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Autophagy (ATG) and the Ubiquitin Proteasome (UP) are the main clearing systems of
eukaryotic cells, in that being ultimately involved in degrading damaged and potentially
harmful cytoplasmic substrates. Emerging evidence implicates that, in addition to
their classic catalytic function in the cytosol, autophagy and the proteasome act
as modulators of neurotransmission, inasmuch as they orchestrate degradation and
turnover of synaptic vesicles (SVs) and related proteins. These findings are now defining
a novel synaptic scenario, where clearing systems and secretory pathways may be
considered as a single system, which senses alterations in quality and distribution (in
time, amount and place) of both synaptic proteins and neurotransmitters. In line with
this, in the present manuscript we focus on evidence showing that, a dysregulation of
secretory and trafficking pathways is quite constant in the presence of an impairment
of autophagy-lysosomal machinery, which eventually precipitates synaptic dysfunction.
Such a dual effect appears not to be just incidental but it rather represents the natural
evolution of archaic cell compartments. While discussing these issues, we pose a special
emphasis on the role of autophagy upon dopamine (DA) neurotransmission, which is
early affected in several neurological and psychiatric disorders. In detail, we discuss how
autophagy is engaged not only in removing potentially dangerous proteins, which can
interfere with the mechanisms of DA release, but also the fate of synaptic DA vesicles
thus surveilling DA neurotransmission. These concepts contribute to shed light on early
mechanisms underlying intersection of autophagy with DA-related synaptic disorders.
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INTRODUCTION

The intimate interplay between Autophagy (ATG), Ubiquitin Proteasome (UP) and
neurotransmission has assumed increasing interest in the context of several neurodegenerative
disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease
(HD), which fit the definition of ‘‘synaptopathic proteinopathies.’’ A common hallmark underlying
the physiopathology of parkinsonism is the early disruption of dopamine (DA) neurotransmission,
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which is also implicated in numerous neuropsychiatric disorders
including schizophrenia and drug addiction (Belujon and
Grace, 2017; Weinstein et al., 2017; Limanaqi et al., 2018).
It is well established that in DA-related disorders the highly
reactive nature of DA provides per se a basis for the high
vulnerability of DA-containing neurons to oxidative stress-
related damage, a context in which the proteolytic role of
ATG and UP is crucial (Lazzeri et al., 2007; Pasquali et al.,
2008). In support to this view, recent studies confirmed that
genetic or pharmacologic inhibition of ATG in DA neurons
fully reproduces PD and exacerbates the neurotoxic effects of the
abused drug methamphetamine (Castino et al., 2008; Lin et al.,
2012; Sato et al., 2018). Nonetheless, a novel scenario is emerging
in which, beyond its well-established role in neurotoxicity-
related mechanisms, ATG plays a key role in neurotransmitter
release at either central or peripheral synapses (Hernandez et al.,
2012; Binotti et al., 2015; Shen et al., 2015). In such a context,
understanding the modulatory dynamics behind DA release
is key, since DA represents a quintessential neurotransmitter
implicated in regulating brain functions such as movement,
cognition, attention, memory and reward (Sillitoe and Vogel,
2008), which are similarly affected in PD, schizophrenia and drug
addiction. Therefore, studying the implication of ATG in early
events underlying altered DA-neurotransmission, especially DA
synaptic vesicles (SVs) turnover and DA release may offer
insights on the physiopathology of DA-system disorders. In
the light of these considerations, the present review article
focuses on the major findings dealing with the role of ATG in
modulating neurotransmission while posing a special emphasis
on those related with DA release. In keeping with this, mTOR
(mammalian Target of Rapamycin) which is a main upstream
regulator of both ATG and UP (Zhao et al., 2015; Lenzi et al.,
2016), has been widely implicated in synaptic plasticity and
DA-related brain disorders (Lipton and Sahin, 2014; Ryskalin
et al., 2018b). These findings may contribute to unravel novel
neuroprotective strategies in ‘‘mTORopathies’’ specifically aimed
to counteract synaptic toxicity.

