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Chapter 7
Testing Joint Sufficiency Twice: 
Explanatory Qualitative Comparative 
Analysis

Alessia Damonte 

Abstract  Standard Qualitative Comparative Analysis (QCA) applies an elimina-
tive cross-case algorithm to identify which combinations of factors are logically 
associated with an outcome in a population. As such, it suits the purpose of pin-
pointing the conditions under which an outcome occurs or fails. However, the 
explanatory import of its findings only follows if the algorithm identifies theoreti-
cally interpretable, logically valid, and empirically plausible causal compounds.

The chapter provides an essential guide to designing an explanatory QCA that 
meets the three credibility requirements at once. Section 7.2 addresses how to 
develop starting hypotheses consistent with the assumptions of complex causation 
to preserve theoretical interpretability. Section 7.3 introduces the Boolean algebra 
required to model a hypothesis and find which part supports the explanatory claim 
in the cases at hand. Section 7.4 addresses the issue of gauging conditions to ensure 
the empirical plausibility of the analysis. Last, Sect. 7.5 summarizes the protocol, 
illustrated by the replicable example in the online R file.

Learning Objectives
After studying this chapter, you will be able to:

•	 Understand causation in terms of individual necessity and joint sufficiency of 
many factors.

•	 Develop a configurational hypothesis.
•	 Apply Boolean algebra to formalize configurational hypotheses and establish 

criteria of fit.
•	 Gauge factors as sets that are suitable to logical formalizations.
•	 Identify and discuss credible configurational solutions.
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7.1 � Introduction

Qualitative Comparative Analysis (QCA: Ragin, 1987/2014, 2000, 2008; Duşa, 
2019; Oana et al., 2021; Mello, 2021) stands amid the suite of causal techniques for 
three main reasons that drive as many questions.

First, QCA moves from the default assumption that causation lies in compounds 
or teams of conditions. Its solutions entail that things happen when all the “right” 
conditions are given together, like in a chemical reaction (Mackie, 1965, 1974; 
Cartwright & Hardie, 2012). The first question of explanatory QCA asks how to 
ensure that results are interpretable “recipes” for the outcome.

Second, QCA originally revolves around a pruning algorithm. It compares configu-
rations that meet regularity requirements of association with an outcome to drop irrele-
vant conditions, along the lines of a most-dissimilar case design (e.g., De Meur & 
Berg-Schlosser, 1994), albeit run twice. The second question asks how the technique 
can be geared toward pinpointing valid causal compounds despite the shortcomings of 
such a design (e.g., Geddes, 1990; Most & Starr, 2015; Krogslund et al., 2015).

Third, QCA’s solutions hold at the levels of both the population and individual 
cases. Such a peculiarity is based on gauging operations that preserve quantitative 
and qualitative information. These operations are an integral part of the analysis and 
bind findings to analytic units. The third question asks how these operations affect 
the tenability of solutions.

These three questions are addressed in Sects. 7.2, 7.3, and 7.4, respectively. 
Section 7.5 summarizes the protocol illustrated by the online R file.

7.2 � Interpretability

The recognized hallmark of QCA lies in its assumptions that causation is an asym-
metric, conjunctural, and equifinal phenomenon (Ragin, 2008; see also Rosenberg 
et  al., 2017). Asymmetric means that causation has a direction and proceeds from 
“causes” to “effects” as a relationship of dependence or conditionality ahead of tem-
poral considerations. Conjunctural refers to the first reason for asymmetry: the actual 
cause is a compound and consists of a team, bundle, or package of contributing fac-
tors. Equifinal recalls the second reason for asymmetry: different compounds can 
yield the same outcome. These assumptions chime with mechanistic considerations 
on the ultimate shape of causation (e.g., Befani, 2013; Mahoney, 2021; Chap. 2).

7.2.1 � Mechanisms and Machines

QCA assumes that the factors responsible for an outcome are many and related to 
each other as the constituting parts are to their whole. Moreover, it allows fac-
tors have substitutes without loss of effectiveness for the causal compound (Mackie, 
1966; Cheng, 1997; Cartwright & Hardie, 2012).
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The textbook illustration of such a parts-to-whole relationship offers heat, oxy-
gen, fuel, and defective or no sprinklers as the compound accounting for fire. These 
circumstances provide the complete set of relevant conditions under which the pro-
cess of combustion must initiate (Salmon, 2020). Thus, they form a causal team 
based on the process that they explain.

The process also clarifies the general relationship between components, teams, 
and outcomes. In the textbook example, combustion results in a fire when the whole 
team of circumstances is given in the same place and the right state—present heat, 
fuel, oxygen; absent or defective sprinklers. The surefire or sufficient cause of the 
outcome is the right bundle. However, the right circumstances can take many actual 
shapes. For instance, a lightning bolt, a short circuit, or a lit match can all be equiva-
lent sources of heat. Any actual bundle, then, is unnecessary as such. Besides, the 
process fails when any circumstance is given in the wrong state—poor oxygen, no 
fuel, or no heat all prevent combustion, while a working fire system suffocates it. 
Any element of the compounds, then, is a counterfactually vital—and hence, neces-
sary—component of the team, despite it alone being insufficient to yield the out-
come. The elements of the compound are “partial causes” or “inus conditions”—inus 
being the acronym of the Insufficient but Necessary part of an Unnecessary but 
Sufficient team.

Bundles of inus conditions seldom capture a generative process directly (see 
Chaps. 8, 9, and 10). Instead, they can capture the set of right circumstances as 
“nomological machines”—that is, as “sufficiently stable” arrangements of trigger-
ing, enabling, sustaining, and shielding conditions underlying the generative pro-
cess (Cartwright, 1999: 49, 2017). A nomological machine is such that its 
components together make other factors irrelevant before the same type of outcome 
across time and space. Therefore, a nomological machine is the specified explana-
tion of a regular behavior independent of the remaining context (Craver & Kaplan, 
2020). Moreover, it provides the theoretical construct that affords counterfactual 
evidence about the contribution of single components across cases.

7.2.2 � Operationalizing Typological Theories

Typological theories provide a renowned starting point for developing configura-
tional explanations (e.g., Elman, 2005). Such theories prove especially fruitful as 
they enable modeling of the alternative causal bundles as different settings of the 
same factors.

Some theories are consistent “explications” of a driving concept. For instance, 
Pahl-Wostl (2008) takes “regimes” as the driving concept. She defines water man-
agement regimes as the alignment of governance style, type of sectoral integration, 
scale of analysis and operation, information management, plus finance and risk 
management. Huntjens et  al. (2011) operationalize the setting of these structural 
dimensions for two polar types of regimes—the “market-based” and the “integrated 
adaptive”—then run a QCA to establish the features that account for the diversity in 
the policy-learning capacity of water management systems when faced with climate 
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change challenges. In a similar vein, Colby (1991) builds on the concept of “policy 
paradigms.” He stipulates that the compatibility of environmental and economic 
policy goals depends on the alignment of policy ideas and policy tools. Thus, “fron-
tier economics” and “deep ecology” establish the trade-off between economic 
growth and environmental preservation, while “environmental protection,” “resource 
management,” and “eco-development” make room for their coexistence and inte-
gration. Damonte (2013) operationalizes these alternative paradigms as different 
settings of the same bundle of policy tools and identifies the configurations that 
account for the green decoupling of economic growth from pollution.

Other configurational hypotheses integrate heterogeneous streams of literature 
into a consistent explanatory whole. For instance, Sabatier and Mazmanian (1980) 
reason that the many accounts of the success and failure of policy implementation 
can be reduced to the consistent interplay of three dimensions: problem tractability, 
administrative effectiveness, and political support. Hinterleintner et al. (2016) oper-
ationalize the components of each dimension and run a QCA that explains the dif-
ferences in the IMF’s evaluation of austerity programs as differences in the 
credibility of national implementations. Theoretical integration can also be pur-
posefully operated within the study. As an example, Lauri et al. (2020) integrate 
theories linking the defamiliarization of care work and gender equality with theories 
on the gender division of labor as embedded in different types of welfare systems. 
On this basis, they provide a thorough operationalization of childcare policies as 
bundles of tools that enforce different gender norms. QCA is applied to identify 
which tools, linked to the norms of which type of welfare system, yield high gender 
equality and which endanger the goal instead.

7.2.3 � Assembling Configurational Hypotheses

A configurational hypothesis can also be crafted after a reasoned selection and inte-
gration of statistical “determinants.” Surveys of scholars’ practices (Amenta & 
Poulsen, 1994; Berg Schlosser & De Meur, 2009) pinpointed four selection strate-
gies. The “comprehensive approach” includes all the factors from all the relevant 
theories; the “perspective approach” selects single variables that represent major 
theories; the “significance approach” only focuses on statistically significant vari-
ables; the “second look” approach mixes statistically significant variables with the-
oretically meaningful factors that did not survive those same tests.

