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Abstract

In this paper we introduce a new model, named CARMA(p,q)-Hawkes, as the Hawkes model

with exponential kernel implies a strictly decreasing behaviour of the autocorrelation function

while empirical evidences reject its monotonicity. The proposed model is a Hawkes process where

the intensity follows a Continuous Time Autoregressive Moving Average (CARMA) process and

specifically is able to reproduce more realistic dependence structures. We also study the conditions

of stationarity and positivity for the intensity and the strong mixing property for the increments.

Furthermore we compute the likelihood, present a simulation method and discuss an estimation

approach based on the autocorrelation function.
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1. Introduction

Point processes are useful mathematical models that describe the dynamics of observed event

times and have been studied and applied in several fields of study from queueing theory to forestry

statistics. Among the family of point processes the Hawkes (1971a,b) process is widely the most

established and widespread model in different areas, especially in quantitative finance, actuarial

science and seismology (see Ogata 1988 and references therein for further details). Indeed the

Hawkes process is particularly interesting since it is a self-exciting process, which means that each

arrival excites the intensity such that the probability of the next arrival is increased for some period

after the jump, and consequently it is well-suited to investigate, for instance, natural clustering

effects and bank default in time. To show the versatility of the Hawkes process we mention a
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few other possible non-financial and non-insurance applications: a) social science area e.g., Mohler

et al. (2011) for the modeling of urban crime and Boumezoued (2016) for the population dynamics;

b) social media sector as done in Rizoiu et al. (2017); and c) the modeling of disease spreading

such as COVID-19 transmission as discussed in Chiang et al. (2022).

Recently the Hawkes process has gained a relevant role in financial modeling, in particular in

the field of market microstructure. As a matter of fact it is used to model market activity, especially

order arrivals in the limit order book (e.g., Bacry et al., 2013; Muni Toke and Yoshida, 2017; Clinet

and Yoshida, 2017). For a complete overview of applications of the Hawkes process in finance, we

suggest the works of Bacry et al. (2015) and Hawkes (2018). The Hawkes process has aroused its

appeal among researchers and practitioners as well as in the insurance area. Indeed, as mentioned

in Lesage et al. (2022), insurance companies are interested in point processes for the quantification

of regulatory capital and in managing risks (e.g., computing ruin probabilities and measuring the

effect of cyber-attacks as discussed respectively in Cheng and Seol 2020 and Bessy-Roland et al.

2021). Swishchuk et al. (2021) show that the use of a Hawkes process with exponential kernel for

modeling insurance claim occurrences provides an improvement over the fit of a classical Poisson

model. However, they are not able to fit different empirical autocorrelation functions as exhibited

in Swishchuk et al. (2021, Figures 3 and 5, p. 112).

As stated in Errais et al. (2010), the Hawkes process with exponential kernel is Markovian

and shows a good level of tractability that makes it useful for real applications in the presence

of large data sets (e.g., high-frequency market data). The specification of the kernel restricts the

shape of the time dependence structure of the number of jumps observed in intervals with same

length. Indeed, as observed in Da Fonseca and Zaatour (2014), the autocorrelation in a Hawkes

model is a decaying function of lags which is not flexible enough to represent the dependence

structure observed in many data sets (e.g., wind speed data in which the exponential autocorrelation

overshoots the empirical one for small lags and vice versa for large lags as documented in Benth and

Rohde 2019; and, as shown in Hitaj et al. 2019, mortality rates where the empirical autocorrelation

function of the shock term appears to be non-monotonic).

To overcome the aforementioned drawback, in this paper we introduce a new model named

CARMA(p,q)-Hawkes process. The proposed model is a Hawkes process where the intensity follows

a Continuous Time Autoregressive Moving Average (CARMA) process and it is able to provide

several shapes of the autocorrelation function as it removes the monotonicity constraint detected

in the standard Hawkes process. The greater flexibility relies on the CARMA(p,q) component

of our model, especially in the choice of the autoregressive and moving average parameters. The

CARMA process has been introduced in Doob (1944) and it is the continuous time version of

the ARMA model. The advantage of the CARMA process, other than to design different shapes

of autocorrelation functions, is to handle better irregular time series with respect to the ARMA

process, especially for high-frequency market data, as discussed in Marquardt and Stelzer (2007)

and Tómasson (2015). As a matter of fact, the CARMA model has found many applications in the

2



literature. Here, we list a few of these applications: a) Andresen et al. (2014) use a CARMA(p,q)

model for short and forward interest rates, while b) Hitaj et al. (2019) employ such a model in order

to capture the dynamics of the shock term in mortality modeling; c) Benth et al. (2014) consider a

non-Gaussian CARMA process for the dynamics of spot and derivative prices in electricity markets;

and d) Mercuri et al. (2021) provide formulas for the futures term structure and options written on

futures in the framework of a CARMA(p,q) model driven by a time-changed Brownian motion. As

remarked in Iacus and Mercuri (2015), CARMA models have manifold interests: they can be used

to describe directly the dynamics of time series and to construct the variance process in continuous

time models (see Brockwell et al. 2006 and Iacus et al. 2017, 2018 for further details). Our paper

presents a different type of application as we use CARMA(p,q) models for the intensity of a point

process.

In this paper, after reviewing the basic notions of the Hawkes and the CARMA processes, we

introduce the CARMA(p,q)-Hawkes process and study the conditions of stationarity and positivity

for the intensity, the autocorrelation function of the process and prove the strong mixing property

of increments that leads us to the asymptotic distribution of the empirical autocorrelation function.

The remainder of the paper is organized as follows. Section 2 reviews the Hawkes process with

exponential kernel while Section 3 presents the CARMA(p,q) model in the Lévy setting. Section

4 introduces the CARMA(p,q)-Hawkes process. Section 5 focuses on the autocorrelation function

of the jumps in the proposed model and its asymptotic distribution, while Section 6 presents a

simulation and an estimation exercise. Section 7 concludes the paper.

2. The Hawkes Process

Point processes are useful to describe the dynamics of observed event times, i.e., a collection of

realizations {ti}∞i=1 , ti ≥ 0 for i = 1, 2, . . . with t0 := 0 of the non-decreasing non-negative process

{Ti}i≥1 called the time arrival process. The counting process Nt, representing the number of events

up to time t, is obtained from the time arrival process as follows:

Nt :=
∑
i≥1

1{Ti≤t} (1)

for t ≥ 0 with associated filtration (Ft)t≥0 that contains the information of the counting process

Nt up to time t. An important quantity when dealing with a point process Nt is the conditional

intensity λt defined as:

λt = lim
∆→0+

Pr[Nt+∆ −Nt = 1|Ft]
∆

.
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It then follows that the counting process satisfies the following properties

Pr [Nt+∆ −Nt = η |Ft ] =


1− λt∆ + o (∆) if η = 0

λt∆ + o (∆) if η = 1

o (∆) if η > 1

.

The conditional intensity λt of a general self-exciting process has the following form:

λt = µ+

∫ t

0
h (t− s) dNs (2)

with baseline intensity parameter µ > 0 and (excitation) kernel function h (t) : [0,+∞)→ [0,+∞)

that represents the contribution to the intensity at time t that is made by an event occurred at

a previous time Ti < t. Following the general results about the Hawkes process in Brémaud and

Massoulié (1996), the stationary condition reads:∫ +∞

0
h (t) dt < 1. (3)

The most used kernel is the exponential function and specifically h (t) = αe−βt with α, β ≥ 0. The

stationary condition in (3) implies β > α while to prove the Markovianity of the couple (λt, Nt) it

is enough to rewrite the intensity for any s < t as

λt = µ+ e−β(t−s)
∫ s

0
αe−β(s−l)dNl +

∫ t

s
αe−β(t−l)dNl.

Observing that
∫ s

0 αe
−β(s−l)dNl = λs − µ, thus

λt = µ+ e−β(t−s) (λs − µ) +

∫ t

s
αe−β(t−l)dNl. (4)

From (4) we have that the distribution of the intensity λt given the information at time s depends

only upon λs and on the increments of the counting process over the interval [s, t), which depend on

the conditional intensity itself implying that the couple (λt, Nt) is itself Markovian. The intensity

λt is the solution of the following differential equation:

dλt = β (µ− λt) dt+ αdNt, with λ0 = µ.

Exploiting the Markovianity of the process Xt := (λt, Nt), it is possible to get the infinitesimal

generator (see Errais et al. 2010 and Da Fonseca and Zaatour 2014 for further details) associated

to a function f : R+×N→ R with continuous partial derivatives with respect to the first argument
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∂f
∂λ (x). Starting from the definition of the infinitesimal operator for a Markov process Xt, that is:

Af := lim
∆→0+

E [f (Xt+∆) |Ft ]− f (Xt)

∆
,

Errais et al. (2010) compute the infinitesimal generator for the Hawkes process with exponential

kernel that reads

Af = β (µ− λt)
∂f

∂λ
(λt, Nt) + λt [f (λt + α,Nt + 1)− f (λt, Nt)] . (5)

For every function f in the domain of the infinitesimal generator it is possible to build a martingale

process Mt with respect to the natural filtration in the following way:

Mt = f (λt, Nt)− f (λ0, N0)−
∫ t

0
Af (λs, Ns) ds

that leads to the well-known Dynkin’s formula

E [f (λt, Nt) |Fs ] = f (λs, Ns) + E
[∫ t

s
Af (λu, Nu) du

∣∣∣∣Fs] , ∀t > s.

The above formula for f ≡ Nt has been used in Da Fonseca and Zaatour (2014) to compute the

moments and the autocovariance function of jump increments observed in intervals of length τ

with lag δ.

Proposition 1. Consider four time instants t1 = t, t2 = t+ τ , t3 = t+ τ + δ and t4 = t+ 2τ + δ,

the following equalities for the Hawkes model are obtained (see Da Fonseca and Zaatour 2014 for

further details).

1. The long-run expected value of the number of jumps during an interval of length τ is

E(∆τN∞) := lim
t→+∞

E[Nt+τ −Nt] =
µ

1− α
β

τ. (6)

2. The long-run variance of the increments reads

V ar(τ) := lim
t→+∞

E[(Nt+τ −Nt)
2]− E[Nt+τ −Nt]

2 (7)

=
µ

1− α
β

(τ(
1

1− α
β

)2 + (1− (
1

1− α
β

)2)
1− eτ(β−α)

β − α
).