AUTOPHAGY AND THE SECRETORY
PATHWAY

Presynaptic neurotransmitter release is finely tuned by the
secretory cycle of SVs, which includes key steps ranging from SV
formation to SV’s protein sorting, loading of neurotransmitters
within SVs, and, once at the active zone: SV docking,
priming, and Ca2+-driven exocytotic release; this is eventually
followed by SV endocytic recycling and/or degradation (Südhof,
2004; Rizzoli, 2014). Such a complex cycle entails dynamic
interactions of multiple machineries of both the secretory-
trafficking pathways andATG, which are now starting to shape as
a single system operating either in the cytosol (just as classic ATG
machinery) or at the synapse (to tune neurotransmitter release
and again acting as a protein-clearing system; Farhan et al., 2017;
Vijayan and Verstreken, 2017). In line with this, a dysregulation
of secretory pathways is quite constant in the presence of
an impairment of ATG-lysosomal function and vice-versa

FIGURE 1 | Similarities between the secretory pathway and autophagy (ATG).
The Endoplasmic Reticulum (ER), Golgi and endosomes are sources for both
ATG and synaptic vesicles (SVs). Once ATG is initiated upon UNC51/Atg1,
ATG9 shuttles towards nascent ATG vacuoles where key proteins like
Atg8/LC3 are recruited. From these same very same sources dopamine
(DA)-SVs originate by membrane budding. In addition, these organelles
provide proteins, which are key for both SVs and ATG. These include DA-SV
specific proteins such as the vesicular monoamine transporter type-2
(VMAT-2; which allows DA storage), but also the V-ATPase (which is essential
for intraluminal acidification of both ATG-lysosomes and SVs) and the Soluble
NSF (N-ethylmaleimidesensitive factor (SNARE) proteins SNAP, VAMP,
Syntaxin (STX), which are essential for SV fusion and release but also for the
maturation and homotypic fusion of ATG vacuoles. Similarly, UNC51/Atg1 is
key not only to initiate and translocate ATG, but also to promote SVs
translocation by phosphorylating the kinesin-1 adaptor UNC76.

(Shen et al., 2015). ATG intersection with secretory pathways is
grounded on mutual interactions both at ultrastructural and
molecular levels. In fact, several organelles of the secretory
pathway provide membrane sources for both ATG vacuoles
and SVs (Hannah et al., 1999; Longatti and Tooze, 2012;
Rizzoli, 2014; Bento et al., 2016; Figure 1). In general, SVs
originate by budding from these sources, which correspond to
those where ATG initiation takes place. In fact, DA-SVs are
represented primarily by Golgi-derived small SVs (SSVs) and
large dense core vesicles (LDCVs), as well as tubule-vesicular
structures resembling smooth ER stores (Nirenberg et al., 1996).
Such a remarkable overlapping in vesicle sources for ATG and
SVs may be regulated by similar molecular complexes. For
instance, ATG initiation is promoted by UNC51-like kinase
1/2 complex (the C. Elegans homolog of the mammalian
ULK1/2). Remarkably, a loss of UNC51 apart from impairing
ATG initiation also dampens the axonal transport of SVs. In
fact, a loss of UNC51 impairs the activity of UNC76 kinesin
adaptor protein (Toda et al., 2008), which moves SVs towards
the active zone by binding to the SV protein synaptotagmin-1
(Figure 1). Upon induction of ATG, ULK1/2 complex requires
shuttling of the key trans-membrane protein Atg9 between
membrane sources towards nascent ATG vacuoles (Takahashi
et al., 2011; Yamamoto et al., 2012; Puri et al., 2013). In this
way, Atg9 plays an important role in recycling membranes
from ER, endosomal and Golgi sources and likely, even in
recruiting endosomes and lysosomes by facilitating vesicular
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fusion (Figure 1). Beyond ATG compartments, occurrence
of Atg9 within axons is required for synapse development
(Stavoe et al., 2016), thus confirming a dual role for ATG
proteins at the synapse to move diverse vesicular compartments
within a highly coordinated secretory network. The correct
localization/removal of membrane-associated proteins at both
vacuolar organelles and plasma membrane active zone widely
depends on endosome trafficking and sorting mechanisms,
where ATG is deeply involved. In keeping with this, there
are sets of specific evolutionary conserved multitasking protein
families such as Rabs, G coupled Ras-related proteins in brain
(Rab GTPases) and Soluble NSF (N-ethylmaleimide-sensitive
factor (SNAREs, attachment protein receptor), which regulate
all membrane-bound intracellular trafficking pathways (Moreau
et al., 2011; Zhen and Stenmark, 2015). These proteins exert
a parallel regulation of SV-cycle and ATG-lysosomal function
(Figure 1).

