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Abstract: We study quantum finite automata with control language (QFCs), a theoretical model

for finite memory hybrid systems coupling a classical computational framework with a quantum

component. We constructively show how to simulate measure-once, measure-many, reversible,

and Latvian QFAs by QFCs, emphasizing the size cost of such simulations. Next, we prove the

decidability of testing the periodicity of the stochastic event induced by a given QFC. Thanks to our

QFA simulations, we can extend such a decidability result to measure-once, measure-many, reversible,

and Latvian QFAs as well. Finally, we focus on comparing the size efficiency of quantum and classical

finite state automata on unary regular language recognition. We show that unary regular languages

can be recognized by isolated cut point QFCs for which the size is generally quadratically smaller

than the size of equivalent DFAs.

Keywords: quantum finite state automata; periodic stochastic events; unary regular languages

1. Introduction

Several impressive theoretical results, Shor and Grover’s algorithms [1,2], above all,
address the potential of the quantum over classical computational paradigm and motivate
great efforts towards actually building quantum computational devices. From this latter
viewpoint, especially in the realms of photonics (see, e.g., [3–9]) and condensed matter
physics (see, e.g., [10–15]), relevant steps have been made to engineer basic quantum
components such as qubits, quantum gates, and quantum communication devices.

From a physical realization point of view, hybrid computational architectures featuring
“small” and dedicated quantum components hardwired into and cooperating with a classical
computational environment have proved to be quite promising. In order to precisely
assess their computational power and emphasize various advantages of adopting quantum
hardware, several theoretical models for hybrid architectures with finite (constant, not
depending on the input length) memory have been proposed in the literature. Among
others, we recall quantum finite automata (QFAs) with open time evolution [16], QFAs with
quantum and classical states [17–20], and semi-quantum finite state automata [21–23].

In this paper, we focus on the hybrid model of QFAs with control language (QFCs)
introduced in [24,25]. From an architectural point of view, a QFC A consists of:

• A quantum component, represented by a pure QFA M that can be seen as the quantum
counterpart of a classical deterministic finite state automaton (DFA); this component is
“controlled” by

• A classical component, which is a DFA D.

The aim of A is to process strings on a given input alphabet Σ. For each input string
in Σ∗, A returns an “accept” outcome with a certain probability. The language recognized
by A is the set of those strings in Σ∗ for which the acceptance probability exceeds a fixed
threshold. Let us overview the behavior of A in more detail. At any time during the
computation of A on a given input string x ∈ Σ∗, the state of the quantum component M
is represented by a superposition of basis states (formally, a norm 1 vector in the Hilbert
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space spanned by the basis states of the QFA M). The computation step of A consists of the
following two phases:

• Evolution: the currently scanned symbol of x is consumed; such a symbol determines
a unitary operator (formally, a unitary matrix mapping norm 1 vectors into norm
1 vectors) to be applied to the current superposition of M, yielding a new superposition
upon which

• Observation: a fixed observable is measured, yielding an outcome with a certain
probability; such an outcome, represented by a symbol, is passed to and processed by
the classical component, i.e., the DFA D.

The observation makes the superposition of M collapse to a superposition (which, in
general, does not have norm 1) coherent with the observed outcome. The normalization
of the collapsed superposition is clearly a norm 1 vector and is the superposition A starts
from in order to process the next input symbol.

Thus, the computation of A on the input string x produces a sequence y of observable
outcomes with a certain probability. We say that the computation is accepting whenever y
is accepted by D, or equivalently, whenever y belongs to the language recognized by D,
called the control language. The probability that A accepts x is the probability EA(x) for A
to display an accepting computation on x, and we call EA : Σ∗ → [0, 1] the stochastic event
induced by A. Fixing a cut point λ ∈ [0, 1], the language recognized by A with cut point λ

is defined to be the set of strings LA,λ = {x ∈ Σ∗ | EA(x) > λ}. Particularly interesting
for both theoretical and practical reasons (see [26,27]) is the case in which λ is isolated, i.e.,
whenever ̺ ∈ (0, 1

2 ] exists, such that |EA(x)− λ| ≥ ̺ holds true for every x ∈ Σ∗.
Concerning the computational capabilities, we have that isolated cut point QFCs reach

the same computational power as classical finite memory devices (e.g., DFAs): the class
of languages recognized by isolated cut point QFCs coincides with the class of regular
languages [24,25]. This computational equivalence (holding for the other above-quoted
hybrid models as well) is in sharp contrast with what happens when pure quantum finite
state devices are considered. In fact, several models of pure QFAs have been defined,
motivated by different possible physical implementations. Thus, e.g., we have: measure-
once and measure-many QFAs [28–31], enhanced QFAs [32], reversible QFAs [24], and
Latvian QFAs [33,34]. For all these (and other) isolated cut point models, we have a
recognition power that strictly lays within the class of regular languages [24,33,34]. This
computational weakness is basically due to the fact that, within a finite amount of memory,
it is generally impossible to guarantee computation reversibility, which is a fundamental
trait of quantum models.

However, it is important to notice that QFAs may exhibit a higher descriptional power,
i.e., their sizes can be significantly smaller than the sizes of equivalent classical devices
(see, e.g., [28,35–39]). This fact makes QFAs very well worth considering as quantum
components in a hybrid architecture such as QFCs: on the one hand, we can benefit from
their higher descriptional power guaranteeing more hardware size efficient systems; on the
other hand, the classical environment within which they are embedded can compensate
for their lower computational power (see, e.g., [20,22,40]). In addition, from a physical
realization viewpoint, it is worth remarking that QFAs turn out to be quite promising (see,
e.g., [6,9]) due to their architectural “simplicity”.

Besides addressing and suggesting practical issues in quantum technology realiza-
tion, QFCs are also of theoretical interest since they may represent a unifying theoretical
framework within which to investigate many types of finite memory quantum devices.
In fact, several models of QFAs can be suitably simulated by QFCs without significantly
increasing the size of simulated machines. As a consequence, some computational and
descriptional properties shown for simulating QFCs hold true for simulated types of QFAs
as well. This QFC capability of providing a unifying investigation framework has been
variously and fruitfully exploited in the literature:
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• As recalled above, in [24,25], it is proved that (i) isolated cut point QFCs recognize all
and only regular languages and that (ii) several QFA models previously introduced
in the literature can be simulated by QFCs. These two facts together imply that the
recognition power of all the simulated isolated cut point QFA models cannot go beyond
regular languages. This latter limitation was previously proved in the literature model-
by-model using ad hoc techniques.

• In [41], conditions are established for a pair of QFCs to be equivalent with respect to
induced stochastic events. In addition, efficient algorithms are provided for checking
such equivalence conditions. Even in this case, QFC simulation capabilities enable to
suitably transfer results to other QFA models at once.

• In the same spirit of the two lines of investigations quoted above, state lower bounds
are provided in [21,36] for several isolated cut point QFA models owing to the simula-
tion capabilities of QFCs.

More generally, we feel that the QFC model has partially inspired the introduction in the
literature of several paradigms (see, e.g., [42–45]) aiming to provide both theoretical models
for physically plausible hybrid quantum/classical architectures and general frameworks to
uniformly cope with different types of computational devices.

1.1. Main Contributions

In this paper, we start from this simulation ability. We construct size efficient QFCs that
simulate measure-once, measure-many, reversible, and Latvian QFAs having q basis states.
In particular, the simulating QFCs feature at most 2q quantum basis states for the first three
models and 2q2 basis state for the last model. In addition, the control languages turn out to
be very simple and require at most 3 states for the first three models, and q states for the
last model to be recognized by the classical control unit (DFA component).

Next, we study the decidability of the problem PERIODICITY: given a QFC A working
on a unary (i.e., with a single-letter) alphabet {σ} and an integer d ≥ 0, decide whether
or not the stochastic event EA : σ∗ → [0, 1] is d-periodic (i.e., whether EA(σ

k) = EA(σ
k+d)

holds true for any k ≥ 0). By using a suitable linear representation of QFCs and generating
function arguments, we prove the decidability of PERIODICITY. This, together with the
constructive QFA simulation results quoted above, shows that PERIODICITY is decidable on
measure-once, measure-many, reversible, and Latvian QFAs as well.

It is important to remark that the ability of inducing periodic stochastic events by
using a very restricted amount of basis states is at the core of the construction of extremely
succinct QFAs for language recognition (see, e.g., [28,35–39]). Therefore, from this point of
view, our algorithm to decide PERIODICITY may represent a relevant diagnostic tool in the
actual project of size efficient QFAs.

Finally, we show that isolated cut point QFCs are generally more size efficient than
equivalent DFAs when recognizing unary regular languages. It is well known (see, e.g., [46,47])
that any given unary regular language L ⊆ σ∗ is recognized by a minimal DFA whose state
diagram consists of an initial path of T states joined to a simple cycle of P states for suitable
integers T ≥ 0 and P > 0; accepting states are suitably located on both the initial path and
the cycle. This clearly enables us to view L as the disjoint union of the finite language LT

consisting of the strings in L of length less than T with the ultimately P-periodic language
LP of the strings in L of length greater than or equal to T.

Following this view, we design a QFC in which, very roughly speaking, the classical
component takes care of LT while its quantum component accounts for membership in LP.
In particular, this latter component can fully exploit the ability of QFAs to induce periodic
stochastic events with a very restricted amount of quantum basis states. The resulting
QFC recognizes L with an isolated cut point, uses a DFA with T + 3 states for its control
language, and features a quantum component with only O(

√
P) states. The global amount

of T + O(
√

P) states is to be compared with the T + P states required for equivalent DFAs.
We feel it interesting to point out that our construction scheme for unary QFCs is fully

modular and naturally allows a “plug-and-play” approach by which more size efficient
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classical or quantum components can be easily hardwired in order to obtain even more size
efficient QFCs for certain language families.

1.2. Paper Organization

The paper is organized as follows. In Section 2, we begin by quickly overviewing the
classical model of a DFA and providing its linear representation. We focus on the class of
unary regular languages and on the form of unary DFAs. Next, we recall those basics in
linear algebra, which are useful to describe quantum systems. Several models of QFAs are
then presented together with their language recognition and descriptional power under
the isolated cut point acceptance mode. Finally, we expand on the model of a QFC we are
mainly interested in, addressing its computational and descriptional power.

In Section 3, we construct QFCs simulating measure-once, measure-many, reversible,
and Latvian QFAs, emphasizing the cost in terms of quantum and classical states of
these simulations.

In Section 4, we define the problem PERIODICITY of deciding the periodicity of the
stochastic event induced by a given QFC and prove its decidability. This result, together
with the QFA simulations presented in Section 3, extends the decidability of PERIODICITY

to the simulated QFA models.
In Section 5, we build size efficient isolated cut point QFCs for unary regular languages.

We propose a modular construction scheme for such QFCs, within which different types of
quantum components can be easily inserted and coupled with the classical control unit. To
show the versatility of this modular framework, we construct two versions of isolated cut
point QFCs for unary regular languages differing from the adopted quantum component.
In particular, the resulting second version proves that on unary regular languages, isolated
cut point QFCs generally use a number of quantum and classical states that is quadratically
smaller than the number of states of equivalent DFAs.

Finally, in Section 6, we draw some concluding remarks and research outlooks.

2. Preliminaries

2.1. Formal Languages and Classical Automata

For the basics of formal language theory, we refer the reader to, e.g., [48]. The set of
natural numbers, including zero, is denoted by N. Given a finite alphabet Σ, we let Σ∗

denote the set of strings (or words) on Σ, including the empty string ε. For a string w ∈ Σ∗,
we let |w| denote its length, |w|σ the number of occurrences of the symbol σ ∈ Σ in w,
and wi its ith symbol. The set of all strings of length k ∈ N on Σ is denoted by Σk,
with Σ0 = {ε}. We let Σ<k =

⋃k−1
j=0 Σj and Σ≥k = Σ∗ \ Σ<k. For a symbol σ ∈ Σ and k ∈ N,

we let σk denote the string consisting of k consecutive copies of the symbol σ, with σ0 being
ε; we let σ∗ =

⋃

k≥0 σk, we let σ<k denote the set of strings {ε, σ, σ2, . . . , σk−1}, and we let
σ≥k = σ∗ \ σ<k. A language on the alphabet Σ is any subset L ⊆ Σ∗.

