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Abstract: The key element of dopamine (DA) neurotransmission is undoubtedly DA transporter
(DAT), a transmembrane protein responsible for the synaptic reuptake of the mediator. Changes in
DAT’s function can be a key mechanism of pathological conditions associated with hyperdopaminer-
gia. The first strain of gene-modified rodents with a lack of DAT were created more than 25 years ago.
Such animals are characterized by increased levels of striatal DA, resulting in locomotor hyperactivity,
increased levels of motor stereotypes, cognitive deficits, and other behavioral abnormalities. The
administration of dopaminergic and pharmacological agents affecting other neurotransmitter systems
can mitigate those abnormalities. The main purpose of this review is to systematize and analyze
(1) known data on the consequences of changes in DAT expression in experimental animals, (2) results
of pharmacological studies in these animals, and (3) to estimate the validity of animals lacking DAT
as models for discovering new treatments of DA-related disorders.

Keywords: dopamine transporter; hyperdopaminergia; hypodopaminergia; dopamine transporter
knockout rodents; locomotor hyperactivity

1. Introduction

Dopamine (DA) is one of the most important monoaminergic neurotransmitters in the
brain. The DA system is critically involved in controlling many physiological functions,
including the initiation of motion, reinforcement, and motivation processes, as well as
affecting emotional reactions and cognitive functions (learning, attention, memory) [1].
The key element of DA neurotransmission is undoubtedly the DA transporter (DAT).
DAT, a member of the Na+/Cl−−dependent transporter family selectively expressed in
dopaminergic neurons, critically regulates DA homeostasis by transporting extracellular
DA into the intracellular space [2]. DAT plays a dominant role in DA clearance in the
striatum; this area contains the largest amount (≈80%) of this neurotransmitter within
the brain [3,4]. Thereby, DAT strictly controls the synaptic levels of DA in the mesolimbic
and nigrostriatal pathways. The role of DAT in the regulation of DA metabolism in other
DA pathways is less significant. The controlled pituitary prolactin secretion hypothalamic
DA neurons (the tuberoinfundibular pathway) mainly release the mediator into the portal
system from the median eminence [5]; however, some level of DAT seems to be expressed
in the pituitary since silencing of DAT in mice results in significant pituitary hypoplasia and
lactation problems (see below). At the same time it plays a significant role in the prefrontal
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cortex (the mesocortical pathway) [6], but the norepinephrine transporter seems to also
play an important role in in DA re-uptake in this brain area [7].

A growing amount of evidence suggests that the decrease of DAT levels, as well as the
polymorphisms of its gene (Slc6a3), are etiopathogenetic factors for the development of a
wide number of DA-related disorders, including Parkinson’s disease (PD) [8,9], attention
deficit hyperactivity disorder (ADHD) [9], post-traumatic stress disorder [10], drug abuse,
obsessive-compulsive disorder (OCD) [11], and bipolar depression (BD) [12]. DAT is also
the target for many addictive psychoactive compounds, such as cocaine, amphetamine,
methamphetamine, etc. [2].

Genetic mutations in the DAT-encoding gene affect different functional parameters
of the transporter: gene expression, ability to integrate into the membrane, substrates
affinity, reuptake activity, transport direction, etc. These and other changes influence DA
neurotransmission and contribute to the pathophysiology of CNS diseases. It is reported
that numerous missense mutations of Slc6a3 are subjected to negative selection and DAT
is classified as “loss-of-function-intolerant”. This statement additionally shows the tragic
consequences of DAT dysfunction [13–15].

Mutations in Slc6a3 have been described in patients with DAT deficiency syndrome
(DTDS). For example, some of these mutations are Ile312Phe (I312F) and Asp421Asn
(D421N). These gene changes were demonstrated in a person with DTDS (Ile312Phe was in-
herited from his father, and Asp421Asn was a de novo mutation). As a result of these amino
acid substitutions, both mutant hDATs have a reduced ability to capture DA. hDAT-I312F is
characterized by low substrate affinity, high blockers affinity, and high anion conductivity.
hDAT-D421N is characterized by impaired Na+ and Cl− binding (DA co-transport ions)
and constitutive leak of cations. Moreover, hDAT-D421N provokes anomalous dopamine
efflux (ADE; abnormal leak of cytoplasmic DA through non-vesicular DA release by the
DAT). Collectively, these events have a destructive effect on neurons [9,14].

Genetic variation of Slc6a3 is a risk factor for autism spectrum disorder (ASD). One
of the mutations is Thr356Met (T356M). This substitution occurs in highly conserved
sequences of the ion binding region. The mutant hDAT-T356M is characterized by extremely
low DA affinity and slow DA reuptake. Because of the occurrence of ADE, this mutation
prevents the accumulation of intracellular DA. Other mutations associated with autism
are Arg51Trp, Ala559Val, and ∆N336 [16,17]. ∆N336 is a rare in-frame deletion of residue
Asn336 and it leads to a decrease in DA reuptake. Studies on Drosophila melanogaster
demonstrated a pronounced violation of social behavior in the mutant flies [16,18].