Autophagy and the Endocytic SV
Trafficking Pathway
Following neurotransmitter release, SVs recovered through
endocytosis may differently invade presynaptic compartments:
(i) Endocytosed SVs are locally recycled in order to replenish
the ready-releasable pools for a further round of exo/endocytosis.
(ii) Endocytosed SVs can be targeted by the retromer complex,
which recycles SV-components by trafficking them back to
the Trans Golgi Network for reuse (Inoshita et al., 2017;
Vazquez-Sanchez et al., 2018). (iii) Endocytosed SVs can undergo
ATG-lysosomal degradation (Frampton et al., 2012; Maday and
Holzbaur, 2012; Fernandes et al., 2014; Binotti et al., 2015;
Wang et al., 2015; Sheehan et al., 2016; Soukup et al., 2016;
Okerlund et al., 2017).Mainmechanisms that sort SV-cargoes for
ATG-lysosomal degradation are the clathrin-dependent pathway
(Ravikumar et al., 2010) and the endosomal sorting complex
required for transport (ESCRT, Sheehan et al., 2016). In addition
to the ESCRT pathway, several Rabs and specific SV-cycle
proteins such as Endophilin-A represent an essential sorting
mechanism to direct endocytosed SVs for recycling or for ATG
degradation (Fernandes et al., 2014; Binotti et al., 2016; Sheehan
et al., 2016; Soukup et al., 2016). In detail, among endosomal
Rabs (Rab4, Rab5, Rab10, Rab11b, Rab14 and Rab35) which
co-exist on SVs, Rab5 and Rab35 drive sorting of SVs for
ATG-lysosomal degradation (Sheehan et al., 2016). Interestingly,
two additional Rabs (Rab26 and Rab33a) are bound solely with
SVs and ATG vacuoles, which indicate the uniqueness of SVs
and ATG vacuoles in their molecular structure and function,
while it poses a potential role for these Rabs to target SVs
selectively for ATG degradation (Figure 2; Binotti et al., 2015).
Dysfunctional Endophilin-A due to impaired phosphorylation
by the LRRK2 kinase, disrupts both ATG and SV-cycle at the
Drosophila neuromuscular junction (NMJ, Soukup et al., 2016).
Since both LRRK2 and Endophilin-A are genetically linked to
PD, these findings suggest a plausible molecular mechanism
linking alterations of ATG and SV cycle in DA synapses.
Mutated LRRK2 also associates with enhanced glutamate release
and increased density of SV-associated proteins, which suggests

FIGURE 2 | ATG surveils neurotransmission at the active zone. To complete
SVs docking, priming and fusion, the SNARE proteins Synaptobrevin (VAMP),
SNAP-25 and STX, require tethering proteins such as Munc18, Munc13 and
the specialist proteins complexin, synaptotagmin. Complexin binds to partially
assembled SNARE complexes during priming, and serves as an essential
adaptor that enables synaptotagmin to sense intracellular Ca2+ increase.
Munc13–1 forms a ternary complex with Rab3 and Rab3-interacting molecule
(RIM1), which favors docking and priming and eventually exocytosis by
opening the Munc18-mediated “closed” conformation of STX. Once
exocytosis occurs, SNARE complex disassembles to allow endocytosis of
SVs and associated proteins. Specific Rabs (Rab 5, 26, 33, 35) sort
endocytosed SVs for ATG degradation (1). Rab26 and Rab33 reside
specifically on SVs and target them directly for ATG-lysosomal degradation,
while endosomal Rab5 and Rab35 sort SVs for ATG-lysosomal degradation
via fusion with an endosomal intermediate. In this way, ATG degrades
SNAP-25, synaptobrevin, Munc13 and whole SVs. This may be key to limit
the potentiated neurotransmitter release, which would occur if SVs and
associated proteins were rapidly recycled to the plasma membrane to
promote a further round of exocytosis (2). Essential endocytosed components
can also be targeted by the VPS35 retromer protein, which retrieves and
traffics them back to the TGN for reuse (3).