A deterministic finite state automaton (DFA) is a 5-tuple D = (Q, Σ, qI, δ, F), where
Q is the finite set of states, Σ the finite input alphabet, qI ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q × Σ → Q is the transition function. By letting
δ∗ : Q × Σ∗ → Q be the canonical extension of δ to Σ∗ as

δ∗(q, w) =

{

q if w = ε

δ(δ∗(q, x), σ) if w = xσ, for x ∈ Σ∗ and σ ∈ Σ,

we have that D accepts an input string w ∈ Σ∗ if and only δ∗(qI , w) ∈ F, i.e., whenever the
computation of D on w ends in an accepting state. The language recognized by D is the set
of strings LD = {w ∈ Σ∗|δ∗(qI, w) ∈ F}.

A convenient representation of a DFA is by means of its state diagram. The state diagram
of our DFA D is the labeled digraph with the state set Q as the set of vertexes and for which
an arc labeled σ ∈ Σ joins the vertex p to the vertex q if and only if δ(p, σ) = q. Therefore,
the computation of D on input x ∈ Σ∗ can be tracked down in the state diagram by
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following the path labeled x from the vertex corresponding to the initial state of D. Such a
path ends up in a final state if and only if D accepts x. Figure 1 displays an example of a
DFA state diagram.

Another useful description of finite state automata is by their linear representation. Let
us explain such a representation by considering the DFA D. Suppose Q = {q1, . . . , qm} is
its finite set of states. We represent each state qi ∈ Q by its characteristic m-dimensional
boolean row vector ei, which has 1 as the ith component and 0 elsewhere. Instead, the
transition function δ : Q × Σ → Q is represented by the family {M(σ)}σ∈Σ of m × m
boolean matrices for which for any σ ∈ Σ, the (i, j)th component of M(σ) is 1 if and
only if δ(qi, σ) = qj. Notice that, D being deterministic, each matrix M(σ) has exactly
one 1 per each row. The set F ⊆ Q of accepting states is represented by its characteristic
m-dimensional boolean column vector β having 1 at the ith component if and only if qi ∈ F.
So the linear representation of the DFA D is the triple D = (α, {M(σ)}σ∈Σ, β), where
α = et such that qt is the initial state (in other words, α is the characteristic vector of the
initial state).

The computation of D = (α, {M(σ)}σ∈Σ, β) on the input string w ∈ Σ∗ starts from
the initial state represented by α, and after consuming the whole input from left to right
one symbol per step, it reaches the state in Q represented by the characteristic vector

α · M(w1) · M(w2) · · · · · M(w|w|) = α ·
|w|
∏
i=1

M(wi). (1)

(The operator · in Equation (1) is the usual row–column product between vectors and
matrices or between matrices; more details on linear algebra will be recalled in the next

section). Therefore, D accepts w if and only if α · (∏|w|
i=1 M(wi)) · β = 1, and the language

recognized by D can now be written as LD = {w ∈ Σ∗ | α · (∏|w|
i=1 M(wi)) · β = 1}.

Concerning the language recognition capabilities, a seminal result in formal language
theory states that the class of languages recognized by DFAs coincides with the class of
regular languages. Indeed, e.g., in [48], the reader may find other relevant characterizations
of the regular languages by machines, grammars, and other formal tools.

A unary language is any language built over a single-letter alphabet. In what follows,
we will be using the single-letter alphabet Σ = {σ}, so that a unary language will be any
set L ⊆ σ∗. Unary regular languages form ultimately periodic sets:

Theorem 1 ([47]). For any given unary regular language L ⊆ σ∗, two integers T ≥ 0 and P > 0
exist such that for any k ≥ T, we have σk ∈ L if and only if σk+P ∈ L.

According to Theorem 1, it is easy to see that the unary regular language L can be
recognized by a minimal DFA whose state diagram, depicted in Figure 1, consists of an
initial path of T states joined to a cycle of P states; accepting states are suitably settled on
both the path and the cycle.

q0START q1 · · · qT−1 qT

qT+1

· · ·

qT+P−1

Figure 1. The state diagram of a DFA for a unary regular language. The leftmost vertex with an

incoming edge from the label START is the initial state, while double-circled vertexes correspond to

the accepting states.
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Those unary regular languages satisfying Theorem 1 with T = 0 are called P-periodic
languages. Thus, for P-periodic languages, it is easy to see that the state diagram in Figure 1
reduces to a simple cycle of P states.

2.2. Linear Algebra

As seen in the previous section, few elementary concepts from linear algebra may
suitably describe the computation of a classical device such as a DFA. When it comes to the
quantum world, additional and deeper notions of linear algebra are needed to properly
describe and analyze quantum computational devices. So we are now going to quickly
recall such notions, and we refer the reader to, e.g., [49–52], for in-depth presentations.

The fields of real and complex numbers are, respectively, denoted by R and C. Given
a complex number z = a + ib, with a, b ∈ R, its conjugate is denoted by z∗ = a − ib and its
modulus is |z| =

√
z · z∗. By Cn×m, we denote the set of n × m matrices with entries in C.

Given a matrix M ∈ Cn×m, we denote: by Mij, its (i, j)th entry; by M∗ ∈ Cn×m, the matrix

satisfying M∗
ij = (Mij)

∗; by MT ∈ Cm×n, its transpose, i.e., the matrix with MT
ij = Mji;

and by M† = (MT)∗, its adjoint.
For matrices A, B ∈ Cn×m, their sum is the n × m matrix (A + B)ij = Aij + Bij. For

matrices C ∈ Cn×m and D ∈ Cm×r, their product is the n× r matrix (C · D)ij = ∑
m
k=1 Cik · Dkj.

For matrices A ∈ Cn×m and B ∈ Cp×q, their direct sum and direct (or tensor or Kronecker)
product are the (n + p)× (m + q) and n · p × m · q matrices defined, respectively, as

A ⊕ B =

(
A 0

0 B

)

, A ⊗ B =






A11 · B · · · A1m · B
...

. . .
...

An1 · B · · · Anm · B




,

where 0 denotes zero-matrices of suitable dimensions. When operations are allowed to
take place by matrix dimensions, the following properties hold:

(A ⊕ B) · (C ⊕ D) = (A · C)⊕ (B · D) and (A ⊗ B) · (C ⊗ D) = (A · C)⊗ (B · D).

A Hilbert space of dimension n is the linear space Cn of n-dimensional complex row vectors
equipped with the sum and product by elements in C where for vectors ϕ, ψ ∈ Cn, the inner
product 〈ϕ, ψ〉 = ϕ · ψ† is defined. The ith component of vector ϕ ∈ Cn is denoted by ϕi,

and the norm of ϕ is given by ‖ϕ‖ =
√

〈ϕ, ϕ〉 =
√

∑
n
i=1 |ϕi|2. For a complex number z ∈ C,

we let z · ϕ ∈ Cn be the vector satisfying (z · ϕ)i = z · ϕi. Clearly, we have ‖z · ϕ‖ = |z| · ‖ϕ‖.
For vectors ϕ, ψ ∈ Cn, the triangular inequality states that ‖ϕ + ψ‖ ≤ ‖ϕ‖+ ‖ψ‖. Vectors
ϕ and ψ are orthogonal (orthonormal) whenever 〈ϕ, ψ〉 = 0 (and ‖ϕ‖ = 1 = ‖ψ‖).

An orthonormal basis of Cn is any set of n orthonormal vectors in Cn. In particular,
the canonical basis of Cn is the set {e1, e2, . . . , en} of orthonormal vectors, where ei ∈ Cn is
the vector having 1 as its ith component and 0 elsewhere. The canonical basis spans Cn in
that any ϕ ∈ Cn can be obtained as the (unique) linear combination ϕ = ∑

n
i=1 ϕi · ei. More

generally: a subspace is any subset of Cn that is a vector space. The subspace spanned by a
set of vectors X ⊆ Cn is the linear space {∑ϕ∈S αϕ · ϕ | αϕ ∈ C}. Two subspaces X, Y ⊆ Cn

are orthogonal if any vector in X is orthogonal to any vector in Y. In this case, we denote
by X ∔Y the linear space spanned by X ∪ Y.

The direct sum (direct, tensor, or Kronecker product) of vectors ϕ ∈ Cn and ψ ∈ Cm is the
vector ϕ ⊕ ψ = (ϕ1, . . . , ϕn, ψ1, . . . , ψm) ∈ Cn+m (ϕ ⊗ ψ = (ϕ1 · ψ, . . . , ϕn · ψ) ∈ Cn·m). It is

easy to see that ‖ϕ ⊗ ψ‖ = ‖ϕ‖ · ‖ψ‖, and ‖ϕ ⊕ ψ‖2 = ‖ϕ‖2 + ‖ψ‖2.
Given a vector ϕ ∈ Cn, we let diag(ϕ) ∈ Cn×n be the diagonal matrix having ϕ on

its main diagonal and 0 elsewhere, i.e., diag(ϕ)ij = ϕi if i = j and 0 otherwise. Given

the vector 1 = (1, . . . , 1) ∈ Cn, we let I(n) = diag(1) be the n × n identity matrix. The
inverse of a matrix M ∈ Cn×n is the unique matrix M−1 ∈ Cn×n (if it exists) such that
M · M−1 = I(n) = M−1 · M. Let us quickly overview two matrix families playing a crucial
role in the mathematical foundations of quantum mechanics and computing:



Appl. Sci. 2024, 14, 1490 7 of 30

• Unitary matrices: A matrix M ∈ Cn×n is unitary whenever M · M† = I(n) = M† · M;

thus, M−1 = M† for M being unitary. Equivalently, M is unitary if and only if it
preserves the norm, i.e., ‖ϕ · M‖ = ‖ϕ‖ for any vector ϕ ∈ Cn. Direct sums and
products of unitary matrices are unitary as well.

• Hermitian matrices: A matrix M ∈ Cn×n is Hermitian (or self-adjoint) whenever M = M†.
Let O ∈ Cn×n be an Hermitian matrix, ν1, ν2, . . . , νs its eigenvalues, and E1, E2, . . . , Es ⊆
Cn the corresponding eigenspaces. It is well known that each eigenvalue νk is real,
that Ei is orthogonal to Ej for every 1 ≤ i 6= j ≤ s, and that E1 ∔ E2 ∔ · · ·∔ Es = Cn.
So any vector ϕ ∈ Cn has a unique decomposition as ϕ = ϕ(1) + ϕ(2) + · · · + ϕ(s)

for unique ϕ(j) ∈ Ej. The linear transformation mapping ϕ to ϕ(j) is the projector

Pj ∈ Cn×n onto the subspace Ej. Actually, the Hermitian matrix O is biunivocally de-
termined by its eigenvalues and projectors as O = ∑

s
i=1 νi · Pi. We recall that a matrix

P ∈ Cn×n is a projector if and only if P is Hermitian and idempotent, i.e., P2 = P.

As we will see in the next section, all linear algebra concepts so far recalled will
provide a suitable mathematical description of a quantum finite state automaton and its
computation. In fact, in accordance with quantum mechanics principles:

• The state of a quantum finite state automaton A at any given time during its computa-
tion is represented by a norm 1 vector from the Hilbert space spanned by the basis
states of A; such a norm 1 vector is called superposition of basis states.

• The state evolution of A in a computation step is modeled by unitary matrices.
• Information on certain characteristics of A are probabilistically extracted by measuring

some “observables” represented by Hermitian matrices.

The reader is referred to [50] for a gentle introduction to the mathematical foundations
and interpretation of quantum mechanics.

2.3. Models of Quantum Finite State Automata and Quantum Automata with Control Language

Let us review some of the main models of quantum finite state automata (QFAs)
introduced in the literature and which will be considered in our investigations. We refer
the reader to, e.g., [53], for a general introduction to QFAs.