3. The long-run covariance of the number of arrivals for two non-overlapping intervals of length

5



τ with lag δ > 0 is

Cov(τ, δ) := lim
t→+∞

E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[Nt+τ −Nt]E[Nt+2τ+δ −Nt+τ+δ]

=
µβα(2β − α)(e(α−β)τ − 1)2

2(α− β)4
e(α−β)δ. (8)

4. The long-run autocorrelation function of the number of jumps over intervals of length τ

separated by a time lag of δ reads

Acf(τ, δ) =
e−2βτ (eατ − eβτ )2α(α− 2β)

2(α(α− 2β)(e(α−β)τ − 1) + β2τ(α− β))
e(α−β)δ, (9)

and is always positive for α < β (stationarity condition) and exponentially decaying with the

lag δ.

From (8) and (9) it is clear that the Hawkes model with exponential kernel can reproduce only

strictly decreasing autocorrelation functions for varying lag values δ. An interesting extension is

given in Boswijk et al. (2018) where self-excitation is identified through the modeling of common

jumps between the log price process and its own jump intensity.

3. Lévy CARMA(p,q) models

The formal definition of a Lévy CARMA(p,q) model Yt with p > q ≥ 0 is based on the con-

tinuous version of the state-space representation of an autoregressive moving average ARMA(p,q)

model. In particular we have that

Yt = b>Xt (10)

where Xt satisfies the following stochastic differential equation

dXt = AXt−dt+ edZt, (11)

and {Zt}t≥0 is a Lévy process. The p× p matrix A has the following form

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1


p×p

, (12)

and the p× 1 vectors e and b are defined as follows

e = [0, 0, . . . , 1]> (13)
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b = [b0, b1, . . . , bp−1]> (14)

with bq+1 = . . . = bp−1 = 0. Given a starting value for Xs, the solution of (11) is

Xt = eA(t−s)Xs +

∫ t

s
eA(t−u)dZu, ∀t > s

where eA =
+∞∑
h=0

1
h!A

h.

As reported in Brockwell et al. (2011, Section 2, p. 251), under the assumption that ensures

the stationarity of Xt (i.e., all eigenvalues λ̃1, . . . , λ̃p of matrix A are distinct with negative real

part1), the CARMA(p,q) model can be written as a summation of a finite number of continuous

autoregressive models of order 1, which are also known as CAR(1) models. Specifically,

Yt = b>eA(t−s)Xs +

∫ +∞

0

p∑
i=1

[
α
(
λ̃i

)
eλ̃i(t−u)

]
1s≤u≤tdZu (15)

where α (z) = b(z)

a(1)(z)
and the polynomials a (z) and b (z) are defined as

a (z) := zp + a1z
p−1 + . . .+ ap and b (z) := b0 + b1z + . . .+ bp−1z

p−1.

Note that a(1) (z) is the first derivative of the polynomial a(z).

Remark 1. The eigenvalues of matrix A denoted by λ̃1, . . . , λ̃p are the same as the zeros of the

autoregressive polynomial a(z). As observed in Tsai and Chan (2005), the assumption that the zeros

of a(z) have negative real parts is a necessary condition for the stationarity of the CARMA(p,q)

process Yt.

Definition 1. A stationary CARMA(p,q) process Yt where Z is a second-order subordinator can

be equivalently defined as:

Yt =

∫ +∞

−∞
h(t− u)dZu

where the function h(t) = b>eA1[0,+∞)(t)e is the kernel of the CARMA(p,q) process. As Yt is

independent of Zs − Zt, ∀s ≥ t, the process Yt is said to be a casual function of the subordinator

Zt, also known as casual CARMA(p,q) model.

In Brockwell and Marquardt (2005) it is shown that the function h(u) can be written as

h(u) =

p∑
i=1

b
(
λ̃i

)
a(1)

(
λ̃i

)eλ̃i(u)
1{0<u<+∞}. (16)

1The eigenvalues are sorted based on their real part in an increasing order.
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The positivity conditions for the kernel and for the process itself, which is for instance required

for modeling the volatility using CARMA(p,q) models, have been deeply investigated in Tsai and

Chan (2005) and in Benth and Rohde (2019) for the case of positive subordinators.

4. CARMA(p,q)-Hawkes model

In this section, we introduce a point process where the intensity follows a CARMA(p,q) process

that is a generalization of the Hawkes process with an exponential kernel.

4.1. CARMA(p,q)-Hawkes: stationarity and positivity conditions for the intensity

Definition 2. A vector process [X1,t, . . . , X1,p, Nt]
> of dimension p+ 1 is a CARMA(p,q)-Hawkes

process if the conditional intensity λt of the counting process Nt is a CARMA(p,q) process driven

by Nt and has the following form:

λt = µ+ b>Xt, (17)

in which the baseline parameter µ is strictly positive and the vector b is defined as in (14). The

vector Xt = [X1,t, . . . , X1,p]
> satisfies the linear stochastic differential equation

dXt = AXt−dt+ edNt with X0 = 0 (18)

where the companion matrix A and the vector e have respectively the form in (12) and (13).

The dynamics of the state space process Xt in (18) is described through a linear stochastic

differential equation and it is a Markov process. Consequently, a CARMA(p,q)-Hawkes process is

in turn a Markov process.

Remark 2. The stochastic differential equation in (18) has an analytical solution given the initial

condition, that is

Xt =

∫ t

0
eA(t−s)edNs. (19)

The non-decreasing and non-negative trajectories of the counting process Nt imply the positiveness

of λt for non-negative kernel functions.

To investigate the stationary regime of a CARMA(p,q)-Hawkes model, it is necessary to de-

termine the conditions required for a non-negative kernel, i.e., b>eAte ≥ 0, ∀t ≥ 0. In case of a

CARMA(p,q) driven by a non-negative Lévy process the conditions of a non-negative kernel are

presented in Tsai and Chan (2005, Theorem 1, p. 592). In a similar fashion such conditions can

be applied directly to our case due to the non-negative trajectories of the counting process Nt.

Indeed, as done in Brockwell et al. (2006, Theorem 5.2) for COGARCH(p,q) models, we rephrase

their results for a generic CARMA(p,q)-Hawkes process when b0 > 0 in the next proposition.

Proposition 2.
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(a) For a CARMA(p,q)-Hawkes process such that the real part of all eigenvalues of A is negative,

the kernel function h (t) := b>eAte1{t≥0} is non-negative if and only if the ratio function b(z)
a(z)

is completely monotone2 on (0,+∞).

(b) A sufficient condition for the kernel function of a CAR(p)-Hawkes process to be non-negative

is that all eigenvalues of A are real and negative.

(c) A sufficient condition for the kernel function of a CAR(p)-Hawkes process to be non-negative

is that if
(
λ̃i1 , λ̃i1+1

)
, . . . ,

(
λ̃ir , λ̃ir+1

)
is a partition of the set of all pairs of complex con-

jugate eigenvalues of A (counted with multiplicity), then there exists an injective mapping

u : {1, . . . , r} → {1, . . . , p} such that λ̃u(j) real eigenvalue of A satisfies λ̃u(j) ≥ Re
(
λ̃ij

)
.

(d) For a non-negative kernel h (t) in a CAR(p)-Hawkes process, it is necessary to find a real

eigenvalue λ̃i such that λ̃i ≥ Re
(
λ̃j

)
where j = 1, . . . , p with j 6= i.

(e) Suppose all eigenvalues of A are negative real numbers sorted as follows λ̃p ≤, . . . ,≤ λ̃1 and

that all the roots of b (z) = 0 are negative real numbers such that γq ≤, . . . ,≤ γ1 < 0. If∑k
i=1 γi ≤

∑k
i=1 λ̃i for 1 ≤ k ≤ q, then the kernel of a CARMA(p,q)-Hawkes process is

non-negative.

(f) A necessary and sufficient condition for a non-negative h (t) in a CARMA(2,1)-Hawkes pro-

cess is that λ̃2 ≤ λ̃1 < 0 and b0 + λ̃1b1 ≥ 0 with b1 ≥ 0.

We remark that the non-negativity requirement for the kernel implies a strictly positive intensity

process λt as the baseline parameter µ is strictly positive.

Without loss of generality, we assume that matrix A is diagonalizable which corresponds to the

assumption that the eigenvalues of A are distinct. The eigenvectors of A are[
1, λ̃j , . . . , λ̃p−1

]>
, j = 1, . . . , p

used to define a p× p matrix S as

S :=



1 . . . 1

λ̃1 . . . λ̃p

λ̃2
1 . . . λ̃2

p
...

...

λ̃p−1
1 . . . λ̃p−1

p


.

2A function f (x) defined on (0,+∞) is said to be completely monotone if and only it has derivatives of all orders

and (−1)n ∂nf(t)
(∂x)n

≥ 0 for n = 0, 1, 3, . . ..

9



It follows that S satisfies S−1AS = diag
(
λ̃1, . . . , λ̃p

)
, a result used to prove the next proposition

on the stationarity conditions for a CARMA(p,q)-Hawkes process.

Proposition 3. Let us consider a non-negative kernel function and suppose µ > 0. Then a

CARMA(p,q)-Hawkes (X1,t, . . . , Xp,t, Nt) is a stationary process if all eigenvalues of A are distinct

with non-negative real part and −b>A−1e < 1.

Proof. For a non-negative kernel function, the stationary condition in (3) for a CARMA(p,q)-

Hawkes process becomes∫ +∞

0
b>eAtedt = lim

T→+∞

∫ T

0
b>eAtedt = lim

T→+∞
b>A−1

(
eAT − I

)
e, (20)

where I is the identity matrix with dimension p. As A is diagonalizable,

eAT = SeΛTS−1

where Λ := diag
(
λ̃1, . . . , λ̃p

)
. Thus the limit in (20) is

lim
T→+∞

b>A−1
(
eAT − I

)
e = b>A−1

[
S

(
lim

T→+∞
eΛT

)
S−1 − I

]
e.

