (26)) is not defined for γ = 1, we checked that our results
are not strongly dependent on the isothermal limit considering
values of γ = {1.01, 1.001, 1.0001}, observing no changes in
our results. We computed the solution on a Cartesian grid of
1024 × 1024 points.

3. Results

In this paper, our aim is to numerically test the semi-analytical
theory of planet-induced spiral density waves. Cimerman &
Rafikov (2021) previously tested the behaviour of the solution
of Burgers’ equation for a planet mass smaller than the ther-
mal mass. They considered a globally isothermal disc with a
disc aspect ratio hp/rp = 0.05 hosting a planet with mass Mp =
0.25 mth ≃ 0.02 MJ. In this regime, they found that the solu-
tion of Burgers’ equation is in qualitative agreement with their
simulations, but it underestimates the amplitude of the density
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(a)

(b)

Fig. 1. r–ϕ maps of the density (a) and radial velocity (b) perturbation
fields from the simulation (left panel) and analytical model (right panel)
in the Mp = 0.25 mth case. The black dotted line represents the linear
wake (Eq. (11)). The color bar is logarithmic above 0.01 km s−1 and
linear below it. For reference, the Keplerian speed at the planet location
is vK = 3 km s−1.

perturbations and the azimuthal propagation of the shock fronts.
They also showed how the analytical model does not capture the
presence of additional spiral arms in the inner disc. Secondary
and tertiary spiral arms are a result of constructive interference
of perturbations with different azimuthal modes and occur out-
side the linear region; thus, they are not captured in the profile
used as an initial condition for Burgers’ equation and cannot be
propagated by the analytical model.

However, it is very difficult to observe planets in this regime,
as they excite low amplitude density and velocity spiral perturba-
tions. For this reason, we expanded on the study by Cimerman &
Rafikov (2021) by also considering the intermediate (Mp ≃ mth)
limit. Moreover, kinematic observations of protoplanetary discs
give a direct constraint on the velocity field, not the density field
of the gas. Thus, we considered the velocity field for the first
time in our analysis. We also focused only on the outer disc, as
the presence of additional spiral arms is not reproduced by the
analytic model. Additionally, it is easier to resolve spiral pertur-
bations in the outer disc from the observations. We also focused
only on the radial velocity field. The azimuthal velocity com-
ponent is one order of magnitude lower in amplitude, so the
velocity field is dominated by the radial component.

3.1. Low mass limit

In this section, we present the results we obtained in the low
planet mass limit (mp ≪ mth). In Fig. 1a, we compare the den-
sity perturbations extracted from the simulation against those
computed using WAKEFLOW. The black dotted curve represents
the spiral wake given by the linear approximation (Eq. (11)). In
this regime, the pitch angle of the spirals is comparable; how-
ever, their amplitude and width are smaller in the analytic model.

Moreover, the simulation shows the presence of an additional
positive spiral arm below the black dotted line.

We show the same comparison for the radial velocity field
in Fig. 1b. In this case, the width and amplitude differences are
less severe compared to the density perturbation. The analytic
model features a discontinuity between the linear and non-linear
regions. This is because both the density and radial velocity in
the linear regime are taken from the simulation, while only the
density was obtained solving Burgers’ equation in the non-linear
regime. The velocity components were then computed using
Eqs. (23)–(24), which are obtained from Eqs. (2)–(3), neglecting
higher order terms (Rafikov 2002). We believe this simplification
in the model to be the source of the discontinuity.

We compared the properties of the spiral more quantitatively
by looking at the azimuthal (η) profiles of the density and radial
velocity perturbations, shown in Figs. 2a and 2b, respectively.
The density profiles exhibit features similar to the ones pre-
sented in Cimerman & Rafikov (2021). When compared with the
simulation, the amplitude of the spiral computed from Burgers’
equation suffers a stronger decay, and the shocks advance more
slowly in the azimuthal direction. Moreover, the analytic profiles
feature steep shock fronts, in contrast with the smoother profiles
from the simulation, which are due to diffusive effects intro-
duced by viscosity. Viscous diffusion affects the perturbations
by lowering their amplitude while increasing their azimuthal
extent. Indeed, the simulated profiles are wider than the analytic
ones, but they still feature a higher amplitude. This suggests that
the analytic model tends to overestimate the wave damping, in
agreement with the results found in Cimerman & Rafikov (2021).

While we note that using a simulation with very low vis-
cosity (α ≪ 10−4) would provide an ideal comparison with the
inviscid analytic model, we have noticed that setting such a low
α parameter triggers the onset of numerical effects, requiring
an even higher resolution in order to remove them. Although
increasing viscosity up to α = 10−3 removes these numerical
artifacts, it also causes strong diffusion and makes a direct
comparison between the simulated and analytic profiles more
complicated. We find that choosing α = 10−4 gives the best trade
off between suppressing numerical effects and limiting viscous
spreading. However, we still see the presence of small oscilla-
tions at the shock fronts. In Appendix A, we use the α = 10−3

simulations to check that these oscillations are a result of the
low viscosity and that they do not affect our results.

