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(1) Dipartimento di Fisica, Università degli Studi di Milano - 20133 Milano, Italy
(2) INFN Sezione di Milano - 20133, Milano, Italy
(3) Institute of Nuclear Physics, PAN - 31-342 Kraków, Poland
(4) Institut Laue-Langevin - 38042 Grenoble, France
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Summary. — In this work, we present recent lifetime measurements in exotic
nuclei performed at Institut Laue-Langevin in different 235U neutron-induced fission
campaigns, using the Lohengrin spectrometer and a hybrid setup made of HPGe
clover detectors and LaBr3(Ce) scintillators. In particular, results on the neutron-
rich 131Sb and 96Rb isotopes will be discussed, which have implications on the origin
of collectivity around the doubly magic 132Sn nucleus and the shape-coexistence
phenomenon around N = 60, respectively.

1. – Introduction

Lifetimes of nuclear excited states are key observables to study nuclear structure
properties, such as the interplay between single-particle and collective degrees of free-
dom [1-3] and more complex phenomena as the coexistence of different shapes at similar
excitation energies [4-7]. In this context, neutron-rich nuclei are particularly challenging
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to be accessed experimentally, and neutron-induced fission experiments offer a unique
opportunity to explore exotic regions of the nuclide chart [8]. Although lifetimes can
be successfully measured in fission experiments using prompt γ rays [2, 8], the weakest
channels would benefit from the selection and the identification in charge and mass of the
fission fragments. This can be achieved with the Lohengrin spectrometer [9] at Institut
Laue-Langevin, where the γ decay of long-lived isomeric states can be measured at the
focal plane of the mass separator.

2. – The experiments

The experiments were performed at Institut Laue-Langevin (ILL) by using the Lo-
hengrin spectrometer [9], where the nuclei of interest are produced by thermal neutron-
induced fission of a 235U target. Fission fragments are selected by combining magnetic
and electric fields and are finally collimated to the focal plane of the spectrometer. Fis-
sion products are detected by an ionization chamber and their γ decay by HPGe clover
detectors and four LaBr3(Ce) scintillators. The latter allow for the measurement of
sub-nanosecond lifetimes using γ-ray fast-timing techniques [10]. Considering the time-
of-flight of the ions of ≈2μs, only γ decays from long-lived isomeric states can be observed
at the focal plane of the mass separator.

3. – Lifetime measurements in 131Sb and 96Rb

In one of the Lohengrin experiments, mass A = 131 nuclei were studied. The focus
here was 131Sb, two neutron holes and one proton away from the doubly magic 132Sn
nucleus [11]. Low-lying excited states were fed by the microsecond isomers at 2166, 1687,
and 1676 keV, as shown in fig. 1. In this work, the lifetime of the 11/2+ state at 1226
keV was measured with the Generalised Centroid Shift Method, using the 450–1226 keV
γ-ray cascade and accounting for the Prompt Response Difference (PRD) correction [10].
As an example, we report the antidelayed time distribution in the left panel of fig. 1,
where the centroid position is marked by a vertical blue bar.

The background was treated as reported in [12] and the centroid positions of the
different background components are also indicated in fig. 1 (see [11] for details). The

Fig. 1. – Left: antidelayed time distribution for the 450–1226 keV γ cascade involving the 11/2+

state. Vertical bars represent the centroid positions of the peak and background components
(see [11] for details). Right: comparison between the experimental level and decay scheme of
131Sb and the one obtained with shell-model calculations. The half life of the 11/2+ state and
the corresponding B(E2; 11/2+ → 7/2+) value are also reported.
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Fig. 2. – Left: delayed (black) and antidelayed (red) time distributions for the 240–93 keV γ-ray
cascade involving the 4− state at 555 keV in 96Rb. The fitting curves are also shown. Right:
level and decay scheme of 96Rb as observed in this work. Measured lifetimes are reported in
bold.