However, none of these strategies is proven to yield proper configurational 
hypotheses unless the selected factors can be related to the unfolding of a generative 
process as actors’ constraints and opportunities. To witness, Stiller (2017) explains 
governments’ success in adopting major welfare reforms as the interplay of policy-
makers’ strategies—identified in ideational leadership, concession making, and 
blame avoidance—with key background features that make these strategies ade-
quate—namely, the stage of the election cycle and the government’s position toward 
the national welfare system. Similarly, Ansell et al. (2020) account for stakeholders’ 
participation in collaborative governance as the result of motivations—that is, 
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perceived incentives, interdependence, trust, and purpose—and governance’s sup-
port of motivations—through leadership services, opportunities to build relation-
ships, and structures for pooling information.

A configurational hypothesis may also follow from problematizing correlational 
theories. Kogut and Ragin (2006) focus on the theory linking high economic devel-
opment, thriving financial markets, and common law institutions. The configura-
tional hypothesis develops from the consideration that the causal chain is 
underspecified. National economies, they reason, may still thrive despite poor finan-
cial markets if legality is ensured. Moreover, the effectiveness of common law insti-
tutions beyond their original contexts depends on their interplay with existing legal 
traditions. Thus, they run two QCAs that employ common law, features of the insti-
tutional “transplant,” and commitment to the rule of law to account for differences 
in GDP per capita and, separately, in the dimension of the domestic financial mar-
kets, to check whether the two explanations overlap.

In short, the fundamental criterion for selecting an interpretable candidate inus 
factor is functional. It consists of whether one can develop directional expectations 
about the factor’s contribution to the setting that compels and protects some causal 
process of interest. The expectation should support the claim that, were the factor 
given in the right state and in the right team, the process to the outcome would cer-
tainly follow. As we will see in Sect. 7.3.2, these directional expectations play a 
crucial role in the analysis  as they establish the plausibility of counterfactual 
assumptions.

7.3 � Validity

The validity of inferences about inus hypotheses depends on the algebra deployed 
to make them testable. Such a suitable algebra should allow factors to

•	 Have observable states, such as presence and absence;
•	 Form compounds as configurations of states;
•	 Have equifinal alternatives;
•	 Establish relationships of dependence.

Boolean algebras can easily render these states and relationships. Introduced as 
primary devices to analyze human reasoning about the world (De Morgan, 1847; 
Boole, 1853), their structures support a twofold reading (Stone, 1936)—logical, and 
set-theoretical.

7.3.1 � QCA’s Algebra

Like any other, QCA’s algebra is a language of literals and operators suitable to 
render complex relationships according to fundamental rules.
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7.3.1.1 � Literals

Boolean algebras use “literal symbols” to indicate factors as attributes or states of a 
unit of observation. A literal stands for a name or an adjective denoting “either a 
thing or some quality or circumstance belonging to it” (Boole, 1853:27). QCA bor-
rows the convention and indicates a state with an uppercase letter. Thus, A reads ⌜A 
present⌝ or ⌜A positive⌝ or the predicate ⌜is A⌝. The literal provides an empty place-
holder for whatever attribute we consider as the candidate inus condition—such as 
“inflammable” referred to a material; “hierarchical” to a governance structure; 
“affluent” to a society; “independent” to a voter.

Once defined, a literal establishes the similarity of any units of observation 
ui to which it applies. In Boole’s original proposal, and all the basic operations 
of QCA, such a recognition raises a class, that is, an idempotent collection of 
units. Idempotency means that, in contrast to probabilistic samples, classes 
satisfy the logical rule dubbed dictum de omni: that which can be said of the 
whole, it also holds for each of its parts. Boole renders idempotency as in 
Eq. (7.1):

	 A A2 := 	 (7.1)

where ≔ indicates a stipulation and reads ⌜is by definition equal to⌝. As the only two 
numerical values that satisfy the stipulation are 1 and 0, Boole’s literals can only 
take these two values—and the basic operations in QCA share this bivalent assump-
tion, too.

These values convey two separate readings of the relationship between a unit and 
a literal:

•	 When the literal is understood as a predicate, 1 and 0 are the truth values that a lit-
eral can take in the actual unit ui from the universe of discourse  � � �u uN1, , . 
1 reads ⌜true⌝ for ⌜it is the case that⌝, while 0 reads ⌜false⌝ for ⌜it is not the case that⌝.

•	 When the literal is understood as a class, 1 and 0 are read as membership values. 
Thus, Ai = 1 means that the i-th unit belongs to class A, while Ai = 0 indicates that 
the same unit does not belong to it.

The logical understanding captures the literal as the intension or quality of a unit. 
In contrast, the set-theoretical understanding captures the literal as the extension of 
the quality across the units in a universe. Operationally, the intension is decided by 
gauging rules—for instance, on defining which manifestations and intensity make it 
true that a unit ⌜is A⌝. Extension, on the other hand, is decided by counting—for 
instance, the number of units in the universe that ⌜are A⌝, which corresponds to the 
cardinality of class A. In bivalent Boolean algebra, the two readings overlap, mak-
ing logical inferences especially straightforward.
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7.3.1.2 � Operators

The Boolean operators relevant to inus hypotheses correspond to the logical con-
nectives ⌜not⌝, ⌜and⌝, ⌜or⌝, ⌜only if⌝, ⌜if⌝ and the set-theoretical relationships of differ-
ence, intersection, union, and superset/subset.

Negation

The connective ⌜not⌝ denies the literal. The Boolean notation renders it with a bar 
above the uppercase literal to which it applies; in QCA, also common is the tilde 
before the uppercase literal, or the use of the lowercase literal. Thus, A A a, ,~  all 
read ⌜is not-A⌝.

The logical negation transforms a unit’s truth value into its opposite, calculated 
as in Eq. (7.2). The set-theoretical reading establishes the negation of a set is the 
collection of units that are excluded from that set. Therefore, the negated set A  cor-
responds to the difference (indicated by the backslash \) between the universe U and 
set A, as in Eq. (7.3):

	 A Ai i:= 1– 	 (7.2)

	 A A: \=  	 (7.3)

Equations (7.2) and (7.3) indicate that, by definition, a literal and its negation are 
mutual complements. The enforcement of this definition depends on gauging opera-
tions—an issue addressed in Sect. 7.4.

Joint Occurrence

These correspond to bundles of literals connected by the ⌜and⌝ operator. In logic, the 
operator is a wedge (∧); in set theory, it is a cap (∩). In QCA, the operator is a dot 
(⦁) or a star (∗) although the connecting symbol may be omitted.

Two implications are worth noting. Permutation and grouping are irrelevant to 
⌜and⌝ bundles: ABC  means the same as ACB  and A BC� �  as the resulting class 
clusters the same units. In short, the Boolean ⌜and⌝ supports the commutative and 
the associative rule. Therefore, bundles are blind to the time dimension of sequences; 
instead, they emphasize the joint occurrence or interaction of attributes in a unit.

Logically, the ⌜and⌝ operator raises a conjunction. The underlying rule estab-
lishes a conjunction as true when each of its conjuncts is true. The rule is also 
known as “the weakest link”: the conjunct with the lowest truth value defines the 
truth value of the compound.
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Applied to a single predicate and its negation, the rule renders the logical prin-
ciple of non-contradiction. As summarized by Eq. (7.4), the principle states that a 
predicate and its negation cannot be true of the same unit at the same time in the 
same sense. Set-theoretically, the principle is met when the intersection of a set and 
its negation is empty (∅), as in Eq. (7.5). The principle offers the first criterion of 
validity: it commits to rejecting inferences that build on, or lead to, contradictions.

	 A Ai� �: 0 	 (7.4)

	 A A� ��: 	 (7.5)

More generally, the weakest link of the i-th unit can be calculated as the mini-
mum of its truth values in any of the 1 ≤ j ≤ K conjuncts, as in Eq. (7.6):

	
� � � �A A Aij i iKmin , ,1 ... 	

(7.6)

Therefore, in a universe of N units, the cardinality of the intersection of the k 
literals of interest corresponds to the sum of the 1 ≤ i ≤ N units’ weakest links as 
in (7.7):

	
A A A

j i

N

i iK � � ��� min , ,
1 1 ... 	

(7.7)

Alternatives

These arise when literals are connected by the operator ⌜or⌝. In QCA, the operator is 
a plus symbol (+) and never omitted. Logic indicates it with a vee (∨); set theory 
with a cup (∪). Class idempotency makes permutation and grouping irrelevant to 
alternatives, too.

