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1 Introduction

The observation of antihelium in Cosmic Rays (CR) could be a signature for physics beyond the
standard model, such as dark matter annihilation [1] or the existence of antimatter domains in
space [2]. The AMS-02 experiment [3] aboard the International Space Station (ISS) has reported
several antihelium candidates of unclear origin [4]. Light nuclei can also be produced in interactions
of CR with the interstellar medium via coalescence of secondary baryons, where the CR and the
interstellar gas are mostly protons and around 10% helium [5]. The coalescence of antibaryons
into antinuclei has been studied at colliders, for example at the LHC in 𝑝𝑝 and PbPb collisions
(ALICE [6]), at the RHIC in AuAu collisions (STAR [7], PHENIX [8], BRAHMS [9]), and at the
SPS in fixed-target experiments (NA49 [10]).

The LHCb detector [11, 12] covers the forward pseudorapidity region (2 < 𝜂 < 5), as opposed to
other experiments that have helium identification capabilities only at central pseudorapidity (small |𝜂 |).
The LHCb experiment can therefore measure helium production in a region that is unexplored by other
experiments. It is a single-arm forward spectrometer that includes a high-precision charged-particle
reconstruction (tracking) system consisting of: a silicon-strip vertex detector (VELO) [13, 14] that
surrounds the 𝑝𝑝 interaction region, a large-area silicon-strip detector (TT) [15] located upstream of a
dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors (IT) [16,
17] and straw drift tubes (OT) [18, 19] placed downstream of the magnet. The tracking system
measures the momentum 𝑝 of charged particles with a relative uncertainty that ranges from 0.5% at
low momentum1 to 1.0% at 200 GeV. The minimum distance of a track to a primary vertex (PV), the

1Natural units where ℏ = 𝑐 = 1 are used throughout.
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impact parameter (IP), is measured with a resolution of (15 + 29/𝑝T) µm where 𝑝T is the component
of the momentum transverse to the beam, in GeV. Different types of charged hadrons are distinguished
from one another using information from two ring-imaging Cherenkov (RICH) detectors [20, 21].

The method presented in this paper exploits information from energy losses through ionisation in
the silicon sensors, alongside information from the OT and RICH to improve the separation power
between helium and minimally-ionising particles of charge 𝑍 = 1. It is assumed throughout this paper
that all observed helium is 3He, due to the suppression by a factor O(103) predicted by coalescence
for each additional baryon [22]. A dedicated study for the 4He production in 𝑝𝑝 collisions exploring
the particle identification capabilities of the LHCb RICH is foreseen in the future.

2 Energy-loss measurements
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Figure 1. Left: Distributions of the deposited energy in a VELO sensor for simulated helium and protons.
Right: Distributions of the median ADC of all VELO clusters per track, corrected for the incidence angle, for
𝑍 = 1 particles (blue), 𝑒+𝑒− pairs from photon conversions (purple), and helium (orange). The helium selection,
described in the text, is applied but no VELO requirements are imposed.

The average energy loss per path length of a particle of charge 𝑍 passing through a silicon sensor
(d𝐸/d𝑥) is proportional to 𝑍2, as modelled by the Bethe-Bloch formula [23]. Figure 1 illustrates the
energy deposited by helium and 𝑍 = 1 particles. In silicon, these energy losses are converted into
around 80 electron-hole pairs per micron, and the movement of this charge in the electric field of the
depleted region induces a signal on the readout strips. This signal can appear in one or a few strips,
depending on the electric field, incidence angle, and couplings between strips. The strips in LHCb
silicon sensors have different pitch, width, length and shapes, thus leading to different electric fields,
total capacitances, and couplings. The signal from each strip is registered by the front-end electronics
and measured by the readout system, which is equipped with 7-bit analogue-to-digital converters. This
limits the dynamical range to 127 counts per strip, and given that one count corresponds to ∼ 440
collected electrons, signals above ∼ 56 000 electrons saturate. Neighbouring signal strips are typically
combined into clusters of up to four strips. The counts from the strips in a cluster are summed together
to obtain the cluster amplitude (ADC). The saturated strips lead to an underestimation of the cluster
ADC, an effect that is partially compensated by the increasing cluster size (CLS) for 𝑍 = 2 particles.