Recalling that all eigenvalues of A have negative real part, we notice that eΛT tends to a p × p
zero matrix. The integral in (20) becomes∫ +∞

0
b>eAtedt = −b>A−1e. (21)

The stationarity condition in (3) implies −b>A−1e < 1.

Assumption 1. We shall assume for the remainder of the paper that: i) the kernel is a non-

negative function and µ > 0; and ii) all eigenvalues of A are distinct with negative real part and

b>A−1e > −1.

For practical applications, instead of checking ex-post signs of eigenvalues of matrix A, it is

possible to enforce ex-ante the negativity of the real part for eigenvalues using some transformations

on the parameters space as done, for example, in Tómasson (2015). As a CARMA(p,q)-Hawkes

process is Markovian, we are able to calculate the infinitesimal operator as described in the following

proposition.

Proposition 4. Let f : Rp ×N→ R be a function with continuous partial derivatives with respect

to the first p arguments. Under the same conditions in Assumption 1, the infinitesimal generator
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of function f for a CARMA(p,q)-Hawkes process is:

Aft = λt [f (X1,t, . . . , Xp,t + 1, Nt + 1)− f (X1,t, . . . , Xp,t, Nt)]

+

p−1∑
i=1

∂f

∂Xi,t
Xi+1,t +

∂f

∂Xp,t
A[p,]Xt (22)

where A[p,] is the p-th row of the companion matrix A and the intensity process λt is defined as in

(17). Alternatively, the infinitesimal generator can be written as

Aft = λt [f (X1,t, . . . , Xp,t + 1, Nt + 1)− f (X1,t, . . . , Xp,t, Nt)] +∇pf>AXt (23)

where ∇pf :=
[

∂f
∂X1,t

, . . . ∂f
∂Xp,t

]>
.

Proof. Let us consider two cases. If NT+h − NT = 0, the vector XT = [X1,t, . . . , Xp,t]
> becomes

XT+h = XNJ
T+h where XNJ

T+h means no jump (NJ) occurred in the interval (T, T + h] and can be

written in the following way

XNJ
T+h = eA(T+h−t0)Xt0 +

∫ T

t0

eA(T+h−t)edNt

as the quantity
∫ T+h
T eA(T+h−t)edNt is zero due to the absence of jumps in the interval (T, T + h].

From

XNJ
T+h = eAh

[
eA(T−t0)Xt0 +

∫ T

t0

eA(T−t)edNt

]
= eAhXT

we have that

lim
h→0

XNJ
T+h = XT . (24)

If NT+h −NT = 1 then XT+h := X1J
T+h is computed as

X1J
T+h = eA(T+h−t0)Xt0 +

∫ T

t0

eA(T+h−t)edNt +

∫ T+h

T
eA(T+h−t)edNt.

Defining the jump time Th in the time interval (T, T + h] we get∫ T+h

T
eA(T+h−t)edNt = eA(T+h−Th)e.

As lim
h→0

Th = T , we observe that

lim
h→0

X1J
T+h =

[
eA(T−t0)Xt0 +

∫ T

t0

eA(T−t)edNt

]
+ e = XT + e. (25)

11



Note that Xt + e = [Xt,1, . . . , Xt,p + 1]> and consider the following quantity:

E [f (X1,t+h, . . . , Xp,t+h, Nt+h) |Ft ] = f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
(1− λth)

+ f
(
X1J

1,t+h, . . . , X
1J
p,t+h, Nt + 1

)
λth+ o (h) .

The infinitesimal generator is:

Aft := lim
h→0

E [f (X1,t+h, . . . , Xp,t+h, Nt+h) |Ft ]− f (X1,t, . . . , Xp,t, Nt)

h

= lim
h→0

λt
[
f
(
X1J

1,t+h, . . . , X
1J
p,t+h, Nt + 1

)
− f

(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)]
+ lim

h→0

f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
− f (Nt, X1,t, . . . , Xp,t)

h
.

From (24) and (25) we obtain

Aft := λt [f (X1,t, . . . , Xp,t + 1, Nt + 1)− f (X1,t, . . . , Xp,t, Nt)]

+ lim
h→0

f
(
XNJ

1,t+h, . . . , X
NJ
p,t+h, Nt

)
− f (X1,t, . . . , Xp,t, Nt)

h
. (26)

To compute the limit (26) we use De l’Hôpital’s rule

lim
h→0

p∑
i=1

∂f

∂XNJ
i,t+h

∂XNJ
i,t+h

∂h
= lim

h→0

[
∂f

∂XNJ
1,t+h

, . . .
∂f

∂XNJ
p,t+h

]
AeAhXt

=

p−1∑
i=1

∂f

∂Xi,t
Xi+1,t +

∂f

∂Xp,t
A[p,]Xt, (27)

and substituting (27) in (26), we finally obtain the result in (23).

The conditional expected value for f (X1,T , . . . , Xp,T , NT ) can be computed applying the Dynkin’s

formula:

E [f (X1,T , . . . , Xp,T , NT ) |Ft0 ] = f (X1,t0 , . . . , Xp,t0 , Nt0) + E
[∫ T

t0

Aftdt |Ft0
]

(28)

that has a representation of the following form

dE [f (X1,t, . . . , Xp,t, Nt) |Ft0 ] = E [Aft |Ft0 ] dt, (29)

with initial condition f (X1,t0 , . . . , Xp,t0 , Nt0). We use the infinitesimal generator (23) and the

result in (28) to obtain the following proposition for the computation of the first moment of the

counting process Nt. In the remainder of the paper, we use Et [·] := E [· |Ft ].
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Proposition 5. Let Ã be a p× p companion matrix where the last row has the following structure

Ã[p,·] = [b0 − ap, b1 − ap−1, . . . , bp−1 − a1] . (30)

Under Assumption 1 and supposing that all eigenvalues of Ã are distinct with negative real part,

for any T > t0 ≥ 0, the conditional first moment of the counting process is

Et0 [NT ] = Nt0 + µ
(

1− b>Ã−1e
)

(T − t0) + b>Ã−1
[
eÃ(T−t0) − I

] [
Xt0 + Ã−1eµ

]
, (31)

while the conditional expected value of the state process XT is

Et0 [XT ] = eÃ(T−t0)
[
Xt0 + Ã−1eµ

]
− Ã−1eµ. (32)

The quantities in (31) and (32) satisfy respectively the following ordinary differential equations:

dEt0 [Nt] =
[
µ
(

1− b>Ã−1e
)

+ b>eÃ(t−t0)
[
Xt0 + Ã−1eµ

]]
dt (33)

and

dEt0 [Xt] =
(
ÃEt0 [Xt] + µe

)
dt (34)

with initial conditions3 Xt0 and Nt0. The long-run value for Et0 [XT ] is obtained as follows

E [X∞] := lim
T→+∞

Et0 [XT ] = −Ãeµ. (35)

Moreover, the expected number of events that occurs in an interval with length τ , i.e., (T, T + τ ],

given the information at time t0 < T is

Et0 [(NT+τ −NT )] = µ
(

1− b>Ã−1e
)
τ + b>Ã−1eÃ(T−t0)

(
eÃτ − I

)(
Xt0 + Ã−1eµ

)
(36)

and the stationary behaviour of (36) is

E [∆τN∞] := lim
T→+∞

Et0 [NT+τ −NT ] = µ
(

1− b>Ã−1e
)
τ, ∀τ > 0. (37)

Proof. To determine the expected number of jumps in (31) we obtain first the infinitesimal gener-

ator of the function f (X1,t, . . . , Xp,t, Nt) = Nt, that is Aft = λt where the conditional intensity λt

is defined in (18). Applying the Dynkin’s formula in (29) we obtain the following ODE

dEt0 [Nt] =
[
µ+ b>Et0 (Xt)

]
dt. (38)

3For t0 = 0, then Et0 [XT ] =
(
eÃ(T−t0) − I

)
Ã−1eµ and

Et0 [NT ] = µ
(

1− b>Ã−1e
)

(T − t0) + b>Ã−1
[
eÃ(T−t0) − I

]
Ã−1eµ.
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Then, we compute Et0 [Xt] that requires a system of infinitesimal generators. In particular, for

i = 1, . . . , p− 1, we have

AXt,i = Xt,i+1

and

AXt,p =
(
µ+ b>Xt

)
+ A[p,·]Xt = µ+

p∑
i=1

(bi−1 − ap+1−i)Xt,i.

Applying (29), we get

dEt0 [Xt] =
(
ÃEt0 [Xt] + µe

)
dt (39)

where Ã is defined in (30). With the initial condition Xt0 , the solution of the system in (39) is

(32). Substituting (32) in (38) we obtain the following ODE for the expected number of jumps

dEt0 [Nt] =
[
µ
(

1− b>Ã−1e
)

+ b>eÃ(t−t0)
[
Xt0 + Ã−1eµ

]]
dt

whose solution is in (31) with initial condition Nt0 . Using the result in (31) we observe by straight-

forward calculations that the expected number of jumps in an interval of length τ reads as in (36).

Due to the negativity assumption for the real part of the eigenvalues of matrix Ã, we obtain the

asymptotic behaviour in (35) and (37) as limT→+∞ e
ÃT = 0 where 0 is a p × p zero matrix (see

(C.5)).

Remark 3. The result in (37) becomes (6) if we consider a CAR(1)-Hawkes with b0 = α and

a1 = β.

Using the same arguments in Brockwell et al. (2006, proof of Proposition 4.1, p. 815) , all

eigenvalues of matrix Ã have negative real parts if for some positive integer r ≥ 1 the following

inequality holds ∥∥∥S−1eb>S
∥∥∥
r
< Re

(
λ̃1

)
(40)

where, in this context, ‖·‖r denotes the natural matrix norm induced by the vector Lr-norm. This

result comes directly from an application of the Bauer-Fike Theorem (see Bauer and Fike 1960 for

further details) since Ã is obtained by perturbing matrix A as Ã = A + eb>.

