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Abstract 

We investigate the unexplored relationship between robot technology adoption and product 
innovation. We exploit Spanish firm-level data on robot adoption and use a staggered timing 
difference-in-differences, supported by an instrumental variable approach. Instead of an 
enabling effect, we find a negative association between robot adoption and the probability to 
introduce product innovations, as well as their number. The result is particularly significant 
for larger, established, and non-high-tech firms. In line with industry evolution models, we 
rationalise and interpret the findings suggesting that a key mechanism at work in the 
robotisation-innovation nexus are diseconomies of scope fuelled by capacity-increasing 
investments. We also discuss whether industrial robots in our data feature enabling 
capabilities at all. Our results have important implications for understanding the role of robots 
in firms’ operations and strategies, as well as for policy design.  
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1. Introduction   

Historically, mechanisation of production has always been accompanied by questions about its impact 
on the incentive to reallocate resources, with a natural focus on the substitutability of labour (Mokyr et 
al. 2015). However, labour substitution is only one of the effects of automation. In this paper, we study 
whether the adoption of robot technology influences product innovation.  

In essence, robots are capital goods, part of what has been called ‘modern manufacturing 
capital’ (Aghion et al. 2023). However, contemporary robots are depicted as increasingly ‘malleable’, 
or flexible, capital goods – multi-purpose equipment capable of executing different tasks with little re-
programming. Growing robot flexibility is a clear trend, as robot technology is augmented by other 
technologies characterising the fourth industrial revolution (Benassi et al. 2022; Martinelli et al. 2021), 
both hardware (e.g., sensors, or additive manufacturing technologies) and software (e.g., artificial 
intelligence algorithms). Robots become a component in larger systems, such as cyber-physical systems 
and advanced digital production technologies (UNIDO, 2019). As such, it is possible to hypothesise 
that robot adoption will induce changes in firms’ behaviours that go beyond the well-known 
replacement and productivity effects on employment (Autor, 2019) and that are more ‘enabling’ in 
nature. The enabling nature of emerging technologies such as contemporary malleable robotic systems 
can be function of their capability to ease (or lower the costs of) experimentation of product designs, or 
to reduce uncertainties in the production process and to create efficiencies – thus, freeing time and 
capacity to feed economies of variety. This hypothesis begins to accumulate empirical support 
(Hirvonen et al. 2022). At the same time, most of the robots currently in use in firms are yet “the most 
recent iteration of industrial automation technologies that have existed for a very long time” (Fernandez-
Macias et al. 2021) that continue to operate in well-bounded shop floor environments. Notwithstanding 
robots’ growing capabilities, the physically-constrained nature of their deployment suggests that their 
enabling influences on a firm’s broader decision-making structure might be limited.  

Excluding robot vendors, for any other firm, robots are process technology. Hence, robot 
adoption might be considered a form of process innovation. From this perspective, our study is a special 
case of a more general theme: whether the relationship between process and product innovation is one 
of substitutability or synergy. At the root of process and product innovation there are different strategic 
considerations: process innovation is mainly driven by efficiency and cost cutting reasons; product 
innovation is mainly driven by the capture of value and market shares or creation(penetration) of(in) 
new markets (Utterback and Abernathy 1975; Klepper 1996; Damanpour and Gopalakrishnan 2001). 
While theoretical literature has modelled firms’ portfolio choice between product and process 
innovation (Lambertini 2003), the empirical evidence is still scant – even more so for the case of 
robotisation.  

From a decision-making perspective, the impact of robot adoption on innovation can be affected 
by whether and how a companies’ routines change in response of the implementation of the new process 
technology (Gilbert 2005; Nelson and Winter 1982). On the one hand, rigid routines might limit the 
scope for exploration and innovation enabled by the investment in robots; on the other hand, if robot 
adoption imposes structural reorganisations that reverberate more generally on the firm operational 
structure, that might increase the chance of introducing novel products. From an economic perspective, 
the relationship between robot adoption and innovation depends on opportunity costs and scarcities: 
implementing robots is potentially a relevant financial investment (at least when accounting for 
investments in complementary capital and peripherals – see Benmelech and Zator 2022 and Aghion et 
al. 2023). This creates an allocation problem, with firms having to distribute scarce resources amongst 
different ends. The choice on how to address such allocation problem can affect firms’ performance at 
the core and persistently, as management often takes decisions on process and product innovation in the 
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context of the development of long-term strategies. Furthermore, and possibly more important, a firm’s 
top management might take process (including robot adoption) and product innovation decisions 
simultaneously, as part of an overarching and integrated market strategy (Miravete and Pernías, 2006). 
Simultaneous decision-making on robotisation and innovation can be shaped by many of the trade-offs 
we just mentioned. In an attempt to explore some of forces at play behind these strategic decisions, we 
look at the effect of robotisation on innovation in different firm profiles. Doing so, we try to understand 
potential mechanisms underlying our results. 

We exploit a unique dataset of Spanish firms, coming from the Survey on Firm Strategies 
(Encuesta Sobre Estrategias Empresariales, or ESEE) and implement an event-study approach (a 
staggered timing difference-in-differences model) and an instrumental variable analysis to relate 
different indicators of product innovation to robotisation. We show that robot adoption is negatively 
associated to product innovation. We cannot test directly the relevance of managerial decisions on our 
results; therefore, we limit ourselves to offer some descriptive support. We show that there is a positive 
correlation between management quality and robot adoption, suggesting that our findings may, at best, 
underestimate the actual effect of robot adoption on product innovation. Instead, we focus on coarser 
economic determinants of the relationship. These are more speculative in nature, but allow us to identify 
some robust patterns and to relate them to general stylised facts in the evolution of industries. In 
particular, we explore different channels pertaining to firms’ characteristics that could explain how 
firms’ decision on product innovation and robot adoption relate. When we look at different firm profiles, 
we find that the negative association we detect is experienced by larger, established firms, active in 
sectors that are not high-tech. We interpret the findings in line with mechanisms outlined by established 
models of industry evolution. As industries mature (and firms grow), the incentive to allocate resources 
on process improvement to exploit economies of scale prevails on that of expanding variety through 
product innovation. By adopting robots, larger, established (features that proxy the state of a given 
industries life cycles) firms bet on capacity expansion – especially if responding to demand growth. 
Hence, robot adoption can divert resources away from product innovation, as it fuels diseconomies of 
scope across firm investment types. Descriptive evidence on the timing of machinery investments and 
product innovation seconds our insights: both tend to peak right before robot adoption, suggesting that 
robot technology accelerates the process of firms’ focusing on capacity expansion fuelled by 
diseconomies of scope after the joint strategic decisions on scale of production and product innovation. 
Finally, we reflect on the nature of robots included in our data: these are mostly system designed to 
produce large quantities of few product variants (Perzylo et al. 2019); hence, rather than enabling far-
reaching changes in firms’ processes and routines, they are specialised tools, mostly tailored to the 
needs of large companies.     

In summary, the paper contributes to the growing, strand of studies analysing the relationship 
between firm-level robot adoption and economic performance, extending the reach of automation 
studies from the labour market perspective to a microeconomics of innovation one. In this sense, our 
work builds primarily on economic reasoning and frameworks, in line with works such as Koch et al. 
(2021). Our unique contribution is the focus on the nexus between the adoption of industrial robots and 
product innovation performance. The paper is organised as follows: Section 2 provides a literature 
review that explores the main stylised facts of robotisation and juxtaposes three broad strands of 
research to construct a framework to guide the discussion of our results. Section 3 describes the data 
and the methodology we employ. Section 4 presents the results and Section 5 offers a discussion of the 
mechanisms that might be producing them. Section 6 concludes the paper. 
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2. Relevant Literature 

The focus of our analysis is on robot technology, which is increasingly under the spotlight for its 
applications, and lately even for being a strategic asset (Nolan 2021). More precisely, we focus on 
industrial robots. We align with the ISO 8373 definition of industrial robot: an “automatically 
controlled, reprogrammable multipurpose manipulator programmable in three or more axes, which can 
be either fixed in place or mobile for use in industrial automation applications”.2 Wirkiermann (2022) 
outlines the distinction between mechanisation (in the 19th century), computer-based automation (in 
the 1980s) and contemporary robotisation. The importance of robots, or telerobots (Sheridan 2016), 
depends on their capacity of automating routine tasks and to act as multi-purpose tools – ultimately, to 
generate productivity gains. Robots become an interface between humans, control software, and 
production activities. The decision to invest in robots answers different goals, from the reduction of 
operating costs to the improved resilience in facing positive or negative peaks in production, passing 
through an increased flexibility and a more efficient use of resources (e.g. energy). In addressing these 
multifaceted firms’ needs, they reconfigure the very set of actions firms can engage into. As a 
consequence, robots might also be characterised by enabling capabilities.  

Despite the interest around robot technology, economists’ understanding of their technical 
features and patterns of adoption is yet limited. One reason for that has to do with the angle of analysis, 
as most of the literature on recent automation is grounded on theories of routine-biased technical change 
(Acemoglu and Restrepo 2019), which take occupations and job tasks as key units of analysis but lack 
in-depth, ‘engineering’ knowledge on robots as complex technology systems. A second, related reason 
has to do with data availability at a level granular enough to appreciate the heterogeneity of robot 
technology. However, recent studies are starting to draw a finer-grained picture of the implementation 
of robot technology into production activities. Focusing on German plant-level information, Deng et al. 
(2021) outline stylised facts of robot adoption, among which, the fact that robot use is relatively rare, 
the distribution of robots is highly skewed, and that robot adopters are ‘exceptional’ actors – that is, 
larger, with higher labour productivity, investing and exporting more and using more novel technology 
compared to non-robot-using plants. Benmelech and Zator (2022) confirm that robot adoption is yet 
limited, especially when compared to digital technologies. 

We build a framework for our analysis by bridging three different strands of literature that 
provide relevant insights: (i) studies on firm-level automation; (ii) studies on the relationship between 
product and process innovation strategies; and (iii) research on the enabling effect of the adoption of 
emerging technologies on innovative activities.  

Firm level analysis of automation and robotisation. As it is the case for more aggregate-level 
research, firm-level studies of automation and robotisation have focused almost exclusively on labour 
market impacts. Humlum (2019) uses an event-study approach (on Danish administrative data) to 
measure worker heterogeneity in exposure to robot adoption. Similarly, Bessen et al. (2020) and Domini 
et al. (2021) study automation spikes and job separation rates for Dutch and French firms, respectively. 
Dauth et al. (2021) measure exposure to industrial robots for Germany apportioning data from the IFR 
using a regional labour market approach combined with worker-level administrative data; Dottori 
(2021) conducts a similar exercise for Italy. As pointed out by Acemoglu et al. (2020), new firm-level 

                                                
2 This definition bounds the robots considered to those used for industrial purposes, which is our domain of 
interest. Furthermore, it is the definition adopted by the International Federation of Robotics (IFR). Since we use 
IFR data in our analysis as well, this ensures a consistent definition of the object of analysis. In the survey we use 
for this study (see Section 3), firms are only asked if they use “Robotics”, without providing a detailed definition. 
However, the question on robotics excludes other technologies such as “computer-assisted design”, or “numerical 
control machine tools” (which are alternatives firms can choose), hence the boundaries of robotics in the survey 
approximate the ISO definition. Furthermore, our definition is in line with the well-established work of Koch et 
al. (2021), who use the same data source. 
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analysis introduces new issues as well. In particular, the detection of a productivity effect of robots can 
be, in reality, the result of a selection effect: as firms adopting robots reduce production costs, they tend 
to gain market shares. Overall, employment gains or losses will then be a result of reallocation. In fact, 
when aggregating firm-level effects, the impact on total employment seems limited to composition 
effects, with the negative or positive impact of automation on the labour share depending on the 
magnitude of labour share reduction in the few, usually large, robot-adopting firms (Autor et al. 2020). 
Another angle of the robotisation-employment nexus is that explored by Voshaar and co-authors (2022). 
They find that (Spanish) robot-adopting firms exhibit greater labour cost stickiness compared to non-
adopters. The result is rooted in the upskilling dynamics generated by robot adoption, and in 
management’s reluctance to lay off robot-complementary skilled workers. These results provide further 
speculative support to the idea that rigidities at the decision-making level (in this case, shaped by the 
economic forces leading robot firms to hire skilled workers) could mediate the relationship between 
robotisation and innovation as well. 