Measure-once QFAs: We start from the original, simplest, and most investigated model
of a QFA, namely, the measure-once QFA model (MO-QFA) [29,31]. Let the alphabet Γ = Σ ∪ {♯},
with Σ being an input alphabet and ♯ 6∈ Σ being an endmarker symbol. A MO-QFA on Γ

with m basis states is a triple A = (ϕ, {U(σ)}σ∈Γ, η) where:

• ϕ ∈ Cm, with ‖ϕ‖ = 1, is the initial superposition of the basis states; the component ϕi,

with |ϕi| ≤ 1, is the amplitude of the ith basis state, while |ϕi|2 is the probability of
observing A being in the ith basis state.

• U(σ) ∈ Cm×m is the unitary evolution matrix on σ ∈ Γ; U(σ)ij, with |U(σ)ij| ≤ 1, is
the amplitude of transitioning from the ith to jth basis state upon reading σ, while
|U(σ)ij|2 is the related probability.

• η ∈ {0, 1}m is the characteristic vector of the accepting states, i.e., ηi = 1 if and only if
the ith basis state is accepting.

At any given time along its computation, the state of A is described by a superposition
ξ ∈ Cm, with ‖ξ‖ = 1, carrying the following probabilistic meaning: by observing A in ξ,
we find A to be in its ith basis state with probability |ξi|2. So the computation of A on an
input word w♯ ∈ Σ∗♯ starts from the initial superposition ϕ by scanning the leftmost input
symbol. Then, the evolutions related to input symbols are applied in succession starting
from U(w1), which acts on ϕ. Figure 2 depicts the first steps of this dynamic.



Appl. Sci. 2024, 14, 1490 8 of 30

ϕ

ϕ · U(w1)

. . .

U(w2)

U(w1)

Figure 2. First steps of the computation of the MO-QFA A on the input string w1w2 · · ·wn♯: the

resulting superposition dynamic.

After the first k input symbols have been processed, A reaches the superposition
ϕ · (∏k

i=1 U(wi)) ∈ Cm, which is again a norm 1 vector since ‖ϕ‖ = 1 and the matri-
ces U(wi)s are unitary. After processing the whole input word, A enters the final super-

position ϕ · (∏|w|
i=1 U(wi)) · U(♯). At this point, we evaluate the probability of observing A

in an accepting basis state, yielding the probability pA(w) that A accepts the string w ∈ Σ∗.
Such a probability is easily seen to be obtained as

pA(w) = ∑
{i | ηi=1}

∣
∣
∣
∣
∣

(

ϕ ·
( |w|

∏
i=1

U(wi)

)

· U(♯)

)

i

∣
∣
∣
∣
∣

2

. (2)

Equivalently, we can define pA(w) by introducing the observable described by the Hermitian
matrix O = a · P(a) + r · P(r), with P(a) = diag(η) and P(r) = I(m) − P(a) being the
projectors onto the two orthogonal subspaces of Cm spanned, respectively, by the accepting
and rejecting (i.e., nonaccepting) basis states. By measuring this observableO , we get two
possible outcomes:

• a, which stands for “accepting”: getting this outcome means seeing A in an accepting
basis state;

• r, which stands for “rejecting”: getting this outcome means seeing A in a nonaccepting
basis state.

Each of these two outcomes shows up with a certain probability, which is computed as
follows. Suppose at a given time A is in the norm 1 superposition ξ ∈ Cm, and we measure
the observableO . Then, we see either the outcome a or the outcome r, with the probability
equal to the square norm of the projection of ξ onto the subspace spanned by, respectively,
the accepting or nonaccepting basis states:

probability of seeing a 7→ ‖ξ · P(a)‖2 = ∑
{i | ηi=1}

|(ξ · P(a))i|2, (3)

probability of seeing r 7→ ‖ξ · P(r)‖2 = ∑
{i | ηi=0}

|(ξ · P(r))i|2.

Thus, the probability pA(w) for A to accept w ∈ Σ∗ is given by the probability of obtaining
the outcome a from measuring O at the end of the computation of A on w, i.e., when A is

in the final superposition ϕ · (∏|w|
i=1 U(wi)) · U(♯). According to (3), this is written as

pA(w) =

∥
∥
∥
∥
∥

ϕ ·
( |w|

∏
i=1

U(wi)

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

= ∑
{i | ηi=1}

∣
∣
∣
∣
∣

(

ϕ ·
( |w|

∏
i=1

U(wi)

)

· U(♯)

)

i

∣
∣
∣
∣
∣

2

, (4)

in accordance with Equation (2). When adopting the observable O instead of the character-
istic vector η of the accepting basis states, we will use the notation A = (ϕ, {U(σ)}σ∈Γ, O)
for an MO-QFA. The stochastic event induced by A is the function pA : Σ∗ → [0, 1].
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Measure-many QFAs: Let us now turn to the measure-many QFA model (MM-QFA) [28,30].
In an MM-QFA A, the m basis states are partitioned into halting states—which in turn are
partitioned into accepting and rejecting states—and non-halting states, the latters being called
go states. We let η(a), η(r), η(g) ∈ {0, 1}m be the characteristic vectors of, respectively,
accepting, rejecting, and go basis states. Again, we let Γ = Σ ∪ {♯}. Then, we define the
MM-QFA A on Γ with m basis states as the triple A = (ϕ, {U(σ)}σ∈Γ, O), where:

• ϕ ∈ Cm is the initial superposition and satisfies ‖ϕ‖ = 1.
• U(σ) ∈ Cm×m is the unitary evolution matrix on σ ∈ Γ.
• O = a · P(a) + r · P(r) + g · P(g), with projectors P(c) = diag(η(c)) for c ∈ {a, r, g}, is

the m × m Hermitian matrix representing an observable with three possible outcomes:
a stands for “accept”, r for “reject”, and g for “go”. Correspondingly, the projectors
P(a), P(r), and P(g) project onto the subspaces of Cm spanned by, respectively, the
accepting, rejecting, and go basis states.

The computation of A on an input word w♯ ∈ Σ∗♯ starts from the initial superpo-
sition ϕ by scanning the leftmost input symbol. Then, superposition transformations
associated with input symbols are applied in succession. More precisely, the transformation
triggered by a symbol σ ∈ Γ consists of two phases:

1. Evolution: U(σ) acts on the current superposition ξ ∈ Cm of A, with ‖ξ‖ = 1, to yield
the next superposition ξ ′ = ξ · U(σ).

2. Observation: The observable O is measured on ξ ′, and the outcome is c ∈ {a, r, g} with

probability ‖ξ ′ · P(c)‖2
. If the outcome is either a or r, the computation of A halts and

the input word is accepted or rejected, respectively. Otherwise, in case of outcome g,
the superposition ξ ′ “collapses” to the norm 1 superposition ξ ′ · P(g)/‖ξ ′ · P(g)‖ from
which A continues its computation.

Figure 3 exemplifies such an evolution/observation dynamic starting from U(w1),
which acts on ϕ.

ϕ

ϕ · U(w1)

ϕ·U(w1)·P(r)
‖ϕ·U(w1)·P(r)‖

. . .

U(w2)

ϕ·U(w1)·P(a)
‖ϕ·U(w1)·P(a)‖

. . .

U(w2)

ϕ·U(w1)·P(g))
‖ϕ·U(w1)·P(g)‖

. . .

U(w2)

P(g)
P(a)

P(r)

U(w1)

Figure 3. First steps of the computation of the MM-QFA A on the input string w1w2 · · ·wn♯: the

resulting evolution/observation dynamic.

We remark that, differently from the MO-QFA model, the MM-QFA A can halt and
accept also in the middle of the input string. The probability pA(w) for A to accept w ∈ Σ∗

accumulates step by step and is finally computed as

pA(w) =
|w|+1

∑
k=1

∥
∥
∥
∥
∥

ϕ ·
(

k−1

∏
i=1

U(wi) · P(g)

)

· U(wk) · P(a)

∥
∥
∥
∥
∥

2

, (5)

where, for ease of notation, we let w|w|+1 = ♯ and let I(m) be the result of the matrix product
for k = 1. The function pA : Σ∗ → [0, 1] is the stochastic event induced by A.
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Latvian QFAs: We now present the Latvian QFA model (LQFA) [33,34]. As usual, we let
Γ = Σ ∪ {♯}. An LQFA on Γ with m basis states is a triple A = (ϕ, {U(σ)}σ∈Γ, {Oσ}σ∈Γ),
where:

• ϕ ∈ Cm is the initial superposition and satisfies ‖ϕ‖ = 1.
• U(σ) ∈ Cm×m is the unitary evolution matrix on σ ∈ Γ.

• For any σ ∈ Σ, we let Oσ = ∑
oσ−1
i=0 ci(σ) · Pi(σ) be an m × m Hermitian matrix repre-

senting an observable, where {c0(σ), . . . , coσ−1(σ)} is the set of all possible outcomes
(eigenvalues) from measuring Oσ, and {P0(σ), . . . , Poσ−1(σ)} are the projectors onto
the corresponding eigenspaces.

• For the final observable O♯, basis states are assumed to be partitioned into accept-
ing and rejecting. So O♯ = a · P(a) + r · P(r), where P(a) (respectively, P(r) =

I(m) − P(a)) is the projector onto the subspace of Cm spanned by the accepting (re-
spectively, rejecting) basis states.

The computation of A on an input word w♯ ∈ Σ∗♯ starts from the initial superpo-
sition ϕ by scanning the leftmost input symbol. Then, superposition transformations
associated with input symbols are applied in succession. More precisely, the transformation
triggered by a symbol σ ∈ Γ consists of two phases:

1. Evolution: U(σ) acts on the current superposition ξ ∈ Cm of A, with ‖ξ‖ = 1, yielding
the next superposition ξ ′ = ξ · U(σ).

2. Observation: The observable Oσ is measured on ξ ′, and the outcome is ci(σ) with

probability ‖ξ ′ · Pi(σ)‖2
. Upon getting the outcome ci(σ), the superposition ξ ′ “col-

lapses” to the norm 1 superposition ξ ′ · Pi(σ)/‖ξ ′ · Pi(σ)‖ from which A continues its
computation, unless we are processing the endmarker ♯.

Figure 4 exemplifies such an evolution/observation dynamic starting from U(w1),
which acts on ϕ.

ϕ

ϕ · U(w1)

ϕ·U(w1)·Pow1−1(w1)

‖ϕ·U(w1)·Pow1−1(w1)‖

. . .

U(w2)

. . .

. . .

ϕ·U(w1)·P1(w1)
‖ϕ·U(w1)·P1(w1)‖

. . .

U(w2)

ϕ·U(w1)·P0(w1)
‖ϕ·U(w1)·P0(w1)‖

. . .

U(w2)

P0(w1)
P1(w1)

Pow1
−1(w1)

U(w1)

Figure 4. First steps of the computation of the LQFA A on the input string w1w2 · · ·wn♯: the resulting

evolution/observation dynamic.

Upon processing the endmarker ♯, the final observable O♯ is measured, yielding
the probability of seeing A in an accepting basis state (i.e., of getting the outcome a).
The probability for A to accept w ∈ Σ∗ is given by

pA(w) =

ow1
−1

∑
i1=0

· · ·
ow|w|−1

∑
i|w|=0

∥
∥
∥
∥
∥

ϕ ·
( |w|

∏
j=1

U(wj) · Pij
(wj)

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

. (6)

We emphasize that, similarly to the MO-QFA model and differently from the MM-QFA model,
a LQFA cannot halt accepting or rejecting in the middle of input strings. The function
pA : Σ∗ → [0, 1] is the stochastic event induced by A.
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Reversible QFAs: Finally, we overview the reversible QFA model (QRA) [24], which can
be easily explained by starting from the LQFA model. In fact, a QRA A on Γ = Σ ∪ {♯} with
m basis states is a LQFA A = (ϕ, {U(σ)}σ∈Γ, {Oσ}σ∈Γ) on Γ with basis states from the set Q
satisfying |Q| = m, where for each σ ∈ Σ, we have that the observable Oσ is fixed to be the
canonical observable O defined as follows: For any basis state q ∈ Q, we let η(q) ∈ {0, 1}m

be its characteristic vector and Pq = diag(η(q)) the corresponding projector onto the one-
dimensional subspace of Cm spanned by q. Then, we define the canonical observable as
O = ∑q∈Q q · Pq. By measuring O when A is in the superposition ξ ∈ Cm, we observe A in

the basis state q with probability
∥
∥ξ · Pq

∥
∥2

. Clearly, such a probability is equal to the square
modulus of the amplitude in ξ relative to the basis state q. Together with the canonical
observable O for every σ ∈ Σ, we have the usual final observable O♯ = a · P(a) + r · P(r)
to be measured at the end of the computation of A on any given input word w♯ ∈ Σ∗♯.
Therefore, we will sometimes specify the QRA A as A = (ϕ, {U(σ)}σ∈Γ, {O , O♯}). The
probability for the QRA A to accept w ∈ Σ∗ can be easily obtained from Equation (6) as

pA(w) = ∑
q1∈Q

· · · ∑
q|w|∈Q

∥
∥
∥
∥
∥

ϕ ·
( |w|

∏
j=1

U(wj) · Pqj

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

. (7)

The function pA : Σ∗ → [0, 1] is the stochastic event induced by A.