Logically, the ⌜or⌝ operator raises a disjunction. The underlying rule establishes 
the disjunction as true when at least one of its disjuncts is true. The rule can be 
dubbed “the strongest link”: the disjunct with the highest truth value defines the 
truth value of the whole compound.

Applied to a single predicate and its negation, the rule renders the logical prin-
ciple of the excluded middle. As summarized by Eq. (7.8), the principle states that, 
necessarily, either a predicate or its negation is true in a unit, so that the disjunction 
of the two raises a non-informative tautology. Set-theoretically, the principle is met 
when the union of the set and its negation returns the universe, as in Eq. (7.9).

	 A Ai i� �: 1 	 (7.8)

	 A A� �:  	 (7.9)
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More generally, the strongest link of the i-th unit can be calculated as the maxi-
mum of the truth values of any of the 1 ≤ j ≤ K disjuncts, as in (7.10):

	
� � � �A A Aij i iKmax , ,1 ... 	

(7.10)

Therefore, in a universe of N units, the cardinality of the union of the K literals 
of interest corresponds to the sum of the 1 ≤ i ≤ N units’ strongest links, as in (7.11):

	
A A Aj i

N
i iK � � � ��1 1max , ,...

	
(7.11)

Necessity and Sufficiency

The reliance of QCA on the assumptions of inus causation gives center stage to the 
concepts of necessity and sufficiency.

Mackie (1974) illustrates them with the different behavior of coin-operated 
vending machines. A “sufficiency machine” always drops a snack for a coin, and 
sometimes it drops one without apparent reason, too. A “necessity machine” never 
drops a snack without a coin, and sometimes the coin fails. Last, one and only one 
snack for each coin is the behavior of the perfect “necessity-and-sufficiency 
machine.” These intuitions capture both set-theoretical and logical relationships 
between an observed input, or antecedent (the coin), and an observed output, or 
consequent (the snack), connected by an unobserved—but possibly 
observable—mechanism.

As for notation, QCA indicates necessity with an arrow running from the 
outcome to the cause and sufficiency with an arrow running from the cause to the 
outcome. Thus, A → B reads ⌜A is sufficient to B⌝; A B←  reads ⌜not-A is necessary 
to not-B⌝.

Set-theoretically, the necessity of A to B corresponds to A being a superset of B, 
indicated as B ⊂ A. The relationship is satisfied when all the B are also A although 
there can be instances of A in the universe that do not display B. This corresponds 
to the logical situation in which being B implies being A or, more compactly, ⌜B, 
only if A⌝. The hallmark of necessity is the impossibility of the outcome in the 
absence of the factor, as in (7.12). Set-theoretically, it means that the proof of the 
necessity of A to B in the universe comes from the empty intersection in (7.13).

	 A Bi i� � 0 	 (7.12)

	 A B� �� 	 (7.13)

Set-theoretically, the sufficiency of A to B corresponds to A being a subset of B, 
indicated as A ⊂ B. The relationship is satisfied when all the A are also B. In short, 
sufficiency renders the intuition of A as the constant antecedent condition of 
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B. Logically speaking, it corresponds to saying that, for any ui, ⌜B, if A⌝ without 
exceptions. The hallmark of sufficiency coincides with the impossibility that the 
outcome fails when the factor is present, summarized by requirement (7.14) and its 
set-theoretical translation (7.15):

	 B Ai i� � 0 	 (7.14)

	 B A� �� 	 (7.15)

7.3.1.3 � Truth Tables

Stipulations and rules construe valid logical inferences as the calculus of truth val-
ues, visualized with the aid of a truth table. These tables clarify the possibilities that 
the selected literals make available ahead of observation. Logic sees it as the exhaus-
tive catalog of the combinations of the literals’ truth-values (Wittgenstein, 1922). 
Probabilistic theories dub such a structure “sample space” and understand it as the 
list of the potential events from random trials (e.g., Clarke, 2020). In any case, this 
structure reports the maximum diversity that units can display given specific literals 
and gauges.

The truth table entails a fundamental sense-making operation (Quine, 1982); 
thus, in it, each combination of the literals’ truth values can be dubbed a primitive. 
The number of primitives depends on the number of literals and truth values under 
consideration; K bivalent literals yield 2K unique primitives. In the remaining, a 
truth table will be indicated as Ω and its primitives as ω.

The shape of truth tables follows conventional rules. The primitives are listed as 
rows: ω1 displays all true literals; ω

2K
,  all false ones (cfr. Duşa, 2019). Each of the 

remaining columns in the classical truth table is for the truth function of a connec-
tive, i.e., the truth values that each primitive returns when the connective’s rule is 
applied to the states of its literals.

Table 7.1 displays a truth table of two literals (A, B) and five operators to indicate 
as many relationships—respectively, of conjunction (and), disjunction (or), neces-
sity (only if), sufficiency (if), plus necessity and sufficiency (iff).

The values in the truth functions of each operator indicate the type of units that 
will (1) and will not (0) be observed if the relationship holds in the universe of refer-
ence (Sprenger, 2011). These expectations inform the discourse on the threats to the 
validity of inferences that are currently addressed by either design (e.g., Chap. 3) or 
model (e.g., Chaps. 6 and 8, Sect. 7.3.2 below).

•	 The and truth function follows from the application of the weakest link rule as in 
Eqs. (7.6) and (7.7) and returns a single true point in correspondence with the 
matching primitive (ω1 in Table 7.1). Thus, evidence of a conjunction is only 
provided by the units displaying every conjunct in the right state.
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Table 7.1  Truth table of two literals and five operators

Ω A B A and B A or B B, only if A B, if A B, iff A

ω1 1 1 1 1 1 1 1
ω2 1 0 0 1 1 0 0
ω3 0 1 0 1 0 1(*) 0
ω4 0 0 0 0 1 1 1

Note: (*) observing this primitive makes the statement of sufficiency vacuously true

•	 The or truth function follows from the strongest link rule as in Eqs. (7.10) and 
(7.11) and always returns a single false point, corresponding to the primitive with 
no matching values (ω4 in Table 7.1). It conveys that any unit displaying at least 
one disjunct in the right state provides evidence of a disjunction.

•	 The only if truth function has a single false point corresponding to the impossible 
primitive established by Eqs. (7.12) and (7.13). It shows that the relationship of 
necessity is only inconsistent with evidence of the consequent B occurring in 
some units where the antecedent A is missing (ω3 in Table 7.1). Therefore, the 
logical relationship of necessity assumes the antecedent A is not substitutable, as 
is oxygen to fire.

•	 The if truth function has a single false point in the impossible primitive defined 
by Eqs. (7.14) and (7.15). It shows that the claim of sufficiency is only inconsis-
tent with evidence that the consequent fails under the antecedent in some units 
(ω2 in Table 7.1). The logical relationship of sufficiency is the regular connection 
of antecedent and consequent. When the actual cause is composite, the require-
ment can only be satisfied by the antecedent that comprises all the components 
of a compound—including the factors that shield the causal process from 
obstructions. Section 7.4.2 will suggest a strategy for construing suitable shield-
ing factors.

A further note is due about the starred value of ω3 in Table 7.1. The instances of 
this primitive do not contradict the claim of sufficiency after the principle that ex 
falso quodlibet—meaning that anything can follow in the units where the anteced-
ent is missing or otherwise false. However, units of this type provide vacuous evi-
dence about the relationship (e.g., Salmon, 2020), as they may

	(a)	 point to its nonsensical nature. The evidence that Socrates is not a triangle yet 
is a philosopher makes the claim vacuous that “if Socrates is a triangle, then he 
is a philosopher.”

	(b)	 divert attention from the conditionality of interest. Evidence about salt that is 
not put in water is irrelevant to establish the claim that “if salt is put in water, 
then it dissolves.”

	(c)	 unveil some spurious relationship or incomplete explanation. The evidence that 
the barometer reads “storm” during a sunny day makes the claim vacuous that 
“if the barometer reads ‘fair,’ then it is a sunny day.”
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Although the exact meaning of a vacuous observation depends on the interpret-
ability of the relationship of interest, it nevertheless makes the problem visible as a 
formal issue of validity.

•	 The iff relationship arises from the conjunction of the truth functions of necessity 
and of sufficiency. It indicates the identity of the two literals and the overlapping 
of the respective classes of units in the universe. Thus, the truth function has two 
false points. In Table 7.1, these correspond to ω2 and ω3. In short, evidence of any 
inconsistency in the covariation of the two states challenges the validity of the 
identity.

QCA does not deploy logic, truth tables, and truth functions normatively. Instead, 
it relies on them as modeling tools and heuristics for the analysis.