The Ala559Val (A559V) mutation of Slc6a3 is found not only in ASD but also in ADHD
and bipolar affective disorder. It is believed that amino acid substitution leads to changes
in steric interactions between transmembrane domains of hDAT and changes in transporter
conformational dynamics. hDAT-A559V is characterized by increased transporter activity
and the occurrence of ADE [17,19].

Some ADHD patients have Arg615Cys mutation (R615C). This mutation leads to a
change in the dynamics of the DAT along the cell surface. DAT membrane transfer is an
important post-translational regulatory process. It is assumed that it could be the risk factor
for some CNS diseases. The R615Cys substitution is on the distal C-terminus in the region
responsible for transporter relocation. Normal DAT-proteins are in special GM1/flotillin-1
enriched microdomains of the cell membrane. These microdomains limit the lateral mobil-
ity of DAT. DAT is distributed in a highly regulated manner, but hDAT-R615C constitutively
recirculates throughout the cell and demonstrates insensitivity to the endocytic activation
factors, possibly due to disruption of phosphorylation/dephosphorylation zones at the
C-terminus of the transporter; this could be caused by the disruption of phosphoryla-
tion/dephosphorylation zones at the C-terminus of the transporter [19,20].

In a screening of the entire coding region of hDAT, a rare missense mutation, Glu602Gly
(E602G), was identified in a patient with bipolar disorder. His father had this mutation as
well and suffered from the same disorder. A DAT with this mutation after the translation
stage is not delivered to the cell surface and does not integrate into the membrane [21].
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Changes due to mutations in the Slc6a3 gene, which correlate with CNS diseases, are
found along the entire protein structure, thereby affecting various aspects of the functioning
of DAT [9,15]. Each mutation in the DAT gene exhibits unique properties that ultimately
lead to destructive effects on the nervous system [14]. It is worth noting that a relationship
has been found between the type of mutation and the response to therapeutic agents. This
relationship has been established for ADHD and PD. This fact needs to be verified in
relation to other diseases in order to improve the effectiveness of treatments [15].

2. Genetically Modified Animals Affecting Function of DAT

Genetically modified animals deficient in DAT (knockouts (KO) or knockdowns (KD))
are still one of the most used models for studying DA functions. Summary information
about the stocks and strains is presented in Table 1.

Table 1. Rodent strains lacking DAT.

Rodent Specie Stocks and Strains
% of Dopamine

Transporter
Expression Decrease

Methods and
Selectivity Reference

Mice

C57/B6Jx129/Sv/J and
C57/B6J 100%, DAT-KO

in vivo homologous
recombination

[22]

C57/BLy6J 100%, DAT-KO [23]

129 Sv/J 90%, DAT-KD [24]

C57/BL6 45–50%, DAT lower
expresser

Knock-in of
hemagglutinin epitope

in EL2
[25]

C57BL/6J

Variable (inducible
DAT-KD)

Intra-accumbal
delivery of DAT

shRNA-expressing
lentiviral vectors

[26]

BALB/c
Intraventricular local

nonviral RNA
interference

[27]

C57BL6/J Tetracycline inducible
system [28]

Rats

Fischer 344 Less than 25%,
DAT-KD

N-ethyl-N-nitrosourea-
induced spontaneous

mutation
[29]

Wistar Han

100%, DAT-KO

Zinc finger nuclease
technology [30]

Wistar CRISPR/Cas9
technology [31]

DAT—dopamine transporter; DAT-KO—DAT knockout; DAT-KD—DAT knockdown.

According to Table 1, the first mouse strain lacking DAT was developed more than
25 years ago [22]. Studies on mice with decreased DAT expression have significantly
expanded our understanding of the basic principles of DA neurotransmission, the mech-
anisms of action of various psychotropic drugs, and the interaction of the most impor-
tant neurotransmitters of CNS, as well as the pathophysiological mechanisms of DA-
related disorders. However, certain questions can be more reliably addressed in transgenic
rats [32]. The first gene-modified rats that lack of DAT were introduced to scientists in
2016–2018 [29,30]. The greater sizes of rats and their brains allow for a number of practical
benefits, especially in relation to surgical (mainly, neurosurgical) techniques [33,34]. More-
over, there are strong differences in neuroanatomical and neuroprotein pattern expression



Biomolecules 2023, 13, 806 4 of 20

between rats and mice, giving rise to rats’ richer behavior and demonstrating more robust
and reproducible performance in cognitive tasks [32,34].

3. Impact of DAT Deletion on Neurotransmission and Neuroanatomy

Striatal DA neurotransmission is dysregulated in both DAT-KO rats and mice. The
lack of DAT expression is known to lead to approximately a 5–7-fold increase in extra-
cellular DA levels in the striatum (Str), one of the essential structures of CNS, involving
both nigrostriatal (transmitting DA from substantia nigra pars compacta (SNc) to the cau-
date nucleus and putamen) and mesolimbic (transmitting DA from the ventral tegmental
area (VTA) to the nucleus accumbens (NAcc)) pathways [24,30,35,36]. DA persists for a
longer period in the synaptic cleft, and consequently, extracellular clearance of DA, which
is mainly driven through diffusion, is delayed by almost 40–300 times compared to WT
controls [22,30,37–40]. Concurrently, the intracellular tissue content of striatal DA is de-
creased by 13–20-fold, suggesting a crucial contribution of DAT in the sustainment of
intracellular stores of DA [24,30,35,36,40]. Additionally, these results are also supported by
a reduction of striatal mRNA and the alterations of protein expression and phosphorylation
of tyrosine hydroxylase (TH), the rate-limiting enzyme for DA biosynthesis [23,30,35,41].
Specifically, TH mRNA levels are only marginally reduced, while protein levels are reduced
by almost 90%; notably, its immunoreactivity is almost undetectable in several striatal
projections [41]. Decreased intracellular DA pool apparently leads to a reduced stimulated
DA release [24,37,38]. Nonetheless, it should be noted that the lack of DAT does not result
in changes in intracellular DA transport in vesicles [40,41]. Additionally, one more feature
of DA tone in DAT-KO rodents is the dearth of diurnal variation observed in wild-type
(WT) animals [42].