A sufficient condition for (40) is

σmax (S)

σmin (S)
‖b‖2 < Re

(
λ̃1

)
(41)

where ‖b‖2 :=
√∑p

i=1 b
2
i−1 is the Euclidean norm of b, σmax (S) and σmin (S) are maximal and

minimal singular values of S. In particular, we observe that∥∥∥S−1eb>S
∥∥∥

2
≤ k2 (S)

∥∥∥eb>
∥∥∥

2
(42)
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and that k2 (S) := ‖S‖2
∥∥S−1

∥∥
2
, the condition number in 2-norm, can be written as

k2 (S) =
σmax (S)

σmin (S)
. (43)

Moreover, denoting with
∥∥eb>

∥∥
F

the Frobenius norm of eb>, we obtain
∥∥eb>

∥∥
2
≤
∥∥eb>

∥∥
F
.

Applying the definition of the Frobenius norm we have∥∥∥eb>
∥∥∥

2
≤ ‖b‖2 , (44)

and combining (42), (43) and (44) we get∥∥∥S−1eb>S
∥∥∥

2
≤ σmax (S)

σmin (S)
‖b‖2 . (45)

Thus, the inequality in (41) implies (40).

4.2. Simulation and Likelihood Estimation of the CARMA(p,q)-Hawkes

We propose a simulation method for the CARMA(p,q)-Hawkes model following the same idea

presented in Ozaki (1979, Section 4, p. 148).

Suppose that T1, . . . , Tk, which correspond to time arrivals, are already observed. Then it is

possible to simulate the next time arrival Tk+1 by generating a random number from a standard

uniform distribution, i.e., U ∼ Unif (0, 1), and by solving this equation with respect to u:

ln (U) = −
∫ u

Tk

λtdt. (46)

The conditional intensity λt can be replaced by (17) and Xt can be substituted by (19) obtaining

so

ln (U) = −
∫ u

Tk

[
µ+ b>

∫ t

0
eA(t−s)edNs

]
dt. (47)

Developing and rearranging the right-hand side of (47) we have

ln (U) = −µ (u− Tk)− b>
∫ u

Tk

k∑
i=1

eA(t−Ti)edt

= −µ (u− Tk)− b>
k∑
i=1

eA(Tk−Ti)
∫ u

Tk

eA(t−Tk)dte

= −µ (u− Tk)− b>

[
k∑
i=1

eA(Tk−Ti)

]
A−1

[
eA(u−Tk) − I

]
e

where the integral in the second equality is computed using the results in (A.1). Defining S (k) :=
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∑k
i=1 e

A(Tk−Ti), we finally get

ln (U) = −µ (u− Tk)− b>S (k) A−1
[
eA(u−Tk) − I

]
e. (48)

The quantity S (k) can be obtained recursively as follows

S (1) = I

S (i) = eA(Ti−Ti−1) [S(i− 1)] + I, i ≥ 2.

Note that a similar recursive expression has been obtained in Ozaki (1979) for a Hawkes process

with exponential kernel.

As follows we present the likelihood of a CARMA(p,q)-Hawkes model. Consider that θ =

(b0, . . . , bq, a1, . . . , ap), then the likelihood of a CARMA(p,q)-Hawkes model is given by

L (θ, µ) = −
∫ Tk

0
λtdt+

∫ Tk

0
ln (λt) dNt. (49)

Exploiting the fact that
∫ Tk

0 ln (λt) dNt =
∑k

i=1 ln (λTi), then (49) can be written as

L (θ, µ) = −
∫ Tk

0

[
µ+ b>Xt

]
dt+

k∑
i=1

ln (λTi) (50)

and recalling once again that Xt can be expressed by (19) and rearranging the expression we have

L (θ, µ) = −µTk − b>
∫ Tk

0

∫ t

0
eA(t−s)edNsdt+

k∑
i=1

ln (λTi) . (51)

Working on the inner integral, the likelihood becomes

L (θ, µ) = −µ (Tk)− b>
∫ Tk

0

[∫ Tk

s
eA(t−s)dt

]
dNse +

k∑
i=1

ln (λTi) , (52)

while using the results in (A.1) we get

L (θ, µ) = −µTk − b>
∫ Tk

0
A−1

[
eA(Tk−s) − I

]
dNse +

k∑
i=1

ln (λTi) . (53)

Developing the integral in (53) and recalling that S (k) :=
∑k

i=1 e
A(Tk−Ti), we finally obtain that
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the likelihood of a CARMA(p,q)-Hawkes model writes

L (θ, µ) = −µTk − b>A−1S (k) e + kb>A−1e +

k∑
i=1

ln (λTi) . (54)

5. Autocovariance and Autocorrelation of a CARMA(p,q)-Hawkes process

In this section we compute the stationary autocorrelation and autocovariance functions for the
number of jumps in non-overlapping time intervals of length τ . To this aim we introduce some
quantities that are useful to compute the asymptotic covariance of a CARMA(p,q)-Hawkes process.

The first quantity we introduce is the p(p+1)
2 × p(p+1)

2 matrix ˜̃A defined as follows

˜̃A :=



D1
[p,p] U1,2

[p,p−1] 0[p,p−2] . . . . . . . . .

L2,1
[p−1,p] D2

[p−1,p−1] U2,3
[p−1,p−2] 0[p−1,p−3] . . . . . .

...
. . .

. . .
. . .

. . . . . .

Lj,1[p−j+1,p] . . . Lj,j−1
[p−j+1,p−j+2] Dj

[p−j+1,p−j+1] U j,j+1
[p−j+1,p−j] 0[p−j+1,p−j−1]

...
. . .

. . .
. . .

. . . . . .

Lp,1[1,p] . . . . . . . . . . . . Dp
[1,1]


(55)

where the square matrices Dj
[p−j+1,p−j+1], j = 1, . . . , p− 1, have the following structure

Dj
[p−j+1,p−j+1] =



0 2 0 . . . 0

0 0 1 . . . 0
...

...
. . .

. . .
...

0 . . . . . . . . . 1

bj−1 − ap−j+1 bj − ap−j . . . . . . bp−1 − a1,


with Dp

[1,1] = 2(bp−1 − a1). Matrices Lj,i[p−j+1,p−i+1] for j = 2, . . . , p and i = 1, . . . , j − 1 are

characterized by the entries with the form

Lj,i(h, l) =


bj−2+i − ap−j+1+(i−1) if h = p− j + 1, l = j − i+ 1 and j 6= p

2
(
bj−2+i − ap−j+1+(i−1)

)
if h = p− j + 1, l = j − i+ 1 and j = p

0 otherwise

while matrices U i,i+1
[p−i+1,p−i] for i = 1, . . . , p− 1 have form

U i,i+1
[p−i+1,p−i] =

[
0[1,p−i]

I[p−i,p−i]

]
.
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Here an example of the matrix ˜̃A for a CARMA(3,2)-Hawkes model

˜̃A =



0 2 0 0 0 0

0 0 1 1 0 0

b0 − a3 b1 − a2 b2 − a1 0 1 0

0 0 0 0 2 0

0 b0 − a3 0 b1 − a2 b2 − a1 1

0 0 2(b0 − a3) 0 2(b1 − a2) 2(b2 − a1)


.

The second quantity introduced is the p× p(p+1)
2 matrix B defined as:

B :=


b0 b1 . . . bp−1 0 . . . . . . 0 . . . 0

0 b0 . . . 0 b1 . . . bp−1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 b0 0 . . . b1 0 . . . bp−1

 (56)

where the generic i-th row is the result of a row concatenation of p vectors with dimensions p, p−1,

. . ., p− i, . . . 1, respectively. The first i− 1 vectors have zero entries except the element in position

i that coincides with bi−1, the vector with dimension p − i contains the elements bi, . . . , bp−i and

the remaining vectors have zero entries.

For example, in the case of a CARMA(3,2)-Hawkes model, the structure of matrix B reads

B =

 b0 b1 b2 0 0 0

0 b0 0 b1 b2 0

0 0 b0 0 b1 b2

 .
The third quantity is the p(p+1)

2 × p matrix C̃ in which the entry in the i− th row and in j− th

column has the following structure

ci,j :=


0 if i 6= j

(
p− j−1

2

)
and i 6= p(p+1)

2

µ if i = j
(
p− j−1

2

)
and i 6= p(p+1)

2

bj−1 if i = p(p+1)
2 and j 6= p

2µ+ bp−1 if i = p(p+1)
2 and j = p

. (57)

Let H be a p × 1 vector. Then we define the operator vlt (·) as a function that transforms the

p× p matrix HH> into a p(p+1)
2 vector containing the lower triangular part of the product HH>.
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Specifically:

vlt
(
HH>

)
:=

H1H1, . . . ,HpH1︸ ︷︷ ︸
p entries

, H2H2, . . . ,HpH2︸ ︷︷ ︸
p-1 entries

, . . . ,HiHi, . . . ,HpHi︸ ︷︷ ︸
p-i+1 entries

, . . . ,HpHp


>

. (58)

5.1. Conditions for existence of stationary autocovariance function

We rewrite the quantity Et0
[
XTX

>
T

]
b using the vlt (·) operator defined in (58).

Lemma 1. The following identity holds true

Et0
[
XTX

>
T

]
b = Bvlt

(
Et0
(
XTX

>
T

))
(59)

where the matrix B is defined in (56) and the operator vlt (·) is defined as in (58). Moreover:

vlt
(
Et0
(
XTX

>
T

))
= e

˜̃A(T−t0)vlt
(
Xt0X

>
t0

)
+

[
e

˜̃A(T−t0) − I

]
˜̃A−1µ

(
ẽ− C̃Ã−1e

)
+ e

˜̃AT

[∫ T

t0

e−
˜̃AtC̃eÃtdt

]
e−Ãt0

[
Xt0 + Ã−1eµ

]
. (60)

Proof. Using the definition of matrix B in (56), the identity in (59) is straightforward. To show

the result in (60), we need first to compute the infinitesimal generator for each component of

vlt
(
XtX

>
t

)
. From the definition in (58) we identify p blocks where the dimension of each block

decreases by one unit. More precisely, the j−th block has p − j + 1 elements. Considering the

first block (i.e., j = 1) we have p infinitesimal generators obtained applying the result in (22) of

Proposition 4. For the first element in the first block, we have AX2
t,1 = 2Xt,2Xt,1. While for the

i−th element in the first block with i = 2, . . . , p− 1 we get AXt,iXt,1 = Xt,iXt,2 +Xt,i+1Xt,1 and

finally

AXt,pXt,1 = λt [(Xt,p + 1)Xt,1 −Xt,pXt,1] +Xt,pXt,2 +A[p,·]XtXt,1

= µXt,1 +Xt,pXt,2 +
(
b> +A[p,·]

)
XtXt,1.