The distribution of the median ADC of all clusters per track, corrected for the incidence angle,
is shown on the right-hand side of figure 1. The sensors are calibrated such that the signal from
𝑍 = 1 particles peaks at ADC ∼ 40, whilst the helium signal is found to peak at ADC ∼ 135. This is
as expected from the 𝑍2 dependence, taking into account saturation effects. One such effect is the
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sharp feature at ADC = 127, which corresponds to CLS = 1 clusters that saturate. The distribution
of electrons from photon conversions is discussed in section 4.3.

3 Sample selection

The results presented in this paper are obtained with the 𝑝𝑝-collision data collected during the years
2016, 2017, and 2018, at a centre-of-mass energy

√
𝑠 = 13 TeV. The total integrated luminosity

of 5.5 fb−1 is composed of 1.6 fb−1 collected in 2016, 1.7 fb−1 in 2017, and 2.2 fb−1 in 2018.
The combined output of all LHCb physics trigger lines [24] is used. Two data subsets, called
“preselection 1” and “preselection 2”, are defined in a data reduction stage that takes place after
the trigger and full data reconstruction.

In addition, minimum-bias data are used to study the performance of the identification method.
This sample consists of 1.7 × 108 events with 2.1 × 109 tracks, recorded with random triggers
and selected using a small prescaling factor. Reference samples of singly-charged particles are
also obtained from 𝛬 → 𝑝𝜋− and 𝐷∗+ → 𝐷0(𝐾−𝜋+)𝜋+ decays2 that are processed into dedicated
calibration data [25]. They contain around 109 tracks in total and correspond to an integrated luminosity
of 3 fb−1.3 These samples are supplemented by kaons and pions from 𝐵0 → 𝐾∗0(𝐾+𝜋−)𝐽/𝜓(𝜇+𝜇−)
candidates selected from data corresponding to 5.5 fb−1.

The response of the LHCb detector to 3He is simulated using a simplistic Monte Carlo simulation
where a single particle is generated at the nominal 𝑝𝑝 interaction point and traced through the LHCb
detector using the Geant4 toolkit [26]. The simulated events are processed by the same reconstruction
software as for the data. An additional sample of simulated 𝐵0 → 𝐾∗0(𝐾+𝜋−)𝐽/𝜓(𝜇+𝜇−) decays
is used for comparison with the matching data sample.

Selected tracks are required to have passed through the VELO, TT, and the three tracking stations
downstream of the magnet. A requirement is placed on the significance of the match between upstream
and downstream track segments to suppress fake tracks and particles produced in interactions with
the detector material. The rigidity of each track, 𝑝/|𝑍 |, is required to be larger than 2.5 GV and the
transverse component of the rigidity must be at least 0.3 GV. Each track must also be of good quality
and have a sufficient number of hits in the silicon detectors to enable the identification techniques
discussed below. Tracks that fulfil these requirements are considered well-reconstructed.

In the preselection stage two simple, robust, and independent variables are used to define two
subsets of data enriched in helium. Together, they ensure redundancy in the selection, and enable
efficiency comparisons. The first subset, referred to as “preselection 1”, requires at least one track with
the number of overflows greater than 3. This quantity is defined as the total number of saturated strips
in VELO clusters along the track that have CLS < 4. Its distribution is shown in figure 2, where a
clear separation between simulated helium and 𝑍 = 1 particles from calibration data is observed. The
background rejection rate of this requirement is O(105). The second subset, called “preselection 2”,
is obtained by requiring median ADC > 115. Additional kinematic and track-quality requirements
are applied, and pions are rejected using loose particle identification cuts. The efficiencies of these
two preselections are estimated by means described in section 4.1.

2The inclusion of charged-conjugate processes is implied throughout, unless otherwise stated.
3This calibration dataset only covers 2018 and part of 2017, due to missing ADC information.
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Figure 2. Distributions of the number of overflows for simulated helium signal and 𝑍 = 1 particles from
calibration data. The vertical line indicates the preselection requirement.