Exploiting more granular information, firm-level automation research began to go beyond 
effects on employment and to focus on the impact of robots on various indicators of performance. 
Kromann and Sorensen (2019) use survey data from Danish firms to relate automation measures and 
performance, measured as labour productivity and profit to sales ratio, finding a positive relationship. 
Acemoglu et al. (2020) find that French robot adopters experience an increase in value added and 
productivity beyond a decline in the labour share. Aghion et al. (2023) measure the impact of 
automation technology (captured by expenditures on industrial equipment and machines or plant-level 
energy consumption to proxy ‘motive power’) on French manufacturing firm’s employment, wages, 
prices and profits with an event study and a shift-share setup. They find that next to a positive effect on 
employment, profits and sales increase while consumer prices decrease. Exploiting the same dataset we 
also use, Koch et al. (2021) confirm that robot adopters are exceptional in the sense that those firms that 
are ex ante larger, more productive and exporting have higher likelihood of adopting robots (with a 
higher likelihood for less skill-intensive firms). Robot adoption boosts output, TFP growth, and 
exporting. Alguacil et al. (2022) corroborate the findings on exporting – Spanish robot adopters increase 
probability, amount, and shares of export, and the technology helps in particular companies facing high 
export entry costs.3 Using import data on industrial robots for French firms, Bonfiglioli et al. (2020) 
produce additional evidence that robot adopters differ from non-adopters ex ante, being these larger, 
more productive firms and employing a higher share of managers and engineers. Interestingly, they find 
that demand shocks lead firms both to expand (increasing employment) and automate; hence, they stress 
the possibility that a spurious correlation exists between automation and impact on employment. 
Sudekum et al. (2020) combine industry-level (IFR) data on robot adoption with firm-level information 
for European manufacturing to study changes in the distribution of sales, productivity, mark-ups, and 
profits within industries. They find that robotisation disproportionately benefits top firms, reinforcing 
the trend of emergence of superstar firms (Autor et al. 2020). The authors outline the possibility that 
robot adoption might slow down knowledge diffusion from frontier firms to laggards, or that superstar 

                                                
3 In a set of ancillary regressions aimed at looking at the mechanisms behind the effect of robotisation on exports, 
Alguacil et al. (2022) analyse the relation between the adoption of robots and the probability to introduce a product 
innovation. They find a positive and weakly significant effect. A number of factors may explain the different 
effect compared to our evidence. In particular, here we refer to two main issues. First, their research design, which 
does not account for dynamic effects, implies a rather rigid selection of ‘treated firms’. In their analysis, robot 
adopters are firms which have adopted in time t, but not in previous period, making them rather intermittent robot 
adopters. A careful treatment of reversals is also absent. Second, the specification does not appear to be tailored 
to a regression with product innovation as dependent variable, lacking a proper control for the level of R&D 
investment. 
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firms could be more successful in attracting high-quality labour capable of speeding-up the 
implementation of the new technology. 

Relationship between product and process innovation. A second strand of research that is 
relevant for our analysis is the economics and strategy literature on the relationship between product 
and process innovation or R&D activities. Traditionally, the two types of innovations have been 
analysed individually because of the different strategies underpinning them, which in turn answer to 
different internal and external stimuli: when competition is driven by high product differentiation, it is 
optimal to choose a product innovation strategy; when competition is mainly price driven, it is optimal 
to go for process innovation (Weiss 2003). Only recently, product and process innovation have been 
studied as strategic complements at the company level. For example, complementarities between 
process and product innovation are likely to emerge in the so-called process industries, where it is also 
more appropriate to hypothesise a relation going from process to product (Hullova et al. 2016). 
Theoretically and more in general, Lambertini (2003) finds that, for a monopolist, cost-reducing process 
R&D and product innovation are substitutes, as surplus is extracted either by reducing marginal cost 
for a given number of product varieties, or expanding variety for a given level of production costs. Lin 
(2004) contrasts this, showing that process and product R&D are negatively related only if the degree 
of economies of scope in process R&D is low; otherwise, cost-reducing R&D is a positive function of 
product variety. Mantovani (2006) finds that monopoly profits are higher when product and process 
strategies are jointly pursued, with initial conditions determining the share of product vs process R&D. 
In a dynamic setting, Lambertini and Mantovani (2009; 2010) find that process and product innovation 
are substitutes for a monopolist at any stage of the path towards the steady state equilibrium, and 
complementary in the steady state. Li and Ni (2016) identify in the learning-by-doing rate (hence, 
knowledge accumulation regime) for product and process innovation a key parameter deciding whether 
the two activities are substitutes or complements. 

Studies of industry dynamics and evolution, and in particular those mapping industry life-
cycles, illustrate the endogenous process leading firms to transition from a focus on product innovation 
to one on process innovation (Klepper 1996). The model of Klepper (1996) outlines the key mechanism 
behind the fact that shares of product and process R&D expenditures in an industry change over time: 
as production expands and profit margins decrease, firms have a growing incentive to focus on cost-
reduction, rather than on the introduction of new product variants. Product innovation is mostly done 
by entrants, as succeeding in this activity is their only chance to compensate the scale advantage of 
incumbent firms. As the industry matures, the importance of scale (capacity expansion) increases, as so 
does, endogenously, process innovation expenditures. Bennett (2020) builds on that, and suggests that 
automation is pursued with higher intensity by either leading firms or laggards depending on the state 
of the market. In growing markets, cost-spreading incentives favours incumbents’ automation; in non-
growing markets, automation can be driven by market stealing incentives on the side of the laggards, 
which hope to gain market shares at the cost of the leading firms. Cohen and Klepper (1996a) show that 
the allocation of resources to process or product R&D vary with firm size: process innovation induces 
less direct sales growth as new processes cannot be easily sold in disembodied form compared to 
products. Hence, smaller growth-oriented firms will see higher return in conducting product R&D. As 
returns to process R&D depend on current output, firms growing larger will tend to shift to process 
R&D. This mechanism matches nicely our findings.  

Empirically, Hirvonen et al. (2022) use text data to explore the product vs process tension by 
analysing the impact of advanced technology adoption in Finnish manufacturing firms. In their paper, 
advanced manufacturing technologies include computerised numerical control (CNC) machines, 
(welding) robots, laser cutters, surface-treatment technologies, measurement devices, enterprise 
resource planning (ERP), and computer-aided design (CAD) software. Rather than replacing workers, 
these technologies are adopted to boost competitive advantage; adoption of new tools lead to an 
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expansion in product variety. These findings go in line with the expectation of an enabling capability 
of advanced manufacturing technologies, among which potentially robots. However, firms involved in 
the analysis are mostly smaller and medium enterprises that – as pointed out by Cohen and Klepper 
(1996a) – have ‘by design’ a higher incentive to engage in product innovation compared to process 
innovation. 

Emerging technologies and innovative activities. A third piece of the framework we are 
building consists of literature relating the use of novel technologies and innovation behaviour. The idea 
that certain technologies shape the incentive to innovate in related technologies or industries is at the 
core of the literature on general-purpose technologies (Bresnahan and Trajtenberg 1995), in which core 
upstream technologies and downstream technologies that make use of the core ones have linked payoffs 
in R&D investments. Some technologies are what Koutrumpis et al. (2020) call ‘invention machines’ - 
what Griliches (1957) identified as ‘invention of a method of inventing’ (IMI) - as “they alter the 
playbook of innovation where they are applied” (Cockburn et al. 2019). Innovations (inventions) that 
spur further innovation (inventions) usually feature some elements of multi- or general-purpose, or a 
‘meta-technology’ nature (Agrawal et al. 2019). Being multi-purpose malleable tools, robots are a good 
candidate for the role. 

Applied literature on the impact of ICT also detected how enabling technologies open new 
room for actions at the firm level, resulting in higher productivity (Brynjolfsson and Hitt 2000). More 
recently, Brynjolfsson et al. (2021) find that a similar effect can be registered in firms adopting 
predictive analytics techniques. Focusing on Canadian firms, Dixon et al. (2021) find that robot 
adoption leads to a different type of ‘innovation’, namely changes in organisational structure: using 
robots produces a reduction in the number of managers, but an increase in the span of control for those 
managers that survive the change. At an even more detailed level of analysis, Furman and Teodoridis 
(2020) show how the automation of a research task in computer vision and motion sensing research – 
achieved with the introduction of the Kinect technology – impacts subsequent research productivity and 
type of research output, increasing the production of new ideas as well as their diversity.  

Closer to the focus of our analysis, Liu et al. (2020) relate the number of industrial robots (which 
they use to proxy artificial intelligence) and technological innovation at the industry level, using 
Chinese panel data for the manufacturing sector. The authors find a positive relationship between robots 
and innovation (measured as patents count). However, the aggregate level of analysis as well as the size 
of the sample used do not permit to identify clearly and in a fine-grained manner the channels and 
mechanisms relating technology and performance. Niebel et al. (2019) observe the relationship between 
use of big data analytics and product innovation at the firm level, for a sample of manufacturing and 
service companies from the German ZEW ICT survey and Community Innovation Survey. By reducing 
uncertainty and supporting decision-making with high-quality information, the expectation is that big 
data analytics would help innovative activities. The authors find that the use of these techniques raises 
both the propensity to innovate as well as innovation intensity (measured as the share of sales from new 
products and services).  

The enabling capability of an emerging technology more narrowly defined is studied in 
Rammer et al. (2022) and Babina et al (2023), who focus on artificial intelligence (AI). Rammer et al. 
(2022) use the 2018 module of the German section of the Community Innovation Survey to study the 
relationship between the use of AI in firms and product and process innovation. While AI is used by a 
very small share of firms, those adopting AI (and, in particular, the firms that contribute with in-house 
efforts to the development of AI solutions) use it to innovate, especially product innovations that are 
new to the market. The analysis is limited by the cross-section nature of the data, but it is useful to shed 
light on the fact that only certain specific technologies have enabling capabilities. Babina et al. (2023) 
exploit resume and job posting data to test the hypothesis that AI adoption (via hiring of AI skills) 
lowers the cost of new product development. Orthogonal to robot technology, in their study AI adoption 
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does not impact process innovation (and, thus, labour replacement and productivity); rather it, shows 
an enabling effect as discussed in this paper: AI shortens experimentation time and enables product 
variety thanks to better predictions of demand. 

Taking stock of the literature. In summary, linking three strands of literature we have at hand a 
rich picture of the profile of robot adopters, as well as of the impacts following the adoption of robot 
technology. First, firm-level studies of automation and robotisation find evidence of self-sorting: 
adopters are already better performing firms before automation, and automation provides a further boost 
to performance. Second, whether robots are used only as a process technology or also with the goal of 
upgrading product offering depends on the forces set in motion by robotisation inside the firm (e.g. 
learning) and the concurrent strategic decisions taken by management, e.g. adjustment of production or 
changes in market positioning. Third, the enabling capability of a technology might depend on its very 
technical features: software technologies such as AI or advanced ICTs such as predictive analytics can 
be used as a supporting tool to reduce uncertainty and to guide innovation resource allocation decisions. 
It remains to be seen whether industrial robots are characterised by the same features that make 
emerging software technologies enabling. Taken all together, and given its malleability, it cannot be 
excluded that robot technology might help to experiment with new product designs and prototypes; 
however, this capability might be a feature of a subset of robots only, or one that companies are not able 
or willing to exploit fully.  