that ATG may be involved in glutamate neurotransmission,
though this has not been directly investigated yet (Beccano-Kelly
et al., 2014). Again, dysfunctional or mutated Rab4, Rab5 and
Rab11 impair both SV recycling and ATG compartments
(Stenmark, 2009; Zhen and Stenmark, 2015; Binotti et al., 2016).
In fact, Rab4, Rab5, Rab10 and Rab11 promote early steps
of ATG such as phagophore formation and autophagosome
maturation (Szatmári and Sass, 2014; Szatmári et al., 2014;
Palmisano et al., 2017). It is worth of noting that, Rab5 and
Rab11 are mandatory for appropriate trafficking and recycling
of the DAT to the plasma membrane (Loder and Melikian,
2003; Furman et al., 2009; Hong and Amara, 2013), which
remarks quite impressively the similarities between ATG and DA
neurotransmission.

Autophagy and the Exocytotic SV Pathway
Rabs bound to SVs also include the exocytotic Rab3 and
Rab27B families, which tune SV-docking and -exocytosis (Pavlos
et al., 2010; Binotti et al., 2016). Rab3GAP complex (Rab3GTP
activating protein) is key to regulate neurotransmitter release
by hydrolyzing GTP bound to Rab3 (Sakane et al., 2006).
Remarkably, RabGAP1 and RabGAP2, which are the two
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components of Rab3GAP, modulate autophagosome biogenesis
(Spang et al., 2014). In addition to Rabs, docking and
priming of SVs to the active zone requires the SNARE
proteins synaptobrevin/VAMP, SNAP-25 and Syntaxin-1 (STX).
To complete SVs fusion, these latter require many other
tethering proteins among which Munc18–1, Munc13–1, snapin,
complexin, synaptotagmin and Bassoon (Südhof, 2013; Waites
et al., 2013; Rizzoli, 2014). All these proteins collaboratively
operate within a highly coordinated network to dynamically
shape the active zone and finely tune SV’s exo/endocytosis
(Figure 2). Nonetheless, these very same factors are also bound
to ATG. Dysfunctional exo/endocytotic SNAREs have been
found to negatively affect ATG function (Nair et al., 2011;
Wang et al., 2016). Again, deletion of either synaptobrevin or
snapin leads to aberrant endosomal trafficking and impaired
ATG-lysosomal fusion (Cai et al., 2010; Haberman et al.,
2012). Interestingly, synaptotagmin-11 was recently shown to
be involved in ATG-lysosome machinery regulation in DA
neurons (Bento et al., 2016). Again, ATG-lysosomal function is
also sensitive to mutations of soluble NSF-attachment protein
alpha (αSNAP), which together with NSF enzyme release single
SNAREs from their complex in order to be recycled for
subsequent rounds of SVs fusion (Ishihara et al., 2001; Abada
et al., 2017). Interestingly, Bassoon, which is a scaffolding protein
involved in organizing the active zone, was found to inhibit
ATG-mediated synaptic degradation (Okerlund et al., 2017). On
the other hand, ATG degrades several SNARE proteins, which
participate in SVs priming and exocytosis (Uytterhoeven et al.,
2015; Sheehan et al., 2016; Figure 2). It is worth mentioning
that Hsc70, which regulates ATG at the Drosophila NMJ
(Uytterhoeven et al., 2015), is also key in DA neurons to regulate
the SV-sorting and activity of DA by interacting with both
vesicular monoamine transporter type-2 (VMAT-2) and tyrosine
hydroxylase (TH), the rate limiting enzyme for DA synthesis;
Parra et al., 2016), which calls for further studies to unravel
the intersection with ATG. Nonetheless, the present findings
strongly suggest that the rate of presynaptic ATG-mediated
protein degradation is key to determine the probability of
neurotransmitter release.