4 Helium identification

The VELO, IT, and TT silicon sensors have different geometries, with the most intricate one being
the VELO. It has 42 modules (21 per side), each consisting of two different types of sensors with
strips oriented to make measurements of the radial and azimuthal position. They are referred to
as 𝑅 and 𝜙 sensors, respectively. The TT sensors have a pitch of 183µm and four different strip
lengths, ranging from 94 mm to 378 mm. The IT sensors that occupy the central part of the tracking
stations downstream of the magnet have two different strip lengths, 108 mm and 216 mm, with 198µm
pitch, and two different sensor thicknesses, 320µm and 400µm. The thicker sensors produce larger
signals. To account for different sensor geometries, VELO 𝑅 and VELO 𝜙 sensors are considered
separately, as are the thin and thick IT sensors; no significant improvement is found when considering
TT sensors of different strip length.

Figure 3 shows the distribution of the cluster amplitude in VELO 𝑅 sensors, separately for each
cluster size, as obtained from simulated helium tracks, and 𝑍 = 1 particles from data. It can be
seen that helium is characterised by larger CLS, higher average ADC values, and more frequent
saturation. The sharp features at ADC = 127, 254, 381 and 508 correspond to saturation of 1, 2, 3
and 4 strips, respectively.
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Figure 3. Distributions of the cluster amplitudes, for different cluster sizes, in the VELO 𝑅 sensors for (left)
simulated helium signal and (right) calibration data.
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4.1 Likelihood estimators from silicon detectors

Each cluster is a separate independent measurement of the energy deposit. This information is
combined into a likelihood estimator for each type of sensor. To construct this likelihood estimator,
two-dimensional probability density distributions (PDD) are derived from the ADC distributions,
as exemplified in figure 3 for VELO 𝑅 sensors. One dimension of the PDD is the cluster size and
the other is the ADC. To derive the likelihoods of the helium (He) and background (bkg) particle
hypotheses, the PDDs are used as look-up tables:

L𝑋 =

(
𝑛∏
𝑖=1

PDD𝑋
𝑖 (CLS,ADC)

) 1
𝑛

, (4.1)

where 𝑋 ∈ {He, bkg}, and 𝑛 is the number of clusters on the track. Helium and background tracks
are separated using the log-likelihood ratio

ΛLD = log
LHe

Lbkg = logLHe − logLbkg. (4.2)

The likelihoods are evaluated for VELO 𝑅, VELO 𝜙, TT, IT thick and IT thin sensors. The likelihood
for the former is shown as an example in figure 4 on the left-hand side, where the 3He simulation
is compared to the calibration data described in section 3. Significant separation power between
helium and 𝑍 = 1 particles is observed in the likelihood estimators from all subdetectors. However,
none of them would be sufficient by themselves to produce a pure helium sample from an expected
helium-to-background ratio of 1 in O(108). On the right-hand side of figure 4, the distribution
of ΛVELO 𝑅

LD in samples of pions and kaons from 𝐵0 → 𝐾∗0(𝐾+𝜋−)𝐽/𝜓(𝜇+𝜇−) decays is compared
between data and simulation. The shape is found to be described well by the simulation; however, the
tail would lead to overestimation of the background contamination in the signal region if simulation
were used for such estimates. The differences between the distribution of helium candidates and of
simulated helium are attributed to imperfect modelling of the signal in the silicon sensors.
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Figure 4. Distributions of ΛVELO 𝑅
LD in: (left) samples of 𝑍 = 1 tracks from calibration data and simulated

helium; (right) samples of hadrons from 𝐵0 → 𝐾∗0 (𝐾+𝜋−)𝐽/𝜓(𝜇+𝜇−) decays. The simulation is normalised to
the data.

For the VELO, a weighted mean of the VELO 𝑅 and VELO 𝜙 likelihood estimators is used to define

ΛVELO
LD =

𝑛VELO 𝑅 × ΛVELO 𝑅
LD + 𝑛VELO 𝜙 × Λ

VELO 𝜙

LD
𝑛VELO 𝑅 + 𝑛VELO 𝜙

. (4.3)
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Figure 5. Distributions of the log-likelihood estimators from the LHCb VELO (ΛVELO
LD ), TT (ΛTT

LD) and IT
(ΛIT

LD) silicon trackers from the minimum-bias data. Helium candidates are indicated by green boxes. Left: the
tracks are required to pass the selection described in section 4.2 or to have ΛIT

LD > −1. Right: the tracks must
traverse the IT and have ΛVELO

LD > 0. The full selection described in sections 4.2, 4.3 and 5.1 is applied.