3. Data and Empirical Strategy 

Our analysis covers the period 1991-2016, a period during which there have been significant 
transformations in the production processes of firms worldwide. Industrial robots played an important 
part in these changes. Acemoglu and Restrepo (2020) provide evidence of a fourfold rise in the stock 
of (industrial) robots in the United States and western Europe between 1993 and 2007, while Graetz 
and Michaels (2018) show the dramatic fall in robot prices, which halved (and decreased even more 
when quality-adjusted) roughly in the same period for a sample of six advanced economies.  

The adoption of robots has been quite heterogeneous among countries in the last decades 
(OECD, 2019). Spain, which, according to the World Robotics 2022 Report4, is still among the first 
twenty countries worldwide in terms of robot density (number of robots per 10,000 employees), has a 
specific trend in robotisation. Notably, it has experienced a surge of operational robots’ adoption by a 
factor of five in the period 1993-2000, mostly due to the large diffusion of automation in the automotive 
industry.  

For our analysis, we mainly draw on longitudinal firm-level data from a survey of Spanish 
manufacturing companies: the Encuesta Sobre Estrategias Empresariales (ESEE, Survey on Firm 
Strategies). ESEE is a survey carried out annually by the SEPI Foundation5 and comprising nearly 2,000 
Spanish manufacturing companies. Previous studies have highlighted how ESEE data cover 
approximately 22% of total Spanish employment in manufacturing and that it includes the full 
population of manufacturing firms with more than 200 employees and a representative sample of SMEs 
between 10 and 200 employees (Barrios et al. 2003; D’Agostino and Moreno 2019). ESEE has been 
extensively employed as a data source for applied studies in economics and management at the firm 
level.6 

                                                
4 https://ifr.org/ifr-press-releases/news/china-overtakes-usa-in-robot-density (last accessed 7 December 2023) 
5 https://www.fundacionsepi.es/investigacion/esee/en/spresentacion.asp (last accessed 7 December 2023) 
6 For a list of publications see https://www.fundacionsepi.es/investigacion/esee/en/sesee_articulos.asp (last 
accessed 7 December 2023) 
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The ESEE questionnaire includes information on a wide range of topics, such as market and 
product characteristics, financial data and production activities. For the purpose of our research, ESEE 
data is ideal because it contains: (i) information on the adoption of industrial robots for firm day-to-day 
production activities; and (ii) information on firm’s product innovation activities. Several variables 
within ESEE data, like the one capturing robotisation on which we shall return, are collected every four 
years and refer to the previous three/four-year period. Our final sample entails 3,304 firms over a rather 
long time-span, made of seven relevant periods between 1991 and 2016 (1991-1993, 1994-1997, 1998-
2001, 2002-2005, 2006-2009, 2010-2013, and 2014-2016).  

Our empirical approach draws on Koch et al. (2021), which directly accounts for the systematic 
differences between robot adopters and non-adopters. Indeed, relevant differences exist between the 
two groups of firms. Table 1 reports some descriptive statistics on this aspect. As expected, differences 
are relevant and always statistically significant. Similar to what has been identified in the literature 
(Deng et al. 2021), the crude difference between adopters and non-adopters reveals that the former tend 
to innovate more in products, are larger, invest more in machinery and R&D and are more 
internationalised.  

Given these systematic differences,7 we adopt a staggered timing difference-in-differences 
(DiD) approach, which allows to capture the effect of a treatment (i.e. robotisation) that may happen in 
different points in time.  
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where 𝑅𝑜𝑏𝑜𝑡௜௧

௣
= 1[𝑡 − 𝐶௜ = 𝑝] is an indicator for robot adopting firm i in cohort 𝐶௜ (the period of 

treatment) being p periods from the first adoption. βp are the main parameters of interest and measure 

the robotisation effect on product innovation relative to one period before first adoption.8 The variable 
capturing robotisation is available from 1991 and covers a 4-year period. As our focus is on companies 
switching to robot adoption, we follow Koch et al. (2021) and retain only companies which report not 
having adopted robots in the first period of observation (1991-1993).9 Initially, we assume the absence 
of reversals, i.e. once robot technologies are adopted firms keep their treated status. It is worth noting 
that the inclusion of pre-treatment variables allows us to uncover potential anticipation effects of 
robotisation, and is the starting point to assess the fulfilment of the parallel trend assumption.  

Product innovation is captured in two ways throughout our empirical analysis. These are in line 
with the measures employed by a large part of the literature and available from the Community 
Innovation Survey (CIS) (e.g. Ballot et al. 2015; Frenz and Prevezer 2012). Respondent firms were 
asked whether they introduced new (or significantly improved) product innovations and the number of 
these product innovations. We make use of two variables. The first focuses on the probability of 
introducing a product innovation. This is captured by a dummy variable taking value one if this 
happened at least once during the relevant period, and zero otherwise. In this case, our estimation 

                                                
7 Given these differences between adopters and non-adopters in a set of unreported regressions, whose results 
remain available upon request, we drop firms that never adopted robots, to focus on a more homogeneous group 
of companies. Results confirm our baseline evidence presented in Section 4.1.   
8 More precisely, 𝛽௣ measure the difference in product innovation between robot adopting and non-adopting firms 
p periods from first adoption (before and after), relative to the outcome differences between adopting and non –
adopting firms in the excluded periods (one period before adoption). 
9 We drop a total of 1,041 unique companies from our sample. 
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amounts to a linear probability model. The second variable captures the number of product innovations. 
This is measured as the average number of product innovations over each period. Given the highly 
skewed nature of the variable, we employ its naturally log-transformed value.  

In Equation 1, we include a vector of 𝑋௜௧ time-varying characteristics of the firm that can affect 
product innovation performance and may be associated with the decision to adopt robot technologies. 
The inclusion of this vector allows controlling for omitted variable bias driven by observables. More in 
details, we control for a set of firm‐level characteristics including firm size, measured as the average 
number of full-time equivalent employees in the relevant four-year period. We also include two 
measures of investment. First, we measure the total expenditure in R&D as the sum of intra- and extra-
mural expenditures in the period. Second, we include the investment in industrial machinery. Both 
measures have been deflated by using the industry-level consumer price index provided by the Spanish 
statistical office (Instituto Nacional de Estadística) (with 2015 as base year). In addition, we control for 
the share of foreign ownership (both as direct and indirect foreign capital participation) over the relevant 
time period. We also account for the exposure of the firm to international markets by including the share 
of the total value of exports over sales in the relevant period. All the controls have been lagged by one 
year to mitigate reverse causality problems and have been transformed in natural logarithms. We also 
introduced a set of period fixed effects 𝜏௧ controlling for time varying shocks which can jointly affect 
the firms in our sample (e.g. business cycle effects). The coefficient 𝛼௜ captures the time invariant firm 
heterogeneity that may be associated to both automation and innovation performance and is generated 
also by unobservable factors, like managerial orientation and baseline productivity.10 Finally, to control 
for sector specific time varying shocks we include the interaction between industry and time dummies 
(𝐼𝑛𝑑௝ ∗  𝜏௧).11 We also test for the parallel trend assumption by checking whether the lead variables are 

not different from zero (our H0). If we fail to reject the null hypothesis, this would suggest that before 
the treatment the adopter and the non-adopters were subject to common trends conditional on 
observable and unobservable characteristics. 

Static and dynamic treatment effect estimates adopting staggered timing DiD approaches such 
as that employed in our work may be affected by significant biases (Goodman-Bacon 2021). Notably, 
Sun and Abraham (2021) show that dynamic treatment estimates are biased when there is variation in 
treatment timing and treatment effect heterogeneity, which in our case could be due to the likely 
differences in the capabilities of robot technologies, which have certainly been improving along a 
learning curve throughout the period we consider. Additional complications can be posed by the 
presence of reversals: firms that during the full period of observation switch in and out of treatment. 
While this circumstance should not be too common when robotisation implies large organisational 
changes and initial fixed costs, we cannot exclude that firms opt out from robotisation – e.g. due to 
inferior performances, compared to expectations.   

We implement a series of checks to make sure that our results are robust to these issues. 
Regarding the first point, we follow Callaway and Sant’Anna (2021) who propose an approach which 
first estimates the individual cohort-time-specific treatment effects, thus allowing for treatment effect 
heterogeneity, and then aggregates all the possible 2 X 2 comparisons to produce measures of the overall 
(properly weighted) treatment effects. As far as the second issue is concerned, we rely on the estimator 

                                                
10 Given the relatively long time period we consider in our analysis, the assumption of time invariance of the 
unobserved heterogeneity component may be far-fetched. In a set of unreported regression – which remain 
available upon request – we have run our analysis on four shorter time periods covering three (4-year long) waves 
of the ESEE panel each (1991-2002; 1994-2006; 1998-2010; 2002-2014). Results yield the same conclusions of 
the baseline evidence presented in Section 4.1.  
11 Industries are defined at the NACE (rev. 2) 2-digit code level. Notably, we use the aggregated version of 
industrial classification provided in ESEE data (20 manufacturing industries overall). Please see 
https://www.fundacionsepi.es/investigacion/esee/en/svariables/disponibles.asp. 
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proposed by de Chaisemartin and D’Haultfoeuille (2022). The authors develop an approach for 
estimating treatment effects under treatment timing variation and treatment effect heterogeneity under 
more general settings, where treatments may be reversible. 
 

4. Results 

4.1 The relation between robotisation and product innovation 
 
Our baseline evidence rests on the results emerging from the staggered timing DiD model, discussed in 
Section 3. We rely on these estimates to provide an account of whether there is an association between 
robot adoption and the propensity to introduce a new product or the number of new products introduced 
by the firm. These results are reported, respectively, in Column 1 and 2 of Table 2.  

Before proceeding, it is important to consider how we verify the plausibility of the parallel trend 
assumption. In general, we follow recent studies (Roth 2022; Deryugina 2017) to examine the (joint) 
significance of the 𝛽௣ coefficients, which capture the differences between adopters and non-adopters 

before the actual adoption takes place. Surely, individual pre-treatment coefficients can reveal milder 
violations of the assumption. Nevertheless, we conduct an additional robustness exercise, using the 
approach proposed by Roth (2022)12, which checks the stability of the evidence in the presence of a 
violation of the pre-trend assumption.13 For the sake of completeness and transparency, in Table A 1 
we report, for each regression in our study, the number of pre-treatment coefficients significant at the 
95% level, the joint significance of pre-treatment coefficients and the value of the likelihood ratio 
proposed by Roth (2022). A ratio below 1 signals a lower probability of obtaining the coefficients under 
the chosen pre-trend compared to a parallel trend, so it signals the plausibility of the parallel trend 
assumption. To anticipate an important element related to the robustness of our results, one can notice 
how, even when there are signs of violation of the parallel trend assumption based on the significance 
of the pre-treatment coefficients, the likelihood ratio based on Roth (2022) always supports the 
credibility of our evidence.  