For a generic j−th block, we get p− j + 1 infinitesimal generators. In particular for i = j we have

AX2
t,j = 2Xt,jXt,j+1. For i = j + 1, . . . , p− 1 we have AXt,iXt,j = Xt,iXt,j+1 +Xt,jXt,i+1 and

AXt,pXt,j = λt [(Xt,p + 1)Xt,j −Xt,pXt,j ] +Xt,pXt,j+1 +A[p,·]XtXt,j

= µXt,j +Xt,pXt,j+1 +
(
b> +A[p,·]

)
XtXt,j .
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The last block contains only one infinitesimal generator of the form

AX2
t,p = λt

[
(Xt,p + 1)2 −X2

t,p

]
+ 2A[p,·]XtXt,p

= µ+ b>Xt + 2µXt,p + 2
(
b> +A[p,·]

)
XtXt,p.

Using the Dynkin’s formula in (29) we obtain the following system of linear ODE’s:

dvlt
(
Et0
(
XtX

>
t

))
=
[
µẽ + C̃Et0 (Xt) + ˜̃Avlt

(
Et0
(
XtX

>
t

))]
dt (61)

where the p(p+1)
2 vector ẽ is composed of zero entries except the last position where the element is

one; ˜̃A and C̃ are defined in (55) and (57) respectively.

The first step is to solve the ODE defined in (61) whose solution has the following form

vlt
(
Et0
(
XTX

>
T

))
= e

˜̃A(T−t0)vlt
(
Xt0X

>
t0

)
+ e

˜̃AT

∫ T

t0

e−
˜̃At
[
µẽ + C̃Et0 (Xt)

]
dt

= e
˜̃A(T−t0)vlt

(
Xt0X

>
t0

)
+

[
e

˜̃A(T−t0) − I

]
˜̃A−1µẽ

+ e
˜̃AT

∫ T

t0

e−
˜̃AtC̃Et0 (Xt) dt. (62)

We also observe that

e
˜̃AT

∫ T

t0

e−
˜̃AtC̃Et0 (Xt) dt = e

˜̃AT

∫ T

t0

e−
˜̃AtC̃

[
eÃ(t−t0)

[
Xt0 + Ã−1eµ

]
− Ã−1eµ

]
dt

= e
˜̃AT

∫ T

t0

e−
˜̃AtC̃eÃtdte−Ãt0

[
Xt0 + Ã−1eµ

]
−

[
e

˜̃A(T−t0) − I

]
˜̃A−1C̃Ã−1eµ. (63)

Substituting (63) into (62) we obtain the result in (60).

Appendix D contains the proofs of the following two propositions on the variance and covariance

of the number of jumps that occur in two non-overlapping time intervals of the same length for a

CARMA(p,q)-Hawkes model.

Proposition 6. Under Assumption 1 and supposing that all eigenvalues of Ã and ˜̃A have negative

real parts, the long-run covariance Cov (τ, δ) defined as in (8) for a CARMA(p,q)-Hawkes process

has the following form:

Cov (τ, δ) = b>Ã−1
[
eÃτ − I

]
eÃδg∞ (τ) (64)
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where g∞ (τ) is defined as

g∞ (τ) :=
(
I− eÃτ

)
Ã−1µ

[
eb>Ã−1e− e + Ã−1eµ

(
b>Ã−1e

)
+ B ˜̃A−1

(
ẽ− C̃Ã−1e

)]
. (65)

Proposition 7. Under the same assumptions as in Proposition 6, the long-run variance V ar (τ)

of the number of jumps in a interval with length τ for a CARMA(p,q)-Hawkes process, defined as

in (8), has the following form:

V ar (τ) =
(

1− b>Ã−1e
)(

1− 2b>Ã−1e
)
µτ + 2b>Ã−1Ã−1eτµ2

(
b>Ã−1e

)
+ 2b>Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
τ − 2b>Ã−1

[
eÃτ − I

]
h∞ (0) (66)

where h∞ (0) is defined as

h∞ (0) := −Ã−1eµ
(

1− b>Ã−1e
)

+ Ã−1Ã−1eµ2b>Ã−1e + Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
. (67)

Remark 4. Combining the results in Propositions 6 and 7, we determine the asymptotic autocor-

relation function of number of jumps in non-overlapping time intervals of length τ , i.e., ρτ (d), for

a CARMA(p,q)-Hawkes in a closed-form formula:

ρτ (d) =
Cov (τ, d− 1)

V ar (τ)
, d = 1, 2, . . . (68)

where d denotes the lag order.

5.2. Strong mixing property for the increments of a CARMA(p,q)-Hawkes and asymptotic distri-

bution of the autocorrelation function

The asymptotic distribution of the autocorrelation function of a CARMA(p,q)-Hawkes process

can be easily obtained if we show that the increments of the process are strongly mixing.

Definition 3. Let (Ω,F ,P) be a probability space and A,B two sub σ−algebras of F . The strong-

mixing coefficient is defined as:

α (A,B) := sup {|P (A ∩B)− P (A)P (B)|A ∈ A, B ∈ B} . (69)

Following Poinas et al. (2019), the quantity in (69) can be reformulated for a point process Nt

in the following way:

αN (r) := sup
t∈R

α
(
ξt−∞, ξ

∞
t+r

)
(70)

where ξba denotes the σ−algebra generated by the cylinder sets on the interval (a, b]4. Considering

the sequence (∆1Nk)k∈Z where ∆1Nk := Nk+1−Nk is the number of jumps in the interval of length

4Let N be a counting process defined as a map from a probability space (Ω,F ,P) to a measurable space (M,M)
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1 and extremes k, k + 1, the strong-mixing coefficient has the form

α∆1N (r) := sup
n∈Z

α
(
Fn−∞,F∞n+r

)
(71)

where Fba is the σ−algebra generated by the sequence (∆1Nk)a≤k≤b. If αN (r) → 0 (respectively

α∆1Nk (r)→ 0) as r → +∞, the point process Nt (respectively ∆1Nk) is said to be strongly-mixing.

Using Theorem 1 in Cheysson and Lang (2020), we obtain the following proposition.

Proposition 8. A CARMA(p,q)-Hawkes process satisfying Assumption 1 is strongly mixing with

exponential rate.

Proof. We first prove the existence of a positive constant a0 > 0 such that the kernel function

satisfies the condition ∫
R
ea0|t|h (t) dt < +∞. (72)

We notice that Assumption 1 implies that∫
R
ea0|t|h (t) dt = b>

∫ +∞

0
ea0teAtdte = b>S

∫ +∞

0
ea0teΛtdtS−1e.

Choosing a0 ∈ (0, |Re (λ1)|) the condition in (72) is ensured and thus we can apply the result in

Theorem 1 proved by Cheysson and Lang (2020), and the strong-mixing coefficient results to be

αN (r) = O (e−ar) where a ∈ (0, a0).

As shown in Cheysson and Lang (2020), we have that α∆1N (r) ≤ αN (r) and the result in

Proposition 8 implies that the sequence (∆1Nk)k∈Z is strongly mixing. This result is useful to

determine the asymptotic distribution of the sample autocovariance and autocorrelation functions

associated to the sequence (∆1Nk)k∈Z. Following the result in Ibragimov and Linnik (1971), we

obtain the following result for the asymptotic distribution of the sample mean, the sample variance

and the sample autocovariance function.

Proposition 9. Let (Nt)t≥0 be a stationary CARMA(p,q)-Hawkes process that satisfies the as-

sumptions in Proposition 8. We assume the existence of a positive constant φ such that E
[
(∆1N1)4+φ

]
<

of locally finite counting measures on Ω. Then the σ−algebra ξba is defined as:

ξba := σ ({N ∈ M : N (A) = n} ;A ∈ B ((a, b]) , n ∈ N) .
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+∞. Denoting with

Vk :=



∆1Nk

(∆1Nk − E (∆1N∞))2

(∆1Nk − E (∆1N∞)) (∆1Nk+1 − E (∆1N∞))
...

(∆1Nk − E (∆1N∞)) (∆1Nk+d − E (∆1N∞))


, with k = 1, ..., n and d < n

as n→ +∞, we have:

√
n


1

n

n∑
k=1

Vk −



E (∆1N∞)

V ar (∆1N∞)

Acv (1)
...

Acv (d)




→ Nd+2 (0,Σ) (73)

where Acv (d) := Cov(1, d− 1) and

Σ := E
(
V1V

>
1

)
+ 2

+∞∑
k=2

E
(
V1V

>
k

)
. (74)

Proof. The proof is quite standard and is an application of Theorem 18.5.3 in Ibragimov and Linnik

(1971) and Cramér-Wold device. Denoting with

ϑ := [E (∆1N∞) , V ar (∆1N∞) , Acv (1) , . . . , Acv (d)]>

we apply Theorem 18.5.3 in Ibragimov and Linnik (1971) to the linear combination
(
c>Vk

)
k=1,2,...n

where c is a generic d + 2 real vector such that c>Σc > 0. Since the strong mixing property is

preserved under linear transformations as well as the rate we have

√
n

(
1

n

n∑
k=1

c>Vk − c>ϑ

)
→ N

(
0, c>E

(
V1V

>
1

)
c+ 2

+∞∑
k=1

c>E
(
V1V

>
k

)
c

)
,

that is
√
n

(
1

n

n∑
k=1

c>Vk − c>ϑ

)
→ N (0, c>Σc) .

Applying Cramér-Wold device we obtain the asymptotic behavior in (73).