7.3.2 � Identifying Valid Inus Hypotheses

Logic provides scaffolding and criteria to render an inus hypothesis first, then decide 
whether it is rightly specified to the universe under analysis.

7.3.2.1 � Rendering Hypotheses

Logic renders an inus hypothesis as a theoretically meaningful yet unwarranted 
claim about the sufficiency of a conjunction of K conditions to the occurrence of the 
outcome Y, as in (7.16)

	
 j

K
jA Y� �1 	

(7.16)

The formula means that ⌜were it the case that these K conditions together make 
an inus machine, then the outcome should certainly occur in an ideal instance dis-
playing them all  in the right state, and fail otherwise⌝. For it to hold, the starting 
hypothesis should contain the sufficient bundle to the positive and the negative out-
come, which may have different specifications. QCA acknowledges this fact and 
addresses the positive and the negative outcomes in separate analyses. Nevertheless, 
the two sets of findings are related as long as both follow from the same truth table 
in which primitives are exclusively assigned to one outcome, and no contradiction is 
detected.

The value of an explanatory QCA lies in identifying the plausible bundle beneath 
the success and failure of an outcome in the population of interest, to define the ten-
ability of the starting hypothesis and its underlying theory. Its identification proce-
dure addresses validity issues as the underspecification or the overspecification of 
the starting hypothesis.
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7.3.2.2 � Tackling Underspecification

QCA deploys truth tables as a diagnostic device for detecting underspecification. 
Therefore, QCA’s truth tables are partially different from those of logic.

A QCA’s truth table contains as many columns as inus conditions in the hypoth-
esis, plus one for the outcome and at least three additional columns for as many 
parameters of fit. The truth value of the outcome is the last column to be filled, 
depending on the researcher’s decisions about the parameters, as follows:

Decision 1: Frequency Cut-Off

This parameter establishes whether a primitive is observed or realized in the uni-
verse of reference based on the minimum number of its “best instances” (Ragin, 
2008). A unit is the best instance of the primitive in which it gets a membership 
scorehigher than 0.5 according to the weakest link rule (7.6).

Units’ classification yields two kinds of primitives: observed or realized, and 
unobserved or unrealized. The unrealized ones are also known as logical remain-
ders and constitute a common occurrence. Although the ratio of units to conditions 
inevitably plays a role in raising them (Marx & Duşa, 2011), their number is rela-
tively independent of the richness of the hypothesis or the size of the universe. 
Instead, the logical remainders expose the limited diversity of the units under analy-
sis and serve as a source of counterfactual reasoning (Ragin, 2008; see below).

The researcher’s decision regarding the frequency cut-off may also increase the 
number of unrealized primitives. Conventionally, one best instance is enough to 
declare a primitive realized albeit rare. However, the frequency cut-off can be raised 
if the numerosity of the population and the gauging strategy suggest a risk of errors 
in units’ classification.

Decision 2: The Consistency Threshold

The second of the researcher’s decisions on the truth table for a QCA concerns the 
assignment of the realized primitives to either the positive or the negative outcome. 
In Standard QCA, the decision mainly follows considerations on consistency.

In line with consolidated axiomatizations (Hájek, 2011), QCA captures the con-
sistency of the sufficiency of each primitive to an outcome (S.cons for short, also 
known as incl for “inclusion”: Ragin, 2008; Schneider & Wagemann, 2012; Duşa, 
2019) as an extensional gauge that checks for empirical violations of the impossibil-
ity requirement in (7.15) through the ratio in Eq. (7.17):

	

S cons
Y

Y.
*

*

*
�

�
�� �


	

(7.17)
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The vertical bars indicate the size of a partition. The denominator of the ratio is 
for any antecedent of interest—otherwise understood as the number of trials—and 
here corresponds to the primitive of interest. The numerator is for the number of 
successful trials, that is, the intersection of the primitive with the outcome. When 
none of the N units under analysis qualifies as an instance of the inconsistent inter-
section ω*Y , the numerator overlaps the denominator, and the S.cons gets its high-
est value of 1.00, which supports the claim that ω* is sufficient to Y. The lower the 
overlapping, the lower the S.cons parameter and the credibility of the claim of 
sufficiency.

The detection of critical inconsistencies justifies the dismissal of the hypothesis 
in the current shape as incomplete or otherwise misspecified (e.g., Rihoux & De 
Meur, 2009; Rohlfing, 2020). The textbook illustration comes from a configura-
tional model applying Lipset’s socioeconomic theory of democratization to account 
for the breakdown of democracy in Europe between the two World Wars. The model 
yielded a straightforward truth table with a single remarkable contradiction: the 
German case displayed all the socioeconomic conditions for a thriving democracy, 
but it experienced a clear regime breakdown. The contradiction disappeared after 
adding institutional conditions of government stability to the model.

The researcher’s decision concerns the value of the S.cons below which the 
inconsistency is severe enough to preclude the assignment of the primitive to the 
outcome. An established convention suggests setting it at 0.85, although the range 
of S.cons values in the table may justify a different choice. An additional criterion 
considers “natural gaps”—that is, steep falls in the ordered series of the primitives’ 
S.cons values. These gaps may suggest setting the consistency threshold in between 
clusters of primitives.

The primitives not assigned to Y cannot be automatically assigned to Y . Instead, 
the consistency of each primitive has to be tested with both states of the outcome 
separately. Nevertheless, meaningful solutions can be expected when the realized 
primitives below the consistency cut-off to Y return high S.cons values to Y . This 
suggests that the starting hypothesis can account for both the occurrence and the 
non-occurrence of the outcome consistently.

Decision 3: The Coverage Cut-Off

The least common and last of the possible researcher’s decisions concerns the 
empirical import of the claim of sufficiency—how relevant the primitive is to the set 
of instances of the outcome of interest. The related parameter, dubbed coverage of 
sufficiency (S.cov for short) is calculated as in (7.18)

	

S cov
Y

YY.
*

*
�

�
� �
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(7.18)
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When all the instances of a primitive ω* display the outcome, the numerator in 
(7.18) equals the denominator, and the parameter takes its highest value of 1.00 sup-
porting the claim that the primitive accounts for any unit with the positive outcome. 
But the empirical relevance of a factor to an outcome is the extensional gauge of its 
necessity in the cases at hand. Hence, the S.cov of ω* to Y gauges the consistency of 
necessity (N.cons for short) of the primitive to the outcome. Specularly, the S.cons 
of ω* to Y gauges the empirical relevance of the primitive as a necessary compound 
to the outcome—and hence counts as the N.cov of ω* to Y.

A primitive’s S.cov value decreases with the increase in the evidence that the 
outcome can occur without the primitive. Coverage cut-offs may be established to 
ensure the analysis is based on sufficient primitives that also are empirically rele-
vant. However, decisions driven by empirical relevance may prove unwise, as even 
rare primitives may contribute to specify the composition of inus machines.

7.3.2.3 � Tackling Overspecification

Overspecification depends on having included factors in the starting hypothesis that 
prove irrelevant to account for the units’ diversity.

The issue arises as mistaking some features for an inus component entrenches 
solutions in very specific contexts and unnecessarily reduces their portability (e.g., 
Craver & Kaplan, 2020; Salmon, 2020; cfr. Álamos-Concha et al., 2021; Chap. 10).

The acknowledged sources of overspecification are twofold: irrelevant compo-
nents, and trivial factors.

Irrelevant Components

Quine-McCluskey’s minimizations provide the standard approach to irrelevant con-
ditions (Ragin, 1987/2014, 2000, 2008). These minimizations identify irrelevant 
components in the single varying conjunct of two otherwise identical primitives. To 
witness, the minimization is possible of the primitives ABCD and ABCD  if both 
display high S.cons values to the same outcome. The formal reason is that the two 
allow the factorization ABC D D�� � , where D D� �:   by Eq. (7.9). The opera-
tion highlights that the implicant ABC is sufficient to Y regardless of D, which can 
be dismissed as not inus a factor.

The adjudication of the inus nature of single components may change depending 
on how minimizations deal with the logical remainders. The Standard Analysis 
affords three alternative counterfactual assumptions, each leading to “solutions” at 
different degrees of specification, as follows:

•	 Conservative or complex solutions. These are returned under the assumption that 
unrealized logical remainders would have proven ambiguous had they been real-
ized. Hence, minimizations only operate on observed primitives. With high lim-
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ited diversity, the solutions could be as rich as the disjunction of any realized 
primitive.