                                                
12 Roth (2022) provides evidence that pre-trend testing is statistically under-powered and that conditioning the 
estimation of a treatment effect on passing a pre-trends test can actually lead to estimation bias. His approach 
allows researchers to check the sensitivity of results to plausible violations based on a hypothesised trend. We 
implement this method to examine the sensitivity of our estimates to potential violations of the parallel trend 
assumption.  
13 This is the ratio of the likelihood of observing the coefficients from the estimates conditional on having a 
hypothesised pre-trend over the likelihood of observing them under parallel trends. This indicates how much less 
likely are the observed coefficients under the hypothesised pre-trend compared to under parallel trend. A ratio 
below 1 signals a lower probability of obtaining the coefficients under the chosen pre-trend compared to a parallel 
trend, so it signals the plausibility of the parallel trend assumption. In the absence of theoretical expectations on 
the shape of the trend, we employed the trend that best mimics the coefficients plot, which is a nonlinear quadratic 
trend (inverted U-shape). We further corroborate the robustness of the results from the Roth test, by checking the 
sensitivity of the test results to different functional forms and different power levels of the test. For the two 
specifications for the baseline regression model (Table 2), we computed the value of the Roth likelihood test for 
power levels from 30% to 90% in increments of 10 percentage points. The power level of the Roth test is the 
probability one would find a significant pre-trend under the hypothesised pre-trend. For example, in the linear 
trend case the lower the power level the flatter is the trend line, so there is a low probability of pre-trend but also 
higher probability of no significant effect in case the hypothesised trend is true. For each of the two models Figure 
A1 reports the value of the likelihood test against the respective power level for each hypothesised trend. The 
trends are: 1) linear; 2) quadratic; 3) cubic; 4) quadratic polynomial I (𝑦 = −𝑏𝑥ଶ + 𝑏𝑥) quadratic polynomial II 
(𝑦 = −𝑏𝑥ଶ − 𝑏𝑥). Figure A1 plots the results: no matter what shape or power level we assume, the Roth test is 
always below the cut-off point of 1, thus supporting our results. 
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Figure 1 provides a graphical representation of the treatment coefficients from Table 2: pre-
treatment coefficients are neither on an upward or downward trend prior to first adoption, supporting 
the assumption that treated and control groups are on parallel trends prior to treatment. The p-values 
associated to the joint significance of the pre-treatment coefficients (0.171 and 0.146, respectively) 
provide support to the implementation of our approach. In relation to the actual effect of robotisation 
on product innovation, our results point to a negative effect which persists after two periods (8 years) 
from the actual adoption; this is noticeable for both the propensity and the number of product 
innovations.14 The magnitude of the effect ranges from -5.2 to -14.4 percentage points in the case of the 
effect on the propensity and from -9.4% to -13.8% in the case of the effect on the number of new 
products introduced by the firm on the market.15  

We check the robustness of this evidence. We envisage two problems associated to our baseline 
results. First, our estimates would be biased in presence of variation in treatment timing and treatment 
effect heterogeneity (e.g. Sun and Abraham 2021). In our case, firms can adopt robots at different points 
in time and this can possibly involve different cohorts of robots, with different capabilities. Second, a 
bias may emerge due to the presence of reversals (e.g. de Chaisemartin and D’Haultfoeuille 2022): that 
is, at some point firms may decide to opt-out from robotisation. For the first point we resort to the 
estimator proposed by Callaway and Sant’Anna (2021), while for the problem related to the presence 
of reversals, we rely on the estimator proposed by de Chaisemartin and D’Haultfoeuille (2022). Results 
for Callaway and Sant’Anna (2021) and de Chaisemartin and D’Haultfoeuille (2022) estimators are 
shown in Figure 2 and Figure 3 respectively.  

As far as the former is concerned, we can graphically notice the absence of clearly ascending 
or descending trends before the adoption. In addition, the use of this technique is corroborated by the 
fact that the average pre-treatment coefficients are non-significant (with p-values of 0.229 and 0.442 
respectively) for both the estimations, which are focusing on the probability and the number of new 
products. The emerging evidence supports the presence of a negative effect of robotisation on product 
innovations that persists up to 8 years after the adoption. In the case of the results concerning the 
probability of product innovation, we notice that the coefficient of the effect at the year of adoption, 
while being negative is marginally not significant (p-value 0.111).  

When we implement the estimation proposed by de Chaisemartin and D’Haultfoeuille (2022), 
we still confirm the negative effect of robotisation and the fact that this tends to persist even after the 
adoption. Although we notice a mild violation of the parallel trend assumption, we still notice an effect 
that is negative and persistent up to 2 periods (8 years) after the adoption.16 

The validity of our staggered DiD estimation hinges on the parallel trend assumption. To further 
support the credibility of our main result, we employ a different econometric approach based on the use 
of an instrumental variable, which is not subject to this assumption.17 Our instrumenting approach relies 

                                                
14 We cannot exclude the presence of an anticipation effect given the significance of the coefficient at p=-2. 
However, the global test of joint significance of pre-treatment coefficients as well as the likelihood ratio test based 
on Roth (2022) and the sensitivity analysis we perform (see Table A1 and Figure A1) support the credibility of 
our evidence vis a vis the parallel trend assumption. 
15 In a set of unreported regressions – which remain available upon request – we have considered whether this 
effect depends on the type of product innovation introduced. That is, we looked at the probability to introduce 
new products associated to new materials, new components and new functions. Results show that it is the 
probability to introduce new components which is mainly driving the result on the overall probability to introduce 
innovation; the negative the effect of robotisation on the probability to introduce new materials and new functions 
materialises two periods after adoption. 
16 In the case of the effect on the number of innovations, the effect of the 1-period lagged treatment, albeit negative, 
is not significant, unlike the effect after 2 periods (i.e. up to 8 years).  
17 Such an approach turns out to provide robustness to our evidence also in light of the possible simultaneity in 
the focal firm’s decisions regarding innovation and robotisation. We would like to thank one of the referees for 
pointing this out. 
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on the adoption of robots in the same sector of the focal firm, but in export destination countries. The 
instrument is built as follows. We take the number of operating robots in EU and OECD countries in 
the same industry of the focal firm and we weight it by the firm’s export intensity to EU and OECD 
markets (i.e. the share of export to these destination countries over the total revenues). Our identification 
strategy rests on the following intuition. The adoption of robots by competitors in the export destination 
countries signals the availability of robot technologies that are suitable for the industrial applications in 
a given sector. Moreover, it should trigger the adoption of robots by the focal firm, which attempts to 
stay competitive on its destination markets. Foreign adoption is expected to affect product 
innovativeness, only through the consequent decision of the focal firm to robotise (or not). Table 3 
shows the results of our estimation, we allow one lag (i.e. 4 years) to occur between robot adoption and 
product innovation. 18  Columns 1 and 2 reports the results of a benchmark OLS fixed effect (FE) 
regressions, while Columns 3, 4 and 5 refer to IV estimates. At the outset we should notice that the first 
stage estimates provide reassuring confirmation that the instrument is not weak, given the values of the 
Kleibergen-Paap F. When comparing FE and IV coefficients the latter seem to be greater in absolute 
value, meaning that IV corrects for an upward bias, which is expected, due to the already discussed 
selection of firms into robotisation as well as potential unobservables that may jointly shape robotisation 
and innovation strategies. Hence, we confirm the negative effect that robotisation seem to have on both 
the indicators we use to capture product innovation. Our identification strategy may suffer from 
endogeneity in case foreign adoption of robots is driven by the focal firm’s one. This could happen 
when the focal firm can exert a market power in the foreign markets that is large enough to shape the 
foreign competitors’ behaviour. To account for this, we exclude from our analysis top exporters (1% 
and 10% respectively). Results are shown in Table 4 and confirm our evidence on the negative effect 
of robotisation on product innovation.19    

Our IV could potentially account for simultaneity in the decision to robotise and innovate; 
however, due to lack of data we are unable to directly control for the omission of managerial choices 
which could affect both the outcome and treatment variables. While the literature shows that managers’ 
styles tend to be quite sticky (Bertrand and Schoar 2003), possible variations in the firm strategies 
brought about by a company change in management is something we cannot control for. Instead, we 
can provide some discussion looking at how management quality relates to innovation, on the one hand, 
and robotisation, on the other. Extant evidence suggests the presence of a positive relation between 
management quality and firm performance, both in terms of productivity and innovation (see among 
others Arvanitis et al. 2016; Bloom et al. 2013; Beugelsdijk 2008; Schneebacher et al. 2021). As far as 
the relation with robots, the literature is scant. By adopting an exploratory approach, we conducted a 
descriptive analysis on the basis of the data coming from the World Management Survey (WMS; Bloom 
et al. 2021)20 to verify the existence of such positive link between ‘good management’ and robot 
adoption for Spain. We employed IFR sectoral data combined with WMS data. A correlational analysis 
shows that a positive association between management quality and robotisation does exist (ρ=0.448, t-
stat=7.299). Based on the above, we deem that, if anything, our estimates would be upward biased (less 
negative), leaving unaltered our evidence on the negative influence of robotisation on innovation. This 

                                                
18 In a set of unreported (but available upon request) regressions we re-run the same IV estimates with a different 
lag structure. While using no lags, the instrument turns weak (F is lower than 10) hampering any credible evidence. 
When using 2 lags, the emerging evidence is in line with the IV estimates we report here: negative effects are 
found, albeit non-significant for the probability of product innovation. 
19 Our identification strategy may be challenged also by possible productivity shocks that affect export (which is 
one of the element of our instrument) and the decision to innovate. In a set of unreported (but available upon 
request) estimations we made sure that the stability of the results does not suffer from the inclusion of productivity 
as a control.  
20 https://worldmanagementsurvey.org/ (last accessed 7 December 2023). 
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evidence constitutes only a primer: more robust controls should come from more suitable firm-level 
data on strategic decisions, which we are unable to deploy in this study.   
 
4.2 Heterogeneity and channels 
 
Given the baseline evidence, we now provide a tentative exploration of the economic channels that 
could help explain the relation between robotisation and innovation.  
 
Firm size. We first consider whether size plays a role. We start with the link between robot adoption 
and innovation, once again captured by the propensity (Error! Reference source not found.) and the 
number of product innovations (Error! Reference source not found.). While the p-value of the joint 
significance of the treatment parameters casts doubts on the capacity to meet the parallel trend 
assumption for medium-sized firms (Column 2 of Error! Reference source not found.), these doubts 
are relaxed by the likelihood ratio derived from Roth (2022) (see Table A 1). We also observe that it 
is specifically large companies that are characterised by a negative association between robotisation and 
the probability of introducing a new product (Column 3 of Error! Reference source not found.). As 
in the baseline regression, this effect persists after the treatment (up to 8 years after). For small firms 
such an effect is not found (Column 1 of Error! Reference source not found.). A similar evidence, 
without any concern regarding the parallel trend assumption for medium-sized firms, can be found when 
considering the effect on the number of new products introduced by the company (Error! Reference 
source not found.). All in all, the negative and persistent effect is found for large companies. 
 
Firm age. We also consider what is the role played by firm age21, in order to ascertain whether the 
tension between robotisation and innovativeness unfolds in young or established firms. Once again, we 
distinguish between the two main innovative outcomes: the propensity (Error! Reference source not 
found.) and the number of product innovations (Error! Reference source not found.). Quite 
consistently, the persistent negative effect is mainly traceable among established companies. Mid-age 
and old firms experience a negative and persistent association between robot adoption and the 
probability to introduce product innovations, while mid-age firms display also a persistent reduction in 
the magnitude of product innovation. 
 