Applying the Delta method, it is possible to use the result in Proposition 9 to obtain the

asymptotic distribution of the autocorrelation function.
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6. Application to simulated series

This section examines the time series of the counting process Nt generated by the simulation

of two different stochastic processes: the standard Hawkes process and the CARMA(3,1)-Hawkes

process. We show the behaviour of the autocorrelation function and its 95% confidence interval

obtained applying the results of Subsection 5.2. Furthermore, we investigate the estimation of pa-

rameters by means of the Maximum Likelihood Estimation (MLE) method described in Subsection

4.2 and the Moment Matching Estimation (MME) method which we describe below.

Consider a sequence of empirical observations for the increments of a counting process (∆τNk)k=1,...,n,

then the MME method is composed of two steps. The first step is to compute the least squares

estimator:

θ̂n,τ := argmin
θ̂n,τ∈Θ⊆Rp+q+1

M (ρ̂n,τ , θ)

where Θ is a subset of Rp+q+1 such that the stationary condition is guaranteed, the kernel function

is non-negative defined and higher order moments of a CARMA(p,q)-Hawkes process exist. For a

fixed m ≥ p+ q + 1, M : Rm+ ×Θ→ R is defined as:

M (ρ̂n,τ , θ) :=
m∑
d=1

(ρ̂n,τ (d)− ρτ (d))2

in which d denotes the lag order, ρ̂n,τ (d) represents a vector containing the empirical autocorre-

lations and ρτ (d) is a vector of theoretical autocorrelations described in Section 5. The vector

θ includes only the autoregressive (a1, . . . , ap) and moving average (b0, . . . , bq) parameters. Once

obtained the autoregressive and moving average parameters, the parameter µ can be estimated,

which corresponds to the second step, from Equation (37) using the empirical first moment of

∆τNt with τ = 1.

Note that all chosen parameters for the Hawkes process and the CARMA(3,1)-Hawkes process

ensure two conditions: the stationarity of the process (see Section 2) and the existence of the

asymptotic autocorrelation function (see Section 5).

6.1. The Hawkes process

We simulate the Hawkes process with the following parameters: µ = 0.2, a1 = 0.7 and b0 = 0.5.

For the sake of clarity, we recall that the Hawkes process can be seen also as a CAR(1)-Hawkes

process as mentioned in the Remark 3.

Figure 1(a) shows a simulated trajectory of the counting process Nt, while Figure 1(b) exhibits

the autocorrelation function at different lags. From Figure 1(b) we observe that all empirical

autocorrelations belong to the 95% confidence interval and, as expected, the ACF depicts an

exponential monotonic decay (decreasing) behaviour which is typical of the Hawkes processes.
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Figure 1: Trajectory of the counting process Nt and autocorrelation function (ACF) using a Hawkes process. Input
parameters: µ = 0.2, a1 = 0.7 and b0 = 0.5.

Table 1 exhibits the MLE estimates for the parameters and the number of occurred events for

different levels of final time T , whereas Table 2 shows the estimated parameters using the MME

method.

µ̂ â1 b̂0 Nt T

0.2101 0.7270 0.4883 3199 5000
0.2014 0.7389 0.5211 10240 15000
0.1987 0.7054 0.4997 17042 25000
0.2011 0.7028 0.5004 34914 50000

Table 1: Parameter estimates from MLE and number of occurred events NT for a Hawkes process. True parameters
are µ = 0.2, a1 = 0.7 and b0 = 0.5.

µ̂ â1 b̂0 T

0.2440 0.7540 0.4877 5000
0.2121 0.7127 0.4954 15000
0.2044 0.7016 0.4951 25000
0.1992 0.7042 0.4990 50000

Table 2: Parameter estimates from MME for a Hawkes process. True parameters are µ = 0.2, a1 = 0.7 and b0 = 0.5.

25



6.2. CARMA(3,1)-Hawkes process

We simulate the counting process Nt using a CARMA(3,1)-Hawkes model with the following

parameters: µ = 0.30, a1 = 1.3, a2 = 0.34 + π2/4 ≈ 2.807, a3 = 0.025 + 0.025π2 ≈ 0.2717,

b0 = 0.2 and b1 = 0.3. This set of parameters ensures the stationary conditions since −b>A−1e ≈
0.7359973 < 1 and the largest eigenvalue of A is λ̃1 ≈ −0.1012. We can easily verify the condition

for the existence of E (∆τN∞) in (37). Indeed, the real part of the largest eigenvalue of Ã is

negative (−0.02903). Moreover, it is possible to verify that all eigenvalues of ˜̃A have negative real

part, thus the long-run autocorrelation function exists (the real part of the largest eigenvalue of
˜̃A is −0.0290). In order to analyze the nonnegativity of the kernel h (t), Figure 2 presents the

behaviour of h (t) with t ∈ [0, 30]. From (16) the tail behaviour of h (t) is proportional to e−0.1012t

(i.e., h (t) ∼ 1.9800e−0.1012t as t→ +∞).

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

t

h(
t)

Figure 2: Kernel function of a CARMA(3,1)-Hawkes. Input parameters: µ = 0.30, a1 = 1.3, a2 = 0.34+π2/4 ≈ 2.807,
a3 = 0.025 + 0.025π2 ≈ 0.2717, b0 = 0.2 and b1 = 0.3.

Figure 3(a) exhibits a simulated trajectory of the counting processNt, while Figure 3(b) displays

the ACF at different lags. Figure 3(b) is a clear example of the fact that a CARMA(3,1)-Hawkes

process can accommodate different shapes of autocorrelation structures rather than an exponential

monotonic decay behaviour as it is the case of a standard Hawkes process.

Table 3 shows the estimated parameters obtained using the MLE method and the number

of occurred events for different levels of final time T , whereas Table 4 exhibits the estimated

parameters using the MME method for different levels of final time T .
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Figure 3: Trajectory of the counting process Nt and autocorrelation function (ACF) using a CARMA(3,1)-Hawkes.
Input parameters: µ = 0.30, a1 = 1.3, a2 = 0.34 + π2/4 ≈ 2.807, a3 = 0.025 + 0.025π2 ≈ 0.2717, b0 = 0.2 and
b1 = 0.3.

µ̂ â1 â2 â3 b̂0 b̂1 NT T

0.3166 1.5372 2.8565 0.2869 0.2011 0.3345 5229 5000
0.3063 1.3521 2.6686 0.2758 0.1998 0.3023 16666 15000
0.3068 1.0811 2.4380 0.2480 0.1808 0.2508 28154 25000
0.2949 1.4177 2.6901 0.2550 0.1889 0.3138 56815 50000

Table 3: Parameter estimates from MLE and number of occurred events NT for a CARMA(3,1)-Hawkes process.
True parameters are: µ = 0.30, a1 = 1.3, a2 = 0.34 + π2/4 ≈ 2.807, a3 = 0.025 + 0.025π2 ≈ 0.2717, b0 = 0.2 and
b1 = 0.3.

µ̂ â1 â2 â3 b̂0 b̂1 T

0.2946 2.4941 2.9148 0.2228 0.1600 0.4954 4999
0.2788 2.8938 3.2043 0.2440 0.1827 0.6283 14999
0.2934 1.5754 2.8956 0.2634 0.1947 0.3592 24999
0.3104 1.2584 2.7107 0.2749 0.1998 0.2797 49999

Table 4: Parameter estimates from MME for a CARMA(3,1)-Hawkes process. True parameters are: µ = 0.30,
a1 = 1.3, a2 = 0.34 + π2/4 ≈ 2.807, a3 = 0.025 + 0.025π2 ≈ 0.2717, b0 = 0.2 and b1 = 0.3.

7. Conclusion

In this paper we introduce a new Hawkes process where the intensity is a CARMA(p,q) model.

We analyze the statistical properties of this process and obtain a closed-form expression for the

autocorrelation function of the number of jumps observed in non-overlapping time intervals of same
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length. The model is a generalization of the standard Hawkes with exponential kernel but it is

able to reproduce more complex dependence structures similar to those documented in several data

sets.
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Appendix A. Integration of matrix exponentials

Let A be a square matrix and A(i) := AA · · ·A︸ ︷︷ ︸
i times

. As the exponential of the matrix A can be

computed as

exp (At) = I +
+∞∑
i=1

A(i)ti

i!
,

it is straightforward to show that∫ T

t0

eA(T−t)dt = A−1
(
eA(T−t0) − I

)
=
(
eA(T−t0) − I

)
A−1. (A.1)

Appendix B. Solution of a general Linear Ordinary differential Equation

To solve dYt = (bt +AYt) dt, we consider the transformation Xt = e−AtYt and observe that

dXt = −Ae−AtYtdt+ e−AtdYt = e−Atbtdt,

from where we have XT = Xt0 +
∫ T
t0
e−Atbtdt that in terms of Yt reads

YT = eA(T−t0)Yt0 +

∫ T

t0

eA(T−t)btdt. (B.1)

Appendix C. Computation of integrals with matrix exponentials

Some useful results for computing integrals that involve matrix exponentials are provided in

Van Loan (1978) and Carbonell et al. (2008). In particular, we recall the result that deals with

the computation of the following two integrals:∫ t

0
eH11(t−u)H12e

H22udu (C.1)

∫ t

0

∫ u

0
eH11(t−u)H12e

H22(u−r)H23e
H33rdrdu (C.2)

where H11, H12, H22, H23 and H33 have dimension d1 × d1, d1 × d2, d2 × d2, d2 × d3 and d3 × d3,

respectively. We need to define a block triangular matrix H as follows

H :=

 H11 H12 0

0 H22 H23

0 0 H33

 . (C.3)
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The integrals (C.1) and (C.2) coincide with the elements B12 (t) and B13 (t) in the matrix expo-

nential:

eHt =

 B11 (t) B12 (t) B13 (t)

0 B22 (t) B23 (t)

0 0 B33 (t)

 (C.4)

while B11 (t) := eH11t, B22 (t) := eH22t and B33 (t) := eH33t.

Remark 5. The eigenvalues of H coincide with the eigenvalues of H11, H22 and H33. If the real

part of all eigenvalues of H11, H22 and H33 is negative, the following result holds

lim
t→+∞

eHt = 0

that implies

lim
t→+∞

B12 (t) = 0 (C.5)

and

lim
t→+∞

B13 (t) = 0. (C.6)

Appendix D. Proofs of propositions on long-run covariance and variance of the num-

ber of jumps

We provide below the proof of Propositon 6 on the long-run covariance of the number of jumps

in a CARMA(p,q)-Hawkes model.