DA overflow in DAT-KO and DAT-KD animals causes a permanent activation of
postsynaptic D1- and D2-like DA receptors (D1R and D2R, respectively) [22,29,43,44], which
results in their down-regulation [30,43,45,46]. This also leads to a decreased expression
and function of presynaptic D2R in DAT-KO animals [22,42,47]. Notably, in DAT-KD mice,
only the decrease of presynaptic D2R expression was shown [24]. At the same time, down-
regulation of DA autoreceptors was not detected when DAT expression was decreased
in adult animals (tetracycline-inducible DAT-KD), an aspect that may point to long-term
mechanisms of their down-regulation [28].

Increased DA concentration in DAT-KO animals is associated with its intensified
degradation by catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO),
which results in increased levels of such DA metabolites as 3-methoxytyramine, 3,4-
dihydroxyphenylacetic acid, and homovanillic acid [30,35,40]. Interestingly, COMT in-
hibition does not affect the rate of synaptic DA clearance while MAO inhibition prolongs
DA half-life [30,38]. Considering that MAO is predominantly involved in the oxygenation
of intracellular DA, we might speculate that homeostasis of synaptic DA strongly depends
on the pool of DA synthesis de novo in the case of DAT hypofunction. The other possible
explanation of COMT inhibition’s “ineffectiveness” is that action of tolcapone administra-
tion on DA levels was measured in the striatum. DA metabolism seems to primarily rely
on COMT in PFC but not in the striatum [48].

Structurally, DAT-KO animals show a reduced volume of the striatum followed by
a concurrent volume increase in other important regions, such as the PFC and cerebel-
lum [49]. Striatal volume loss in mice is mainly caused by a decreased density of GABAergic
interneurons and raised markers of neurodegeneration (e.g., hyperphosphorylated tau
protein) [50–53]. Notably, this negative correlation between striatal and cerebellar volume
areas points out a potential neurodevelopmental compensation [49].

In addition, the decreased DAT activity leads to biochemical and structural changes
that also affect other neurotransmitter pathways. Indeed, DAT-KO animals showed a de-
creased density of GABAergic neurons, as well as decreased concentrations of anandamide
and serotonin [30,52]. Moreover, elevated numbers of neurodegeneration markers, such as
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hyperphosphorylated tau protein, that are also associated with dyskinesia manifestation,
have been revealed in DAT-KO mice striatal samples [50–53].

Another brain area potently altered by DAT deletion or hypofunction is PFC, where
monoamine alterations play a crucial role in the development of various neuropsychiatric
disorders [54]. Notably, an increased and prominent hyperconnectivity has been observed
in the cortico-striatal circuit in DAT-KO compared to WT animals [49]. These alterations
in the PFC could lead to working memory impairments that might be caused by several
different pathways and mechanisms. For example, Leo et al. found downregulation in
the neurotrophin BDNF mRNA and protein levels, as well as the downstream pathway,
that involve high-affinity receptor TrkB [30]; pro-inflammatory processes in the PFC of
female rats lacking DAT was also seen in another study, suggesting a prominent role in
neurodegeneration activity [55]; and, recently, Targa et al. found significant dysregulation
of AMPA receptor trafficking through an altered endosomal regulation [56].

All these morphological and functional variations also induce neurophysiological and
synaptic plasticity disruptions such as, on the one hand, increased long-term potentiation
(LTP) in the cortico-striatal synapses that is correlated with a decrease in PSD-95 concentra-
tion [57,58] and, on the other hand, LTP deficiency in the 5th layer of cortical pyramidal
neurons [6,59]. At the same time, a weakening of long-term depression in the hippocampus
was also seen [57]. Additionally, changes in cortical and striatal power spectra and inter-
areal coherence were detected [60]. Proteomic analysis revealed modifications in striatal
proteins expression that were closely related to learning and memory mechanisms (i.e.,
synaptic transmission, axodendritic transport, and DA-binding processes) [61].

In general, disruption of the DAT function provokes significant DA neurotransmission
impairments affecting almost all its stages, highlighting the key role of DAT in the main-
tenance of DA homeostasis and the dramatic neurobiological changes in the CNS, which
mostly concern the cortico-striatal system.