2.4. Language Recognition Capabilities and Descriptional Power

Let A be any of the QFA models described in the previous section, with pA : Σ∗ → [0, 1]
being the corresponding induced stochastic event. Fixing a cut point λ ∈ [0, 1], the language
recognized by A with cut point λ is the set of strings LA,λ = {w ∈ Σ∗ | pA(w) > λ}. If, in
addition, there exists ̺ ∈ (0, 1

2 ] satisfying |pA(w)− λ| ≥ ̺ for any w ∈ Σ∗, then we say
that the cut point λ is isolated, and ̺ is the radius of isolation.

More generally, a language L ⊆ Σ∗ is said to be recognized with isolated cut point by
a QFA of a certain model whenever there exists a QFA A of this model such that

( inf {pA(w) | w ∈ L} − sup {pA(w) | w 6∈ L} ) > 0.

In this case, we can set the cut point an the radius of isolation, respectively, to

λ = ( inf {pA(w) | w ∈ L}+ sup {pA(w) | w 6∈ L} )/2,

̺ = ( inf {pA(w) | w ∈ L} − sup {pA(w) | w 6∈ L} )/2.

Throughout this paper, for the sake of conciseness, we will sometimes write “isolated cut
point QFA for a language” instead of “QFA recognizing a language with an isolated cut point”.

The isolated cut point mode turns out to be one of the main language recognition
policies within the literature of probabilistic devices. Its practical relevance in the realm of
finite state automata is given by the possibility of efficiently using classical amplification
techniques to enhance accuracy: on an isolated cut point finite state device, we can arbitrar-
ily decrease the probability of wrongly classifying an input string w by repeating a constant
number of times (i.e., not depending on |w|) the parsing of w and accepting w if and only if
the relative frequency of acceptance exceeds the cut point. We refer the reader to Section 5
of [27], where the notion of isolated cut point recognition is first introduced and carefully
analyzed (see also [26] for an extensive presentation of probabilistic finite state automata).

From a theoretical perspective, it is well known that isolated cut point language
recognition maintains the computational power of classical probabilistic and quantum
devices within the realm of regular languages. We point out that by dropping cut point
isolation, even nonregular languages can be recognized by both classical probabilistic and
quantum finite memory devices. For these and other recognition issues, the reader is
referred to, e.g., [26,27,54,55] for classical probabilistic automata and to [24,28,56,57] and
the discussion below for quantum devices.
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2.4.1. Isolated Cut Point QFAs Recognition Power

We quickly review the language recognition power of the QFA models described above
and compare it with that of classical finite state automata. While for general computation
devices (e.g., Turing machines), the quantum and the classical paradigms share the same
recognition power [58–61], for constant memory bounded devices, this is not the case. In
fact, several results in the literature show that pure quantum models of finite state automata,
as those so far considered, are strictly less powerful than classical models. Let us summarize
some known results witnessing such a quantum recognition weakness.

As recalled, DFAs (and isolated cut point probabilistic finite state automata as well [26,27])
recognize all and only regular languages. It is well known (see, e.g., [29,31,57]) that the
class of languages recognized by isolated cut point MO-QFAs coincides with the class of
group languages [62], which is a proper subclass of regular languages.

Isolated cut point LQFAs are proved in [33,34] to be strictly more powerful than isolated
cut point MO-QFAs since their recognition power coincides with the class of block group
languages. An equivalent characterization states that a language is recognized by an
isolated cut point LQFA if and only if it belongs to the boolean closure of languages of the
form L1a1L2a2 · · · akLk+1 for group languages Li ⊆ Σ∗, ai ∈ Σ and |Σ| > 1. So even isolated
cut point LQFAs turn out to be strictly less powerful than classical finite state automata:
for instance, both the regular languages aΣ∗ and Σ∗a, with a ∈ Σ and |Σ| > 1, cannot be
recognized by isolated cut point LQFAs [33,34].

The recognition power of isolated cut point MM-QFAs still remains an open question.
However, it is known that isolated cut point MM-QFAs are strictly more powerful than
isolated cut point LQFAs but strictly less powerful than DFAs. In particular, isolated cut
point MM-QFAs can recognize the regular language aΣ∗, but still they cannot recognize the
language Σ∗a [30,33,34]. It is worth remarking that when restricted to unary inputs, the
recognition power of isolated cut point MM-QFAs reverts to that of DFAs: any unary regular
language can be accepted by an isolated cut point MM-QFA [33,34,38]. This latter result
clearly does not hold for isolated cut point MO-QFAs.

Even for isolated cut point QRAs, the recognition power has not been characterized
yet, although, being a particular case of LQFAs, they are strictly less powerful than DFAs.
From [24], we have that isolated cut point QRAs recognize the class of group languages.
However, they are not able to accept the regular languages aΣ∗ and Σ∗a.

For the reader’s ease of mind, the Venn diagram displayed in Figure 5 shows at a
glance the recognition power of the models of isolated cut point QFAs so far considered.

L (MO-QFA)
group languages

L (QRA)

L (LQFA)
block group languages

L (MM-QFA)

L (DFA) = L (QFC)
regular languages

Σ∗a

aΣ∗

a≤k

Figure 5. The language hierarchy for the automaton models considered in this paper. In the picture,

we let L (X) denote the class of languages recognized by isolated cut point automata of type

X ∈ {MO-QFA, QRA, LQFA, MM-QFA, DFA, QFC}; QFAs with control language (QFCs) will be explained

later in Section 2.5 and are here reported for the sake of completeness. Solid line language classes

imply proper containments, while the dashed line language class indicates a containment still not

known to be proper. The languages displayed near dots • witness proper containments.
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2.4.2. Isolated Cut Point QFAs Descriptional Power

Let us now quickly expand on the descriptional power of QFAs. Descriptional com-
plexity (see, e.g., [63–67] for surveys and examples of results) investigates formal systems
on the basis of their size. In the case of finite state automata, a natural size measure is
represented by the number of states. Studying the descriptional power of models of finite
state automata basically means to study their ability to recognize languages using a very
limited amount of states, this having practical impacts in the physical construction of
classical and quantum finite memory devices (see [6] for a discussion).

A lot of results in the literature show that the quantum descriptional power may
greatly outperform the classical one when it comes to finite state devices. To address this
quantum superiority, we provide only a few examples of the size economy for recognizing
specific families of regular languages.

The periodic language family Ld = {σk | k mod d = 0} for integers d > 0 has been
widely studied. In a classical setting, we have that d states are necessary and sufficient to
recognize Ld by deterministic and nondeterministic finite state automata. Moreover, for
prime d, we have also that two-way nondeterministic and isolated cut point probabilistic
finite state automata require not less than d states (see [6] for an overview of descriptional
complexity issues related to the language family Ld).

With the quantum paradigm, only two basis states are sufficient to recognize Ld by an
isolated cut point MO-QFA. However, it should be stressed that the radius of isolation of
this simple MO-QFA tends to zero as d grows. To fix this accuracy issue, some statistical
frameworks were designed in [37,68] in order to show the existence of MO-QFAs recognizing
Ld with only O(log d) basis states and arbitrarily large isolation around the cut point. Such
an exponential size gain has then been extended from the unary case to more general
languages on arbitrary alphabets, such as multiperiodic languages [37].

Other relevant examples of isolated cut point MO-QFAs that are significantly smaller
than the equivalent classical finite state automata will be tackled in more detail in Section
5. There, we will use such small MO-QFAs as quantum components for the design of size
efficient isolated cut point QFCs for the whole class of unary regular languages.

In conclusion, from the overview provided in this section, we can motivate the design
and analysis of hybrid computational devices as follows: although pure QFAs do not
reach the computational power of classical finite memory devices, they may result in
very small quantum components performing specific tasks to be embedded in a classical
control environment. This architecture can be modeled by the notion of a QFA with control
language, which we are going to present in the next section.

2.5. Quantum Finite State Automata with Control Language

As usual, we let Γ = Σ ∪ {♯}. A QFA with control language (QFC) [24,25] on Γ with
q quantum basis states is a 4-tuple A = (ϕ, {U(σ)}σ∈Γ, O , L ), where:

• ϕ ∈ Cq is the initial superposition and satisfies ‖ϕ‖ = 1.
• U(σ) ∈ Cq×q is the unitary evolution matrix on σ ∈ Γ.
• O = ∑c∈C c · P(c) is a q× q Hermitian matrix representing an observable, with C being

the set of all possible outcomes (eigenvalues) of measuring O and P(c) the projector
onto the eigenspace corresponding to c ∈ C.

• L ⊆ C∗ is a regular language, called the control language.

We briefly describe the behavior of A on the input string x♯ ∈ Σ∗♯. The computation
starts from the initial superposition ϕ by scanning the leftmost input symbol. Then,
superposition transformations associated with each input symbol are applied in succession.
More precisely, the transformation triggered by a symbol σ ∈ Γ consists of two phases:

1. Evolution: U(σ) acts on the current superposition ξ ∈ Cq of A, with ‖ξ‖ = 1, yielding
the next superposition ξ ′ = ξ · U(σ).
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2. Measuring: the observable O is measured on ξ ′, and the outcome c is seen with proba-

bility ‖ξ ′ · P(c)‖2. Upon getting the outcome c, the superposition ξ ′ “collapses” to the
norm 1 superposition ξ ′ · P(c)/‖ξ ′ · P(c)‖, from which A continues its computation.

So the computation of A on x♯ = x1 · · · xn♯ produces the sequence y1 · · · yny♯ ∈
C∗ of outcomes of measuring O at each step with probability pA(y1 · · · yny♯; x1 · · · xn♯)
computed as

pA(y1 · · · yny♯; x1 · · · xn♯) =

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(y♯)

∥
∥
∥
∥
∥

2

. (8)

A computation of A yielding the outcome sequence y1 · · · yny♯ ∈ C∗ is said to be accepting
(respectively, rejecting) if and only if y1 · · · yny♯ ∈ L (respectively, y1 · · · yny♯ /∈ L ). There-
fore, we define the probability EA(x) that A accepts the word x ∈ Σ∗ as the probability for A
to exhibit an accepting computation upon processing the input string x♯, namely,

EA(x) = ∑
y1···yny♯∈L

pA(y1 · · · yny♯; x1 · · · xn♯). (9)

The function EA : Σ∗ → [0, 1] is the stochastic event induced by A.
Intuitively, a QFC can be regarded as a hybrid system where a quantum component—

a QFA—and a classical component—a DFA—cooperate. The quantum component provides
the system evolution together with an observable to be measured at each step. The classical
component processes the sequence of observable outcomes one outcome at a time by
checking whether such a sequence leads to acceptance according to membership in the
regular control language L . From this viewpoint, the language L “controls” the final
acceptance/rejection outcome in the computation of the QFC. Indeed, with L being a
regular language, the classical component checking membership in L is well suited to
be a DFA.

When expressing the size of a QFC A, we must take into account the size of both its
quantum and its classical component. Therefore, we say that A has q quantum basis states and
m classical states whenever its quantum component features q basis states, and its control
language is recognized by a DFA, the classical component, having m states.