•	 Parsimonious solutions. A superset—and hence, more general in scope—of the 
conservative solutions, the parsimonious solutions are returned under the 
assumption that any logical remainder could prove sufficient if matching a real-
ized primitive except for one literal.
The surviving factors are the inus components in the hypothesis that are essential 
to account for the difference between the instances of the successful outcome 
and the instance of the failed one.
However, parsimonious minimizations can yield gappy explanations. Like the 
treatment variable in the Potential Outcome Framework (see Chap. 3) or the 
mediators in Path Analysis (see Chap. 6), the solutions from the parsimonious 
minimization may capture a causal channel, but certainly dismiss the informa-
tion about the covariates needed to account for the effect (Damonte, 2021b). The 
reason is that the parsimonious minimizations drop factors regardless of the 
plausibility of the logical remainders that they employ.

•	 Intermediate or plausible solutions. These are returned under the assumption 
that only those logical remainders qualifying as easy counterfactuals would have 
proven sufficient if realized.
To understand the difference between an easy and a hard counterfactual, imagine 
the following. At the outset, we include condition A in the starting hypothesis 
under theoretical and empirical reasons to assume that it is an inus factor. More 
specifically, we assume that the condition makes an unknown causal compound 
Φ sufficient to the outcome Y when given in a state, say A, while in the opposite 
state, say A , it turns Φ into a failure machine. In short, we add A under the direc-
tional expectations that

(i)	 AΦ ⊂ Y; and

(ii)	 A Y� � ,

where ⊂ indicates a subset.

After we build and populate the truth table, we find the primitive ω1 = ABCD is 
observed with an S.cons of 1.00 to Y, while we do not observe (hence we star) the 
primitive �9

* � ABCD.  According to the single difference rule, ω1 and ω9
*  can be 

minimized to BCD. However, the minimization entails that ω9
*  is consistent with Y, 

and hence that AΦ  would yield Y if observed. This goes against our directional 
expectation (ii) and makes a hard or implausible counterfactual of ω9

* .
Now imagine the primitive �13 � ABCD  is realized with an S.cons of 1.00 to Y, 

while the primitive �5
* � ABCD  is a logical remainder. Again, according to the 

single difference rule, ω13 and ω5
*  can be minimized to BCD.  The minimization 

entails that ω5
*  is consistent with Y and that AΦ would yield the outcome if observed. 

This agrees with our directional expectation (i); hence, ω5
*  qualifies as an easy or 

plausible counterfactual.
Intermediate minimizations return solutions from observed primitives and easy 

counterfactuals only. The factors added to the parsimonious solution terms may not 
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be essential to preserve the non-contradictoriness of the compounds. As they 
improve the sufficiency of the implicant, they offer a more complete account of why 
the outcome failed in specific units while succeeding in others (Ragin, 2008; Fiss 
et al., 2013; Duşa, 2019; Oana & Schneider, 2018; Damonte, 2021a; cfr. Baumgartner, 
2015; Baumgartner & Thiem, 2020).

A Note on Ambiguity in Solutions

Regardless of the usage of the logical remainders, it has been emphasized that solu-
tions in Standard QCA may encounter problems of ambiguity as the same primi-
tives to an outcome may yield different prime implicants. To witness, the primitives 
ABC ABC ABC, ,  can legitimately be minimized as AB A CB∪  or AC ABC∪ . 
The information is displayed in a Prime Implicant Chart that shows which prime 
implicant covers which primitive, as displayed in Table 7.2.

Originally, the PI Chart was devised to allow the researchers making a deci-
sion on which implicants could be retained in solutions in light of their theoreti-
cal import. The practice has been deprecated, as cherry-picking implicants may 
build a confirmation bias into solutions (e.g., Baumgartner & Thiem, 2020; 
Baumgartner, 2015), and the current good practices require that alternative 
implicants are reported, too. Besides, the alternative minimizations may contain 
information of interest for discussion. For instance, in the example above, the 
two solutions indicate that A is always required—it can be an enabling condi-
tion—but, in the cases at hand, it obtains in team with B or C—which can play 
as triggering conditions. The richer implicants A C ABB C,  add that the one trig-
ger can compensate for the absence of the other. These two richer implicants are 
currently left implicit by the reporting conventions that reward lean solutions. 
Under these rules, privileged prime implicants are those terms that, together, 
maximize the coverage of primitives—as are AB, AC in Table 7.2. Indeed, the 
conclusion that the union AB ∪ AC obtains the outcome does justice to alterna-
tive minimizations while logically entailing the richer implicants. Still, the 
information in the PI Chart deserves some attention, for it may suggest more 
accurate causal interpretations.

Table 7.2  Example of Prime Implicant Chart

Primitives
Implicants ABC A CB ABC

AB x x
AC x x

ABC
x

A CB
x

7  Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis



170

Dealing with Trivial Factors

Trivial factors are degenerate necessary conditions, that is, limiting cases of super-
sets. These arise when all or almost all the units in the universe of reference make 
the same state of the condition true—in short, when their distribution is skewed or 
constant.

Trivial factors can be detected by plugging the size of one condition in the place 
of the primitive in the formulas of the N.cons as in (7.18). When all the instances of 
the tested condition display the outcome, the numerator equals the denominator, and 
the parameter takes its highest value of 1.00, supporting the claim that the condition 
is necessary to the outcome. Conditions with a score of N.cons higher than 0.95 can 
be tested for skewness through a further parameter dubbed Relevance of Necessity 
(RoN: Schneider & Wagemann, 2012) and calculated as in (7.19) below:

	

RoN
A

A YA Y� �
�

1

1

–

–
	

(7.19)

The parameter takes its lowest scores when the distribution of the condition by 
the outcome of reference proves trivial—when the size of 1− A  is remarkably 
smaller than the size of 1� �A Y ,  indicating the instances of the negative outcome 
raise independently of the absence of the condition. The standard recommendation 
is to consider dropping the factors with N.cons close to 1.00 and low RoN from the 
hypothesis. Thus, such “analysis of necessity” is a recommended step to be per-
formed ahead of constructing the truth table (Schneider & Wagemann, 2012).

The original expected advantage was of pinpointing those constant conditions 
that double the number of primitives in the truth table while leaving almost half of 
them unobserved and lowering the consistency of every solution. However, the dis-
missal of a quasi-constant may prove unwise if the model requires it to prevent 
contradictory primitives (Rohlfing, 2020). The essentiality of the contribution can 
be easily ascertained by verifying whether a change in the consistencies of the prim-
itives occurs after the seemingly trivial condition is dropped from the hypothesis 
(Damonte, 2021a). Nevertheless, the calculation of the parameters of fit on indi-
vidual conditions remains a crucial source of information, as their values can sup-
port directional expectations or suggest reconsidering them.

7.4 � Soundness

The actual link between sets, predicates, and the real world is decided by how truth 
values are assigned to literals—that is, by gauging.

The standard assumption in representation measurement theory maintains real-
world properties depend on some units’ deep structure that we can know indirectly 
only as meaningful variations in related observable attributes. This theory assumes 
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we can represent these attributes through numerical images and capture their varia-
tion through adequate scales. Scales warrant that for any manifestation pi of the 
property P in the unit ui there is a measure qi of the image Q such that the functional 
relationship between measures preserves some fundamental relationship in the vari-
ation of the attribute.

The seminal work of Stevens (1946) pinpointed four such fundamental relation-
ships: sameness, rank, distance, and proportion, preserved by nominal, ordinal, 
interval, and ratio scales, respectively. Conventional textbooks have long taught that 
a hierarchy of scope exists among measurements with the ratio scale at the top as the 
most “robust” one—i.e., abstracted from actual entities and their contexts. Intended 
as a prudential rule for naive statisticians (e.g., Luce, 1959), the hierarchy has turned 
into a canon and, as such, has been disputed since its introduction. Indeed, any mea-
surement entails a loss function, and the loss is admissible that allows retaining 
crucial information (e.g., Guttman, 1977). Thus, prominent comparatists contend 
that ratio scales prove robust for detecting fine-grained changes, but sacrifice the 
information on “critical points.” The qualitative change that occurs in the state of a 
unit when the measure of a crucial attribute reaches a special value is better con-
veyed by nominal scales (e.g., Sartori, 1984, 1991; Collier & Mahon, 1993; Ragin, 
2000; Goertz, 2020).

In short, scales entail a trade-off between precision and meaning. However, the 
trade-off can weaken when metric variables are remapped as fuzzy sets.

7.4.1 � Gauging for QCA: The Theoretical Side

7.4.1.1 � The Starting Point

Zadeh (1968, 1978) introduced fuzzy sets to widen the scope of algorithmic prob-
lem-solving. He noted how machines could deliver precise solutions, but limited to 
trivial problems, while the human brain tackles complex issues through linguistic 
structures with hazy hedges such as ⌜very⌝, ⌜somewhat⌝, or ⌜almost⌝.