Sector. Finally, in Table 9, we look at whether it is the sector in which the firm operates that determines 
the relationship between robot adoption and innovation We find that firms operating in high-tech sectors 
(Column 3) face a more tenuous tension between robotisation and propensity to introduce a new product 
than firms operating in mid- (Column 2) and low-tech sectors (Column 1).22 In fact, the negative and 
lagged effect seems to characterise in particular low-tech industries, albeit a violation of the parallel 
trend assumption would call for caution. A similar effect emerges for the number of product innovation; 
no persistent negative effect is found for high-tech companies (Column 6), and a mild negative effect 
characterise mid-tech sectors (Column 5). Once again, despite the possible violation of the parallel trend 
assumption, low tech sectors (Column 4) seem to be characterised by a clearly negative and persistent 
effect of robot adoption. However, it is important to stress that notwithstanding the traces of violations 
in the parallel trend assumption, the value of the likelihood ratios following Roth (2022) (see Table A1) 
supports the robustness of the results just presented. To capture additional nuances of this channel, we 

                                                
21 In a set of unreported regressions, which remain available upon request, we consider whether the inclusion of 
age as an additional control affect our estimates. Results are very much aligned with the baseline evidence reported 
in Section 4.1. 
22 Industry classification follows OECD (2016) and aggregates medium-high tech and medium-low tech due to 
the low number of cases. 
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separate firms operating in robot intensive vs non robot intensive industries. We rely on IFR data and 
define non-robot intensive (robot intensive) industries as those where the operational stock of industrial 
robots is below (above) the world median. Table 10 shows the results for our outcome variables (the 
probability and the number of product innovations) for the two sub-samples: firms operating in robot 
intensive industries (Columns 1 and 3) and firms operating in non-robot intensive industries (Columns 
2 and 4). We find that the tension between innovation and robotisation is much less severe in the case 
of robot-intensive sectors. While we observe a possible violation of the parallel trend assumption for 
non-robot intensive industries when employing the probability of innovation as dependent variable, 
again the ratio proposed by Roth (2022) supports our evidence.  
 

5. Discussion 

We explore some arguments that can help us rationalise our findings. These insights are of speculative 
nature, but aim at connecting our findings with more general mechanisms at work in the interplay 
between process and product innovation, as well as to guide further analysis.  

Robot adoption influences the process-product innovation trade-off. Robotisation and 
product innovation might be processes that respond to different strategic logics and incentives within a 
firm. A product innovation strategy responds economies of variety and to the logic of value creation 
and capture, while robotisation, as process innovation, aims at cost reduction and can be justified by 
cost-spreading incentives (Cohen and Klepper 1996b). Robot adoption can be seen as an instantiation 
of localised technical change (Atkinson and Stiglitz 1969): hence, its role might be confined to the 
organisation of operations along the production process (Hopp and Spearman 2011) without spilling 
over to or influencing other firm activities. In this case, even in absence of a trade-off, robots might not 
induce any enabling effect beyond their limited domain of use.  

While being related to different strategic levers, the two activities might compete for the same 
pool of resources inside a firm. Given this allocation problem, a company will likely take decisions on 
robotisation and product innovation simultaneously, as part of a broader strategy for the medium- and 
long-term. This can turn product and process innovation decisions into complement or substitutes, 
depending on the nature of their interdependence (Miravete and Pernias 2006). If there exist 
supermodularity in firms’ strategies, more process innovation could, theoretically, lead to more product 
innovation – precisely the enabling effect expected by a part of the literature on robot technology. 
However, in our baseline analysis, only a negative (and persistent) relationship between robotisation 
and product innovation emerges. This indicates that robotisation and product innovation are substitutes. 
Substitutability might depend on the fact that, given limited (financial, managerial, time) resources, 
firms face an allocation problem choosing between two alternative strategies, namely whether to 
purchase and implement robots, or to develop new or improved products. Alternatively, substitutability 
can emerge if a firm’s long-term strategic decision such as that on the intensity of product innovation 
is rebalanced given the impact of process technology (here, robots) on production. In this context, two 
mechanisms can be relevant to shape a firm’s decision-making. The first is knowledge-based: as robot 
technology is not ‘plug-and-play’, adoption might require organisational adjustments, routines’ 
updating, and the formation of specific – technical, planning, and managerial – capabilities, which might 
increase returns to accumulation of equipment-specific knowledge and imply dis-investments from 
product-innovation-related activities. The re-direction of a firm’s focus (investment) might potentially 
occur via flows of labour. On the one hand, the decrease of labour costs for the factory floor due to 
robotisation could make room for expanding employment in high-skills functions, including the design 
and prototyping of new products. On the other hand, the outflow of labour might include workers 
employed in different, non-overlapping activities, including some involved in product innovation. This 
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will happen when the task vector composing some occupations features indivisibilities – that is, 
activities related to both process and product innovation. In this case, the outflow of talent induced by 
the adoption of process technology might spill over to loss of talent in product-related tasks: robotisation 
might improve firms’ exploitation capabilities (better processes) while de-skilling them with respect to 
exploration (new ideas and designs) capabilities. Unfortunately, our data does not allow us to check for 
this particular channel. All in all, this first dynamics fits with what is suggested in the model by Li and 
Ni (2016), where the two activities become substitutes if the rate of knowledge accumulation is higher 
for process innovation – in our case, after robot adoption. In a nutshell, the take home message is that 
higher marginal returns in fine-tuning robots steer away efforts from product innovation.  

A second mechanism is that illustrated by the received literature on industry evolution (Klepper 
1996; 2015). While transitioning from birth to maturity, an industry will increase the resources allocated 
to process innovation and decrease those spent to introduce new products. The reason for that stands in 
the endogenous interplay between the incentives faced by entrants and incumbents. New firms need to 
produce (relatively) more product innovation to extract a margin from the market price; (surviving) 
established producers expand capacity in their competition for the market and, therefore, compress 
profit margins as quantity produced increases and price decreases. Over time, incumbents will grow 
larger and extract value mostly from the production of ‘standard’ products at scale. While entry will 
stop due to increasing barriers (it becomes harder and harder to make a profit out of the introduction of 
new products), larger, established firms will use technology for their primary goal – expand capacity. 
In this view, the product-process innovation trade-off is not linked to robots exclusively, but it is rather 
a feature of industry dynamics. The role played by robot technology is that of an ‘accelerant’, or a 
catalyst: robotisation can be seen as a type of process technology investment that reinforces firms’ 
incentive to focus on capacity expansion. Especially in case of growing demand, the strategy of 
established companies will be that of making production scale-up cheaper (through the adoption of 
robots) as rapidly as possible, rather than seek for new product variants. Hence, a diseconomy of scope 
emerges: in mature industries (as a large share of Spanish manufacturing industries are), it becomes less 
and less worth to pursue both product and process innovation. Robotisation accelerates the process, as 
it favours scale economies. This mechanism rationalises also our baseline findings on a persistent 
negative effect. Robot adoption shapes incentives by favouring a focusing on capacity over variety 
expansion (hence, the negative relationship with product innovation). In turn, this action places adopters 
on the rails of growth and the industry on that of life-cycle pattern; as the industry evolution unfolds, 
the forces against product innovation gain momentum, thus persisting in the long-run. The fact that, in 
a few cases, the negative effects appear a few years after robot adoption takes place could be the result 
of inertia in absorbing sunk investments (Peters and Trunschke 2021): older product innovation 
investments, or current investments already planned in the past generate novelties with a delay that 
overlaps with new process investments. When that is the case, the trade-off between product and process 
strategy is hidden for some years, until it starts to ‘bite’. Finally, we found evidence that the negative 
association between robot adoption and production innovation becomes less intense for firms that are 
active in robot-intensive industries. This result points at the possibility that a firm investing in robot 
technology within an environment that has already developed capabilities and complementary 
technologies to fine-tune robots could enjoy knowledge spillovers and stronger economies of learning. 
In this case, marginal returns in focusing exclusively on robots’ fine tuning will be lower, and the firm 
could continue allocating a share of resources to explore product variants. 

To provide descriptive support to the idea that a firm’s decision on robot adoption and product 
innovation are shaped by diseconomies of scope as the two strategies are substitutive, we compare the 
dynamics of machinery investments (as a proxy for capital-driven production scale-up) against the 
probability and number of product innovation. Figure 4 presents the two product innovation variables 
(count in logs and probability, on the right y-axis) against the (log) average investment in machinery 
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(on the left y-axis), capturing the change in investments. The time dimension is relative time to the robot 
adoption period (time zero). Figure 5 reports the share of peak investment in machinery against the 
same product innovation variables and time scale. The evidence suggests that larger changes and highest 
peaks in machinery investments occur, together with product innovations, in the period preceding robot 
adoption. The findings point at some form of anticipation effect before automation technology is 
deployed. A plausible interpretation is that firms develop a joint strategy on product portfolio and 
capacity expansion (i.e. equipment investments); robot technology is deployed to automate processes 
further, allowing to reap the return from previous product decisions rather than exploring new offerings 
(the diseconomy of scope effect we mentioned). Our descriptives and reasoning around diseconomies 
of scope align with the story of Miravete and Pernias (2006), according to which process and product 
innovation are complementary for smaller firms (that engage in demand-enhancing innovation and are 
more likely to adopt flexible manufacturing methods). 

In summary, the possibility to adopt robots refocuses firms’ attention and rebalances strategic 
decisions away from product innovation also in the long term, as it accelerates the movement along the 
industry life cycle, where firms growing larger and established companies have diseconomies of scope 
and economies of scale in expanding capacity. This interpretation squares well also with the findings 
on the specific channels driving our results. The effect we find is important in industries that are not 
high tech, as the forces in favour of scale are even stronger given that technology is not a key source of 
value as in high tech sectors. Contrariwise, firms in industries that are already robot-intensive face a 
less-binding trade-off, as they can internalise complementary investment and capacity-building from 
the external environment.  

Robots adopted are not flexible enough to enable product innovation. A more in-depth take 
at our results is to factor-in the level of sophistication of robots. The hypothesis that robotisation as 
process innovation could induce product innovation is grounded on an enabling view of advanced 
robots, in virtue of their malleability. The underlying mechanism would be that flexible production 
technology counteracts the pressure exerted by diseconomies of scope, making product variety 
economically and technologically viable.  

This will happen only if robots induce a pressure on firms’ routines and decision making strong 
enough to make variety expansion and product diversification more attractive than they accelerate mass 
production; otherwise, the prevailing pressure would be to focus capacity on existing product designs, 
resulting in a stagnation or decrease in product innovation. An interpretation of this mechanism could 
be in terms of selection in the product portfolio: if robots are flexible enough, they will favour product 
repositioning; at the same time, they create an incentive for the exit of mature product lines that cannot 
be refreshed. In practice, studies found that robot technology is yet too inflexible. Perzylo and co-
authors (2019) suggest that “[t]oday’s industrial robots have been designed for a different scenario: 
large-scale, high-throughput manufacturing systems that produce one specific product (or a small set of 
quite similar variants) at very high quantities and with constant quality.” This reinforces our claim that 
the robotisation-innovation nexus is shaped by industry-wide forces: small and medium-sized firms, 
usually very dynamic in introducing new product variants, do not have the resources and organisational 
capacity to adopt robots; large firms, instead, do adopt them, but they use robots as an output scale-up 
tool – hence, focusing production decisions towards quantity rather than variety. Instead of exerting 
pressure for change on a firm’s decision making and organisational routines, current robots introduce 
rigidities (e.g. dedicated structured IT departments working on robot maintenance and upgrading).  

Robots integrating more ‘cognitive’ capabilities, for example those powered by vision-
language-action (VLA) artificial intelligence models (Brohan et al. 2023) are not yet out ‘in the wild’, 
while collaborative robots (or co-bots), one the best candidates to the role of malleable equipment, still 
represent a minority share of robots adopted in firms (IFR 2020). Flexibility in robots’ capabilities is 
often related just to ‘technical’ flexibility. In other words, robots are increasingly malleable, but 
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malleability is possibly being used to make a single piece of equipment executing multiple functions in 
already existing production processes, rather than to experiment with new ones. For instance, 
autonomous mobile robots (AMR) used in manufacturing and services can move along paths that are 
non-constrained and adjust their course by employing machine vision software and being integrated in 
factory IoT networks (IFR 2021). While their adoption may have effects on business models, as they 
change the loci of value creation and capture, their malleability is related only to physical navigation – 
a property that does not intersect necessarily with dimensions involved in product innovation decision.  