2.5.1. Isolated Cut Point QFCs Recognition Power

Concerning the language recognition power, isolated cut point QFCs recognize all and
only regular languages (see also Figure 5 for relationships with the recognition power of other
models of QFAs). The fact that the language recognized by an isolated cut point QFC A is
regular is proved in [24] by showing that: (i) the formal power series related to A is real-
valued bounded rational (see Section 4 for the notion of a formal power series/generating
function), and (ii) the language defined with isolated cut point by a real-valued bounded
rational formal power series is regular. Conversely, a construction is given in [25] by which
for any given regular language L ⊆ Σ∗ recognized by a DFA with m states, we can build an
isolated cut point QFC with |Σ|+ 1 quantum basis states and (|Σ|+ 1) · m classical states. It
should be pointed out that the resulting QFC actually recognizes L “deterministically”, i.e.,
it always exhibits the correct accept/reject outcome with probability 1.

2.5.2. Isolated Cut Point QFCs Descriptional Power

Concerning hardware succinctness capabilities, the higher descriptional power of
QFCs vs. classical DFAs is pointed out in [25] on a particular family Ld,h of regular languages
on a binary alphabet. Precisely, (i) d · (h + 1) + 1 states are necessary and sufficient for
any DFA to recognize Ld,h, while (ii) an isolated cut point QFCs for Ld,h exists and features
a classical component with O(h) states and a quantum component with only a constant
number of quantum basis states. As a matter of fact, the accuracy of this QFC can be
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arbitrarily enhanced by replacing its quantum component with a more precise one having
O(log d) quantum basis states.

3. QFA Models Simulations by QFCs

One of the main capabilities of QFCs is to provide a unifying framework within which
to represent several QFA models. Here, we show how to simulate MO-QFAs, MM-QFAs,
QRAs, and LQFAs by QFCs, emphasizing the cost in terms of quantum and classical states of
such simulations. The simulation of LQFAs is devised in [36], while the other simulations are
quickly addressed in [24]. For the sake of completeness, we display all these simulations
in full detail. To this regard, to study simulation correctness, we will make use of the
following technical lemma on the dynamics of QFCs, the proof of which can be given by
induction on the length of the input strings:

Lemma 1. Let A = (ϕ, {U(σ)}σ∈Γ, O = ∑c∈C c · P(c), L ) be a QFC with q quantum basis
states. Then for any vector ξ ∈ Cq and any string x1 · · · xn ∈ Γ∗, we have

∑
y1···yn∈Cn

∥
∥
∥
∥
∥

ξ ·
(

n

∏
i=1

U(xi) · P(yi)

)∥
∥
∥
∥
∥

2

= ‖ξ‖2.

We are now ready to show the main result of this section:

Theorem 2. Let A be a MO-QFA, MM-QFA, QRA, or LQFA with q basis states (Table 1). Then,
there exists a QFC B satisfying EB = pA with the following number of quantum basis states and
classical states:

Table 1. The costs in terms of quantum and classical states of simulating models of QFAs by QFCs.

Simulated QFA Model A

with q Basis States
Quantum Basis States for

Simulating QFC B

Classical States for
Simulating QFC B

MO-QFA 2 · q 2

MM-QFA q 3

QRA q 2

LQFA 2 · q2 q

Proof. Throughout the following simulations, for a given t ∈ N, we let 0t denote the
t-dimensional row zero-vector and [0]t denote the t × t zero-matrix.

MO-QFA simulation: Let A = (ϕ, {U(σ)}σ∈Γ, O) be an MO-QFA with q basis states
and observable O = a · P(a) + r · P(r). We define the simulating QFC B = (φ, {Y(σ)}σ∈Γ,
Ω, L ) with 2 · q quantum basis states, where:

• φ = ϕ ⊕ 0q is the initial superposition; we have φ ∈ C2·q and ‖φ‖ = ‖ϕ‖ = 1.

• Y(σ) = U(σ) ⊕ I(q) for any σ ∈ Σ, and Y(♯) =

(
[0]q U(♯)

U(♯) [0]q

)

are the evolution

matrices; we have that Y(σ), Y(r) ∈ C2·q×2·q are unitary matrices.
• Ω = a · Λ(a) + r · Λ(r), with projectors Λ(a) = I(q) ⊕ P(a) and Λ(r) = [0]q ⊕ P(r),

is a 2 · q × 2 · q Hermitian matrix representing an observable with the two outcomes
a (accept) and r (reject).

• L = a∗ ⊆ {a, r}∗ is the regular control language.

To have an idea of the behavior of B, we can think of each possible superposition
of B as being divided into two halves. Along its computation, before processing the input
endmarker, B replicates the dynamic of the simulated MO-QFA A into the left half and
leaves the right half untouched. As the reader may easily verify, during this phase any
observation by Ω yields the outcome a with certainty. Thus, by setting the control language
to L = a∗, we are basically letting B reach with certainty a superposition featuring in
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the left half the superposition assumed by A when the endmarker is about to be read.
Upon reading the endmarker, the left half of this superposition is swapped with the right
half while evolving on ♯ as in A. After the evolution on ♯, the final observation on B for
acceptance takes place exactly in the same context as in A.

Let us formally show that EB = pA. Let y1 · · · yny♯ ∈ {a, r}∗ be a sequence of outcomes
of measuring Ω along the computation of B on an input word x♯ = x1 · · · xn♯ ∈ Σ∗♯. As
pointed out above, we can only have yi = a for every 1 ≤ i ≤ n. In addition, this computation
is accepting if and only if y♯ = a as well. So by Equation (9) and recalling that the control
language is defined as L = a∗, we get that the probability for B to accept x ∈ Σ∗ is

EB(x) = ∑
y1···yny♯∈L

pB(y1 · · · yny♯; x1 · · · xn♯) = pB(an+1; x♯).

Indeed, by Equation (8), the probability pB(an+1; x♯) of observing the outcome sequence
an+1 along the computation of B on the input word x♯ is

EB(x) = pB(an+1; x♯) =

∥
∥
∥
∥
∥

φ ·
(

n

∏
i=1

Y(xi) · Λ(a)

)

· Y(♯) · Λ(a)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
(ϕ ⊕ 0q) ·

(
n

∏
i=1

(
U(xi) [0]q
[0]q P(a)

))

·
(
[0]q U(♯)

U(♯) [0]q

)

· Λ(a)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

(

0q ⊕
(

ϕ ·
(

n

∏
i=1

U(xi)

)

· U(♯)

))

· Λ(a)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
i=1

U(xi)

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

= pA(x),

where the last equality follows from Equation (4). The smallest DFA recognizing the control
language L = a∗ ⊆ {a, r}∗ clearly has two states.

MM-QFA simulation: Let A = (ϕ, {U(σ)}σ∈Γ, O) be an MM-QFA with q basis states
and observable O = a · P(a) + r · P(r) + g · P(g). We define the simulating QFC B = (ϕ,
{U(σ)}σ∈Γ, O , L ) with q basis states and where the control language L ⊆ {a, r, g}∗ is set
to L = g∗a{a, r, g}∗. According to Equations (8) and (9), the stochastic event induced by B
on x ∈ Σ∗ is obtained as follows (we let xn+1 = ♯ and yn+1 = a and let I(q) be the result of
the matrix products below whenever the lower limit exceeds the upper limit):

EB(x) = ∑
y1···yny♯∈L

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(y♯)

∥
∥
∥
∥
∥

2

=
n+1

∑
k=1

∑
yk+1···yny♯∈Cn−k+1

∥
∥
∥
∥
∥

ϕ ·
(

k−1

∏
i=1

U(xi) · P(g)

)

· U(xk) · P(a) ·
(

n+1

∏
j=k+1

U(xj) · P(yj)

)∥
∥
∥
∥
∥

2

=
n+1

∑
k=1

∥
∥
∥
∥
∥

ϕ ·
(

k−1

∏
i=1

U(xi) · P(g)

)

· U(xk) · P(a)

∥
∥
∥
∥
∥

2

= pA(x),

where the last two equalities follow, respectively, from Lemma 1 and Equation (5). The
smallest DFA recognizing the control language L = g∗a{a, r, g}∗ clearly has three states.

QRA simulation: Let A = (ϕ, {U(σ)}σ∈Γ,
{
O , O♯

}
) be a QRA with Q being the set of

basis states satisfying |Q| = q, O = ∑q∈Q q · Pq being the canonical observable to be used
all along processing symbols in Σ, and with O♯ = a · P(a) + r · P(r) being the usual final
accept/reject observable. We define the simulating QFC B = (ϕ, {U(σ)}σ∈Γ, O , L ) with q
basis states, where the control language L ⊆ Q∗ is set to L = Q∗F, and with F ⊆ Q being
the set of accepting basis states (i.e, those states spanning the subspace of Cq that P(a)
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projects onto). Then, by Equations (8) and (9), the probability that B accepts the input word
x = x1 · · · xn ∈ Σ∗ is written as

EB(x) = ∑
q1···qnq♯∈L

pB(q1 · · · qnq♯; x1 · · · xn♯)

= ∑
q1···qnq♯∈L

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
i=1

U(xi) · Pqi

)

· U(♯) · Pq♯

∥
∥
∥
∥
∥

2

= ∑
q1···qn∈Q∗

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
i=1

U(xi) · Pqi

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

= ∑
q1∈Q

· · · ∑
qn∈Q

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · Pqj

)

· U(♯) · P(a)

∥
∥
∥
∥
∥

2

= pA(x),

where the last equality follows from Equation (7). The smallest DFA recognizing the control
language L = Q∗F clearly has two states.

LQFA simulation: Let A = (ϕ, {U(σ)}σ∈Γ, {Oσ}σ∈Γ) be an LQFA with q basis states.
For ease of notation, in the final observable O♯, we rename with P0(♯) (respectively,
P1(♯)) the projector P(a) (respectively, P(r)) onto the subspace of Cq spanned by the
accepting (respectively, rejecting) basis states. By recalling the form of the observable

Oσ = ∑
oσ−1
i=0 ci(σ) · Pi(σ) associated with σ ∈ Γ, we set θ = max{oσ | σ ∈ Γ}; clearly, θ ≤ q

holds true. Then, for each σ ∈ Γ, we let the θ · q × θ · q matrix

H(σ) =








U(σ) · P0(σ) U(σ) · P1(σ) · · · U(σ) · Pθ−2(σ) U(σ) · Pθ−1(σ)
U(σ) · P1(σ) U(σ) · P2(σ) · · · U(σ) · Pθ−1(σ) U(σ) · P0(σ)

...
...

. . .
...

...
U(σ) · Pθ−1(σ) U(σ) · P0(σ) · · · U(σ) · Pθ−3(σ) U(σ) · Pθ−2(σ)








,

where for every oσ ≤ j ≤ θ − 1, we let Pj(σ) = [0]q. The reader may easily verify that H(σ)
is a unitary matrix. So we define the simulating QFC B = (φ, {Y(σ)}σ∈Γ, Ω, L ) with 2 θ · q
quantum basis states equivalent to the LQFA A = (ϕ, {U(σ)}σ∈Γ, {Oσ}σ∈Γ) as:

• φ = ϕ ⊕ 0(2 θ−1)·q is the initial superposition, which can be regarded as a row vector

of 2 θ blocks, each of dimension q; we have φ ∈ C2 θ·q and ‖φ‖ = ‖ϕ‖ = 1.

• Y(σ) =

(
H(σ) [0]θ·q
[0]θ·q I(θ·q)

)

for any σ ∈ Σ, and Y(♯) =

(
[0]θ·q H(♯)

I(θ·q) [0]θ·q

)

are the evolution

matrices; we have that Y(σ), Y(♯) ∈ C2 θ·q×2 θ·q are unitary matrices.
• Ω = ∑

θ−1
i=0 ai · Λi + ∑

θ−1
i=0 bi · Λθ+i, with projectors Λj = [0]j·q ⊕ I(q) ⊕ [0](2 θ−j−1)·q for

0 ≤ j ≤ 2 θ − 1 is a 2 θ · q × 2 θ · q Hermitian matrix representing an observable with
the set of outcomes C =

⋃θ−1
i=0 {ai, bi}; we notice that the projector Λj resets to zero all

blocks in a superposition of B with the exception of the (j + 1)th block.
• L ⊆ C∗ is the regular control language recognized by the DFA

D = ({s0, . . . , sθ−1}, C, s0, δ, {s0})
for which the transition function is defined for 0 ≤ i, j ≤ θ − 1 as

δ(si, c) =

{

sj if c = aj

s(i+j) mod θ if c = bj.