Fuzzy scores translate hedges into weights (μ) ranging from 0.00 to 1.00 to con-
vey the degrees of membership of ui to the set of A instances. They, too, understand 
the membership in a set and its opposite as complements, calculated as in (7.20):

	
� �

i A
i A

�
��

–
–1 00.

	
(7.20)

where ∈ reads ⌜in⌝.
The meaning of the relationship between complements is established by a third 

relevant value, the crossover. Conventionally weighing 0.50, the crossover is the 
point of neutrality and signals a membership neither in the set nor in its complement.

Logically, fuzzy scores capture the possibility that the statement ⌜is A⌝ is true for 
the actual unit ui: 1.00 indicates the statement is certainly true; 0.00 indicates the 
statement is certainly not true; 0.50 indicates that the positioning of ui is highly 
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ambiguous given the observation. Therefore, original fuzzy scores defy a strictly 
bivalent logic. The advantage is that the three points allow alignment of linguistic 
hedges, sets, and metric variables through a triangular, trapezoidal, or bell-shaped 
function. This filter function maps the raw values νA—e.g., age in years—into fuzzy 
scores μA—e.g., membership in the set ‹young›—so that it conveys the certainty 
that a 16-year-old is in the set and a 36-year-old is almost so.

To map meanings onto fuzzy scores, then, the researcher needs to establish

•	 The raw value of the inclusion threshold, α. The threshold truncates any variation 
above α as irrelevant: for any value higher than α, the unit ui does qualify as an 
instance of the set and takes 1.00 as its fuzzy score.

•	 The raw value of the exclusion threshold, β. The threshold truncates any variation 
below β as irrelevant: for any lower values, the unit ui does not qualify as an 
instance of the set and takes the fuzzy score of 0.00.

•	 The raw value of the crossover γ, which makes the classification of ui uncertain 
and corresponds to the fuzzy score of 0.50. In Zadeh’s original system, the raw 
value of the crossover is the arithmetic mean of α and β.

7.4.1.2 � Ragin’s Reinvention

For QCA, Zadeh’s original proposal is affected by a twofold ambiguity. First, lin-
guistic hedges are seldom clearly ordered, and a straightforward correspondence 
with particular fuzzy scores can prove idiosyncratic. Second, triangular, trapezoi-
dal, or bell-shaped relations can make each fuzzy score μA correspond to more than 
one raw scores on νA, which makes it hard to retrieve the raw value from the 
fuzzy score.

Ragin’s fuzzy sets avoid these issues with a gauge that, before rendering natural 
language, includes both pieces of information of interest to comparatists—those of 
“differences in degree,” and of “differences in kind” (Ragin, 2000). His filter func-
tions are monotonic non-decreasing, which re-establishes the isomorphism of raw 
values, fuzzy membership scores, and selected hedges—as in Table 7.3.

The remapping of raw variables into fuzzy scores is especially illuminating of 
Ragin’s rationale of conversion. He portrays it as an operation of calibration—
defined as the fine-tuning of an instrument to improve the validity of its measure-
ments. Although the concept best applies to continuous variables, the calibration 
rationale also informs the transformation of qualitative data into fuzzy scores (e.g., 
De Block & Vis, 2019). Indeed, the instrument to be fine-tuned is the filter function, 
whose shape can be decided using different methods (Ragin, 2000, 2007, 2008:96; 
Duşa, 2019).

The indirect method of calibration assigns the same “qualitative score” from a 
scale such as (c) or (f) in Table 7.3 to groups of cases with similar raw values. Then, 
the cases’ raw scores may or may not be filtered into predicted fuzzy scores through 
the qualitative scores by fractional polynomial regression.
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Table 7.3  Possible positions of ui to A, and corresponding membership values μA

Position
μA

(a) (b) (c) (d) (e) (f)

Fully in 1 1 1 1 1 1
Mostly in

4/5

5/6

More in than out
2/3

3/4 4/6More or less in 3/5

Neither in nor out 1/2
2/4

3/6

More or less out
1/3

2/5 2/6More out than in 1/4 1/5Mostly out 1/6

Fully out 0 0 0 0 0 0

Source: Ragin (2000:156, 2009)

The direct method of calibration, on the other hand, stipulates that the filter func-
tion is a growth curve of odds. The smoothness of the slopes is decided every time 
by suitable raw values for αA, γA, βA. These chosen raw scores are pegged to conven-
tional fuzzy values, fixed at 0.953, 0.500, 0.047, respectively. The log-odds of μα 

are  ln
.
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membership of the i-th unit with raw value νi is calculated as in (21) below:
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Ragin’s fuzzy sets can be conceived of as crisp sets weighted by a classification 
error. As such, they convey both qualitative and quantitative information, circum-
venting the trade-off between scales. Indeed, the crisp classification still holds with 
fuzzy scores, following the rule of conversion in (7.22):

	

Ai

i A

i A

�
�
�

�
�
�

��

�

�

1 0 50

0 0 50

, .

, .

�
�

	

(7.22)

where Ai is the crisp membership of the i-th unit in the set A, while μi ∈ A is the fuzzy 
membership of the same i-th unit in the same set.

The preservation of crisp sets’ qualitative information by QCA’s fuzzy scores is 
further ensured by the convention that the crossover shall not be assigned to any 
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actual unit of analysis—or of dropping the 0.5-instances under the argument that 
they cannot bring helpful information in the analysis (Ragin, 2008; Duşa, 2019).

Furthermore, the basic rules for calculating intersection and union as in (7.6) and 
in (7.10) also apply to fuzzy sets. However, fuzzy scores cannot meet the axiom of 
strong identity (7.1); instead, they follow the more common version (7.23) below, 
meaning that sameness is preserved for units with the same score.

	 A Ai i:= 	 (7.23)

The principles of non-contradiction and excluded middle again hold with fuzzy 
scores in a crisp understanding, as clarified by (7.24) and (7.25):

	
�

i A A� �� � � 0 5.
	

(7.24)

	
�

i A A� �� � � 0 5.
	

(7.25)

It is worth noting that the size of a fuzzy union calculated by (7.6) is usually 
smaller than its crisp versions, while the size of a fuzzy intersection calculated by 
(7.10) is usually larger than its crisp version due to the residuals that fuzzy scores 
leave in the partition.

7.4.1.3 � Fuzzy Sufficiency and Necessity

With fuzzy scores, subset relationships are established as the containment (Ragin, 
2000; cfr. Zadeh, 1978) of membership functions.

Therefore, fuzzy-set sufficiency is captured by Eq. (7.26):

	
� ��i i Y� ��

. 	
(7.26)

Equation (7.26) entails that, if we plot our units on a Cartesian plane defined by 
the membership scores in ω. as the x-axis and the membership scores in Y as the 
y-axis, if ω. is sufficient to Y, it distributes the units above the bisector in an upper-
triangular shape.

Instead, fuzzy-set necessity corresponds to (7.27):

	
� ��i i Y� ��

. 	
(7.27)

Equation (7.27) means that the antecedent ω. that is necessary to Y distributes the 
units below the bisector in a lower-triangular shape.

By extension, the relationship of necessity and sufficiency arises when the units’ 
membership scores in a primitive (or implicant, or condition) equal those in the 
outcome, distributing the units along the bisector in a linear shape.
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The S.cons parameter preserves its meaning with fuzzy scores, although they can 
blur the recognition of violations as the residuals �

i Y Y� �� �  inflate their values. The 

Proportional Reduction of Inconsistency (PRI: Ragin, 2008; Schneider & 
Wagemann, 2012) has been introduced to deflate and complement the information 
from the S.cons calculated with fuzzy scores. The parameter builds on the rationale 
of the proportional reduction of error commonly employed to determine whether 
the information about A improves our prediction of Y (e.g., Menard, 1995). It reads 
as in (7.28):
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where the vertical bars again indicate the size of the fuzzy partition as the sum of 
the units’ fuzzy membership scores in the partition—such that, for 
instance, � � �* :

*
� ��� ii

N
.

1
The set-theoretical task of the PRI is to establish whether the conditional rela-

tionship holds, net of fuzzy residuals. It takes the same value as the S.cons when the 
size of the residuals is null Y Y� � 0 00. .  It degenerates when the units systemati-
cally display higher residuals than membership in the primitive: � � �i Y Y i� �� � ��

*
.  

Last, it takes lower values than the S.cons when the units’ residuals are non-null and 
lower than the membership in the primitive: 0 � �

� �� � �� � �i Y Y i *
.

A PRI value sensibly lower than the corresponding S.cons points to inconsisten-
cies that may justify the exclusion of the primitive from minimizations—or the 
reconsideration of gauges, conditions, or the starting hypothesis.