The weights 𝑛VELO 𝑅 and 𝑛VELO 𝜙 are the number of clusters on the track in 𝑅 and 𝜙 sensors, respectively.
The thin and thick IT estimators are combined in the same way to obtain ΛIT

LD.
The two-dimensional distributions of ΛVELO

LD versus ΛTT
LD, and ΛIT

LD versus ΛTT
LD in minimum-bias

data are presented in figure 5. On the left-hand side, a population of around 50 helium candidates,
clearly separated from 𝑍 = 1 particles, is observed for ΛVELO

LD > 0 and ΛTT
LD > −1. Given that there

are O(109) tracks in the minimum-bias data, this indicates a separation power of at least 1 in 108.
Roughly ∼ 20% of these tracks are in the IT acceptance and figure 5 (right) shows that they are
predominantly distributed at large ΛIT

LD values.
The roughly 50 helium candidates are used to estimate the efficiencies of the two preselections

discussed in section 3. As shown on the left-hand side of figure 6, the overlap of the selected tracks is
(24 ± 6)%. In addition, both preselections are found to be approximately 50% efficient, as shown
on the right-hand side of figure 6 for the case of preselection 1.

4.2 Track-time measurements from the OT

As depicted in figure 7 on the left-hand side, the VELO and the TT stations measure the d𝐸/d𝑥
of tracks upstream of the magnet. However, the IT silicon detector at the centre of the T-stations
downstream of the magnet does not cover the full detector acceptance. The rest of the tracks lie in the
acceptance of the OT, which consists of gaseous drift tubes that measure the drift time of ionisation
clusters produced by passing charged tracks; the time resolution is around 1 ns. The OT is calibrated
such that the reference track time (𝑡0) is zero for 𝑍 = 1 particles [19]. However, helium produces
on average four times more ionisation in the gas, thus triggering the readout discriminator earlier.
Therefore, helium is characterised by negative 𝑡0 values at high momentum (𝑝 > 10 GeV), as shown
in figure 7. Across the entire kinematic range, the shift is influenced by the momentum dependence
of d𝐸/d𝑥. At low momentum, the time measurement is sensitive to the mass of 3He, leading to an
upwards shift of around 4 ns at a momentum of 5 GeV.
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Figure 7. Left: sketch of the LHCb tracking detectors and magnet; adapted from ref. [12]. Right: Distribution
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slice, the distribution is normalised to unity and fitted with a Gaussian function. The positions of the means is
indicated by the black dots. These are fitted as described in the main body, resulting in the shape depicted by the
green continuous line. The dashed green lines indicate the ±1 ns interval.

The momentum dependence of 𝑡0 is parameterised by a smooth function depicted in figure 7
on the right-hand side. This function is used to calculate the expected time of a given track (𝑡fit).
As part of the selection of helium candidates, tracks passing through the OT are required to have
Δ𝑡OT ≡ |𝑡0−𝑡fit | < 1 ns. This requirement significantly reduces the background with minimal signal loss.

The VELO and TT estimators provide helium identification upstream of the magnet. The
combination of the IT and OT provides similar information downstream of the magnet, which is
essential to discriminate the signal from photon conversions, as discussed in the following section.

4.3 Rejection of photon conversions

A photon traversing the LHCb detector may produce an electron-positron pair with a small opening
angle; the electron and positron may lose energy in the same silicon sensors, thus leading to a cluster
whose amplitude is on average twice as large as expected from a 𝑍 = 1 particle, as can be seen in
the right-hand-side of figure 1. Because of this, 𝑒+𝑒− pairs from photon conversions in the VELO
are not distinguished from helium as easily as other 𝑍 = 1 particles. The electrons and positrons
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vertical dashed line indicates the selection requirement.

are deflected in opposite directions by the magnet but the resulting distinct tracks share the same
segment in the VELO. Therefore, conversions are suppressed by accepting only tracks that do not
share their VELO segment with another track.