Automation technology covered in our dataset very likely captures more traditional process 
improvements, in line with the quote of Perzylo et al. (2019) above. Following this argument, the 
negative effect we detect on product innovation might be due to the fact that we relate rather inflexible 
capital goods and product innovation, where the former create production economies only on those 
product lines that robots are designed to produce.  

6. Conclusion 

In this paper, we exploited firm-level data on robot adoption to study the unexplored relationship 
between robotisation and product innovation. As robotisation activities are a case of process innovation 
in which companies adopt flexible capital goods, our study is essentially assessing the nature of the 
interplay between recent vintages of process innovation and the introduction of new products. Given 
the debate around contemporary ‘smart’ technologies, one could hypothesise an enabling effect on 
product innovation, with entry of new varieties, designs, and in general differentiation aided by the 
availability of flexible production tools. However, process and product innovation investments descend 
from management (likely) joint strategies. We explored the possible mechanisms underpinning these 
simultaneous decisions to obtain a finer grained picture of the interplay between robotisation and 
product innovation, and the dynamic forces shaping it. 

Adopting a staggered timing DiD approach supported by instrumental variable regressions, 
instead of an enabling effect, we find that robot adoption associates with a negative effect on product 
innovation, even in the long run. The main channels for this effect relate to size, age, and sector of the 
firm. Larger, established and less technology-intensive companies are the main drivers of the results. 
We rationalise and interpret the findings by building on extant theories. We suggest that the substitutive 
relationship between process and product innovation could be rooted either in knowledge and 
capabilities’ accumulation incentives, with the higher marginal returns in fine-tuning robots following 
adoption steering away efforts from product innovation, or in the endogenous dynamics at the core of 
industry life cycles. In fact, as industries (and established firms) mature, capacity expansion becomes 
the preferable strategy compared to variety expansion – product innovation. Robotisation can be seen 
as an investment shock that accelerates the dynamics and strengthen diseconomies of scope in firms’ 
actions. From this angle, robotisation does nothing but reinforcing industries’ incentive to engage in 
their ‘classic’ strategy: exploiting dynamic economies of scale by focusing on cost reduction, which, in 
turn, allows for capacity expansion over a small set of (standardised) products. This interpretation is 
accompanied by descriptive evidence on the timing of average and peak machinery investments and 
product innovation. Respectively, the largest change in average investment in machinery (and peak 
shares) and in production innovation count and probability occur in the period before robot adoption: 
robot technology as an automation tool is likely used to scale up and support joint strategic choices on 
process and products, in turn moulded by sectoral pressures. Finally, robots – even when flexible – 
might display enabling capabilities only when exerting broader pressures on firms’ decision-making 
structures. Standardised (and less high-tech) mass production processes, as well as relatively rigid 
organisational routines might not be able to absorb robots' full transformative potential. We take a step 
further by discussing whether the types of robots under analysis are the ‘right’ robots to induce 
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innovation. In fact, not all instances of process mechanisation and robotic equipment might be malleable 
enough to shape technological opportunities and to affect the incentive to engage in new product 
discovery, design, and development. 

To our knowledge, this paper is the first expanding the literature on automation to the 
microeconomics of innovation. While exploratory in kind, our results suggest that some dynamic 
mechanisms are at work within companies when robots are used to re-organise production activities. It 
is important to remark that we cannot easily generalise the mechanisms we hypothesised. Spain (the 
focus of our investigation) is a peculiar context, which experienced a surge of robotisation in the 1990s 
in large part due investments by the automotive industry following a reorganisation of its supply chain. 
Hence, a particular attention should be devoted to the country-specific patterns of industrial 
transformation. Still, we maintain that the non-positive relationship between robotisation and product 
innovation can shed some light on how the most recent phase of mechanisation of production influences 
other key strategies at the firm level. 

It is important to stress again that most of the robotisation analysed in our empirical setting 
belongs to an early wave of robots used in the industrial plants. We made clear through the paper that 
our focus – constrained by data availability – has been on industrial robots. However, and generally 
speaking, the specific type of robots adopted do matter. Innovation-inducing, enabling robots are those 
characterised by the feature of being research tools, that is, proper ‘invention machines’, or inventions 
of methods of inventing (IMIs). These types of robots are used to aid the search process over, for 
example, the space of materials to be employed or the space of designs to be trialled and prototyped. 
Industrial robots such as the majority of those captured by our data might not completely lack the 
capability to enable new activities; however, they certainly are not IMIs, and have less scope for what 
concerns facilitating innovation-related search. New IMIs, such as some types of AI algorithms, are 
mainly software technologies, which are used in knowledge-intensive domains (and especially in 
services) and are not yet seamlessly integrated in the architecture and functionalities of industrial robots. 
By contrast, robots are employed in the manufacturing sector to increase the rate of execution and the 
precision of factory floor tasks under specific conditions (Combemale et al. 2021). Relatedly, another 
aspect of robot adoption we could not explore in this study is machine-machine substitution, with new 
robot vintages (likely more malleable) replacing and upgrading older (and likely less flexible) ones. 
This mechanism might influence the relationship between robotic automation and product innovation 
within the firm, turning substitutability into complementarity. While this possibility might not affect 
our results, that detect an average effect across the economy, it opens new interesting research questions.  

Finally, our analysis has implications for policy. This focus is important and timely, given the 
many policy packages around the tenets of Industry 4.0 discussed and implemented in different 
European countries23. In general, our results suggest that if the policy goal is to increase rate and 
direction of (product) innovation, then facilitating equipment acquisition through, for instance, loans or 
subsidies might not serve the purpose, or even generate negative effects, if these are used to push along 
the trajectory of process improvement, capacity expansion, and variety ‘pruning’. Interventions of this 
kind might succeed only when (i) they are easing the transition to the use of those specific robots that 
have true enabling capabilities and (ii) they are substantial enough to revert diseconomies of scope. 
Diffusion policies directed at smart robots, collaborative robots and similar flexible technologies should 
first assess whether firms really demand or seek to deploy this kind of capital goods, in order to avoid 
resource misallocation. Policy makers should be wary of the degree of sophistication of the production 

                                                
23 For example, the financial support for R&D&I in the field of Industry 4.0 in Spain 
(https://www.mincotur.gob.es/portalayudas/industriaconectada/Paginas/Index.aspx); the Industry 4.0, now 
Transition 4.0 programme, in Italy (https://www.mise.gov.it/index.php/it/transizione40) (last accessed 7 
December 2023).  
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technologies, in order to get a sense of the broad direction of the relationship between process and 
product strategies and, hence, to time actions appropriately. Policies of horizon scanning for new 
enabling technologies combined with surveys of firms’ needs, as well as policies helping the formation 
or hiring of skills matching product innovation tasks might be more effective in a context such as the 
one we studied.  

With this study, we highlighted a series of interesting facts and interpretations on the economic 
forces set in motion by the adoption of modern manufacturing capital. Hopefully, our exercise can 
inspire a broader research agenda for follow-up studies. For example, future research might focus more 
explicitly on whether current adoption involves recent waves of smart robots in order to capture 
additional nuances of the robotisation-innovation nexus. Another direction to follow is that of going 
more in-depth into the ‘nano’ dimension of what happens at the factory floor level where robots are 
implemented, using an ‘insider econometrics’ approach (Ichniowski and Shaw 2003). Insights from 
strategy research can shed light the effect of management changes that are likely to affect robot adoption 
and innovation. Along these lines, case studies focusing on how malleable capital is embedded into 
production as well as research and decision processes, such as the decision to abandon innovation 
projects, will help to shed further light on the relationship between robotisation and innovative 
activities. 
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Table 1: Summary statistics by robot adopters / non-adopters (n=8,757) 

 Non-adopters 
[n=5,827] 

Adopters 
[n=2,930] 

Difference test 

Number of product innovations 1.56 3.48 *** 
 [11.79] [26.86]  

New product introduction 0.15 0.28 *** 
 [0.35] [0.45]  

FTE employees 93.6 315.89 *** 
 [202.15] [649.76]  

R&D investment (thous.) 191.22 818.02 *** 
 [1253] [4047]  

Investment in machinery (thous.) 537.5 2443.6 *** 
 [2917] [8190]  

Foreign ownership (%) 9.6 22.33 *** 
 [27.49] [38.99]  

Export intensity 0.14 0.24 *** 
 [0.23] [0.26]  

Notes: The entries are means and standard deviations of firm level data for the estimating sample, comprising adopters (firms adopting robots 
in the period 1991-2016) and non-adopters (firms that never adopted robots during the period under consideration).  Test scores report 
significance levels of i) t-tests on the equality of means for FTE employees, R&D investment, investment in industrial equipment, Foreign 
ownership and Export intensity; ii) Wilcoxon-Mann Whitney test for the number of product innovations given the non-normally distributed 
nature of the variable and iii) chi-squared test for new product introduction due to the categorical nature of the variable. * p<0.10, ** p<0.05, 
*** p<0.01 
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Table 2: Effect of robot adoption on product innovation 

 # of product innovations New product introduction 
 (1) (2) 
5 periods before -0.029 -0.087 
 [0.071] [0.086] 
4 periods before -0.003 -0.137+ 
 [0.051] [0.078] 
3 periods before 0.012 -0.019 
 [0.036] [0.057] 
2 periods before -0.061* -0.091* 
 [0.027] [0.045] 
period of adoption -0.052** -0.099** 
 [0.020] [0.032] 
1 period later -0.084** -0.104* 
 [0.026] [0.049] 
2 periods later -0.144** -0.149* 
 [0.034] [0.063] 
R&D Exp 0.027** 0.032** 
 [0.002] [0.003] 
Size 0.026 0.015 
 [0.018] [0.029] 
Export Int 0.113 0.109 
 [0.069] [0.116] 
Foreign Own 0.009 0.011 
 [0.009] [0.016] 
Invest Mach 0.006** 0.003 
 [0.001] [0.003] 
Firm FE Yes Yes 
Year FE Yes Yes 
Industry-by-year FE Yes Yes 
Joint p-value 0.171 0.146 
N (firms X year) 8757 8757 
N (firms) 2456 2456 

Notes. The dummy indicating one-period prior treatment status is omitted from the regression as it acts as reference period. The dependent 
variables are: the probability to introduce (Column 1) and the log-transformed number of new (or significantly improved) products (Column 
2). Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** p<0.01 
  



28 

 

 
Table 3: IV estimates with firm and year fixed effects 

 OLS IV 
 New product 

introduction 
# product 

innovations 
First 
stage 

New product 
introduction 

# product 
innovations 

 (1) (2) (3) (4) (5) 
Robot stock X 
share of exports -
1 

  0.001**   

   [0.000]   
Robot adoption -1 -0.060* -0.049+  -0.604** -1.114** 
 [0.016] [0.022]  [0.097] [0.194] 
R&D Exp 0.026** 0.026** 0.003* 0.027** 0.024** 
 [0.001] [0.004] [0.001] [0.002] [0.001] 
Size 0.003 0.013 0.009 0.001 0.004 
 [0.011] [0.014] [0.012] [0.020] [0.023] 
Export Int 0.065 -0.029 -0.047+ -0.027 -0.021 
 [0.091] [0.040] [0.029] [0.071] [0.055] 
Foreign Own 0.005* 0.016* -0.011* -0.001 0.009 
 [0.001] [0.004] [0.005] [0.003] [0.006] 
Invest Mach 0.005** 0.005* 0.002 0.005** 0.005* 
 [0.001] [0.002] [0.001] [0.002] [0.002] 
Firm FE Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes 
Kleibergen-Paap 
rk Wald F 
statistic 