4. Impact of DAT Deficiency on Animal Physiological Phenotype

Unlike DAT-KD [24] animals, DAT-KO [22,30,62] are characterized by reduced body
weight. Even though mutant animals do not show any propensity to die at birth, DAT-KO
mice (but not rats) have increased mortality [22,50,63]. However, it should be noted that
genetic background can affect DAT-KO mice’s rate of survival [64]. DAT-KO mice show a
higher mortality rate at all ages in comparison to heterozygotes and WT littermates. Just
before death, mutant mice are characterized by loss of hyperactivity, tremor appearance,
rapid weight loss, and pronounced dorsal kyphosis [50], and, correspondingly, reduced
bone strength [64]. Intriguingly, premature death was prevented in DAT-KO mice gene ther-
apy by expressing DAT selectively in DA neurons and terminals through gene therapy [65].
Furthermore, DAT silencing was found to affect colon peristaltic in mice [66]. In addition,
DAT-KO mice display reduced breath rate, body temperature, and rod sensitivity [67,68].
Deletion of DAT in mice is also accompanied by decreased natural killer cell activity and
mitogen-induced cytokine responses [69]. In contrast, LPS-induced cytokine production by
macrophages was enhanced in DAT-KO mice [69]. Aberrant immune reaction, as well as
reduced angiogenesis, can cause decreased tumor growth [70]. Even though little is known
about the effects of DAT-deficits, it is obvious that DAT depletion seriously affects many
body organs. Further studies aimed at analyzing these actions are warranted. In addition,
these effects should be considered for a correct interpretation of behavioral experiment
data aiming at studying central nervous system functioning.

5. Behavioral Phenotype of Animals with DAT Hypofunction

The most pronounced behavioral feature of DAT-deficient animals is locomotor hy-
peractivity [22,23,30,31,37,71–75]. When animals are placed in their home cages, this
hyperactivity appears mainly during the dark phase [30], and it is exacerbated in a new
environment. Such hyperactivity is observed in a new environment only in the case of
partial deficiency of DAT (DAT-KD and DAT-LE mice) [24,25,27,76]. Other aberrant motor
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reactions are observed in DAT-KO rodents: increased level of stereotypies [31,74,77,78],
a reduced fore- and hind-limb mean stride length [50,53] (for controversial see [74]), and
impaired motor coordination [53].

The impact of DAT deficit on Negative Valence Systems has been studied very inten-
sively. In several studies, the reduction of depression-like behavior development [71,79–81]
and decreased anxiety [82–84] were observed in DAT-KO rodents. Notably, the selec-
tive decrease of DAT expression in NAcc of adult mice resulted in the same behavioral
changes [85]. It should also be considered that ablation of DAT is associated with altered
behavioral reactions to stress [86]. It should also be noticed that some scientific groups
reported controversial results regarding this topic. For example, Takamatsu et al. failed to
find any difference between DAT-KO and WT mice in a tail suspension test [87], and no
signs of decreased anxiety were shown in the elevated plus maze in DAT-KD rats from
Prof. Spanagel’s group [72].

Much less is known about the impact of DAT deficits on sensitivity to reward stimuli
(Positive Valence System). According to some studies performed on DAT-KO mice, silenc-
ing of DAT was associated with increased sucrose solution consumption [71] and positive
bias toward a hedonically positive tastant [80]. In addition, Pecina and colleagues reported
that DAT-KD mice have greater incentive performance for a sweet reward [88]. At the same
time, DAT-KO and DAT-KD rats were demonstrated not to have a preference for sweet
solutions [72,89]. Moreover, Mallien and colleagues found less preference for saccharin in
the two bottle test in DAT-KO rats [74]. DAT-KO mice also exhibited a stronger rewarding
response to morphine compared with control littermates [79].

During experiments with food reinforcement, the lack of DAT does not affect the
operant conditioning of DAT-KO and -KD mice [44,90–93]. We further supported these
observations in DAT-KO rats trained to perform lever presses [94,95]. DAT deficiency-
associated hyperdopaminergia seems to seriously affect rodent behavior when conditions
of schedules were changed. In this way, DAT-KO mice failed to change the temporal
pattern of their responses in either fixed-interval or peak-interval timing procedures [93].
In addition, these mice are characterized by enhanced resistance to extinction [90].

It is well established in experiments in both humans and rodents that DA levels
contribute to cost-benefit analysis. High DA levels are associated with a preference for
“high-cost” reactions [96–98]. Vice versa, low DA levels are correlated to the preference for
“low-cost” reactions [99–101]. In full concordance, DAT-KD mice are characterized by a
preference for “high-cost” responses in the “closed economy” paradigm [91]. DAT-KD mice
also earned more reinforcers than WT littermates under the progressive ratio paradigm [44].
However, we failed to reproduce these results in DAT-KO rats [95]; indeed, mutant and
control rats acquired the same number of reinforcers. However, the local response rate
dynamics were dramatically changed in the DAT-KO rats: progressive increase of ratio was
accompanied by a decrease in local response rate in control animals; on the contrary, in
DAT-KO littermates, the response rate was gradually increased as the required number of
responses to obtain a reward was growing.