In addition, the RICH is used to construct log-likelihoods corresponding to different mass
hypotheses for each track in the event. These are standard variables used in LHCb measurements,
with the pion hypothesis being the default given that pions are the most produced particles.

Helium nuclei must have momenta of at least 53 GeV to produce Cherenkov rings in the RICH.
Since most detected helium track candidates are below this threshold, the response of the RICH
detectors to tracks in the signal sample is expected to be dominated by Cherenkov photons from
other tracks in the event. However, electrons below the pion momentum threshold may be separated
using the difference between the RICH log-likelihoods constructed assuming the associated track is
either a pion or an electron. This quantity, denoted by ΛRICH

𝑒−𝜋 , is used to reject electrons from photon
conversions, as illustrated in figure 8. It depicts the distributions of ΛRICH

𝑒−𝜋 in a helium-enriched and a
background-enriched sample. The former consists of tracks required to have ΛVELO

LD > 0 and ΛTT
LD > 1,

whilst the latter comprises tracks selected using the cuts ΛVELO
LD > 0 and ΛTT

LD < −5. It can be seen
that requiring ΛRICH

𝑒−𝜋 < 2 is expected to reject a substantial amount of background, whilst being highly
efficient on the signal. The separation power is diluted at high momentum, where Cherenkov rings from
helium are indistinguishable from those produced by other particles. This low-momentum background
separation technique is therefore complementary to the high-momentum one provided by the OT.

5 The helium sample

The data selected by applying the requirements described in the previous sections are shown in figures 9
and 10. Additionally, tracks that are incompatible with originating from a primary vertex are rejected
by means described in the following section. The selection criteria quantified thus far are summarised
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Table 1. Helium selection criteria quantified throughout this paper. The logical or is required between the
two preselection criteria. Given the complementary acceptances of OT and IT, the logical or is also required
between the downstream requirements.

Type Track property Selection

Acceptance,
kinematics

𝜂 ∈ (2, 5)
𝑝/|𝑍 | > 2.5 GV
𝑝T/|𝑍 | > 0.3 GV

Preselection
Number of overflows > 3
Median ADC > 115

Downstream
Δ𝑡OT < 1 ns
ΛIT

LD > −1
Conversion
rejection

Unique VELO segment Yes
ΛRICH
𝑒−𝜋 < 2

PV origin ln 𝜒2
IP < 2

in table 1. A large, well-separated population of helium candidates is observed for ΛVELO
LD > 0 and

ΛTT
LD > −1 (region A). Approximately 1.1 × 105 candidates are selected, and figure 5 shows that their

location is consistent with the ∼ 50 candidates found in minimum-bias data.
Singly-charged particles are located at low values of ΛVELO

LD and ΛTT
LD (region D). They peak at

two different ΛVELO
LD values, one for each of the preselections presented in section 3. The median

ADC requirement of preselection 2 biases the ΛVELO
LD distribution towards larger values with respect to

preselection 1. Electrons from converted photons are highly collinear in the VELO but are separated
by the magnetic field. This means that they cannot be separated by ΛVELO

LD alone, however they can
be separated by ΛTT

LD and are therefore found predominantly in region B.
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LD , ΛTT

LD, and ΛIT
LD estimators are expected to have a mass, a momentum and an incidence-

angle dependence, due to the Bethe-Bloch formula. This is studied in detail, and is found to be
barely resolvable with the 7-bit ADC resolution of the LHCb silicon trackers. As a result, the
obtained distributions are continuous and nearly independent of these quantities. This is illustrated
for ΛVELO

LD in figure 11. The material in the LHCb detector is inhomogeneously distributed in
pseudorapidity and azimuthal angle, however no significant dependence of the separation power
on these quantities is observed.
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Figure 10. Distributions corresponding to that on the left-hand side of figure 9, but separated into tracks of
(left) positive and (right) negative charge.
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Figure 11. Distribution of ΛVELO
LD as a function of momentum (left) and pseudorapidity (right), in data from

both preselections combined. Tracks are required to pass the selection in section 4.2, as well as ΛTT
LD > −1.

Each vertical slice is normalised to unity.