Proof. We first determine the covariance of number of jumps in two non-overlapping time intervals

given the information at time t0. This quantity is formally defined as

Covt0 (τ, δ) := Et0 [(Nt+τ −Nt) (Nt+2τ+δ −Nt+τ+δ)]

− Et0 [(Nt+τ −Nt)]Et0 [(Nt+2τ+δ −Nt+τ+δ)] . (D.1)

Using the iteration property of the conditional expected value, (D.1) becomes

Covt0 (τ, δ) = Et0 [(Nt+τ −Nt)Et+τ [(Nt+2τ+δ −Nt+τ+δ)]]

− Et0 [(Nt+τ −Nt)]Et0 [(Nt+2τ+δ −Nt+τ+δ)] .

Applying the result (36) in Proposition 5, we get

Covt0 (τ, δ) = b>Ã−1
[
eÃ(τ+δ) − eÃδ

]
gt0 (t, τ) (D.2)
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where

gt0 (t, τ) = Et0 [(Nt+τ −Nt)Xt+τ ]− eÃ(t+τ−t0)Et0 [Nt+τ −Nt]Xt0

+
(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt]

= Et0 [Nt+τXt+τ ] + Ã−1eµEt0 [Nt]− eÃτ
[
Et0 (NtXt) + Ã−1eµEt0 [Nt]

]
− eÃ(t+τ−t0)Et0 [Nt+τ −Nt]Xt0 +

(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt] . (D.3)

In the rhs of (D.3), the last two terms are stationary due to the result in (37) and to the negativity

of the real part for the eigenvalues of Ã; the third term converges to zero as t → +∞ while the

fourth term has the following limit behaviour(
I− eÃ(t+τ−t0)

)
Ã−1eµEt0 [Nt+τ −Nt]→ Ã−1eµ2

(
1− b>Ã−1e

)
τ a.s. t→ +∞. (D.4)

For the first two terms in the rhs (D.3) consider the quantity:

ht0 (t, τ) := Et0 [Nt+τXt+τ ] + Ã−1eµEt0 [Nt] , ∀τ ≥ 0, t > t0 (D.5)

as t → +∞. In (D.5) the vector Et0 [NtXt] requires the calculation of p infinitesimal generators.

We then observe that for i = 1, . . . , p− 1, the infinitesimal generator of the function NtXt,i is:

ANtXt,i =
(
µ+ b>Xt

)
[(Nt + 1)Xt,i −NtXt,i] +NtXt,i+1

=
(
µXt,i +Xt,iX

>
t b
)

+NtXt,i+1

while for i = p

ANtXt,p =
(
µ+ b>Xt

)
[(Nt + 1) (Xt,p + 1)−NtXt,p] +NtA[p,·]Xt

=
(
µ+ b>Xt + µNt

)
+
(
µXt,p +Xt,pX

>
t b
)

+
(
b> +A[p,·]

)
NtXt,

that implies

dEt0 [XtNt] =
[(
µ+ b>Et0 [Xt] + µEt0 [Nt]

)
e + µEt0 [Xt] + Et0

[
XtX

>
t

]
b + ÃEt0 [XtNt]

]
dt

(D.6)

from where we get

Et0 [XTNT ] = eÃ(T−t0)Xt0Nt0 +

∫ T

t0

eÃ(T−t)
(
µ+ b>Et0 [Xt] + µEt0 [Nt]

)
edt

+

∫ T

t0

eÃ(T−t)
[
µEt0 [Xt] + Et0

[
XtX

>
t

]
b
]

dt. (D.7)
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The quantity Et0 [XTNT ] is not stationary but it is useful as it appears in the rhs of the function

ht0 (t, τ) introduced in (D.5) that can be rewritten as

ht0 (t, τ) = eÃ(t+τ−t0)Xt0Nt0 +

∫ t+τ

t0

eÃ(t+τ−u)µedu+

∫ t+τ

t0

eÃ(t+τ−u)b>Et0 [Xu] edu

+

∫ t+τ

t0

eÃ(t+τ−u) (µEt0 [Nu]) edu+ Ã−1eµEt0 [Nt]

+

∫ t+τ

t0

eÃ(t+τ−u)
[
µEt0 [Xu] + Et0

[
XuX

>
u

]
b
]

du. (D.8)

We analyze the long-run behaviour of each term in the rhs of (D.8). We first observe that∫ t+τ

t0

eÃ(t+τ−u)duµe =
(
eÃ(t+τ−t0) − I

)
Ã−1µe

with

lim
t→+∞

(
eÃ(t+τ−t0) − I

)
Ã−1µe = −Ã−1µe. (D.9)

The formula for the conditional expected value of the state process in (32) allows us to rewrite the

third term in the rhs of (D.8) as follows∫ t+τ

t0

eÃ(t+τ−u)eb>Et0 [Xu] du = eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0
[
Xt0 + Ã−1eµ

]
−

∫ t+τ

t0

eÃ(t+τ−u)dueb>Ã−1eµ

= eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0
[
Xt0 + Ã−1eµ

]
−

(
eÃ(t+τ−t0) − I

)
Ã−1eb>Ã−1eµ. (D.10)

To compute the integral eÃ(t+τ)
∫ t+τ
t0

e−Ãueb>eÃudue−Ãt0 we use the result in (C.4) and exploiting

its limit behaviour (C.5), the long-run behaviour of (D.10) becomes

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)eb>Et0 [Xu] du = Ã−1eb>Ã−1eµ. (D.11)
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The fourth term in the rhs of (D.8) can be written as∫ t+τ

t0

eÃ(t+τ−u)dueµNt0 +

∫ t+τ

t0

eÃ(t+τ−u) (u− t0) dueµ2
(

1− b>Ã−1e
)

+

∫ t+τ

t0

eÃ(t+τ−u)eµb>Ã−1
[
eÃ(u−t0) − I

]
du
(
Xt0 + Ã−1eµ

)
+ Ã−1eµEt0 [Nt]

=
(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 +

[∫ t+τ

t0

eÃ(t+τ−u) (u− t0) du

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµEt0 [Nt] . (D.12)

Integrating by parts we get∫ t+τ

t0

eÃ(t+τ−u) (u− t0) du = Ã−1
[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
.

Thus (D.12) becomes(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµEt0 [Nt] .

Using the formula for the conditional expected value of the counting process in (31) we get(
eÃ(t+τ−t0) − I

)
Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − I (t+ τ − t0)

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
eb>Ã−1

[
Xt0 + Ã−1eµ

]
µ

+ Ã−1eµ
[
Nt0 + µ

(
1− b>Ã−1e

)
(t− t0) + b>Ã−1

(
eÃ(t1−t0) − I

) [
Xt0 + Ã−1eµ

]]
= eÃ(t+τ−t0)Ã−1eµNt0 + Ã−1

[(
eÃ(t+τ−t0) − I

)
Ã−1 − Iτ

]
eµ2

(
1− b>Ã−1e

)
+ eÃ(t+τ)

∫ t+τ

t0

e−Ãueb>eÃudue−Ãt0Ã−1
[
Xt0 + Ã−1eµ

]
µ

− Ã−1eÃ(t+τ−t0)eb>Ã−1
[
Xt0 + Ã−1eµ

]
µ+ Ã−1eµb>Ã−1eÃ(t−t0)

[
Xt0 + Ã−1eµ

]

34



and its long-run behaviour is established considering t→ +∞, that is

−Ã−1
[
Ã−1 + Iτ

]
eµ2

(
1− b>Ã−1e

)
. (D.13)

The fifth term in the right-hand side of (D.8) can be rewritten as∫ t+τ

t0

eÃ(t+τ−u)Et0 [Xu] duµ =

∫ t+τ

t0

eÃ(t+τ−u)eÃ(u−t0)du
[
Xt0 + Ã−1eµ

]
µ

−
∫ t+τ

t0

eÃ(t+τ−u)duÃ−1eµ2

= eÃ(t+τ−t0) (t+ τ − t0)
[
Xt0 + Ã−1eµ

]
µ

− Ã−1
(
eÃ(t+τ−t0) − I

)
Ã−1eµ2,

that has the following long-run behaviour

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Et0 [Xu] duµ = Ã−1Ã−1eµ2. (D.14)

Lemma 1 suggests that the last term in the rhs of (D.8) can be written as∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu =

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)duvlt

(
Xt0X

>
t0

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
−

∫ t+τ

t0

eÃ(t+τ−u)duB ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0

[
Xt0 + Ã−1eµ

]
du.

The result in (A.1) implies that∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu =

[∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du

]
vlt
(
Xt0X

>
t0

)
+

[∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du

]
˜̃A−1µ

(
ẽ− C̃Ã−1e

)
−

(
eÃ(t+τ−t0) − I

)
Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
+

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0du

[
Xt0 + Ã−1eµ

]
.

To determine the asymptotic behaviour of this term, we analyze the long-run behaviour of the

35



integral
∫ t+τ
t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du. Exploiting the result in Appendix C, we have

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃A(u−t0)du = 0

as all eigenvalues of Ã and ˜̃A have negative real part. Using the Fubini-Tonelli’s Theorem the last

integral becomes∫ t+τ

t0

eÃ(t+τ−u)Be
˜̃Au

[∫ u

t0

e−
˜̃AhC̃eÃhdh

]
e−Ãt0du =

∫ t+τ

t0

∫ u

t0

eÃ(t+τ−u)Be
˜̃A(u−h)C̃eÃ(h−t0)dhdu.