Considerable efforts have been made at studying the impact of DAT deficit on cognitive
functions. The full lack of DAT in rodents is accompanied by spatial memory deficits in the
Morris water navigation task, 8-arm, Hebb–Williams, T-, H-, and Y-mazes [30,57,77,102–105].
However, Chang et al. failed to find memory deficits in DAT-KD mice in the Morris water
navigation task and Y-maze [106]. DAT-KO and DAT-KD learning and memory deficits
were also revealed in a novel object recognition test [72,106]. Although the lack of DAT does
not seem to affect simple Pavlovian conditioning [61,72,92], DAT-KO rats were incapable
of learning new stimulus-response associations [61], while DAT-KO mice performed less
avoidance in the Conditioned Avoidance Responding Test than WT littermates [87]. Simi-
larly, aberrant Pavlovian-to-instrumental transfer was revealed in DAT-KD mice [92]. Part
of the learning deficits associated with DAT silencing might be explained by their locomotor
hyperactivity; however, the role of DA in the processes of assigning incentive salience to
stimuli plays a key role in this aspect [107]. Under hyperdopaminergic conditions, this
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process might become aberrant and result in learning deficits as well as a reduction of
stimulus control. The reported results of experiments on sensorimotor gating indirectly sup-
port this speculation on DAT-deficits association with impairment of sensory information
filtration. Thus, decreased pre-pulse inhibition (PPI) was demonstrated in both DAT-KO
mice [108–113] and rats [30], but not in DAT-KD mice [114]. It should also be noted that
DAT-KO animals are characterized by increased amplitude of startle response [30,109,110].
However, Kurzina et al. reported decreased amplitude in DAT-KO rats [60]. Additionally,
olfactory discrimination deficits were demonstrated in DAT-KO mice [115].

Rodents lacking DAT also show some atypical social behavior traits. For instance,
female DAT-KO mice are characterized by a deficit of maternal behavior [64,71]. This deficit
can be explained by either locomotor hyperactivity or decreased prolactin release [62].
At the same time, it is not quite clear whether the lack of DAT affects social interaction.
On the one hand, some research groups observed impaired social behavior in DAT-KO
and DAT-KD rats [72,74]; on the other hand, Cinque and colleagues found intact social
behavior in DAT-KO [89]. The different methods used in these studies (social interaction
with an unfamiliar social partner vs Social Preference Test) can explain the discrepancies
between them. Interestingly, DAT-KO mice retain the ability to establish social hierarchies,
but the DAT deficit was accompanied by increased rates of reactivity and aggression [116].
However, little is known about the sexual behavior of DAT-KO animals; only Sanna et al.
reported that DAT-KO rats have a more rapid acquisition of stable sexual activity levels
and higher levels of sexual motivation and activity [117].

In summary, we can conclude that lack of DAT is associated with significant hyper-
activity and impairment of motor function control, mild cognitive (spatial memory and
learning) deficits, increased motivation for reward, aberrant cost-benefit analysis, and
few changes of social behavior (most reliable one being the deficit of maternal behavior).
However, data on behavioral methods in cases of DAT silencing should be considered with
caution since hyperactivity associated with the lack of DAT can affect the reported results.
Moreover, we hypothesize that hyperdopaminergia associated with DAT silencing might
result in depleted behavioral flexibility. A number of scientists working with animals lack-
ing DAT reported that these animals’ behavior is characterized by perseverative patterns of
behavior. For example, hyperactivity of both DAT-KO mice and rats manifests in exhibited
non-focal preservative patterns of locomotion [49,53,108]. Rodriguiz et al. reported that
the aggressivity of DAT-KO mice can be partly caused by stereotyped and perseverative
patterns of their social responses [116], features which are also shown in DAT-KO rats [89].

6. DAT Deficient Animals as Models in Experimental Neuropsychopharmacology
6.1. DTDS

Currently, DAT-KO mice have proven themselves to be the best animal model for
Dopamine Transporter Deficiency Syndrome (DTDS) [65]. DTDS is an inherited DA “trans-
portopathy” resulting from missense variants of the Slc6a3 gene. Depending on the type
of mutation, the patients might have symptoms of ADHD, atypical parkinsonism, or
autism [15]. The classic manifestation of DTDS is a hyperkinetic movement disorder with
onset in infancy and progression to severe parkinsonism in early childhood. Another
manifestation of the disease is an atypical DTDS, which is characterized by manifestation
in later childhood with a relatively milder course of the disease [118,119]. It was shown
that DAT dysfunction may consist in the loss of primary DAT function, which leads to the
absence or a strong decrease in DA uptake, a decrease in DAT binding to the cell surface, a
decrease in the affinity of DAT for DA, a decrease in DA recognition by DAT, a decrease in
DAT expression with a predominance of an excess of non-glycosylated DAT [118].

DAT-KO mice reproduce the main clinical features of DTDS patients, which have
a tendency to develop recurrent hyperkinesis from an early age, development of motor
deficits, loss of the ability to move, hyperactivity, striatal neurodegeneration, high mortality,
and a patient-like change in the concentration of DA metabolites [65]. The validity of this
model allows testing of the potential variant of DTDS therapy, for example, using gene
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therapy. Using a dual combinatorial AAV-based gene therapy approach, aimed at the
restoration of native Slc6a3 gene expression, it was possible to ensure stable expression
of healthy DAT in dopaminergic neurons of the midbrain and striatum. This method of
therapy led to the normalization of DA signaling and markedly changed the behavioral
phenotype of mice; for example, the development of motor disorders that led to death was
completely prevented [65].

