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ABSTRACT
The urgency of understanding the intricate input–output relationships of the hydrologic cycle is amplified by the accelerating 
climate change impacts in mountain environments. This study focuses on optimising water resource management of a dammed 
valley in the Central Alps (Northern Italy). The research aims to integrate radar data and precipitation interpolation techniques 
(TIN, Copula, cumulative distribution function; CDF techniques, inverse distance weighting; IDW, thin plate spline; TPS, or-
dinary kriging; OK and detrended kriging; DK) into a semi-distributed hydrologic model, by utilising hourly precipitation data 
from 22 rain gauges and a composite weather radar product spanning 2010–2020. Two main objectives were pursued: (i) to de-
velop and evaluate various radar precipitation correction methods against a benchmark dataset and (ii) to calibrate and assess the 
performance of the GEOFrame hydrologic model forced with corrected precipitation input. Point-based and spatial correction 
approaches were evaluated against ground measurements through leave-one-out tests. The former derives dependence functions 
between the biased radar series and those of the closest three rain gauges to the target point applying a triangular irregular net-
work. The latter combines deterministic and geospatial interpolations to the rain gauge/radar residuals to derive a corrected sur-
face by incorporating radar values as trends. Precipitation series exceeding the composite scaled score of the benchmark dataset 
were used as input for hydrologic modelling. The spatial method combining radar values with ordinary kriging provided the best 
results for both correction and modelling (hourly KGE > 0.75). The spatial approaches proved easier to apply than the point-based 
methods. In addition, correcting precipitation significantly improved low-flow simulation from negative hourly lnNSE to values 
greater than 0.25. As a further step, given the overall good performance of the spatial methods, they could be used operationally 
as an ensemble to analyse management scenarios.

1   |   Introduction

Hydrologic models are an essential tool to model the 
water cycle of a given area for water resource management 
(Devia, Ganasri, and Dwarakish  2015). Over the past de-
cades, the variety and complexity of hydrologic models have 

increased exponentially in response to the need to solve 
problems at different scales and of different nature (Ly, 
Charles, and Degré  2013). The most common applications 
include forecasts and predictions for climate impact studies 
(Asong et  al.  2020; Cochand, Therrien, and Lemieux  2019; 
Cornelissen, Diekkrüger, and Giertz 2013; Hegerl et al. 2015; 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2024 The Author(s). Hydrological Processes published by John Wiley & Sons Ltd.

https://doi.org/10.1002/hyp.15339
https://doi.org/10.1002/hyp.15339
mailto:
https://orcid.org/0000-0002-1352-2356
https://orcid.org/0000-0001-6551-5003
https://orcid.org/0000-0002-6475-5221
https://orcid.org/0000-0002-6839-5622
https://orcid.org/0000-0002-0310-1574
https://orcid.org/0000-0001-6499-5746
mailto:andrea.citrini@unimi.it
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhyp.15339&domain=pdf&date_stamp=2024-11-25


2 of 27 Hydrological Processes, 2024

Karlsson et  al.  2016), optimised water resource manage-
ment (Madrazo-Uribeetxebarria et al. 2021; Paul et al. 2021; 
Qin et  al.  2013), flood hazard governance and early warn-
ing (Charlton et  al.  2006; Mudashiru et  al.  2021; Norman 
et al. 2010; Sampson et al. 2015), and land use changes assess-
ments (Jordan, Ghulam, and Hartling 2014; Wegehenkel 2002; 
Yan et al. 2013; Zhang et al. 2020).