Autophagy and SV’s Retromer Sorting
Recent findings revealed that the retromer machinery
in cooperation with Rab5 and Rab11 is key for DA
neurotransmission in the light of its role to sort and retrieve a
subset of endocytosed SVs away from the degradative pathway
back to the TGN for reuse (Inoshita et al., 2017). DA neurons are
susceptible to retromer perturbations, since VPS35 mutations
lead to PD while VPS35 overexpression rescues PD phenotype
(Linhart et al., 2014; Gambardella et al., 2016). Noteworthy, ATG
induction and progression in DA neurons is tightly bound to the
retromer function, which guarantees the correct trafficking and
recycling of both Atg9 and Lamp2 lysosomal protein (Zavodszky
et al., 2014; Tang et al., 2015). In fact, mutations of VPS35 cause
endosomes perturbations, dysfunctional ATG (Zavodszky et al.,
2014) and aberrant lysosomes, while producing altered DA
outflow, dystrophic DA neurites/axons along with impaired
motor behavior (Tang et al., 2015). Another key role of VPS35 in

DA neurons is the sorting of VMAT-2 and DAT (Wu et al., 2016,
2017). In DA cell bodies and nerve terminals, the depletion of
VPS35 disrupts VMAT-2 and DAT recycling to SVs and plasma
membrane respectively, suggesting that retrograde trafficking
is essential for DA storage and activity (Wu et al., 2016, 2017).
Another cross-talk point between ATG and endosomal/retromer
sorting pathways is related to intraluminal vesicle formation.
Both Atg9 as well as the ESCRT and retromer machineries are
required for formation, maturation and compartmentalized
acidification of endosomal and ATG-lysosomal vacuoles (Rusten
and Stenmark, 2009; Bader et al., 2015; Follett et al., 2017).
Preservation of low vesicular pH is crucial not only for ATG
function, but also for SV maturation, neurotransmitter loading
into SVs and exocytotic release (Marshansky and Futai, 2008).
Nonetheless, the retromer and its binding partner Wiskott
Aldrich Syndrome protein and scar homolog (WASH) are also
involved in the endosomal retrieval of the vesicular proton
pump V-ATPase (Carnell et al., 2011), which maintains pH
gradients within both SVs and ATG-lysosomal organelles
(Rost et al., 2015). This suggests that a common phylogeny
underlies the commonalities between secretory and degradative
pathways. In line with this, both lysosomes and SVs may derive
from early-endosomes (Newell-Litwa et al., 2009; Figure 1).
Biogenesis of lysosome-related organelles complex (BLOC-1),
may correspond to such an ancestral structure since it regulates
maturation and trafficking of both SVs and ATG-lysosomes
(Wang et al., 2017).

AUTOPHAGY AND DA RELEASE

A role for lysosomal degradation in regulating SV turnover at
nerve terminals was suggested since the early ‘70s (Holtzman
et al., 1971). However, it was not until 2012 that a direct
role for ATG machinery in modulating vesicular DA release
was demonstrated (Hernandez et al., 2012). These authors
generated mice lacking ATG7 specifically within DA neurons
by expressing Cre recombinase under the control of the DA
transporter DAT (Atg7-DAT-Cre mice). Measurement of DA
release in the striatum was performed along with ultrastructural
analyses of ATG, specifically within striatal axons and nerve
terminals. The amplitude of DA signal evoked by electrical
stimulation was 54% greater in Atg7-DAT-cre mice than in
DAT-cre mice. On the other hand, inhibition of mTOR (and
ATG activation) by rapamycin significantly decreases DA release
of about 25% (corresponding quite precisely to a 25% reduction
in the density of DA-SVs) only in DAT-cre mice and to a lesser
extent in wild type mice. These findings suggest that ATG blunts
DA transmission. Confocal microscopy, western blotting and
electron microscopy analyses confirmed that ATG induction (as
measured by an increase of LC3II particles along with ATG
vacuoles) occurring locally within axons, reduces DA release via
sequestration of presynaptic DA-SVs (Hernandez et al., 2012).
Clear lumen ATG vacuoles fusing with endosomal vesicles were
also observed which is in line with recent studies suggesting
ATG-mediated degradation of endocytosed SVs occurring even
in non-DA neurons (Binotti et al., 2015; Sheehan et al.,
2016).
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AUTOPHAGY, AGGREGATION-PRONE
PROTEINS AND DOPAMINE RELEASE