   74.892 74.892 

N (firms) 2449 2449 1351 1351 1351 
N (firms X year) 6262 6262 4260 4260 4260 

Notes. This table displays OLS and IV coefficient estimates using 1998-2016 data. Regressions are based on 6,262 (4,260) firm-year 
observations when estimating OLS (2SLS). Columns 1-2 report results of the OLS, Column 3 first stage regression and Columns 4-5 results 
for 2SLS.The 2SLS uses one lag of the IV to instrument the one lagged value of robot adoption. The dependent variables are: the probability 
to introduce new (or significantly improved) products in columns 1 and 4 and the log-transformed number of new (or significantly improved) 
products in columns 2 and 5. Estimates include controls for R&D expenditure, firm size, export intensity, foreign ownership, firm and year 
fixed effects. Driscoll and Kraay (1998) standard errors are in parentheses. + p<0.1, * p<0.05, ** p<0.01 
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Table 4: IV estimates with firm and year fixed effects, excluding top 1% and top 10% of exporters 

 Excluding top 1% Excluding top 10% 
 First 

stage 
New product 
introduction 

# product 
innovations 

First 
stage 

New product 
introduction 

# product 
innovations 

 (1) (2) (3) (4) (5) (6) 
Robot stock 
X share of 
exports -1 

0.001**   0.001**   

 [0.000]   [0.000]   
Robot 
adoption -1 

 -0.548** -0.931**  -0.712** -0.465* 

  [0.138] [0.184]  [0.266] [0.234] 
R&D Exp 0.003** 0.027** 0.024** 0.002 0.028** 0.023** 
 [0.001] [0.002] [0.001] [0.001] [0.002] [0.001] 
Size 0.012 0.005 0.009 -0.010 -0.019 -0.016 
 [0.014] [0.019] [0.022] [0.013] [0.017] [0.019] 
Export Int -0.025 -0.024 0.030 -0.047 -0.141 0.010 
 [0.034] [0.081] [0.062] [0.083] [0.095] [0.090] 
Foreign Own -0.009+ 0.000 0.017** 0.003 0.002 0.032** 
 [0.005] [0.003] [0.006] [0.008] [0.007] [0.008] 
Invest Mach 0.002 0.005** 0.004* 0.002 0.006** 0.004** 
 [0.001] [0.002] [0.002] [0.001] [0.002] [0.001] 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Kleibergen-
Paap rk Wald 
F statistic 

 122.869 122.869  23.593 23.593 

N (firms) 1334 1334 1334 1186 1186 1186 
N (firms X 
year) 

4190 4190 4190 3619 3619 3619 

Notes. This table displays IV coefficient estimates using 1998-2016 data. Regressions are based on 4,190 (3,619) firm-year observations when 
estimating 2SLS excluding the top 1% (10%) of exporters. Columns 1-3 report results excluding the top 1% and columns 3-6 excluding the 
top 10%. Columns 1 and 4 show results of first stage regressions. The 2SLS uses one lag of the IV to instrument the one lagged value of robot 
adoption. The dependent variables are: the probability to introduce new (or significantly improved) products in columns 2 and 5 and the log-
transformed number of new (or significantly improved) products in columns 3 and 6. Estimates include controls for R&D expenditure, firm 
size, export intensity, foreign ownership, firm and year fixed effects. Driscoll and Kraay (1998) standard errors are in parentheses. + p<0.1, * 
p<0.05, ** p<0.01 
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Table 5: Effect of robot adoption on probability of product innovation – firm size breakdown 

 New product introduction 
 (1) (2) (3) 
5 periods before -0.024 -0.144 0.213 
 [0.120] [0.097] [0.145] 
4 periods before -0.015 0.125 0.038 
 [0.065] [0.103] [0.111] 
3 periods before 0.070 0.078 -0.030 
 [0.057] [0.068] [0.071] 
2 periods before -0.046 -0.074 -0.010 
 [0.042] [0.056] [0.051] 
period of adoption -0.014 -0.057 -0.080* 
 [0.034] [0.036] [0.040] 
1 period later -0.031 -0.054 -0.159** 
 [0.044] [0.053] [0.056] 
2 periods later -0.067 -0.144* -0.260** 
 [0.056] [0.063] [0.082] 
R&D Exp 0.026** 0.029** 0.025** 
 [0.003] [0.003] [0.003] 
Export Int 0.038 0.227+ 0.119 
 [0.103] [0.135] [0.134] 
Foreign Own 0.058+ 0.011 0.004 
 [0.034] [0.014] [0.012] 
Invest Mach 0.004** 0.008 0.018** 
 [0.002] [0.005] [0.006] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.307 0.046 0.519 
N (firms X year) 4892 2145 1713 
N (firms) 1417 600 438 

Notes. Size classes refer to the average firm size over the period and are based on Eurostat (2021) definition: micro and small enterprises (less 
than 50 employees), medium-sized enterprises (50-249 employees) and large enterprises (250 or more employees). Regressions are based on 
the small firm sample in Column 1, medium-sized firms in Column 2 and large firm category in Column 3. The dummy indicating one-period 
prior treatment status is omitted from the regression as it acts as reference period. The dependent variables is in all columns the probability to 
introduce new (or significantly improved) products. Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** p<0.01 
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Table 6: Effect of robot adoption on the number of product innovation – firm size breakdown 

 # product innovations 
 (1) (2) (3) 
5 periods before -0.010 -0.156 0.085 
 [0.200] [0.133] [0.220] 
4 periods before -0.073 -0.075 -0.078 
 [0.096] [0.157] [0.153] 
3 periods before 0.119 0.003 -0.075 
 [0.095] [0.094] [0.123] 
2 periods before -0.022 -0.096 -0.101 
 [0.060] [0.084] [0.096] 
period of adoption -0.075 -0.036 -0.180** 
 [0.056] [0.050] [0.068] 
1 period later -0.073 -0.039 -0.205+ 
 [0.070] [0.088] [0.106] 
2 periods later -0.054 -0.095 -0.277+ 
 [0.075] [0.115] [0.161] 
R&D Exp 0.032** 0.033** 0.032** 
 [0.005] [0.005] [0.006] 
Export Int 0.100 0.143 0.056 
 [0.169] [0.200] [0.251] 
Foreign Own 0.004 0.047* -0.007 
 [0.073] [0.022] [0.024] 
Invest Mach 0.002 0.008 0.009 
 [0.003] [0.008] [0.009] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.462 0.535 0.689 
N (firms X year) 4892 2145 1713 
N (firms) 1417 600 438 

Notes. Size classes refer to the average firm size over the period and are based on Eurostat (2021) definition: micro and small enterprises (less 
than 50 employees), medium-sized enterprises (50-249 employees) and large enterprises (250 or more employees).Regressions are based on 
the small firm sample in Column 1, medium-sized firms in Column 2 and large firm category in Column 3. The dummy indicating one-period 
prior treatment status is omitted from the regression as it acts as reference period. The dependent variables is in all columns the log-transformed 
number of new (or significantly improved) products. Similar results are obtained when firm size within each category is controlled for. 
Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** p<0.01 
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Table 7: Effect of robot adoption on probability of product innovation – firm age breakdown 

 New product introduction 
 (1) (2) (3) 
5 periods before -0.148 0.101 -0.012 
 [0.112] [0.128] [0.118] 
4 periods before 0.069 -0.019 -0.044 
 [0.096] [0.085] [0.077] 
3 periods before 0.022 0.078 -0.030 
 [0.072] [0.060] [0.058] 
2 periods before -0.087+ -0.041 -0.053 
 [0.051] [0.047] [0.045] 
period of adoption -0.040 -0.047 -0.058+ 
 [0.038] [0.034] [0.034] 
1 period later -0.034 -0.095* -0.108* 
 [0.047] [0.047] [0.043] 
2 periods later -0.127* -0.168** -0.131* 
 [0.063] [0.053] [0.061] 
R&D Exp 0.030** 0.026** 0.025** 
 [0.004] [0.003] [0.003] 
Size 0.014 0.037 0.034 
 [0.034] [0.029] [0.037] 
Export Int 0.126 0.098 0.125 
 [0.136] [0.103] [0.127] 
Foreign Own -0.014 0.011 0.014 
 [0.022] [0.012] [0.013] 
Invest Mach 0.007** 0.005* 0.004 
 [0.003] [0.002] [0.003] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.166 0.212 0.824 
N (firms X year) 2333 3644 2776 
N (firms) 645 1047 763 

Notes. Regressions are based on firms in three different age classes which approximate the three terciles of the (weighted) age distribution: 
less than 7 years old (Column 1), 8-26 years old (Column 2) and more than 26 years old (Column 3). The dummy indicating one-period prior 
treatment status is omitted from the regression as it acts as reference period. The dependent variables is in all columns the probability to 
introduce new (or significantly improved) products. Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** p<0.01 
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Table 8: Effect of robot adoption on the number of product innovation – firm age breakdown 

 # product innovations 
 (1) (2) (3) 
5 periods before -0.119 -0.141 -0.012 
 [0.169] [0.119] [0.171] 
4 periods before 0.156 -0.225* -0.202+ 
 [0.188] [0.105] [0.103] 
3 periods before 0.063 -0.017 -0.047 
 [0.117] [0.093] [0.091] 
2 periods before -0.081 -0.052 -0.115 
 [0.088] [0.080] [0.074] 
period of adoption -0.028 -0.132* -0.098+ 
 [0.058] [0.054] [0.051] 
1 period later -0.029 -0.201* -0.064 
 [0.091] [0.079] [0.082] 
2 periods later -0.108 -0.259* -0.076 
 [0.116] [0.102] [0.108] 
R&D Exp 0.034** 0.029** 0.033** 
 [0.008] [0.004] [0.005] 
Size -0.075 0.056 0.023 
 [0.061] [0.040] [0.059] 
Export Int 0.350+ -0.264 0.404+ 
 [0.204] [0.179] [0.216] 
Foreign Own -0.005 0.022 0.009 
 [0.027] [0.023] [0.028] 
Invest Mach 0.005 -0.002 0.009+ 
 [0.004] [0.004] [0.005] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Industry-by-year FE Yes Yes Yes 
Joint p-value 0.334 0.210 0.144 
N (firms X year) 2333 3644 2776 

Notes. Regressions are based on firms in three different age classes which approximate the three terciles of the (weighted) age distribution: 
less than 7 years old (Column 1), 8-26 years old (Column 2) and more than 26 years old (Column 3). The dummy indicating one-period prior 
treatment status is omitted from the regression as it acts as reference period. The dependent variables is in all columns the log-transformed 
number of new (or significantly improved) products. Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** 
p<0.01 
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Table 9: Effect of robot adoption on product innovation – sectoral breakdown 