Let us overview the dynamics of B. A superposition of B is a norm 1 vector in C2 θ·q,
which can be seen to be divided into a left half and a right half. Each half consists of θ

consecutive q-dimensional blocks. On the input symbol σ 6= ♯, the matrix Y(σ) replicates
in the left half the corresponding evolution step of the simulated LQFA A together with all
the oσ many projections arising from measuring Oσ and stores all such resulting projection
vectors into the θ many blocks of the left half of the superposition. At the same time,
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Y(σ) leaves the right half of the superposition unchanged. The endmarker evolution Y(♯)
behaves similarly plus swaps the left half with the right half of the superposition.

It is not hard to see that measuring the observable Ω along processing before ♯ basically
takes place on the left half of superpositions, and outcomes of the form ai are always
returned. On the other hand, measuring Ω after evolving on ♯ basically takes place on the
right half of superpositions, and always outcomes of the form bi are returned. Clearly, this
latter fact enables the classical component of B, i.e., the DFA D, to detect the moment in
which the quantum component of B has parsed the endmarker ♯.

We now formally show that EB = pA. By Equation (9), the probability for B to accept
the word x = x1 · · · xn ∈ Σ∗ is

EB(x) = ∑
ai1

···ain b f ∈L

∥
∥
∥
∥
∥

φ ·
(

n

∏
j=1

Y(xj) · Λij

)

· Y(♯) · Λ f

∥
∥
∥
∥
∥

2

. (10)

To process Equation (10), we observe that:

• The operator Y(σ) · Λs in the product of (10) acts on the (r + 1)th q-dimensional
block of the current superposition of B and (i) transforms the block by the matrix
U(σ) · P(r+s) mod θ(σ), and then (ii) it moves the transformed block to the (s + 1)th

block position. To formally explain the action of the operator Y(σ) · Λs, assume that
the (r + 1)th q-dimensional block is the row vector ξ ∈ Cq. Then, we have

(0r·q ⊕ ξ ⊕ 0(2 θ−r−1)·q) · Y(σ) · Λs = (0s·q ⊕ ξ · U(σ) · P(r+s) mod θ(σ)⊕ 0(2 θ−s−1)·q). (11)

• Given that the initial superposition φ of the QFC B has a single nonzero block and
considering Equation (11), we get that at any step along the computation of B, the
nonzero entries of the superposition are always in a single q-dimensional block. So
when evaluating the event EB in (10), we can focus only on the single nonzero q-
dimensional block.

• By model definition, the computation of B on input x♯ featuring the outcome sequence
ai1 · · · ain b f is accepting if and only if ai1 · · · ain b f ∈ L . In turn, ai1 · · · ain b f ∈ L if and
only if (in + f ) mod θ = 0, as the reader may easily verify by checking the transition
function δ of the DFA D for L . The sum in (10) returns the global probability of having
an accepting computation on x♯, i.e., the probability EB(x) that B accepts x.

By these observations, we can rewrite Equation (10) as

EB(x) =
θ−1

∑
i1=0

θ−1

∑
i2=0

· · ·
θ−1

∑
in=0

∑
{0≤ f≤θ−1 | (in+ f ) mod θ = 0}

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · P(ij−1+ij) mod θ(xj)

)

· U(♯) · P(in+ f ) mod θ(♯)

∥
∥
∥
∥
∥

2

=
θ−1

∑
i1=0

θ−1

∑
i2=0

· · ·
θ−1

∑
in=0

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · P(ij−1+ij) mod θ(xj)

)

· U(♯) · P0(♯)

∥
∥
∥
∥
∥

2

, (12)

where in (12) we stipulate that i0 = 0. Now, let us fix a ij−1 ∈ {0, 1, . . . , θ − 1}: it is not hard
to see that

{
(ij−1 + ij) mod θ | 0 ≤ ij ≤ θ − 1

}
= {0, 1, . . . , θ − 1}.

We can use this set equality to manipulate the subscript of the projector P in (12) and get

EB(x) =
θ−1

∑
i1=0

θ−1

∑
i2=0

· · ·
θ−1

∑
in=0

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · Pij
(xj)

)

· U(♯) · P0(♯)

∥
∥
∥
∥
∥

2

. (13)
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By recalling that Pj(σ) = [0]q for oσ ≤ j ≤ θ − 1, we can bound the upper limits of the sums
in (13) and obtain

EB(x) =

ox1
−1

∑
i1=0

· · ·
oxn−1

∑
in=0

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · Pij
(xj)

)

· U(♯) · P0(♯)

∥
∥
∥
∥
∥

2

= pA(x),

in accordance with Equation (6). Therefore, we conclude that the QFC B simulates the LQFA

A using 2 θ · q ≤ 2 · q2 quantum basis states and θ ≤ q classical states.

4. Testing Periodicity on Quantum Finite State Automata

In general, a stochastic event on an alphabet Σ is a function p : Σ∗ → [0, 1]. In Section 2.3,
for instance, we introduced stochastic events induced by QFA models as means of defining
languages (by isolated cut points).

Let p : σ∗ → [0, 1] be a stochastic event on a unary alphabet {σ}. Since the unary
string σk is basically the unary representation of the number k ∈ N, for ease of notation,
we will be simply writing p(k) instead of p(σk). Therefore, from this point of view, a
unary stochastic event is a function p : N → [0, 1]. We say that p is d-periodic for a given
integer d > 0 (called the period) whenever p(k) = p(k + d) holds true for any k ≥ 0.

Here, we study the problem of deciding whether or not a given unary QFA, i.e., a QFA

working on a unary alphabet, induces a periodic stochastic event. We formally state such a
decision problem for unary QFCs:

PERIODICITY

INPUT: A unary QFC A and an integer d ≥ 0.
QUESTION: Is EA a d-periodic stochastic event?

We are going to prove that PERIODICITY is decidable, i.e., there exists a deterministic
algorithm for its solution. We tackle this problem inspired by [38], where the same question
has been posed for the more restricted model of MM-QFAs. First of all, we present some
formal tools useful in our investigation. From now on, we will be using the following
notations introduced in Section 2.2 and here recalled: for a row vector ϕ ∈ Cm, we let
ϕ∗ ∈ Cm be the vector satisfying ϕ∗

i = (ϕi)
∗ and ϕT ∈ Cm×1 be the column vector

obtained by transposing ϕ; for a matrix J ∈ Cm×m, we let J∗ ∈ Cm×m be the matrix
satisfying J∗ ij = (Jij)

∗.

Definition 1. Let A = (ϕ, {U(σ)}σ∈Γ, O = ∑c∈C c · P(c), L ) be a QFC with q quantum basis
states and with D = (α, {M(c)}c∈C, β) being the DFA with m classical states recognizing the
control language L (see Section 2.1 for the linear representation of a DFA). The linear representation
of A is defined as Li(A) = (π, {J(σ)}σ∈Γ, η), where:

• π = ϕ ⊗ ϕ∗ ⊗ α is a row vector in Cq2·m.

• J(σ) = (U(σ) ⊗ U∗(σ) ⊗ I(m)) · ∑c∈C P(c) ⊗ P∗(c) ⊗ M(c) for any σ ∈ Γ is a matrix

in Cq2·m×q2·m.
• η = ∑

q
i=1 ei

T ⊗ ei
T ⊗ β is a column vector in {0, 1}q2·m×1, with {e1, . . . , eq} being the

canonical basis of Cq and the column vector β ∈ {0, 1}m×1 being the boolean characteristic
vector of the accepting states of the DFA D.

Li(A) enables us to give an alternative and more manageable representation of the
stochastic event EA induced by the QFC A, as shown in the following:
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Proposition 1. Let A = (ϕ, {U(σ)}σ∈Γ, O = ∑c∈C c · P(c), L ) be a QFC for which the
classical component is the DFA D = (α, {M(c)}c∈C, β) that recognizes the control language L .
Let Li(A) = (π, {J(σ)}σ∈Γ, η) be the linear representation of A. Then for any x ∈ Σ∗, we have

EA(x) = π ·
( |x|

∏
i=1

J(xi)

)

· J(♯) · η.

Proof. By Definition 1 and the linear algebra properties in Section 2.2, we can write

π·
( |x|

∏
i=1

J(xi)

)

· J(♯) · η = (ϕ ⊗ ϕ∗ ⊗ α) ·
( |x|

∏
i=1

(U(xi)⊗ U∗(xi)⊗ I(k)) · ∑
c∈C

P(c)⊗ P∗(c)⊗ M(c)

)

·
(

(U(♯)⊗ U∗(♯)⊗ I(k)) · ∑
c∈C

P(c)⊗ P∗(c)⊗ M(c)

)

·
(

q

∑
j=1

eT
j ⊗ eT

j ⊗ β

)

=
q

∑
j=1

∑
y1 ...y|x|y♯∈C∗

(

ϕ ·
( |x|

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(♯)

)

j

·
(

ϕ∗ ·
( |x|

∏
i=1

U∗(xi) · P∗(yi)

)

· U∗(♯) · P∗(♯)

)

j

·
(

α ·
( |x|

∏
i=1

M(yi)

)

· M(y♯) · β

)

= ∑
y1 ...y|x|y♯∈C∗

(

α ·
( |x|

∏
i=1

M(yi)

)

· M(y♯) · β

)

·
q

∑
j=1

∣
∣
∣
∣
∣
∣

(

ϕ ·
( |x|

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(♯)

)

j

∣
∣
∣
∣
∣
∣

2

= ∑
y1 ...y|x|y♯∈C∗

(

α ·
( |x|

∏
i=1

M(yi)

)

· M(y♯) · β

)

·
∥
∥
∥
∥
∥

ϕ ·
( |x|

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(♯)

∥
∥
∥
∥
∥

2

. (14)

As pointed out in Section 2.1, we have that α ·
(

∏
|x|
i=1 M(yi)

)

· M(y♯) · β = 1 if and only

if the string y1 . . . y|x|y♯ ∈ C∗ is accepted by the DFA D or, equivalently, if and only if

y1 . . . y|x|y♯ ∈ L . Otherwise, we have α ·
(

∏
|x|
i=1 M(yi)

)

· M(y♯) · β = 0. By this observation,

we can rewrite (14) as

π ·
( |x|

∏
i=1

J(xi)

)

· L(♯) · η

= ∑
y1 ...y|x|y♯∈C∗

(

α ·
( |x|

∏
i=1

M(yi)

)

· M(y♯) · β

)

·
∥
∥
∥
∥
∥

ϕ ·
( |x|

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(♯)

∥
∥
∥
∥
∥

2

= ∑
y1 ...y|x|y♯∈L

∥
∥
∥
∥
∥

ϕ ·
( |x|

∏
i=1

U(xi) · P(yi)

)

· U(♯) · P(♯)

∥
∥
∥
∥
∥

2

= EA(x),

where the last equality follows from Equations (8) and (9).

Another tool which will turn out to be useful in the analysis of the decidability of
PERIODICITY is the notion of a generating function. Generating functions are a well
known formalism in Combinatorics and Discrete Mathematics to represent and manipulate
numeric sequences (see, e.g., [69]):

Definition 2. Given a function p : N → C, its generating function is defined as the formal power
series Gp(z) = ∑

∞
k=0 p(k) · zk for any z ∈ C satisfying |z| < 1.

Moreover, we will use the following property of square matrices (see, e.g., [52]):
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Lemma 2. Let the matrix U ∈ Cn×n satisfy limk→∞ Uk = 0. Then, the matrix (I(n) − U)−1

exists, and we have ∑
∞
k=0 Uk = (I(n) − U)−1.