5.1 Helium production in the detector material

Particles produced in collisions may interact with the detector material or the beam pipe, thus producing
secondary particles, including helium. Antihelium is not produced in this way, thus inducing an
asymmetry in distributions of variables that are different for prompt and non-prompt particles. One
such variable is the change in the 𝜒2 of the PV when it is reconstructed with or without the track of
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Figure 12. Distribution of the natural logarithm of the 𝜒2
IP for helium and antihelium tracks, combining data

from both preselections. The requirement that separates prompt and displaced helium is shown by the vertical
dashed line.

interest. This quantity, denoted by 𝜒2
IP, is very close to the square of the ratio between the impact

parameter of the track and its uncertainty.
The distribution of ln 𝜒2

IP in selected helium tracks is shown in figure 12. An enhancement
is observed at large values in the helium candidate sample, but not in the antihelium one. This
enhancement is consistent with the production of helium in the detector material. Therefore, prompt
and displaced helium tracks are isolated by a cut on 𝜒2

IP. The upper tail in the antihelium distribution
above ln 𝜒2

IP > 2 is a sign of non-prompt contributions to the sample, as expected from hypertriton or
𝛬0
𝑏

decays. Only tracks with ln 𝜒2
IP < 2 are considered for the results presented throughout section 5.

5.2 Estimation of residual contamination

The projections onto the ΛVELO
LD axis of the 2D distributions displayed in figure 10 are used to estimate

the level of residual background and are shown in figure 13. The distribution of ΛVELO
LD in background

samples obtained from regions B and D (ΛVELO
LD < 0) are scaled to match that in region C. The level

of contamination is inferred to be the size of the tail at ΛVELO
LD > 0.

The procedure is performed separately on the preselection 1 subset, which contains around
75% of the tracks in region A, and on data from the preselection 2 sample. This is due to the fact
that the requirements for preselection 2 bias the background towards larger values, as explained
in section 3. The background sample is required to have ΛTT

LD < −2. In the case of preselection 2,
the shape of the background is shifted by +0.5 to account for correlations between ΛTT

LD and ΛVELO
LD ,

which can be seen in figure 9. This shift is determined by minimising the 𝜒2 between the signal
and background histograms at negative ΛVELO

LD values. Figure 13 shows that the background in the
signal region, i.e. at ΛVELO

LD > 0, is negligible.
The signal region of preselection 1 contains 8.7 × 104 tracks, of which 15 are expected to be

background. Together with the observation of 54 helium tracks in minimum-bias, the number of
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Figure 13. Distribution of ΛVELO
LD in (left) helium and (right) antihelium samples from the (upper) preselection 2

and (lower) preselection 1 data samples. The distribution from an independent background sample is shown
in blue, scaled to match the size of the populations found in data at negative ΛVELO

LD values. To visualise the
background in the preselection 1 sample, the inset of each bottom-row plot shows a magnification of the region
ΛVELO

LD ∈ [−10, 1]. Each inset’s horizontal axis matches that of the containing plot.

background tracks in the signal region in minimum-bias that pass the same requirements can be
estimated to be 6 × 10−3. Given the total number of 1.2 × 109 well-reconstructed tracks in the
minimum-bias sample, this leads to a mis-identification probability for such a background track to
pass the helium identification of O(10−12).

6 Summary

Employing techniques that are almost entirely data driven, helium and antihelium are observed for the
first time at the LHCb experiment. This is accomplished using d𝐸/d𝑥 measurements in the silicon
sensors (VELO, TT and IT), alongside information from the RICH and OT subdetectors.

A total of 1.1 × 105 prompt helium and antihelium are identified with negligible background
contamination in the LHCb 𝑝𝑝 collision data collected in the years 2016 to 2018. The efficiency
of the helium identification method is estimated to be approximately 50% with a corresponding
background rejection factor of up to O(1012).

The identification method will be applied to other LHCb Run 2 datasets, such as proton-ion,
ion-ion, and SMOG collision data. Compared to the ALICE experiment, which covers the central
rapidity region |𝑦 | < 0.5, the LHCb results will extend the available measurements in the so far
experimentally unexplored forward region (2 < 𝜂 < 5). This identification technique, innovative
at the LHCb experiment, proves the feasibility of a rich programme of measurements of QCD and
astrophysics interest involving light nuclei.
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