 New product introduction # product innovations 
 (1) (2) (3) (4) (5) (6) 
5 periods before -0.077 0.090 -0.040 -0.128 -0.009 -0.112 
 [0.105] [0.172] [0.102] [0.153] [0.120] [0.136] 
4 periods before -0.100 -0.053 0.213* -0.219* 0.003 -0.149 
 [0.070] [0.114] [0.086] [0.111] [0.148] [0.153] 
3 periods before 0.026 -0.018 0.016 -0.032 0.025 -0.069 
 [0.051] [0.072] [0.071] [0.092] [0.112] [0.096] 
2 periods before -0.087* -0.089 0.003 -0.172** -0.111 0.037 
 [0.040] [0.055] [0.050] [0.066] [0.094] [0.081] 
period of adoption -0.092** -0.010 -0.037 -0.143* -0.019 -0.109* 
 [0.030] [0.040] [0.034] [0.056] [0.048] [0.054] 
1 period later -0.119** -0.105* -0.022 -0.141+ -0.090 -0.065 
 [0.039] [0.052] [0.051] [0.081] [0.089] [0.084] 
2 periods later -0.119* -0.187** -0.146* -0.221* -0.169+ -0.010 
 [0.052] [0.058] [0.070] [0.101] [0.101] [0.127] 
R&D Exp 0.026** 0.026** 0.028** 0.037** 0.024** 0.030** 
 [0.003] [0.003] [0.003] [0.005] [0.005] [0.006] 
Size -0.002 0.042 0.056 -0.049 0.091+ 0.052 
 [0.026] [0.033] [0.039] [0.045] [0.047] [0.058] 
Export Int 0.142 0.215+ -0.010 0.320 0.159 -0.226 
 [0.104] [0.128] [0.127] [0.219] [0.162] [0.177] 
Foreign Own 0.011 0.024 -0.005 0.022 0.014 -0.014 
 [0.013] [0.018] [0.015] [0.029] [0.026] [0.029] 
Invest Mach 0.005** 0.006* 0.008* 0.004 0.003 -0.002 
 [0.002] [0.003] [0.004] [0.003] [0.003] [0.007] 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Industry-by-year FE Yes Yes Yes Yes Yes Yes 
Joint p-value 0.080 0.537 0.091 0.033 0.578 0.654 
N (firms X year) 4500 2111 2146 4500 2111 2146 
N (firms) 1282 584 590 1282 584 590 

Notes. Results are reported for firms in low-tech industries (Columns 1 and 4), for firms in medium-tech industries (Columns 2 and 5) and for 
firms in high-tech industries (Columns 3 and 6). Industry classification follows OECD (2016) and aggregates medium-high tech and medium-
low tech due to the low number of cases. The dummy indicating one-period prior treatment status is omitted from the regression as it acts as 
reference period. The dependent variables are: the probability to introduce new (or significantly improved) products in Columns 1-3 and the 
log-transformed number of new (or significantly improved) products in Columns 4-6. Standard errors clustered at the firm level are in 
parentheses. + p<0.1, * p<0.05, ** p<0.01 
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Table 10: Effect of robot adoption on product innovation – robot intensive vs non robot intensive 
industries 

 New product introduction # product innovations 
  (1)  (2)  (3)  (4)  
3 periods 
before  

0.036  0.126+  -0.151  0.103  

   [0.083]  [0.076]  [0.106]  [0.090]  
2 periods 
before  

-0.057  -0.072  -0.097  0.004  

   [0.064]  [0.053]  [0.094]  [0.090]  
period of 
adoption  

-0.050  -0.085*  -0.059  -0.123*  

   [0.038]  [0.033]  [0.049]  [0.052]  
1 period later  -0.063  -0.142**  -0.033  -0.206**  
   [0.049]  [0.048]  [0.072]  [0.074]  
2 periods later  -0.158*  -0.161*  -0.084  -0.222*  
   [0.061]  [0.063]  [0.098]  [0.109]  
R&D Exp  0.022**  0.027**  0.016**  0.030**  
   [0.004]  [0.003]  [0.004]  [0.004]  
Size  0.065+  0.014  0.007  -0.021  
   [0.035]  [0.035]  [0.051]  [0.046]  
Export Int  0.049  -0.060  0.088  0.068  
   [0.123]  [0.129]  [0.162]  [0.171]  
Foreign Own  0.013  -0.002  0.021  0.018  
   [0.019]  [0.017]  [0.029]  [0.021]  
Invest Mach  0.005+  0.006*  0.004  0.005  
   [0.003]  [0.002]  [0.004]  [0.004]  
Firm FE  Yes  Yes  Yes  Yes  
Year FE  Yes  Yes  Yes  Yes  
Industry-by-
year FE  

Yes  Yes  Yes  Yes  

Joint p-value  0.443  0.017  0.326  0.445  
N (firms X 
year)  

2299  3213  2299  3213  

N (firms)  779  1061  779  1061  
Notes. Regressions are based on 2,299 or 3,213 firm-year observations depending on the sample employed. Pre-treatments are consolidated 
to t-3 for older periods due to the low number of firms. The dummy indicating one-period prior treatment status is omitted from the regression 
as it acts as reference period. The dependent variable in Columns 1 and2 is the probability to introduce new (or significantly improved) 
products. The dependent variable in Columns 3 and 4 is the log-transformed number of new (or significantly improved) products. Columns 1 
and 3 report results for firms in robot intensive industries (industries with an operational stock of industrial robots below the world median), 
while Columns 2 and 4 report results for firms in non-robot intensive industries (industries with an operational stock of industrial robots greater 
or equal the world median). Standard errors clustered at the firm level are in parentheses. + p<0.1, * p<0.05, ** p<0.01  
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Figure 1. Estimated effect of robot adoption on product innovation 

 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or 
significantly improved) products (upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). 
The figure reports the coefficients and standard errors from Table 2 for the dummies of robot adoption: 5 periods before, 4 periods before, 3 
periods before 2 periods before, period of adoption, 1 period later and 2 periods later. The dummy indicating one-period prior treatment status 
is omitted as it acts as reference period. Controls include for the relevant period: firm size (the average number of full-time equivalent 
employees), the deflated total expenditure in R&D, the deflated investment in industrial machinery, the share of foreign ownership (both as 
direct and indirect foreign capital participation), the share of the total value of exports over sales, firm, year and industry-by-year fixed effects. 
Confidence intervals at the 95% level. 
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Figure 2: Estimated effect of robot adoption on product innovation - Callaway and Sant'Anna (2021) 
estimator 

 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or 
significantly improved) products (upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). 
The figure reports the coefficients and standard errors from the estimator of Callaway and Sant’Anna (2021) for the dynamic treatment effects: 
5 periods before, 4 periods before, 3 periods before, 2 periods before, 1 period before, period of adoption, 1 period later and 2 periods later. 
Controls include for the relevant period: firm size (the average number of full-time equivalent employees), the deflated total expenditure in 
R&D, the deflated investment in industrial machinery, the share of foreign ownership (both as direct and indirect foreign capital participation), 
the share of the total value of exports over sales, firm, year and industry-by-year fixed effects. Confidence intervals at the 95% level. 
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Figure 3: Event study with heterogeneous treatment effects robust to switchers - De Chaisemartin, and 
d'Haultfoeuille (2022). 

 
Notes. The figure shows the estimated effects of robot adoption on the two dependent variables: the probability to introduce new (or 
significantly improved) products (upper figure) and the log-transformed number of new (or significantly improved) products (lower figure). 
The figure reports the coefficients and standard errors from the estimator of De Chaisemartin,and d'Haultfoeuille (2022) for the dynamic 
treatment effects: 5 periods before, 4 periods before, 3 periods before, 2 periods before, 1 period before, period of adoption, 1 period later and 
2 periods later. Controls include for the relevant period: firm size (the average number of full-time equivalent employees), the deflated total 
expenditure in R&D, the deflated investment in industrial machinery, the share of foreign ownership (both as direct and indirect foreign capital 
participation), the share of the total value of exports over sales, firm, year and industry-by-year fixed effects. Confidence intervals at the 95% 
level. 
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Figure 4: Average investment in machinery (logarithm) and product innovation indicators 

 

 
Notes. This figure plots the log of the average investment in machinery (left y axis) and the log of the number and the probability of product 
innovation (right y axis) relative to the firms’ period of adoption (from 5 years before to 2 years after adoption).  
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Figure 5: Peak investments in machinery (share of firms) and product innovation indicators 

 
Notes. This figure plots the share of firms with peak investments in machinery (left y axis) and the log of the number and the probability of 
product innovation (right y axis) relative to the firms’ period of adoption (from 5 years before to 2 years after adoption). Peak investments 
are defined as the maximum value of investment in machinery by the firm over the overall observation period.  
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Appendix 

Table A 1 Summary of pre-period coefficients significance 

Table 
number 

Table description Column 
number 

Column 
description 

Dependent 
variable 

# significant pre-
periods at the 5% level 

Joint p-
value 

Likelihood ratio 
from Roth (2022)  

2 Baseline 1 Prob of product 
innovation 

Prob of product 
innovation 

1 0.171 0.009 

2 Baseline 2 # of product 
innovations 

# of product 
innovations 

1 0.146 0.001 

3 Firm size breakdown 1 small firms Prob of product 
innovation 

0 0.307 0.02 

3 Firm size breakdown 2 medium-sized 
firms 

Prob of product 
innovation 

0 0.046 0.04 

3 Firm size breakdown 3 large firms Prob of product 
innovation 

0 0.519 0.0004 

4 Firm size breakdown 1 small firms # of product 
innovations 

0 0.462 0.04 

4 Firm size breakdown 2 medium-sized 
firms 

# of product 
innovations 

0 0.535 0.08 

4 Firm size breakdown 3 large firms # of product 
innovations 

0 0.689 0.003 

5 Firm age breakdown 1 young firms Prob of product 
innovation 

1 0.166 0.02 

5 Firm age breakdown 2 medium-aged 
firms 

Prob of product 
innovation 

0 0.212 0.0005 

5 Firm age breakdown 3 old firms Prob of product 
innovation 

0 0.824 0.03 

6 Firm age breakdown 1 young firms # of product 
innovations 

0 0.334 0.001 

6 Firm age breakdown 2 medium-aged 
firms 

# of product 
innovations 

1 0.21 0.45 

6 Firm age breakdown 3 old firms # of product 
innovations 

0 0.144 0.17 
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7 Sectoral breakdown 1 low-tech firms Prob of product 
innovation 

1 0.08 0.16 

7 Sectoral breakdown 2 medium-tech firms Prob of product 
innovation 

0 0.537 0.008 

7 Sectoral breakdown 3 high-tech firms Prob of product 
innovation 

1 0.091 0.0003 

7 Sectoral breakdown 4 low-tech firms # of product 
innovations 

2 0.033 0.25 

7 Sectoral breakdown 5 medium-tech firms # of product 
innovations 

0 0.578 0.0003 

7 Sectoral breakdown 6 high-tech firms # of product 
innovations 

0 0.654 0.1 

8 Breakdown by industrial 
robot intensiveness 

1 robot intensive 
industries 

Prob of product 
innovation 

0 0.443 0.02 

8 Breakdown by industrial 
robot intensiveness 

2 non robot intensive 
industries 

Prob of product 
innovation 

1 0.017 0.005 

8 Breakdown by industrial 
robot intensiveness 

3 robot intensive 
industries 

# of product 
innovations 

0 0.326 1.87 

8 Breakdown by industrial 
robot intensiveness 

4 non robot intensive 
industries 

# of product 
innovations 

1 0.445 0.001 

Notes: The table shows the number of pre-period coefficients that are significant at the 95 percent level, the p-value for a chi-squared test of joint significance, and the value of the likelihood ratio as proposed by Roth 
(2022) at the 90% power level (the probability one would find a significant pre-trend under the hypothesised pre-trend). The likelihood ratio test in Roth shows the likelihood of observing the coefficients from our 
estimates conditional on having an inverted U-shaped hypothesised pre-trend over the likelihood of observing them under parallel trends. This indicate how much less likely are the observed coefficients under the 
hypothesised pre-trend compared to under parallel trend. A ratio below 1 signals a lower probability of obtaining the coefficients under the chosen pre-trend compared to a parallel trend. 
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Figure A 1: sensitivity analysis of Roth test for baseline models 

 
Notes. The figure shows sensitivity analysis for different functional forms and different power levels of the Roth test for the baseline regression 
model (Table 2). Figure a (b) plots, for the model estimating the probability (number) of product innovations, the value of the Roth likelihood 
test (i.e. likelihood of observed coefficients under the hypothesised trend over the likelihood of observed coefficients under parallel trend) 
against different power levels (i.e. the probability one would find a significant pre-trend under the hypothesised pre-trend) for different 
hypothesised trends(linear, quadratic, cubic, quadratic polynomial I and quadratic polynomial II). 

 