7.4.2 � Gauging for QCA: The Empirical Side

Whether fine-grained membership scores properly render an inus factor only 
depends on how we construe our gauge—here, on how we set the thresholds. 
Thresholds elicit a solution to the problem of aligning the extension and the inten-
sion of an attribute (Quine, 1982; Sartori, 1984; Goertz, 2020).

A theory-driven approach to the problem clarifies the intension first to prevent 
the risk of stretching attributes beyond their meaning, which would introduce more 
hidden heterogeneity than would be desirable for the analysis (see Chap. 10). At the 
same time, thresholds may spoil the analysis when they enforce some ideal yard-
stick that none of the units can meet. In short, theoretical thresholds can become 
useless when decisions are not fine-tuned to actual diversity.

QCA scholars have developed several recommendations to balance these oppo-
site risks. The recommendations assist the researcher in tackling three intertwined 
problems—namely, unit selection, the operationalization of causal properties, and 
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the identification of thresholds that align meanings and empirics. In actual research, 
the point of attack may change; however, the resulting membership scores provide 
a single solution to all three issues—likely, after some iteration.

7.4.2.1 � Establishing the Universe of Reference

As in any technique, units of observation provide as solid an empirical ground to the 
analysis as the criteria for their selection. Such criteria should prevent or minimize 
the later rise of threats to credible results (e.g., Geddes, 1990; Goertz, 2020).

In explanatory QCA, case selection has to ensure enough diversity to capture the 
causal facts of interest. Thus, the criterion cannot exclusively focus on the depen-
dent or the independent. Units selected on the outcome of interest would artificially 
prevent inconsistencies—thus making the validity of results undecidable. On the 
other hand, units selected on the factor of interest would turn it into a constant back-
ground feature and make its causal contribution undecidable. Hence, the first crite-
rion that unit selection shall meet is the variability in realized states and combinations 
of factors.

The broadest variability follows from open universes, but open universes may 
endanger the preservation of meaning (i.e., Ragin, 2008). Geographical, historical, 
and cultural boundaries provide the closure of the units’ heterogeneity required for 
making interpretable decisions about thresholds. Indeed, different α, β, γ may be 
needed to establish whether a country qualifies as <RICH>, <DEMOCRATIC>, or 
<EQUAL> in different world regions and time frames. Therefore, the second and 
related criterion for unit selection consists of finding the meaningful scope condi-
tion that encloses the universe of reference and ensures interpretable membership 
scores. In short, the correspondence of meaning and numbers comes at the cost of a 
restriction in the scope of the analysis—and in the generalizability of results (e.g., 
Goertz, 2017; Walker & Cohen, 1985; Verweij & Vis, 2021; Findley et al., 2021). 
The limitation, however, might not apply to the starting explanatory hypothesis, 
which may travel farther than its operational specifications.

7.4.2.2 � Operationalizing Intension

The operation of connecting gauges and attributes meaningfully is seldom straight-
forward. Again, it opens to two opposite risks of providing too a specific or generic 
definition of an attribute (e.g., Sartori, 1984; Ragin, 2008).

Hyper-Specificity

The fallacy of composition occurs when we recognize each “token” empirical mani-
festation as a different property and build a plethora of conditions with too narrow 
an extension (e.g., Menzies, 2004; Craver & Kaplan, 2020; cfr. Chap. 10). The 
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problem can be solved by recognizing functional equivalences, climbing the ladder 
of abstraction, and gathering functionally equivalent manifestations under a sin-
gle label.

Verba (1967) elaborates on the point by discussing how case-based evidence can 
be turned into a causal factor. From the historical report on how the eruption of 
Mount Vesuvius had a significant impact on the stability of the Pompeiian political 
system, we may identify either ‹eruption› or ‹calamity› as a relevant inus factor; 
however, the latter includes the former and accommodates a broader number of 
functionally alternative sources of disruptions, thus widening the scope of 
comparisons.

According to Verba, an even better operationalization shifts the attention from 
contextual conditions to the properties of the unit of analysis. Instead of gauging the 
sources of disruption, the operationalization can narrow on those resources and 
arrangements that make the system respond to disruption effectively. From this 
viewpoint, ‹resilient› better contributes to an explanatory theory of political sys-
tems’ stability than ‹calamity›. The system attribute can apply to the Pompeiian 
case, but travel farther across contexts.

Hyper-Generality

The second and opposite problem arises when the properties are encompassing to 
the point of losing their analytic capacity.

The problem often arises when the available measure of a concept is a composite 
of predictors, enabling factors, proxies, outputs, and outcomes. Such assorted con-
tent can make these composites apply “everywhere, as any universal should” but 
also “to everything.” As a result, we incur “theoretically, a ‘nullification of the prob-
lem’ and, empirically, what may be called ‘empirical vaporization’” (Sartori, 1991; 
Chap. 9; cfr. Collier & Mahon, 1993).

QCA detects these composites as trivial conditions  and suggests they can be 
dismissed. However, composites may contain relevant explanatory information. The 
inus standing of selected components can be decided by their consistency to the 
outcome and by minimizations. In addition or as an alternative, suitable rules of 
composition by disjunction and conjunction may be devised to compress sub-prop-
erties into “superconditions” (Elman, 2005; Berg Schlosser & De Meur, 2009; 
Goertz, 2017; Damonte & Negri, 2019).

The Problem of Missing Values

Often, available raw measures are plagued with missing values. QCA’s algorithm 
technique cannot handle them clearly, as the units for which the value is missing 
would belong to two primitives. This ambiguity can be tackled by running parallel 
analyses to verify whether the different classifications result in different solutions. 
If not, the unit and its partial information would prove irrelevant. When different 
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classifications affect solutions—for instance, because they decide whether a primi-
tive is realized or not—the information proves relevant, but the problem arises of 
how to decide between the two solutions.

Missing raw values require some credible criterion of adjudication. Alternatively, 
the measure can be substituted with a complete gauge of the same intension, if any. 
Last, the unit can be dropped from the analysis (Ragin, 2008; Basurto & Speer, 
2012; Duşa, 2019). The move may increase the number of logical remainders, but 
remainders can be more adequately addressed with counterfactual rules in 
minimization.

7.4.2.3 � Identifying Membership Thresholds

Thresholds explicate the rule that establishes a unit to be an instance of the set given 
its raw value. The default recommendation is to anchor these decisions on external 
theories and conventions (Ragin, 2000, 2007, 2008).

Special values of national and international policy indicators—for instance, 
household income to establish the risk of poverty; the share of people in an age 
cohort in education or training to expect a certain quality of society; the share of 
debt to revenue to establish the credibility of a borrower—may offer accepted 
anchorages to calibration decisions. However, conventional knowledge may evolve 
at a slower pace than actual phenomena. Under particular contingencies or within 
special areas, its usage for calibration may return skewed membership scores that 
would not survive the RoN test. Besides, a conventional tipping point may coincide 
with some units in the population, making them uninformative.

To avoid these issues, conventional knowledge can be adjusted in light of distri-
butional considerations (Ragin, 2008). Although descriptive statistics lack qualita-
tive meaning, considerations about quintiles seem unavoidable in large-N studies or 
whenever previous knowledge is wanting (e.g., Ragin & Fiss, 2017). A supplemen-
tary strategy—and consistent with the concern for non-contradictory partitions—
prescribes cluster analysis to identify the raw values to be used as thresholds. The 
underlying rationale maintains that units close to each other belong to the same 
partition—and hence, that thresholds lie in the “natural gaps” between clusters.

Although long offered as a standard function for threshold setting by many soft-
ware packages (e.g., Duşa, 2019), cluster analysis has driven concerns that its appli-
cation might convey a deceiving sense of certitude about calibration and solutions. 
The risk of overconfidence can also increase when the membership scores are 
assigned directly following one of the scales in Table 7.3. Indeed, the researcher’s 
classification error can always affect scoring operations in unknown directions.

To keep the risk at bay, zooming into the units around a threshold can help to 
support decisions with empirical knowledge when the number of cases allows it 
(Ragin, 2000; De Block & Vis, 2019). Frontier literature has also developed on false 
negatives and false positives in solutions (Braumoeller, 2015; Rohlfing, 2018) and 
on alternative filtering functions (Thiem, 2010). A further strategy suggests ascer-
taining the “robustness” of the solutions by running parallel analyses under different 
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perturbations of units and thresholds (Marx & Duşa, 2011; Maggetti & Levi-Faur, 
2013; Duşa, 2019; Oana & Schneider, 2018).

Many of these considerations are more justified in exploratory than in explana-
tory applications of QCA. When the driving concern is the preservation of particular 
meanings, seldom different gauges can render it equally well. To witness, Ostrom’s 
theory of corruption maintains that people’s perception of ineffective monitors and 
sanctions drives the belief of diffused wrongdoing that invites resorting to corrup-
tion along the lines of a self-fulfilling prophecy. In testing the tenability of this 
theory, the indexes of inefficiency in administration often used as a proxy of corrup-
tion are less suitable gauges of the phenomenon to be explained than the measures 
of perceived corruption.