Additionally, we observed the presence of a positive peak
for negative η in the simulation. This affects both the amplitude
and width of the profile, causing the strongest deviation between
the simulation and the model. Although the velocity profiles are
remarkably different close to the planet due to the discontinuity
previously discussed, after about 0.2 rp their behaviour becomes
very similar to that of the density perturbations.

Lastly, we can define the centre of the spiral as the point
where the perturbations change sign but only when the wave-
fronts have already undergone a shock and the spiral features its
characteristic N shape. This point is fixed by construction in the
analytic model. We note that this is not the case in the simula-
tion, where the centre of the spiral features a positive azimuthal
shift. This implies that the pitch angle of the spiral from the ana-
lytical model is different with respect to that of the simulation at
the centre of the spiral.

3.2. Intermediate mass limit

Next, we consider the results we obtain when the planet mass
approaches the thermal mass. The main assumption of the
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(a)

(b)

Fig. 2. Comparison between simulated (left) and analytical (middle) density (a) and radial velocity (b) η (azimuthal) profiles in the outer disc for
the Mp = 0.25 mth case. In the right panels, we show a choice of profiles from the simulation (solid line) and the analytic model (dash dotted line)
to better highlight the differences in individual profiles. The color scale shows the radial distance from the planet. We filtered the profiles from the
simulation using the savgol_filter function from the scipy Python library to reduce the oscillations at the shock fronts (see Appendix A).

semi-analytical model we are testing is that the perturbations
are linear close to the planet. This is equivalent to the require-
ment mp < 1 mth. We tested this limit to assess the validity of the
model when the linear assumption is not satisfied.

By comparing Figs. 3a, b with Figs. 1a, b, we observed
that the planet starts to carve a gap in the disc. The density
perturbations show positive features at the edge of the gap in
the co-orbital region, while the velocity shows material rotating
around the planet position. In this limit, the spiral becomes wider
and stronger, as expected for a more massive planet. Although
the amplitude of the perturbations now holds a better compar-
ison between the simulation and the model, the discrepancy in
pitch angle and width of the spiral increases. This is more evi-
dent in Figs. 4a, b. The general features shown by the profiles are
similar to the low mass case, with the exception of their width.
In this case, the analytic profiles are wider than the simulation,
where the centre of the spiral suffers a stronger azimuthal shift.

In Fig. 5, we compare the azimuthal position of the mini-
mum (yellow) and maximum (blue) of the density profiles with
respect to the linear wake (black dashed line). We observed that
the deviation between the simulation (solid lines) and the ana-
lytic model (dash-dotted lines) for the maximum increases up to
0.25 radians and remains stationary after 2.0 r/rp. On the other
hand, the deviation for the minimum has an oscillatory behaviour
until 1.8 r/rp, after which it starts increasing until the outer edge
of the disc, reaching a value of 1.00 radians. This asymmetry not
only changes the width of the profile, affecting the planet mass

estimate3, but it also results in a shift in pitch angle. The devi-
ation of the pitch angle for spirals induced by massive planets
from the linear prediction was also reported in the simulations
of Zhu et al. (2015); Bae & Zhu (2018). In the figure, we have
also plotted the non-linear correction from Eq. (13) (black dot
dashed line) that was introduced in Cimerman & Rafikov (2021)
to correct this behaviour. Although this non-linear correction is
valid for planet masses below the thermal limit, it deviates con-
siderably from the peak of both the simulation and the analytical
model above this limit. Thus the correction needs to be revisited
in the limit of intermediate and high planet masses (mp ≥ mth).

3.3. Observational applications

Kinematic observations of protoplanetary discs have shown the
presence of complex structures that can be associated with planet
candidates (Pinte et al. 2020; Izquierdo et al. 2023). To visually
test the applicability of the semi-analytical model to observa-
tions, we coupled WAKEFLOW with DISCMINER (Izquierdo et al.
2021). The latter fits each channel map with a parametric model
describing physical and geometrical properties of the disc. It is
possible to use a single or double Gaussian or a Bell line pro-
file model at each pixel, enabling differentiation between the
emission from the upper and lower surfaces of the disc. The

3 The azimuthal width of the profiles scales with the planet mass as
m1/2

p (Bollati et al. 2021).
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(a)

(b)

Fig. 3. r–ϕ map of the density (a) and radial velocity (b) perturbation
fields from the simulation (left panel) and analytical model (right panel)
in the Mp = 1.00 mth case. The black dotted line represents the linear
wake (Eq. (11)). The color bar is logarithmic above 0.01 km s−1 and
linear below it. For reference, the Keplerian speed at the planet location
is vK = 3 km s−1.