result obtained for the 11/2+ state was T1/2 = 3(2) ps, which provides the first lifetime
measurement for the 11/2+ state in neutron-rich Sb isotopes, at the limits of applicability
of the fast-timing techniques. The corresponding B(E2; 11/2+ → 7/2+ (gs)) is 1.4+1.4

−0.6

W.u., indicating a non-collective nature of this state, consistent with the B(E2; 2+ → 0+)
of the 130Sn core of 1.18 (26) W.u. This suggests that the addition of a proton does not
induce any extra quadrupole collectivity, in contrast to the neighbouring 129Sb nucleus
where the B(E2; 11/2+ → 7/2+ (gs)) was found to exceed the B(E2) of the 130Sn
core [13]. Results have been compared with realistic, large-scale shell model calculations,
using the two-body effective interaction obtained with many-body perturbation theory
from the CD-Bonn nucleon-nucleon potential (see [14] and references therein). This
approach was successfully employed to describe (n, γ) data in the Pb region [15,16]. The
results are presented in fig. 1 (right), compared with the experimental ones. The level
scheme of 131Sb is well reproduced as well as the B(E2; 11/2+ → 7/2+ (gs)) value.
Shell-model predictions suggest the wave function of the 11/2+ state to be dominated
by the almost-pure 2+(130Sn) ⊗ πg7/2, core-proton coupled configuration. On the other
hand, the same calculations for 129Sb show a larger fragmentation of the 11/2+ state
wave function, therefore the gain in quadrupole collectivity, not observed in 131Sb, can
be ascribed to coherent proton-neutron correlations when more neutrons are removed
from the N = 82 shell closures.

In a different experiment, mass A = 96 nuclei were studied. We present here the
preliminary results for the neutron-rich, odd-odd 96Rb nucleus [17], located at the borders
of the well-known island of large ground-state deformations at N = 60 [18, 19]. Three
lifetimes were extracted using the Decay Slope Method, as they happened to be of the
order of hundreds of picoseconds or more. They are all fed by the 10−, 2μs isomer and
belong to a rotational band, possibly built on the 3− state at 462 keV [20].

For the 6− state at 795 keV the result is T1/2 = 222 (32) ps, which enables to obtain

B(E2; 6− → 4−) = 64.3(96)+6.4
−5.4 W.u. for the 240 keV, intra-band transition. This

corresponds to a large quadrupole deformation parameter β2 = 0.40(3)+2
−3, consistent

with the one proposed by [20], thus supporting the rotational character of the band.
The lifetime of the 4− state at 555 keV was also measured, using the 240–93 keV γ-ray
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cascade. The results for the delayed and antidelayed time distributions are shown in
the left panel of fig. 2 in black and red, respectively. The result is T1/2 = 599 (55) ps,

which allowed us to extract B(E2; 4− → 2− (gs)) = 0.042(9)+3
−2 W.u. for the 555 keV

transitions connecting the deformed band to the near-spherical ground state. This E2
decay turned out to be rather hindered, well below 1 W.u., indicating a retardation
caused by the shape change, as observed in the Ni region [6,7], providing a first evidence
for shape coexistence in the 96Rb nucleus. Finally, the lifetime of the 3− state at 462 keV
was also measured, yielding T1/2 = 2.13 (49) ns. The isomeric character of this state
supports the shape coexistence scenario and its possible band-head nature. The results
obtained in this work are summarized in the right panel of fig. 2.

4. – Conclusions

In conclusion, lifetime measurements in the neutron-rich 131Sb and 96Rb nuclei were
presented, shedding lights on the emergence of collectivity around 132Sn and shape co-
existence around N = 60, respectively. The experiments performed at the Lohengrin
spectrometer of Institut Laue-Langevin, combining the detection of fission fragments
with γ-ray measurements, allowed accessing peculiar states in these exotic nuclei, which
would be otherwise hard to reach in prompt fission or experiments with accelerated
beams.
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