In explanatory usages, however, coder’s biases are possible, and this possibility 
can be explored by simulating some systematic tendencies toward strictness, gener-
osity, confidence, or coyness in assigning membership scores. These tendencies can 
be rendered by calculating the concentration (7.29), dilation (7.30), intensification 
(7.31), or moderation (7.32) of the original fuzzy scores (Smithson & 
Verkuilen, 2006):
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These transformations expose the worsening or the improvement that coders’ 
biases can impart to solutions. They prove that truth tables and solutions inevitably 
change with scoring strategies—and the intensification, by bringing the fuzzy truth 
table closer to its crisp version, inevitably enhances the consistency and symmetry 
of observed primitives. In the end, the relative fragility of findings mirrors the speci-
ficity of our operationalization —but also its local value. It counts less as a problem 
of the technique or the algorithm than an issue in our knowledge, models, and gaug-
ing strategies.

7.5 � Summing Up

To run a credible explanatory QCA, a researcher may want to
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	1.	 Define the outcome of interest, the causal stories about its generative process, 
and the conditions that make it “certain.” This step implies reviewing the theo-
retical and empirical literature to find testable definitions of the outcome, and 
identifying a convincing (type of) data-generation mechanism beneath it. Based 
on the mechanism, triggering, enabling, and shielding inus conditions can be 
hypothesized that, jointly given in an ideal unit, would compel the generation 
process and ensure it unfolds unimpeded. This bundle provides the starting inus 
hypothesis.

	2.	 Identify the universe of reference and the raw variables that render the hypoth-
esis, then declare the directional expectations about each factor. Define a scope 
condition for a population ensuring meaningful units’ diversity. Choose the raw 
measures at the proper level of abstraction to render each factor as faithfully as 
possible. Estimate the missing values, or discard the corresponding unit. Then, 
declare the directional expectations about the contribution of each factor to the 
occurrence and failure of the outcome.

	3.	 Turn raw data into membership scores. Explore the variation in the raw mea-
sures; identify thresholds; assign membership scores to instances with proper 
operations. Different scaling may affect the assessment of set-relationships; con-
sider applying the same scaling. Consider whether the specification of the 
hypothesis may benefit from the compression of some factors; in that case, add 
the new superconditions to the dataset. Calculate different datasets with diluted, 
concentrated, moderated, and intensified scores to run parallel analyses for 
robustness.

	4.	 Assess the claim of individual consistency. Calculate the necessity parameters 
for single conditions against the outcome and its negation. Identify those condi-
tions from the starting hypothesis with N.cons above 0.95 and low RoN, and fork 
the analysis by running the next steps with and without them. If compressed 
conditions obtain better N.cons and N.cov values than the original ones, consider 
dropping the latter. N.cons and N.cov values can also be used to establish whether 
the directional expectations stand in the population.

	5.	 Assess the claims of sufficiency. Build the truth tables of the positive and negative 
outcome, assign instances to primitives, and calculate the S.cons and the PRI of 
the realized primitives. Check for inconsistent instances in configurations; if 
found, re-run the calibration. Be it of no help, add a further condition in line with 
the starting hypothesis to improve the consistency of each primitive to one 
outcome.

	6.	 Minimize. Establish the cut-off in the values of S.cons below which the observed 
primitives will not be deemed consistent with the claim of sufficiency—in case, 
with the help of PRI values—to both the positive and the negative outcome. Find 
the conservative, parsimonious, and plausible solutions. Consider the difference 
in the composition of each prime implicant from the parsimonious and the plau-
sible solution. If new conditions appear in the latter, check whether the S.cons 
values of the plausible solution are higher than the parsimonious. Higher consis-
tency values indicate the addition is detectably meaningful, and the plausible 
solution is more credible than the parsimonious. If the additional conditions in 
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the plausible solution do not improve the S.cons values on the parsimonious, 
consider re-running the analysis from step 5 without these additional conditions 
to verify the robustness of minimizations.

	7.	 Plot the solutions to the outcome and its negation. Check the fitting of the 
instances to the upper triangular shape, assuming the shape is met when instances 
fall above the y = x + 0.1 line (Ragin, 2000). Discuss which implicants explain 
which instances of the outcome. Consider the unexplained instances.

	8.	 Return to theory. Consider the logical relationship between the solutions to the 
outcome and its negation. Identify the strategies that a negative instance can 
adopt to reach the closer positive group.

	9.	 Run re-analyses and extensions for robustness. Run the analysis with different 
calibrations and scope conditions, and compare the raising of contradictory con-
figurations, the change in necessity, the differences in solutions.

You can find the example here https://doi.org/10.5281/zenodo.7117973.
Enjoy your explanatory QCA!

Suggested Readings

The full-fledged version of the original proposal remains Charles C. Ragin, 2008. Redesigning 
social inquiry: Fuzzy sets and beyond. University of Chicago Press. An updated version and 
close to the original proposal is Patrick A.  Mello’s Qualitative Comparative Analysis: An 
Introduction to Research Design and Application (Georgetown University Press, 2021). A 
more case-oriented version is Ioana-Elena Oana, Carsten Q. Schneider, and Eva Thomann’s 
Qualitative Comparative Analysis Using R: A Beginner’s Guide (Cambridge University 
Press, 2021).

The detailed documentation of the R functions for QCA is in Adrian Duşa’s QCA with R: A 
comprehensive resource (Springer, 2019). Additional functions are in Ioana-Elena Oana and 
Carsten Q. Schneider’s SetMethods: an Add-on R Package for Advanced QCA (The R Journal 
https://doi.org/10.32614/RJ-2018-031).

The standards of transparency in reporting QCA are detailed in Schneider, Carsten Q., Vis, Barbara 
and Koivu, Kendra, 2019. Set-Analytic Approaches, Especially Qualitative Comparative 
Analysis (QCA), https://doi.org/10.2139/ssrn.3333474

Review Questions
Section 7.2

	(a)	 What is inus causation?
	(b)	 What is an inus machine?
	(c)	 How are the two concepts related to directional expectations?

Section 7.3

	(a)	 What is a literal?
	(b)	 What is a set?
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	(c)	 What is the relationship between the membership in a set and the truth value of 
a proposition?

	(d)	 What is a truth table?
	(e)	 How many primitives has a truth table of seven literals?
	 (f)	 Construe the truth table of literal A and the ⌜not⌝ connective.
	(g)	 What does the principle of non-contradiction say?
	(h)	 What does the weakest link rule say?
	 (i)	 How do you calculate the membership of a unit in an intersection?
	 (j)	 Construe the truth table of literals A, B, C, D and compute the truth function of 

the ⌜and⌝ connective.
	(k)	 What does the principle of the excluded middle say?
	 (l)	 What does the strongest link rule say?
	(m)	 Construe the truth table of literals A, B, C, D and compute the truth function of 

the ⌜or⌝ operator.
	(n)	 What is the consistency of sufficiency?
	(o)	 How can the consistency of sufficiency support the assessment of 

underspecification?
	(p)	 What is the consistency of necessity?
	(q)	 How can the consistency of necessity support the assessment of 

overspecification?
	 (r)	 What is in a parsimonious solution?
	(s)	 What is a hard counterfactual, and what is an easy one? In which round of 

minimizations are they employed?

Section 7.4

	(a)	 How do fuzzy scores accommodate qualitative and quantitative information?
	(b)	 What are the shapes of the filter function in Zadeh’s fuzzy sets, and how do they 

differ from Ragin’s?
	(c)	 What is the meaning of the inclusion and exclusion points in terms of relevant 

and irrelevant variation?
	(d)	 What is the rule for turning fuzzy into crisp scores? Can we reverse the 

transformation?
	(e)	 The membership score of u1 in set A is 0.3. Calculate the value of its member-

ship in the intersection A A∩ .
	(f)	 Do fuzzy scores violate the principle of non-contradiction?
	(g)	 The membership score of u1 in set A is 0.3. Calculate the value of its member-

ship in the union A A∪ .
	(h)	 Do fuzzy scores stretch the principle of the excluded middle?
	(i)	 What is the PRI for?
	(j)	 How can you ascertain the robustness of configurational solutions?
	(k)	 Calculate the concentrated, dilated, intensified, and moderated scores of unit ui 

with original membership in Y of 0.9 and in A of 0.8.
	(l)	 Calculate the S.cons of each transformation from exercise 11, and order them 

from the strongest to the weaker. Which fares better, and which worse?
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