Let us now focus on the unary QFC A = (ϕ, {U(σ), U(♯)}, O = ∑c∈C c · P(c), L ),
with control language L recognized by the DFA D = (α, {M(c)}c∈C, β) and with lin-
ear representation Li(A) = (π, {J(σ), J(♯)}, η). The following limit property holds for the
dynamics of Li(A):

Lemma 3. For any z ∈ C such that |z| < 1, we have limk→∞(J(σ) · z)k = 0.

Proof. Let Γ = {σ, ♯}. We first prove that for any string x1 · · · xn ∈ Γ∗, we have

∥
∥
∥
∥
∥

π ·
(

n

∏
i=1

J(xi)

)∥
∥
∥
∥
∥
≤ 1. (15)

In fact, by taking into account from Definition 1 the formal statement of the components of
Li(A) = (π, {J(σ), J(♯)}, η) and using the linear algebra properties from Section 2.2, we
can write

∥
∥
∥
∥
∥

π ·
(

n

∏
i=1

J(xi)

)∥
∥
∥
∥
∥
=

=

∥
∥
∥
∥
∥

∑
y1 ...yn∈Cn

(

ϕ ·
(

n

∏
i=1

U(xi) · P(yi)

))

⊗
(

ϕ∗ ·
(

n

∏
i=1

U∗(xi) · P∗(yi)

))

⊗
(

α ·
(

n

∏
i=1

M(yi)

))∥
∥
∥
∥
∥

≤ ∑
y1 ...yn∈Cn

∥
∥
∥
∥
∥

(

ϕ ·
(

n

∏
i=1

U(xi) · P(yi)

))

⊗
(

ϕ ·
(

n

∏
i=1

U(xi) · P(yi)

))∗
⊗
(

α ·
(

n

∏
i=1

M(yi)

))∥
∥
∥
∥
∥

= ∑
y1 ...yn∈Cn

∥
∥
∥
∥
∥
∥

ϕ ·





n

∏
j=1

U(xj) · P(yj)





∥
∥
∥
∥
∥
∥

2

·
∥
∥
∥
∥
∥

α ·
(

n

∏
i=1

M(yi)

)∥
∥
∥
∥
∥

, (16)

where the inequality follows from the triangular inequality, see Section 2.2. Let us focus
on the terms in (16). As pointed out in Equation (1), we notice that the m-dimensional
boolean row vector α · (∏n

i=1 M(yi)) is the characteristic vector of the sole state reached
by the DFA D after processing the string y1 · · · yn ∈ Cn. So ‖α · (∏n

i=1 M(yi))‖ = 1 clearly

holds true. Moreover, by Lemma 1, we have ∑y1 ...yn∈Cn ‖ϕ · (∏n
i=1 U(xi) · P(yi))‖2 = ‖ϕ‖2.

These two observations enable us to rewrite (16) as

∥
∥
∥
∥
∥

π ·
(

n

∏
i=1

J(xi)

)∥
∥
∥
∥
∥
≤ ∑

y1 ...yn∈Cn

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · P(yj)

)∥
∥
∥
∥
∥

2

·
∥
∥
∥
∥
∥

α ·
(

n

∏
i=1

M(yi)

)∥
∥
∥
∥
∥

= ∑
y1 ...yn∈Cn

∥
∥
∥
∥
∥

ϕ ·
(

n

∏
j=1

U(xj) · P(yj)

)∥
∥
∥
∥
∥

2

= ‖ϕ‖2 = 1,

where the last equality ‖ϕ‖2 = 1 comes from the fact that ϕ is the norm 1 initial superposi-
tion of the QFC A. This shows the inequality ‖π · (∏n

i=1 J(xi))‖ ≤ 1 claimed in (15).
Let us now get back to the original problem, that is, to evaluate limk→∞(J(σ) · z)k for

any z ∈ C such that |z| < 1. By Inequality (15), we have that ‖π · (J(σ))k‖ ≤ 1. In addition,
since |z| < 1, we have that limk→∞ |z|k = 0. These two facts yield

lim
k→∞

∥
∥
∥π · (J(σ) · z)k

∥
∥
∥ = lim

k→∞
|z|k ·

∥
∥
∥π · (J(σ))k

∥
∥
∥ = 0,

which, in turn, implies that limk→∞(J(σ) · z)k = 0.

We are now ready to prove the main result of this section:
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Theorem 3. PERIODICITY is decidable.

Proof. Given a unary QFC A = (ϕ, {U(σ), U(♯)}, O = ∑c∈C c · P(c), L ) with q quantum
basis states and m classical states, and an integer d ≥ 0, we have to algorithmically decide
whether or not the following property holds true:

for every k ∈ N, EA(k) = EA(k + d).

(We recall that EA(k) stands for EA(σ
k).) We can equivalently investigate the validity of

this property on the linear representation Li(A) = (π, {J(σ), J(♯)}, η) of the QFC A. This
is due to the fact that according to Proposition 1, the linear representation Li(A) provides
an alternative and equivalent representation of EA(k) as

EA(k) = π ·
(

k

∏
i=1

J(σ)

)

· J(♯) · η = π · J(σ)k · η′,

where for convenience of notation, we let η′ = J(♯) · η. Therefore, the periodicity condition
we have to decide is written

for every k ∈ N, EA(k) = EA(k + d) (17)

⇔ π · J(σ)k · η′ = π · J(σ)k+d · η′

⇔ π · J(σ)k · η′ − π · J(σ)k+d · η′ = 0

⇔ π · (I(q
2·m) − J(σ)d) · J(σ)k · η′ = 0.

By using generating functions (see Definition 2), we can express the condition (17) as

∞

∑
k=0

(

π · (I(q
2·m) − J(σ)d) · J(σ)k · η′

)

· zk = π · (I(q
2·m) − J(σ)d) ·

(
∞

∑
k=0

(J(σ) · z)k

)

· η′ = 0. (18)

As shown in Lemma 3, we have that limk→∞(J(σ) · z)k → 0. Thus, according to Lemma 2,

we can replace ∑
∞
k=0 (J(σ) · z)k with (I(q

2·m) − J(σ) · z)−1 in Equation (18), obtaining

π · (I(q
2·m) − J(σ)d) · (I(q

2·m) − J(σ) · z)−1 · η′ = 0. (19)

To sum up, so far, we have proved that deciding the d-periodicity of EA is equivalent
to deciding whether or not Equation (19) holds true. To this aim, let us elaborate on

Equation (19), starting from the q2 · m × q2 · m matrix M = (I(q
2·m) − J(σ) · z). It is well

known (see, e.g., [52]) that

M−1 =
adj(M)

det(M)
,

where:

• det(M) denotes the determinant of M;
• adj(M) denotes the adjugate of M, i.e., the matrix defined as follows: let M[i,j] be the

(q2 · m − 1)× (q2 · m − 1) matrix obtained from M by deleting its ith row and jth col-
umn; then, adj(M) is the q2 · m × q2 · m matrix with (adj(M))ij = (−1)i+j · det(M[j,i]).

So by letting P(z) = adj(M) = adj(I(q
2·m) − J(σ) · z) be the q2 · m × q2 · m matrix of

polynomials in the variable z, we can equivalently rewrite Equation (19) as

π · (I(q
2·m) − J(σ)d) · P(z) · η′ = 0. (20)

The left side of Equation (20) is easily seen to be an effectively constructible polynomial
γ(z) of degree of at most q2 · m. So in conclusion, we have reduced the decision problem
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PERIODICITY to the problem of deciding whether or not γ(z) is the null polynomial. This
latter problem can be clearly decided by checking whether or not each coefficient of γ(z) is
zero, whence the claimed decidability result follows.

The decidability of PERIODICITY leads to the decidability of testing the periodicity of
the stochastic events induced by several models of unary QFAs, namely:

Theorem 4. Testing the periodicity of the stochastic events induced by unary MO-QFAs, MM-QFAs,
QRAs, or LQFAs is decidable.

Proof. The proof of Theorem 2 constructively provides simulation algorithms to turn any
of the listed QFA models into QFCs inducing the same stochastic events. Therefore, to test
the periodicity of the stochastic event induced by a MO-QFA, MM-QFA, QRA, or LQFA A, we
first construct by Theorem 2 the QFC B such that EB = pA. Then, we solve PERIODICITY

on B, which is decidable by Theorem 3.

5. QFCs for Unary Regular Languages

In this section, we are going to tackle the problem of building succinct isolated cut
point QFCs for unary regular languages by investigating their sizes with respect to that of
equivalent classical (DFAs) finite state automata.

As an immediate solution, we can adopt the construction for regular languages on
general alphabets designed in [25] and quickly addressed in Section 2.5. According to
this construction, given a unary regular language L ⊆ σ∗ recognized by a (minimal) DFA

with T states in the initial path and P states in the cycle (see Theorem 1), we could obtain
an isolated cut point QFC A for L with 2 quantum basis states and 3 · (T + P) classical
states. Nevertheless, the size of A is far from being satisfactory given that its classical
component alone, namely the incorporated DFA, is three times bigger than the original
DFA for L. This size inefficiency is mainly due to the generality of the construction in [25],
which was primarily devised to show that isolated cut point QFCs can recognize all regular
languages without a particular emphasis on size efficiency. In addition, the resulting QFC A
recognizes L by exhibiting a deterministic accepting behavior, this suggesting that the
descriptional power of the quantum component is not fully exploited.

In the next section, we provide a construction scheme specifically calibrated for the
unary case and aiming to obtain succinct isolated cut point QFCs. Such a scheme specifies
the role of both the classical and the quantum component in the resulting QFCs as well
as the way these components cooperate. Owing to this modular design framework, two
versions of isolated cut point QFCs for unary regular languages are then constructed
by simply adopting two different types of quantum components. This “plug-and-play”
approach is clearly open to be further exploited, e.g., by hardwiring other succinct quantum
components proposed in the literature [20,35,37,68].

5.1. The Construction Scheme

By Theorem 1, any unary regular language L ⊆ σ∗ can be regarded as the disjoint
union of two languages: the finite language LT = L ∩ σ<T and the ultimately periodic
language LP = L ∩ σ≥T . This observation inspires our modular framework for building
an isolated cut point QFC A for the language L. Roughly speaking, the classical and the
quantum components of A cooperate to perform the following tasks:

1. Classical component dealing with LT : The classical component, i.e., the DFA D rec-
ognizing the control language of A, takes care of the finite language LT as long as the
input length is less than T. More precisely, D counts the input symbols, and if this
count does not exceed T − 1, then the input string is accepted or rejected according
to membership in LT . If the count exceeds T − 1, then D “activates” the quantum
component to deal with LP.

2. Quantum component dealing with LP: The quantum component M is “activated”
by D on input strings of length exceeding T − 1 in order to recognize with an isolated
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cut point the ultimately periodic language LP. More precisely, M is going to recognize
the P-periodic language that coincides with LP on strings with lengths exceeding T − 1.

5.2. The First Construction

We provide a first implementation out of the construction scheme outlined in Section 5.1,
featuring a first type of quantum component for our isolated cut point QFC A recognizing
the unary language L = LT ∪ LP. Such a component takes care of the ultimately periodic
language LP by recognizing with an isolated cut point the P-periodic language

LP	 = {σ(T+i) mod P + h·P | 0 ≤ i < P, h ≥ 0, and σT+i ∈ LP}.

It is not hard to see that LP	 coincides with LP when restricted to strings with lengths
exceeding T − 1: namely, LP = LP	 ∩ σ≥T . This quantum component is equipped with an
observable to be measured at every step and with three possible outcomes: g (go), a (accept),
and r (reject). Upon processing the input symbol σ, the observable outcome will always
be g, while on ♯, the outcome will be either a or r depending, respectively, on whether or
not the input string belongs to LP	 . Given that LP = LP	 ∩ σ≥T , the control language L

of A is designed so that acceptance by this quantum component takes place only on the
strings with lengths exceeding T − 1; on the other hand, for strings with lengths less than
or equal to T − 1, the acceptance is completely up to the classical component. Precisely,
L ⊆ {a, r, g}∗ is designed so that:

• Only for input strings with lengths greater than or equal to T, the outcomes a and
r are considered for accepting/rejecting; correspondingly, the outcome g is ignored
after T steps.

