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Summary. — In this work, we present recent lifetime measurements in exotic
nuclei performed at Institut Laue-Langevin in different 2*U neutron-induced fission
campaigns, using the Lohengrin spectrometer and a hybrid setup made of HPGe
clover detectors and LaBrs(Ce) scintillators. In particular, results on the neutron-
rich ¥1Sb and ?SRb isotopes will be discussed, which have implications on the origin
of collectivity around the doubly magic '32Sn nucleus and the shape-coexistence
phenomenon around N = 60, respectively.

1. — Introduction

Lifetimes of nuclear excited states are key observables to study nuclear structure
properties, such as the interplay between single-particle and collective degrees of free-
dom [1-3] and more complex phenomena as the coexistence of different shapes at similar
excitation energies [4-7]. In this context, neutron-rich nuclei are particularly challenging
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to be accessed experimentally, and neutron-induced fission experiments offer a unique
opportunity to explore exotic regions of the nuclide chart [8]. Although lifetimes can
be successfully measured in fission experiments using prompt 7 rays [2,8], the weakest
channels would benefit from the selection and the identification in charge and mass of the
fission fragments. This can be achieved with the Lohengrin spectrometer [9] at Institut
Laue-Langevin, where the v decay of long-lived isomeric states can be measured at the
focal plane of the mass separator.

2. — The experiments

The experiments were performed at Institut Laue-Langevin (ILL) by using the Lo-
hengrin spectrometer [9], where the nuclei of interest are produced by thermal neutron-
induced fission of a 23°U target. Fission fragments are selected by combining magnetic
and electric fields and are finally collimated to the focal plane of the spectrometer. Fis-
sion products are detected by an ionization chamber and their v decay by HPGe clover
detectors and four LaBrs(Ce) scintillators. The latter allow for the measurement of
sub-nanosecond lifetimes using 7-ray fast-timing techniques [10]. Considering the time-
of-flight of the ions of ~2 us, only v decays from long-lived isomeric states can be observed
at the focal plane of the mass separator.

3. — Lifetime measurements in 3'Sb and °Rb

In one of the Lohengrin experiments, mass A = 131 nuclei were studied. The focus
here was '?!Sb, two neutron holes and one proton away from the doubly magic '32Sn
nucleus [11]. Low-lying excited states were fed by the microsecond isomers at 2166, 1687,
and 1676keV, as shown in fig. 1. In this work, the lifetime of the 11/2% state at 1226
keV was measured with the Generalised Centroid Shift Method, using the 450-1226 keV
~-ray cascade and accounting for the Prompt Response Difference (PRD) correction [10].
As an example, we report the antidelayed time distribution in the left panel of fig. 1,
where the centroid position is marked by a vertical blue bar.

The background was treated as reported in [12] and the centroid positions of the
different background components are also indicated in fig. 1 (see [11] for details). The
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Fig. 1. — Left: antidelayed time distribution for the 450-1226 keV + cascade involving the 11/2"
state. Vertical bars represent the centroid positions of the peak and background components
(see [11] for details). Right: comparison between the experimental level and decay scheme of
1318k and the one obtained with shell-model calculations. The half life of the 11/2% state and
the corresponding B(E?2; 11/27 — 7/2%) value are also reported.
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Fig. 2. — Left: delayed (black) and antidelayed (red) time distributions for the 240-93 keV 7-ray
cascade involving the 4~ state at 555keV in *°Rb. The fitting curves are also shown. Right:

level and decay scheme of “°Rb as observed in this work. Measured lifetimes are reported in
bold.

result obtained for the 11/2% state was Tj /o = 3(2) ps, which provides the first lifetime
measurement for the 11/2% state in neutron-rich Sb isotopes, at the limits of applicability
of the fast-timing techniques. The corresponding B(F2; 11/2% — 7/2% (gs)) is 1.41}%
W.u., indicating a non-collective nature of this state, consistent with the B(E2; 2T — 0T)
of the ¥%Sn core of 1.18 (26) W.u. This suggests that the addition of a proton does not
induce any extra quadrupole collectivity, in contrast to the neighbouring '?°Sb nucleus
where the B(E?2; 11/2T — 7/2% (gs)) was found to exceed the B(E2) of the '39Sn
core [13]. Results have been compared with realistic, large-scale shell model calculations,
using the two-body effective interaction obtained with many-body perturbation theory
from the CD-Bonn nucleon-nucleon potential (see [14] and references therein). This
approach was successfully employed to describe (n,~) data in the Pb region [15,16]. The
results are presented in fig. 1 (right), compared with the experimental ones. The level
scheme of 131Sb is well reproduced as well as the B(FE2; 11/2% — 7/2% (gs)) value.
Shell-model predictions suggest the wave function of the 11/2% state to be dominated
by the almost-pure 2+ (13°Sn) ® 7g; /2, core-proton coupled configuration. On the other
hand, the same calculations for '2?Sb show a larger fragmentation of the 11/2% state
wave function, therefore the gain in quadrupole collectivity, not observed in '3'Sb, can
be ascribed to coherent proton-neutron correlations when more neutrons are removed
from the N = 82 shell closures.

In a different experiment, mass A = 96 nuclei were studied. We present here the
preliminary results for the neutron-rich, odd-odd *°Rb nucleus [17], located at the borders
of the well-known island of large ground-state deformations at N = 60 [18,19]. Three
lifetimes were extracted using the Decay Slope Method, as they happened to be of the
order of hundreds of picoseconds or more. They are all fed by the 107, 2 us isomer and
belong to a rotational band, possibly built on the 3™ state at 462 keV [20].

For the 67 state at 795keV the result is T} /5 = 222 (32) ps, which enables to obtain
B(E2; 6= — 47) = 64.3(96)7%1 W.u. for the 240keV, intra-band transition. This
corresponds to a large quadrupole deformation parameter 5o = 0.40(3)4_“?)7 consistent
with the one proposed by [20], thus supporting the rotational character of the band.
The lifetime of the 4~ state at 555keV was also measured, using the 240-93 keV ~-ray
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cascade. The results for the delayed and antidelayed time distributions are shown in
the left panel of fig. 2 in black and red, respectively. The result is T},5 = 599 (55) ps,
which allowed us to extract B(F2; 4~ — 2~ (gs)) = 0.042(9)73 W.u. for the 555keV
transitions connecting the deformed band to the near-spherical ground state. This E2
decay turned out to be rather hindered, well below 1 W.u., indicating a retardation
caused by the shape change, as observed in the Ni region [6,7], providing a first evidence
for shape coexistence in the Rb nucleus. Finally, the lifetime of the 3~ state at 462keV
was also measured, yielding 7'/, = 2.13 (49) ns. The isomeric character of this state
supports the shape coexistence scenario and its possible band-head nature. The results
obtained in this work are summarized in the right panel of fig. 2.

4. — Conclusions

In conclusion, lifetime measurements in the neutron-rich 'Sb and “Rb nuclei were
presented, shedding lights on the emergence of collectivity around '32Sn and shape co-
existence around N = 60, respectively. The experiments performed at the Lohengrin
spectrometer of Institut Laue-Langevin, combining the detection of fission fragments
with v-ray measurements, allowed accessing peculiar states in these exotic nuclei, which
would be otherwise hard to reach in prompt fission or experiments with accelerated
beams.
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