Among other factors, the choice of hydrologic model complex-
ity level is driven by the availability and quality of the forc-
ing data, which are often scattered in space and time. Among 
the input data, precipitation is the most essential because 
it regulates the amount of water entering the system and, 
thus, it is deeply connected to all other environmental pro-
cesses as a trigger, although not in a linear way (Berne and 
Krajewski 2013). By excluding lumped models, where a point 
series of a rain gauge is sufficient, all distributed models (semi 
and fully) need spatialized rainfall information at the most 
accurate level possible to represent the spatial and temporal 
variability of the phenomenon (Bell and Moore 2000; Segond, 
Wheater, and Onof  2007). Thiessen polygons, inverse dis-
tance weighting (IDW), linear regression and ordinary krig-
ing (OK) are common techniques for interpolating data from 
weather stations scattered around the study area to obtain a 
continuous field to feed the model at the required locations 
(Caruso and Quarta 1998; Mair and Fares 2011). The applica-
tion of such methods becomes increasingly complex when the 
area of interest is characterised by complex topography, steep 
mountains or the proximity of large water bodies (Buytaert 
et al. 2006; Camera et al. 2014; Johnson and Hanson 1995). In 
mountainous areas, the orographic and rain shadow effects 
can contribute significantly to local variation in precipitation. 
The former favours increasing precipitation based on increas-
ing elevation (Groisman and Easterling  1994; Sevruk  1997; 
Sinclair et  al.  1997; Weisse and Bois  2001), while the lat-
ter describes the phenomenon whereby mountains hinder 
the movement of moist air masses, causing precipitation to 
occur predominantly on the windward side areas (Stockham 
et al. 2018; Van Den Hende et al. 2021).

The need to acquire data with spatial and temporal continu-
ity was partially solved with the development of weather radar 
technology in the years following World War II (Atlas  1964; 
Rogers and Smith  1996). Nevertheless, the high spatio-
temporal resolution data provided by radars have not gained 
overwhelming popularity as input data for hydrologic models 
(Berne and Krajewski  2013). Weather radars do not directly 
measure the amount of rainfall but are based on measurements 
of the electromagnetic properties of hydrometeors, including 
rain, snow and hail. These measurements can be converted 
to rainfall rates and then validated against observations from 
weather stations (Berne and Krajewski 2013; Ochoa-Rodriguez 
et  al.  2019). Several factors, such as, for example, signal at-
tenuation due to severe precipitation, beam obstruction and 
ground clutter due to morphological or structural limitations, 
reduce the accuracy of the radar measurements, resulting in 
biased values compared with the observed ones and making 
them unsuitable as direct input in hydrologic models (Bárdossy 
and Pegram 2017; Biggs and Atkinson 2011; Kim, Kwon, and 
Lima  2018; Seo  1998; Seo, Breidenbach, and Johnson  1999). 
However, calibration and validation of these data can be 

complex and time-consuming. Moreover, integrating radar 
data into hydrologic models requires additional pre-processing 
steps. This complexity can discourage modellers from using 
radar data, especially if they have well-established working 
methodologies that use other data sources such as rain gauge 
networks and satellite products.