6.2. States Associated with Increased Levels of DA

Increased DA neurotransmission has been hypothesized to contribute to the pathogen-
esis of several mental illnesses and conditions. Animals with a lack of DAT are thought to
model some signs and symptoms of ADHD (for review see [120]), schizophrenia [121], ma-
niac phases of BD [76], protracted abstinence [29], and dopamine dysregulation syndrome
(Sukhanov, Volnova and Gainetdinov, unpublished). However, it should be considered
that (1) the accurate impact of DAT hypofunction in the pathogenesis of the listed above
diseases is partially controversial and (2) with the exception of inducible DAT-KD mice,
these animals have permanent hyperdopaminergia as soon as DA structures in the brain
are formed in the prenatal period.

To illustrate the limited usefulness of the approach to the DAT-depleted rodents as
the models of specific mental diseases, we collected results of pharmacological tests with
compounds mitigating their increased locomotor activity (Table 2). Studies demonstrate
that pretreatment with drugs used to control ADHD symptoms, such as amphetamine
and methylphenidate, resulted in a dose-dependent reduction of hyperactivity in DAT-KO
and -KD rodents and increased locomotor activity of WT and HT littermates [24,30,71,77].
Fluoxetine decreased the locomotor activity of DAT-KO rodents without any effect on
control animals’ motor behavior [77]. However, the action of the other anti-ADHD agent,
atomoxetine, seems to be non-selective. Administration of atomoxetine resulted in de-
creased locomotor activity of both WT and KO rats [72]. Of course, the list of the agents
mitigating hyperactivity is not limited only to the ones mentioned above, and many of
them cannot be used to treat ADHD even theoretically. In summary, we suggest employing
DAT-deficit rodents in the first place to model behavioral correlates of hyperdopaminergia
but not some specific pathology.

6.3. States Associated with Decreased Levels of DA

In case of lack of DAT, as mentioned above, the vesicular storage of DA is depleted.
DA release is therefore strongly dependent on its de novo synthesis mediated by tyrosine
hydroxylase (TH). Thus, animals with DAT silencing are very sensitive to the actions of
irreversible TH inhibitor alpha-methyl-para-tyrosine (aMPT). Following its administration,
synaptic DA disappears in DAT-KO animals [38,40,122,123]. Behaviorally, the abrupt DA
depletion is accompanied by striking akinesia and catalepsy [122–124]. In summary, aMPT-
treated animals (DA deficient DAT-KO—DDD rodents) can be considered as a model of
DA deficiency associated with PD [122,124]. Pretreatment with DA precursor L-DOPA
and DA receptor agonists results in locomotor activity recovery and/or elimination of
catalepsy [123,124]. Primarily, the mutual activation of both D1- and D2-R is thought
to be required for these effects. However, we demonstrated that activation of striatal
D1R expressing medial spiny neurons by phosphodiesterase 10A inhibitors seems to
be sufficient for the recovery of motor functions in DDD rats [123]. Administration of
amphetamine-like psychostimulants is also able to revert aMPT effects on locomotor
activity in DDD mice [124]. Non-dopaminergic mechanisms are supposed to be responsible
for psychostimulant action [124]. Additionally, DA depletion in mice is accompanied by
suppression of slow-wave sleep and REM sleep disappearance [125]. In this case, treatment
with D2-(but not D1-) receptor agonists can recover REM sleep in these mice [125].
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Table 2. Pharmacological agents decreasing locomotor hyperactivity in rodents with lack of DAT.

Drug Mechanism of
Action Animals Doses Administration

Route
Administration

Schedule
Number of

Animals per Group
Influencing WT

Activity Reference

Nicotine NAchR agonist

DAT-KO mice F1 0.5 and 1 mg/kg s/c before testing 16–24 ↑ [46]

DAT-KO mice 1 and 3 mg/kg i/p before testing 8–12 - [113]

DAT-KD
C57BL6/J mice 40 mg/kg/day

s/c, by
mini-osmotic

pumps
for 26 days 27–30 - [126]

Choline α7 agonist DAT-KO mice F1 5 mg/kg s/c before testing 12 - [46]

Epibatidine +
Choline

β2 agonist + α7
agonist DAT-KO mice F1 0.5 mcg/kg + 0.5 mg/kg s/c before testing 8 - [46]

β-phenethylamine TAAR agonist
DAT-KO mice

C57BL/6J x
129/SVJ

10, 30, 50, 70, 100
mg/kg i/p 30 min before

testing 10–15 ↑ [127]

Methylphenidate DAT and NET
inhibitor

DAT-KO mice
129/C57 30 mg/kg i/p before testing 8

↑
[77]

DAT-KO rats
Wistar Han 1.2, 2.5, 5 mg/kg i/p before testing 6–19 [30]

Haloperidol D2R antagonist

DAT-KO mice
129/C57 0.2 mg/kg i/p before testing 6

↓

[77]

DAT-KO mice
C57BL/6 0.15, 0.2, 0.3 mg/kg s/c 30 min before

testing 10–15 [71]

DAT HET mice
C57BL/6 0.1, 0.15, 0.2, 0.3 mg/kg s/c 30 min before

testing 10–15 [71]

DAT-KO rats
Wistar Han 0.5 mg/kg s/c before testing 6–19 [30]

DAT HET rats
Wistar Han 0.5 mg/kg s/c before testing 4 [30]

Clozapine D2-/5-HT2A
antagonist

DAT-KO mice
C57BL/6 2 and 3 mg/kg s/c 30 min before

testing 10–15
↓

[71]

DAT HET mice
C57BL/6 1, 2, 3 mg/kg s/c 30 min before

testing 10–15 [71]
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Table 2. Cont.