DISCMINER model assumes a Keplerian axisymmetric veloc-
ity field. In this way, it can minimise the residuals between the
observations and the model in order to fit for the disc parameters,
but it cannot predict planet properties such as the planet mass.

We can model the presence of a planet by adding the veloc-
ity field computed with WAKEFLOW on top of the background
Keplerian field of DISCMINER. Once we computed the perturbed
field using our semi-analytical model, we could produce channel
maps to perform a direct comparison with observed data. In a
similar way, we can produce channel maps using the velocity
field from the simulation.

Figure 6 presents the DISCMINER channel maps we pro-
duced using the simulation (top row) and WAKEFLOW (middle
row) velocity field. In the bottom row, we also show the resid-
uals between the two models. We show the output for a planet
with mp = 1 mth in a disc with hp/rp = 0.05 (left column) and
hp/rp = 0.1 (right column), respectively. This is equivalent to
having a planet with mp ≃ 0.09 MJ and mp ≃ 0.7 MJ. We note
how the perturbations in the first case have a very low ampli-
tude are thus barely noticeable compared to the disc with a more
realistic disc aspect ratio. This is because the kink amplitudeA,
defined as the maximum deviation from the unperturbed channel
map, scales as A ∝ m1/2

p (Bollati et al. 2021), so the low planet
mass excites perturbations with an amplitude of ∼1% of the
Keplerian velocity at the planet location. This does not change
the behaviour of the model in the different regimes compared
to the thermal mass, but it confirms how only planets in the
Jupiter mass range or above can be detected with this method.
The residuals in the bottom row highlight how the different pitch
angle causes the spirals to cross the channel maps in different
locations, producing oscillating residuals that do not cancel out,

unlike when the amplitude of the spirals between the simulation
and the model are comparable. As a result, a procedure that min-
imises this type of residuals cannot be used to estimate planet
masses.

3.4. Limitations of this work

In the previous sections, we focused our analysis on the com-
parison between 2D hydrodynamical simulations with a globally
isothermal equation of state and our analytic model in order
to test this framework using models sharing the same assump-
tions. However, real protoplanetary discs have a 3D structure
and may feature cooling processes, likely resulting in verti-
cal thermal stratification. Both the vertical structure of the
disc (Zhu et al. 2015; Pinte et al. 2019; Rosotti et al. 2020;
Rabago & Zhu 2021) and more realistic thermodynamics pre-
scriptions (Miranda & Rafikov 2019, 2020; Ziampras et al. 2023)
change the spiral structure generated by a planet, thus affect-
ing planet mass estimates obtained from the analysis of its
morphology.

Muley et al. (2024) have recently performed 3D hydrody-
namical simulations comparing different thermodynamic pre-
scriptions, from locally isothermal to β-cooling and three-
temperature radiation hydrodynamics. They studied the density
and radial velocity azimuthal profiles at the midplane and at the
emitting layer of 12CO for their different thermodynamic pre-
scriptions and have found that using more realistic equations of
state produces perturbations in the midplane with lower ampli-
tudes compared with the locally isothermal case. Above the
midplane, all the prescriptions instead produce radial velocity
perturbations with approximately the same amplitude, which is
lower compared to the isothermal case in the midplane. As the
planet mass is directly related to the amplitude of the perturba-
tions (Bollati et al. 2021; Rabago & Zhu 2021) and the analytical
framework assumes that the emission comes from the midplane
of a globally isothermal disc, we then expected that applying the
analytical model to spirals coming from a finite height in a verti-
cally temperature-stratified disc will produce lower planet mass
estimates.

Additionally, numerical 3D simulations have shown that
planetary spirals are less tightly wound in the upper layers of
the disc (Zhu et al. 2015; Rosotti et al. 2020), due to the verti-
cal temperature gradient of the disc. Following our discussion
in Sect. 3.3, constraining the pitch angle dependence on the disc
parameters also in the vertical direction is crucial to performing a
fitting procedure using the analytical framework and to obtaining
accurate estimates of planet masses.