Its long-run behaviour is obtained using the result in (C.6), that is

lim
t→+∞

∫ t+τ

t0

∫ u

t0

eÃ(t+τ−u)Be
˜̃A(u−h)C̃eÃ(h−t0)dhdu = 0. (D.15)

Finally, we have

lim
t→+∞

∫ t+τ

t0

eÃ(t+τ−u)Et0
[
XuX

>
u

]
bdu = Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
. (D.16)

From (D.9), (D.11), (D.13), (D.14) and (D.16) we obtain the limit behaviour for the quantity in

(D.8)

h∞ (τ) := lim
t→+∞

ht0 (t, τ)

= −Ã−1µe + Ã−1eb>Ã−1eµ− Ã−1
[
Ã−1 + Iτ

]
eµ2

(
1− b>Ã−1e

)
+ Ã−1Ã−1eµ2Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
. (D.17)

Using (D.17) we can determine the asymptotic behaviour of (D.3) and we get

g∞ (τ) := lim
t→+∞

gt0 (t, τ)

= lim
t→+∞

ht0 (t, τ)− eÃτ
[

lim
t→+∞

ht0 (t, 0)

]
+ Ã−1eµ2

(
1− b>Ã−1e

)
τ

= h∞ (τ)− eÃτh∞ (0) + Ã−1eµ2
(

1− b>Ã−1e
)
τ. (D.18)

By straightforward calculations (D.18) becomes (65) and the covariance reads as in (64).

Here we provide the proof of Proposition 7.

Proof. For the asymptotic variance we need to compute the conditional variance of the number of
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jumps in an interval with length τ . First we observe that

σ2
t0 (t, τ) := Vart0 (Nt+τ −Nt) = Et0

[
(Nt+τ −Nt)

2
]
− E2

t0 [Nt+τ −Nt] .

We then compute the second moment of the increments

Et0
[
(Nt+τ −Nt)

2
]

= Et0
[
N2
t+τ

]
+ Et0

[
N2
t

]
− 2Et0 [NtEt [Nt+τ ]]

= Et0
[
N2
t+τ

]
− Et0

[
N2
t

]
− 2Et0 [Nt]µ

(
1− b>Ã−1e

)
τ

− 2b>Ã−1
[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
.

For Et0
[
N2
t

]
it is useful to compute the infinitesimal operator for the function f (X1,t, . . . , Xp,t, Nt, ) =

N2
t , that reads

Aft = µ (2Nt + 1) + 2b>NtXt + b>Xt.

Applying the Dynkin’s formula, we have

Et0
[
N2
t

]
= N2

t0 + 2µ

∫ t

t0

Et0 [Nu] du+ µ (t− t0) + 2b>
∫ t

t0

Et0 [NuXu] du+ b>
∫ t

t0

Et0 [Xu] dt.

Therefore

Et0
[
(Nt+τ −Nt)

2
]

= 2µ

∫ t+τ

t
Et0 [Nu] du+ µτ + 2b>

∫ t+τ

t
Et0 [NuXu] du+ b>

∫ t+τ

t
Et0 [Xu] du

− 2Et0 [Nt]µ
(

1− b>Ã−1e
)
τ − 2b>Ã−1

[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
= 2µ

∫ t+τ

t
Et0 [Nu −Nt] du+ µτ + b>

∫ t+τ

t
Et0 [Xu] du

+ 2b>
∫ t+τ

t

[
Et0 [NuXu] + Ã−1eµEt0 [Nt]

]
du

− 2b>Ã−1
[
eÃτ − I

] [
Et0 [NtXt] + Ã−1eµEt0 [Nt]

]
. (D.19)

We study the asymptotic behaviour of the terms in (D.19). We denote with at0 (t, τ) :=
∫ t+τ
t Et0 [Nu −Nt] du

at0 (t, τ) =

∫ t+τ

t
µ
(

1− b>Ã−1e
)

(u− t) du+

∫ t+τ

t
b>Ã−1

[
eÃ(u−t0) − eÃ(t−t0)

]
du
[
Xt0 + Ã−1e

]
= µ

(
1− b>Ã−1e

) τ2

2
+

∫ t+τ

t
b>Ã−1

[
eÃ(u−t) − I

]
dueÃ(t−t0)

[
Xt0 + Ã−1e

]
.
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We observe that the following integral is finite∫ t+τ

t
b>Ã−1

[
eÃ(u−t) − I

]
du < +∞

from where we deduce that

a∞ (τ) := lim
t→+∞

at0 (t, τ) = µ
(

1− b>Ã−1e
) τ2

2
. (D.20)

We then concentrate on the quantity bt0 (t, τ) := µτ + b>
∫ t+τ
t Et0 [Xu] du that through straight-

forward computations can be written as

bt0 (t, τ) = µτ + b>
∫ t+τ

t

[
eÃ(u−t0)

(
Xt0 + Ã−1eµ

)
− Ã−1eµ

]
du

=
(

1− b>Ã−1e
)
µτ + b>eÃ(t−t0)

∫ t+τ

t
eÃ(u−t)

(
Xt0 + Ã−1eµ

)
du.

Since we have a continuous integrand in a compact support∫ t+τ

t
eÃ(u−t)du < +∞,

we have

b∞ (τ) := lim
t→+∞

bt0 (t, τ) =
(

1− b>Ã−1e
)
µτ. (D.21)

Denoting with ct0 (t, τ) :=
∫ t+τ
t

[
Et0 [NuXu] + Ã−1eµEt0 [Nt]

]
du, we obtain

ct0 (t, τ) = I0,t0 (t, τ) + I1,t0 (t, τ) + I2,t0 (t, τ) + I3,t0 (t, τ) + I4,t0 (t, τ) + I5,t0 (t, τ)

where I0,t0 (t, τ) :=
∫ t+τ
t eÃ(u−t0)Xt0Nt0du is rewritten as

I0,t0 (t, τ) = e
˜A(t−t0)τ

∫ t+τ

t
eÃ(u−t)Xt0Nt0du

and using the same arguments as above, we get

I0,∞ (t, τ) := lim
t→+∞

I0,t0 (t, τ) = 0.

The quantity I1,t0 (t, τ) :=
∫ t+τ
t

(
eÃ(u−t0) − I

)
Ã−1eµdu can be rewritten as

I1,t0 (t, τ) =

∫ t+τ

t
eÃ(u−t0)Ã−1eµdu− Ã−1eµτ
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while taking the limit as t→ +∞, we have

I1,∞ (t, τ) := lim
t→+∞

I1,t0 (t, τ) = −Ã−1eµτ. (D.22)

The quantity

I2,t0 (t, τ) :=

∫ t+τ

t

∫ u

t0

eÃ(u−s)eb>eÃ(s−t0)dsdu
[
Xt0 + Ã−1eµ

]
−

∫ t+τ

t

(
eÃ(u−t0) − I

)
duÃ−1eb>Ã−1eµ (D.23)

depends on the integral
∫ t+τ
t

∫ u
t0
eÃ(u−s)eb>eÃ(s−t0)dsdu where from the substitutions s − t0 = h

and r = u− t we get ∫ τ

0

∫ t+r−t0

0
eÃ(t−t0+r−h)eb>eÃhdhdr. (D.24)

Defining

Ä :=

[
Ã eb>

0p,p Ã

]
and applying the result in Appendix C, the inner integral in (D.24) becomes

[Ip,p; 0p,p] e
Ä(t−t0+r)

[
0p,p

Ip,p

]
. (D.25)

Thus the integral in (D.24) can be computed as follows

[Ip,p; 0p,p] e
Ä(t−t0)

∫ τ

0
eÄrdr

[
0p,p

Ip,p

]
. (D.26)

We notice that as
∫ τ

0 e
Ärdr < +∞ and all eigenvalues of Ä have negative real part, then

I2,∞ (τ) := lim
t→+∞

I2,t0 (t, τ) = Ã−1eb>Ã−1eµτ.

Similarly, we get the limit for the term I3,t0 (t, τ) :=
∫ t+τ
t

[∫ u
t0
eÃ(u−s)µEt0 (Ns) eds+ Ã−1eµEt0 (Nu)

]
du

as t→ +∞:

I3,∞ (t, τ) := lim
t→+∞

I3,t0 (t, τ) = −Ã−1

[
I
τ2

2
+ Ã−1τ

]
eµ2

(
1− b>Ã−1e

)
.
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We define the following quantity

I4,t0 (t, τ) :=

[∫ t+τ

t
eÃ(u−t0) (u− t0) du

] [
Xt0 + Ã−1eµ

]
µ+ Ã−1Ã−1eµ2τ

− Ã−1

∫ t+τ

t
eÃ(u−t0)duÃ−1eµ2

and observe that the first integral can be rewritten as∫ t+τ

t
eÃ(u−t0) (u− t0) du = eÃ(t−t0)

∫ t+τ

t
eÃ(u−t) (u− t) du+ eÃ(t−t0) (t− t0)

∫ t+τ

t
eÃ(u−t)du

where both terms in the rhs tend to zero as t→ +∞ thus

I4,∞ (τ) = lim
t→+∞

I4,t0 (t, τ) = Ã−1Ã−1eµ2τ.

Similar arguments are used to determine the limit as t → +∞ for the quantity I5,t0 (τ) :=∫ t+τ
t

∫ u
t0
eÃ(u−s)Et0

[
Xs, X

>
s

]
bdsdu as follows

I5,∞ (τ) = lim
t→+∞

I5,t0 (t, τ) = Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
τ.

Combining all results, we get the stationary behaviour for the quantity c∞ (τ) := limt→+∞ ct0 (t, τ)

that reads

c∞ (τ) = −Ã−1eµτ
(

1− b>Ã−1e
)
− Ã−1

[
I
τ2

2
+ Ã−1τ

]
eµ2

(
1− b>Ã−1e

)
+ Ã−1Ã−1eµ2τ

+ Ã−1B ˜̃A−1µ
(
ẽ− C̃Ã−1e

)
τ. (D.27)

Furthermore

lim
t→+∞

Et0
[
(Nt+τ −Nt)

2
]

= 2µa∞ (τ) + b∞ (τ) + 2b>c∞ (τ)− 2b>Ã−1
[
eÃτ − I

]
h∞ (0)

= µ2
(

1− b>Ã−1e
)2
τ2 +

(
1− b>Ã−1e

)(
1− 2b>Ã−1e

)
µτ

+ 2b>Ã−1Ã−1eτµ2
(
b>Ã−1e

)
+ 2b>Ã−1B ˜̃A−1µ

(
ẽ− C̃Ã−1e

)
τ

− 2b>Ã−1
[
eÃτ − I

]
h∞ (0) .

By straightforward calculations, we obtain the result in (66) for the asymptotic variance.
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