• Instead, for input strings with lengths less than T, the outcomes a and r are ignored,
and the classical component counts the number of g to establish membership in LT .

Summing up, the classical component of the QFC A is the DFA D, whose state diagram
is depicted in Figure 6, which recognizes the control language language L ⊆ {a, r, g}∗
defined to be the set L = {y ∈ g∗{a, r} | σ|y|g ∈ LT or y ∈ g≥Ta}.

q0START q1 q2 · · · qT−1 qT

qT+1

qT+2

g g g g g

a

r

a/r a/r
a/r

g

Figure 6. The state diagram of the classical component of the QFC A, i.e., the DFA D recognizing the

control language L = {y ∈ g∗{a, r} | σ|y|g ∈ LT or y ∈ g≥T a} ⊆ {a, r, g}∗.

Let us quickly discuss the architecture and behavior of the DFA D in Figure 6. In the
initial path {q0, . . . , qT−1}, the accepting states are set according to LT . Namely, for every
0 ≤ i < T, we designate the state qi as accepting if and only if σi ∈ LT . This ensures the
correct acceptance of input strings (with lengths not exceeding T − 1 and) belonging to LT .
If the state qT is reached, then an input string with a length of at least T is under processing,
and so membership in LP has to be checked. To this aim, once reaching qT , the DFA D stays
in qT as long as the input symbol σ is read (i.e., as long as the outcome g is processed by D).
Upon reaching the endmarker ♯, the DFA D simply acknowledges the outcome a or r of the
quantum component to witness, respectively, membership or not in LP.

Formally, we define the isolated cut point QFC A = (ϕ, {U(σ), U(♯)}, O , L ) for the
unary regular language L = LT ∪ LP as follows:
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• ϕ = e1 ∈ C2·P is the initial superposition;

• U(σ) = Z ⊕ I(P), where Z ∈ {0, 1}P×P is the matrix representing the cyclic permuta-
tion, i.e., Z has 1 at the (i, i + 1)th entries for every 1 ≤ i < P and at the (P, 1)th entry,
while all the other entries are 0;

• U(♯) =

(

0 I(P)

I(P) 0

)

;

• O = g·P(g) + a·P(a) + r·P(r) is the 2 · P × 2 · P observable for which the projectors

are defined as P(g) = I(P) ⊕ 0, P(a) = 0 ⊕ diag(χLP	
), and P(r) = 0 ⊕ (I(P) − P(a)),

where the vector χLP	
∈ {0, 1}P satisfies (χLP	

)i = 1 if and only if σi−1 ∈ LP	 for
every 1 ≤ i ≤ P (we notice that χLP	

is sometimes referred to as the characteristic
vector of the P-periodic language LP	 );

• L = {y ∈ g∗{a, r} | σ|y|g ∈ LT or y ∈ g≥Ta} ⊆ {a, r, g}∗ is the control language
recognized by the DFA D in Figure 6.

Each superposition of the QFC A can be regarded as being divided into two halves.
Along its computation and before reaching the endmarker, A implements in the left half
the dynamic of the quantum component taking care of LP	 by repeatedly applying U(σ).
In this phase, any measuring of O yields the outcome g with certainty. Upon reading the
endmarker, the left half of the superposition is swapped with the right half by applying U(♯).
At this point, the final measuring of O takes place, yielding a or r according to membership
or not, respectively, in LP	 . Figure 7 quickly exemplifies the dynamic of A.

ϕ = ψ1START

ψ2

ψ3

ψ4

. . .

ψP−2

ψP−1

ψP

ei ⊕ 0
︸ ︷︷ ︸

ψi

→ U(♯) → 0 ⊕ ei

Figure 7. Left: The cyclic dynamic by U(σ) of the superposition of the QFC A upon reading the input

symbol σ. For a better display, we let ψi = ei ⊕ 0, with ei, 0 ∈ {0}1×P. Right: Superposition swapping

by U(♯) upon reading the endmarker ♯.

Let gky♯, with y♯ ∈ {a, r}, be the sequence of outcomes from measuring O along the

computation of A on the input string σk♯.

• Suppose that k < T: It is not hard to see from the definition of the control language

L = {y ∈ g∗{a, r} | σ|y|g ∈ LT or y ∈ g≥Ta} that A exhibits with certainty an

accepting computation on σk♯ if and only if σ|gky♯|g ∈ LT ⇔ σk ∈ LT . Also, it is easy
to verify that an accepting computation occurs with probability 0 whenever σk 6∈ LT .

• Suppose that k ≥ T: Again, from the definition of L , it is not hard to see that A

exhibits with certainty an accepting computation on σk♯ if and only if gky♯ = gka, and

this happens if and only if σk ∈ LP	 ∩ σ≥T = LP. On the other hand, no accepting
computation can occur whenever σk 6∈ LP.

In conclusion, the resulting QFC A deterministically recognizes the unary regular
language L (i.e., A accepts with certainty (respectively, with probability 0) the strings in
(respectively, not in) L).
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Concerning the size of A, we have 2 · P quantum basis states and T + 3 classical states,
which is slightly worse than the size (i.e., T + P states) of the DFA for L. However, in the next
section, we are going to improve the size of A by hardwiring a smaller quantum component.

5.3. Reducing the Size

Our first type of quantum component used in Section 5.2 is actually a DFA “disguised”
as a QFA. This leads to a deterministic recognition of unary regular languages but actually
does not allow one to fully exploit the high descriptional power of the quantum paradigm
(where an error probability in the classification of input strings is potentially permitted).

Here, we are going to build a smaller QFC for the unary regular language L = LT ∪ LP

by designing a more succinct quantum component for the P-periodic language LP	 : recall
that LP = LP	 ∩ σ≥T . To this aim, we need a result on the ability of MO-QFAs to induce
linear approximations of periodic stochastic events by using a very limited amount of basis
states (see the beginning of Section 4 for the definition of a periodic stochastic event):

Theorem 5 ([39]). For any P-periodic stochastic event p, there exists a unary MO-QFA with at
most 2

√
6P+ 25 basis states inducing the P-periodic stochastic event µ · p+ τ for suitable µ, τ ∈ R

satisfying µ > 0, τ ≥ 0, and µ + τ ≤ 1.

Now, with any P-periodic language Π ⊆ σ∗, we can associate its characteristic function
χΠ : N → {0, 1}, defined as

χΠ(k) =

{

1 if σk ∈ Π

0 otherwise,

which is clearly a P-periodic stochastic event. By Theorem 5, there exists a MO-QFA AΠ

with 2
√

6P + 25 basis states inducing the P-periodic stochastic event µ · χΠ + τ. It is easy to
see that we can use AΠ to recognize the language Π with cut point λ = τ + µ

2 and radius of

isolation ̺ = µ
2 . As a matter of fact, it is always possible to have an isolated cut point λ ≥ 1

2 ,
paying with an additional basis state (see [39] for technical details). This enables us to state

Theorem 6. Any P-periodic language can be recognized with isolated cut point λ ≥ 1
2 by an

MO-QFA featuring no more than 2
√

6P + 26 basis states.

Therefore, given the P-periodic language LP	 , we let B = (ϕB, {UB(σ), UB(♯)}, OB)
with observable OB = a · PB(a) + r · PB(r) be the isolated cut point MO-QFA for LP	 with
ℓ = 2

√
6P + 26 basis states resulting from Theorem 6. We can replace the quantum

component in the QFC A detailed in Section 5.2 with B, thus obtaining our second version
Ã = (ϕ, {U(σ), U(♯)}, O , L ) of a QFC for the unary regular language L, where:

• ϕ = ϕB ⊕ 0 ∈ C2·ℓ is the initial superposition, with ‖ϕ‖ = ‖ϕB‖ = 1;

• U(σ) = UB(σ)⊕ I(ℓ) and U(♯) =

(
0 UB(♯)

UB(♯) 0

)

are the unitary evolution matrices;

• O = g·P(g) + a·P(a) + r·P(r) is the 2 · ℓ× 2 · ℓ observable for which the projectors

are defined as P(g) = I(ℓ) ⊕ 0, P(a) = 0 ⊕ PB(a), and P(r) = 0 ⊕ PB(r);
• L = {y ∈ g∗{a, r} | σ|y|g ∈ LT or y ∈ g≥Ta} ⊆ {a, r, g}∗ is the control language

recognized by the DFA D in Figure 6.

By reasoning as in Section 5.2, one may verify that Ã is an isolated cut point QFC for
the unary regular language L. Thus, we can conclude with

Theorem 7. Let L be a unary regular language recognized by a DFA with T states in the initial
path and P states in the cycle. Then, there exists a QFC recognizing L with isolated cut point λ ≥ 1

2

and featuring 4
√

6P + 52 quantum basis states and T + 3 classical states.
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6. Conclusions

6.1. Summary of Novel Results

We have studied quantum finite state automata with control language (QFCs), which
represent a hybrid computational model embedding a deterministic finite state automaton
(DFA) as the control unit coupled with a quantum finite state automaton (QFA) as the
processor. An interesting feature of QFCs is their ability to simulate several types of QFAs,
thus providing a unifying framework within which to study the properties of variants
of QFAs.

Owing to this simulation capability, we have shown how to reproduce measure-
once, measure-many, reversible, and Latvian QFAs (MO-QFAs, MM-QFAs, QRAs, and LQFAs,
respectively) by QFCs, emphasizing the simulation costs in terms of quantum and classical
states. Then, we have proved the decidability of the problem PERIODICITY of testing the
periodicity of the stochastic event induced by a given QFC. This, together with the listed
simulation results, proves the decidability of PERIODICITY for MO-QFAs, MM-QFAs, QRAs,
and LQFAs as well.

Next, we have compared the succinctness of QFCs and classical finite state automata
on unary regular language recognition. Given a unary regular language recognized by a
DFA consisting of an initial path of T states joined to a cycle of P states, we have designed
an equivalent isolated cut point QFC with T + 3 classical states and O(

√
P) quantum basis

states. This shows that a finite memory hybrid computational model can be quadratically
more succinct than a classical one on the whole relevant class of unary regular languages.

6.2. Research Outlooks

Several possible lines of future research can be foreseen. Concerning QFCs as a unifying
framework to study finite memory quantum paradigms, it would be worth investigating the
decidability of other typical problems on QFCs (e.g., testing language emptiness, finiteness,
and universality). Positive decidability results would carry on to all simulated types of
QFAs. As a consequence, it would be interesting to study the possibility of simulating other
types of QFAs (e.g., [20,22,70–72]) within the framework of QFCs. Another investigation
could aim at characterizing the recognition power of isolated cut point QFCs as a function
of the control language. For instance, one could study the class of languages recognized by
isolated cut point QFCs using control languages that are, e.g., bounded, star-free, piecewise
(locally) testable, commutative, etc.

Concerning QFCs as a theoretical model for the analysis of possible hardware advan-
tages of hybrid architectures, it would be worth investigating other tasks, beyond unary
regular language recognition, for which QFCs may possibly outperform classical devices.
For instance, by plugging suitable types of quantum components within our modular
construction scheme, one could consider building succinct isolated cut point QFCs for wider
classes of regular languages, e.g., commutative or bounded regular languages, as well as
for other classes of subregular languages [73,74]. Also, it would be interesting either to
improve our construction for general unary regular languages, e.g., by hardwiring more
size-efficient quantum components, or to show its size optimality.
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Abbreviations

The following abbreviations are used in this manuscript:

diag(η) The diagonal matrix having the vector η on its main diagonal

det (M) The determinant of the matrix M

adj(M) The adjugate matrix of the matrix M

DFA Deterministic Finite State Automaton

QFA Quantum Finite State Automaton

MO-QFA Measure-Once Quantum Finite State Automaton

MM-QFA Measure-Many Quantum Finite State Automaton

LQFA Latvian Quantum Finite State Automaton

QRA Quantum Reversible Finite State Automaton

QFC Quantum Finite State Automaton with Control Language

PERIODICITY The decision problem PERIODICITY for QFCs
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