Drug Mechanism of
Action Animals Doses Administration

Route
Administration

Schedule
Number of

Animals per Group
Influencing WT

Activity Reference

Raclopride D2R antagonist DAT-KO mice
C57BL/129SvJ 0.1 mg/kg i/p 10 min before

testing 9–18 - [108]

SCH23390 D1R antagonist DAT-KO mice
C57BL/129SvJ 0.01 mg/kg s/c 10 min before

testing 9–18 - [108]

Cocaine DAT, SERT and
NET inhibitor

DAT-KO mice
129/C57 40 mg/kg i/p before testing 8 ↑ [77]

Amphetamine

DAT, SERT and
NET inhibitor, DA

and 5-HT
receptors agonist

DAT-KO mice
C57BL/6 1, 3, 10 mg/kg s/c before testing 8–15

↑

[128]

DAT HET mice
C57BL/6 1 mg/kg s/c before testing 11–16 [128]

DAT-KO mice
129/C57

0.75 mg/kg i/p ? ? [77]

2 mg/kg i/p before testing 8 [77]

DAT-KO rats
Wistar Han 1, 2, 3, 4 mg/kg i/p before testing 6–19 [30]

DAT-KD rats F344 1 and 2 mg/kg i/p 30 min before
testing 7–10 [72]

DAT-KO mice F1 3 mg/kg i/p 30 min before
testing 7–11 [129]

DATKO mice
C57Bl/6J 100 µM/0.5 µL/side bilateral PFC

infusion before testing 6–8 [130]

DAT-KD mice 129
SvyJ 1, 2, 3 mg/kg i/p before testing 6–8 [24]

Fluoxetine SERT inhibitor

DAT-KO mice
129/C57 20 mg/kg s/c before testing 6

-
[77]

DAT-KO mice
C57BL/6 20 mg/kg s/c before testing 5 [128]

DAT-KO mice
C57Bl/6J 20 mg/kg s/c before testing 6–12 ? [130]
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Table 2. Cont.

Drug Mechanism of
Action Animals Doses Administration

Route
Administration

Schedule
Number of

Animals per Group
Influencing WT

Activity Reference

Quipazine 5-HT 2A and
5-HT3 agonist

DAT-KO mice
129/C57

3 mg/kg i/p before testing 6 - [77]

0.5 mg/kg i/p ? ? [77]

5-HTP
serotonine
precursor

DAT-KO mice
129/C57

50 mg/kg i/p before testing 6 ↓ [77]

10 mg/kg i/p ? ? - [77]

L-Tryptophan
serotonine
precursor

DAT-KO mice
129/C57

100 mg/kg i/p before testing 6
-

[77]

10 mg/kg i/p ? ? [77]

RO5203648 partial TAAR1
agonist

DAT-KO rats
Wistar Han 3 mg/kg i/p before testing 6–19 - [30]

RO5166017 partial TAAR1
agonist

DAT-KO mice
C57BL/129SvJ 0.5 and 1 mg/kg i/p before testing 7–8 - [131]

Apomorphine DA receptors
agonist DAT-KD mice 129

SvyJ

0.1, 0.5, 1, 2 mg/kg s/c before testing 6–8 ↑ [24]

Quinpirole D2/D3 agonist 0.1, 0.5, 2, 6, 20 mg/kg i/p before testing 6–8 ↑ [24]

MDMA

DAT, SERT and
NET inhibitor, DA

and 5-HT
receptors agonist

DAT-KO mice
C57BL/129SvJ 20 mg/kg i/p 10 min before

testing 7–11 ↑ [132]

SL 327 MEK inhibitor DAT-KO mice
C57BL/129SvJ 100 mg/kg i/p before testing 11 - [133]

Reboxetine

NET inhibitor

DAT-KO mice F1 5 and 10 mg/kg i/p 30 min before
testing 6–18 - [129]

Atomoxetine DAT-KD rats F344 1 and 3 mg/kg i/p 30 min before
testing 7–11 ↓ [72]

Desipramine DATKO mice
C57Bl/6J

25 mg/kg i/p
before testing 6–12 ?

[130]
4 µg/0.5 µL/side bilateral PFC

infusion

U99194 D3 antagonist DAT-KO mice F1 30 and 60 mg/kg i/p 30 min before
testing 5–7 - [129]
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Table 2. Cont.