4. Conclusions

The focus of the search for protoplanets is moving towards kine-
matic detections. With the development of new techniques to
reveal protoplanet candidates, new possibilities are opening for
the characterisation of their properties. Together with incoming
observational constraints, novel and improved models need to be
developed and robustly tested. In this paper, we have numerically
tested the semi-analytical model for planet-induced spiral waves
introduced in Bollati et al. (2021) with a set of 2D FARGO3D
simulations in the low (<1 mth) and intermediate (∼1 mth) planet
mass regime. In contrast to previous studies in the low planet
mass regime (Cimerman & Rafikov 2021), our analysis was
aimed at assessing the applicability of this analytical model to
observations by testing the velocity field in the intermediate
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(a)

(b)

Fig. 4. Comparison between simulated (left) and analytical (middle) density (a) and radial velocity (b) η (azimuthal) profiles in the outer disc for
the Mp = 1.00 mth case. In the right panels, we show a choice of profiles from the simulation (solid line) and the analytic model (dash dotted line)
to better highlight the differences in individual profiles. The color scale shows the radial distance from the planet. We filtered the profiles from the
simulation using the savgol_filter function from the scipy Python library to reduce the oscillations at the shock fronts (see Appendix A).

Fig. 5. Azimuthal deviation of the pitch angle from the linear prediction.
Top panel: azimuthal distance of the maximum (blue) and minimum
(yellow) from the linear wake prediction for the Mp = 1.00 mth case. We
used this estimate to trace the pitch angle of the spiral wake. Solid lines
represent the values obtained from the simulation, while dash dotted
lines are obtained from the analytical model. Bottom panel: difference
between the maximum (blue) and minimum (yellow) from the analytical
model and the simulation as a function of the disc radius.

mass regime, as this is the quantity directly detected by kine-
matic observations. The results we obtained can be summarised
as follows:

– The comparison with the simulation with a 0.25 mth planet
shows similar results with those obtained in Cimerman &
Rafikov (2021) for the density field. Although qualitatively

similar, the solution of Burgers’ equation propagates faster
with respect to the simulations, producing spirals with a
smaller width and amplitude. We found the same behaviour
for the radial velocity component for a radial distance greater
than ∼0.2 r/rp from the planet.

– Both perturbations feature a positive azimuthal shift in the
centre of the spiral and a secondary spiral arm in the simu-
lations, which are not present in the analytical model. This
produces a change in pitch angle, even for low planet masses.

– The velocity field computed from the semi-analytical model
features a discontinuity at the interface between the linear
and non-linear regions. This discontinuity is present in both
planetary regimes.

– For the simulation with a 1 mth planet, the discrepancy
increases. The model produces profiles with a smaller ampli-
tude but larger width, and it fails to reproduce the shift
in azimuth present in the simulation profiles. This results
in a different pitch angle. Moreover, the correction intro-
duced in Cimerman & Rafikov (2021) does not reproduce
the expected pitch angle from the simulation in this limit.

Although the general behaviour of the model is in good qualita-
tive agreement with the simulation, the difference in pitch angle
causes the two spirals to not overlap. As a result, standard fit-
ting procedures based on the minimisation of residuals cannot
converge. In order to apply this model to observations, it is nec-
essary to revisit it while accounting for the shift in pitch angle
and the discontinuity in the velocity field that are present for all
planet masses. An alternative approach for fitting planet masses
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Fig. 6. Expected kink in the channel maps for a thermal mass planet
in a disc with hp/rp = 0.05 (left column) and hp/rp = 0.1 (right col-
umn), resulting in a planet mass of mp ≃ 0.02 MJ and mp ≃ 0.67 MJ,
respectively. We arbitrarily set the inclination of the disc to i = −45◦.
Top row: channel maps obtained from the velocity field of the simula-
tion. Middle row: channel maps obtained from the velocity field of the
analytical model. Bottom row: intensity residuals between the channel
maps obtained from the velocity field of the simulation and the analytic
model.

would consist of developing a parametric model for the velocity
perturbations. Exploring these possibilities will be the scope of
future work.
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Appendix A:High viscosity simulation

In Fig. A.1b, we show the third panel of Fig. 2b and compare it
with the same result obtained using simulations with α = 0 and
α = 10−3 (Fig. A.1c). In this appendix, we show the full extent
of the oscillations, whereas in the main text we filter them using
the savgol_filter function from the scipy Python library. While
the profiles from the lower viscosity simulation are completely
dominated by oscillations, the higher viscosity simulation does
not show any sign of them. These oscillations are likely due to
numerical instabilities and are damped out with increasing vis-
cosity. However the viscous damping of the profiles becomes too
strong for α = 10−3, especially far away from the planet position,
making a direct comparison between the analytical model and
the simulations more challenging. As the structure of the pertur-
bations is otherwise unchanged, we could safely carry out our
analysis on the simulations with α = 10−4.

(a)

(b)

(c)

Fig. A.1: Comparison of a choice of radial velocity azimuthal profiles
from the simulation (solid line) and the analytic model (dash dotted line)
using α = 0 (a), α = 10−4 (b), and α = 10−3 (c).
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