The fine coordination between endosomal, retromer and
ATG pathways is key for DA neurotransmission since it is
involved in DA release, as well as membrane and vesicle
re-uptake of DA. In this way, also DA toxicity is prevented,
since DA-derived oxidative species can modify endogenous
presynaptic chaperone proteins. This is the case of PD-related
proteins, such as α-synuclein (α-syn), Parkin and LRRK2, which
co-chaperon SVs’ trafficking and DA release by interacting
physically with Rabs, SNAREs and Endophilin-A (Burré et al.,
2010; Cao et al., 2014; Soukup et al., 2016; Shi et al., 2017;
Ryskalin et al., 2018a). All these presynaptic proteins represent
substrates for ATG-lysosomal degradation. As postulated by
the ‘‘unconventional protein secretion’’ theory, organelles of the
ATG and endo-lysosomal pathways may release these proteins
thus mediating their inter-neuronal spreading via exosomes
(Zhang and Schekman, 2013). In fact, just like SVs, the
ATG-endo-lysosomal system can undergo exocytosis following
intracellular Ca2+ increase. In these terms, this appears as a
natural mechanism that neurons have conserved to communicate
with each other and share essential cell constituents within a
common environment. When dysfunctions in either ATG-endo-
lysosomal pathways occur, indigested proteins are spread to
neighbor cells (Lee et al., 2013), just in the same ‘‘uncontrolled’’
manner as DA may be powerfully released at the synaptic cleft
to produce abnormal stimulation of post-synaptic DA receptors
or even intra-neuronal spreading of reactive species (Jakel and
Maragos, 2000). Thus, ATG-dependent modulation of vesicular
DA trafficking and amount of released DA may potentially
contribute to those mechanisms driving post-synaptic plasticity,
such as long term-potentiation and -depression, which are
directly related to neuronal and behavioral phenotypes. In detail,
an abnormal stimulation of post-synaptic D1 DA receptors leads
to series of non-canonical metabolic changes, which translate
into activation of NMDA and AMPA glutamate receptors.
These events potentiate glutamate release and Ca2+ entry within
post-synaptic neurons thus promoting glutamate excitotoxicity.
In this way, freely diffusible DA-derived free radicals together

with glutamate-derived radical species synergize to produce
detrimental effects in post-synaptic non-DA neurons. Here, the
ATG pathway plays an equally crucial role by degrading AMPA
receptors (Shehata et al., 2012) and by preventing glutamate-
derived excitotoxic insult (Kulbe et al., 2014).

CONCLUDING REMARKS

In the light of the tight interconnection of ATG with the
secretory pathway, the findings revised in the present manuscript
suggest that an impairment of ATG at the synapse may occur
early, in parallel with SV cycle-related alterations. The hub
linking ATG and DA release may be the tight interplay between
ATG and innumerous proteins of the secretory pathway, which
regulate both SV-cycle and ATG. This is supported by evidence
showing that, mutations or dysfunctions of Rabs, SNAREs and
Endophilin-A, which directly affect ATG, associate with several
DA-synaptic disorders ranging from PD to drug addiction and
schizophrenia (Drouet and Lesage, 2014; Katrancha and Koleske,
2015; Vanderwerf et al., 2015; Shi et al., 2017). On the other
hand, ATG induction via mTOR or GSK3β ameliorates early
psychomotor and cognitive behavioral alterations by rescuing
neurotransmission defects in these same disorders (Schneider
et al., 2016; Huang et al., 2018; Kara et al., 2018; Masini
et al., 2018). In such a tightly interconnected mechanism, it is
mandatory to further investigate the UP, which is also modulated
by mTOR and co-localizes with ATG (Lenzi et al., 2016).
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