Drug Mechanism of
Action Animals Doses Administration

Route
Administration

Schedule
Number of

Animals per Group
Influencing WT

Activity Reference

SB-277011A D3 antagonist DAT-KO mice F1 3, 10, 30 mg/kg i/p 30 min before
testing 5–7 - [129]

LY-341495 MGluR2
antagonist

DAT-KO rats
N157K 1, 3, 10 mg/kg i/p 30 min before

testing 6–9 - [72]

SB 224289 5-HT1B antagonist DAT-KO mice
C57BL/129SvJ 20 mg/kg i/p 60 min before

testing 10 - [134]

M100907 5-HT2A
antagonist

DAT-KO mice
C57BL/129SvJ 0.3 and 1 mg/kg s/c 30 min before

testing 10–17 - [135]

Aniracetam

AMPA positive
allosteric

modulator

DAT-KO mice
C57BL/129SvJ 20 and 50 mg/kg i/p before testing 8–10 ? [136]

CX516 DAT-KO mice
C57BL/129SvJ 100 mg/kg s/c before testing 6–11 ? [136]

CX546 DAT-KO mice
C57BL/129SvJ 50 and 70 mg/kg s/c before testing 6–11 ? [136]

CX672 DAT-KO mice
C57BL/129SvJ 1 mg/kg i/p before testing ? ? [136]

CX776 DAT-KO mice
C57BL/129SvJ 3 mg/kg s/c before testing ? ? [136]

Pregnenolone
GABA A and

NMDA allosteric
modulator

DAT-KO mice
C57BL/6 30 and 60 mg/kg i/p before testing 10–15 - [109]

Donepezil
cholinesterase

inhibitor

DAT-KO mice
C57BL/6 1 and 3 mg/kg i/p 20 min before

testing ? ↓ [137]

Tacrine DAT-KO mice
C57BL/6 3, 10, 30 mg/kg i/p 20 min before

testing ? ↓ [137]

VU0152100
M4 positive

allosteric
modulator

DAT-KO mice
C57BL/6 1 mg/kg i/p 20 min before

testing 5 ? [137]
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Table 2. Cont.

Drug Mechanism of
Action Animals Doses Administration

Route
Administration

Schedule
Number of

Animals per Group
Influencing WT

Activity Reference

AM404 Anandamide
reuptake inhibitor DAT-KO mice F1

0.3, 1, 3 mg/kg i/p before testing 8 - [52]

VDM11 2 and 5 mg/kg i/p before testing 6–8 - [52]

AA5HT FAAH inhibitor 2 and 5 mg/kg i/p before testing 6–8 - [52]

Valproic acid
Na channels

blocker, GABA
enhancer

DAT-KD mice 129
SvyJ 100 mg/kg i/p 60 min before

testing 14 - [114]

DAT-KO mice
C57BL/129SvJ 300 mg/kg i/p before testing 8 ↓ [138]

LiCl

GSK-3 inhibitor
DAT-KO mice
C57BL/129SvJ

50, 100, 200 mg/kg i/p before testing 9–12 ? [138]

SB 216763 3, 5, 10 mg/kg i/p before testing 6–8 ? [138]

Indirubin 10 and 20 mg/kg i/p before testing 8–11 ? [138]

Alsterpaullon 3, 5, 10 mg/kg i/p before testing 8–10 ? [138]

TDZD 30 mg/kg i/p before testing 7 ? [138]

ABM300 CB1R allosteric
modulator

DAT-KO mice
C57Bl/6J 10 mg/kg i/p 30 min before

testing 10–13 - [139]

Nepicastat DBH inhibitor
DAT-KO mice

C57Bl/6J

40 mg/kg i/p
before testing 6–12 ?

[130]
4 µg/0.5 µL/side bilateral PFC

infusion

↑—increase of locomotor activity; ↓—decrease of locomotor activity; - —no effect; ?—effect did not described in the study; s/c—subcutaneous; i/p—intraperitoneal.
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7. Conclusions and Future Directions

Summing up, the phenotypic features of DAT-deficient animals are frequently related
to pathogenesis and symptoms of such DA-related disorders as schizophrenia, ADHD,
drug addiction, etc. According to our opinion (Table 3), described in the present review,
DAT-deficient animals have some but limited usefulness as models of neuropsychiatric
disorders. The division of lack of DAT into nigrostriatal and mesolimbic pathways is,
therefore, the most obvious way to create a new type of deficiency-based model. Simi-
lar region-selective approaches should be applied for DAT overexpressing rodents since
only mice with global overexpression of DAT are currently available [140]. The second
direction is the selective depletion of DAT in particular DA neurons. It is well-known that
most of striatal GABA-ergic medium spiny neurons (MSNs) belong to either D1R or D2R
expressing populations [141,142]. Distinct populations of MSNs give rise to direct and
indirect pathways in the frame of both nigrostriatal and mesolimbic pathways. There are
four pathways that originate from MSNs that seem to play different roles. We suggest
that selective hyperdopaminergia allows us to better understand the role of DA in these
pathways in normal conditions and in the pathogenesis of neuropsychiatric disorders.

Table 3. Validity of animals with DAT hypofunction as the model of neuropsychiatric disorders.

Model
Face Validity Predictive Validity

Schizophrenia ADHD Mania Drug
Dependence

Parkinson
Disease Schizophrenia ADHD Mania Drug

Dependence
Parkinson

Disease

DAT KO + + + ? + ++ + ?

DAT KD - + + + - + ++ ?

DDD ++ ++

DAT-KO—dopamine transporter knockout; DAT-KD—dopamine transporter knockdowns; DDD—dopamine
deficient DAT-KO; ++—high validity; +—moderate validity; - —no validity; ?—no information.
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