An overview of the main correction techniques and their clas-
sification is presented in Ochoa-Rodriguez et al. (2019). These 
are distinguished into geostatistical and non-geostatistical 
methods or, depending on the application, adjustment or in-
tegration methods. The combination of the classification of 
Wang et al. (2013) and Decloedt, Willems, and Gires (2013) is 
interesting since it is based on the purpose of the application. 
This classification divides approaches into methods that focus 
on bias-correcting the radar data (attempting to correct the bias 
present in radar accumulations using rain gauge accumula-
tions as the true rainfall value); rain gauge interpolation meth-
ods using radar spatial association as additional information, 
which exploit the radar field to aid the spatial interpolation of 
point rain gauge values; and radar and rain gauge integration 
methods (in this case, rainfall at a given location is estimated 
through a weighted average between the radar and rain gauge 
values). The main techniques used for correction and combi-
nation of radar and rain gauge data are called bias correction 
(Mapiam et  al.  2022; Rabiei and Haberlandt  2015; Seo and 
Breidenbach  2002). Common bias correction approaches in-
clude linear scaling, mean-field bias correction, and quantile 
mapping, while spatial interpolation methods are commonly 
used for filling gaps between radar pixels (Foehn et al. 2018; 
Haberlandt  2007; Teegavarapu, Meskele, and Pathak  2012). 
Kriging, IDW and spline interpolation are applied to ob-
tain continuous precipitation fields. Additionally, temporal 
smoothing techniques (Berndt, Rabiei, and Haberlandt 2014; 
Villarini et  al.  2014; Wright et  al.  2014) have been used to 
obtain, through moving averages or filtering methods, more 
stable and realistic precipitation values. Hydrometeor classi-
fication (Gao and Stensrud 2012; Snyder et al. 2010) and dual 
polarisation correction (Anagnostou et al. 2010; Gorgucci and 
Chandrasekar  2005; Shakti et  al.  2013) are additional meth-
ods, where the echoes of various types of hydrometeors are 
classified through algorithms improving the accuracy of pre-
cipitation estimates, particularly for mixed-phase precipita-
tion. In recent years, the Copula method based on the Sklar 
theorem (Sklar 1959) has begun to be used frequently to de-
scribe the complex spatio-temporal relationship between radar 
and weather station data, which is much more complex than 
the assumption of linear behaviour (Bárdossy 2006; Bárdossy 
and Li 2008; Gómez-Hernández and Wen 1998). Examples of 
correction of radar data by copula can be found in Hamidi, 
Farnham, and Khanbilvardi (2018), Mao et al. (2015) and Vogl 
et al. (2012). An estimation of error and uncertainty ranges by 
the same method is reported in AghaKouchak, Bárdossy, and 
Habib (2010), Dai et al. (2016, 2014) and Villarini et al. (2014). 
The use of copula is also widely applied for the correction of 
data from climate models, for example, Alidoost et al. (2017), 
Lazoglou et al. (2022, 2020) and Maity et al. (2019).

This study aims to integrate radar data and precipitation 
interpolation into a semi-distributed hydrologic model by 
combining hourly rain gauge network data and weather radar. 
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As specific objectives, (i) different radar precipitation correc-
tion methods were developed and assessed against a bench-
mark dataset, (ii) the semi-distributed hydrological model 
forced with corrected precipitation inputs was calibrated for 
each parameter configuration and (iii) its performances of 
were evaluated. By directly incorporating radar signals, valu-
able information is retained without sacrificing accuracy. 
The underlying assumption is that rain gauge measurements 
are accurate, and radar data offer supplementary insights 
(Haberlandt 2007). Improving the understanding of the intri-
cate input–output relationships of the hydrological cycle plays 
a key role in optimising water resource management. This 
is particularly relevant in a context such as Italy, where, in 
2022, the annual rainfall amounted to just 50% of the 1991–
2020 climatological average (Braca et al. 2023), impacting the 
hydroelectric production of Alpine power plants with losses of 
−37% compared with the previous year (Terna 2022). Focused 
on a pilot area within the Italian Alps bordering Switzerland, 
this research is particularly well-suited to address this chal-
lenge due to the area's complex terrain, dense rainfall net-
work, availability of weather radar data and hydropower 
exploitation.

2   |   Data and Methods

2.1   |   Study Area

The study area is in Valgrosina, a tributary valley of Valtellina 
Valley. The valley has an area of about 130 km2, and is located 
in northern Italy partially bordering Switzerland (Figure  1). 
This is divided into three main sectors: the downstream part 
covering the territory of the village of Grosio (from which the 
valley takes its name, approximately 650–1200 m a.s.l.), and 
the upper section divided into two parts by the Roasco Stream, 
the Eita Valley (N–S, 1200–3370 m a.s.l.) and the Sacco Valley 
(W–E, 1200–3260 m a.s.l.), respectively. Valgrosina belongs to 
the sector of the Upper Valtellina between the small moun-
tain cities of Tirano and Bormio, which is geologically char-
acterised by schistose and intrusive rocks (Notarpietro 1988), 
distinguished within the Upper Austroalpine domain accord-
ing to their structural characteristics (Beltrami et  al.  1971; 
Bonsignore et al. 1969; Pozzi, Bollettinari, and Clerici 1990). 
More specifically, in Valgrosina, the predominant litholo-
gies are gneisses and micaschists of the Lower Cambrian and 
the Upper Ordovician (Gregnanin and Montrasio  1990). In 
addition to being subject to glacial and periglacial morpho-
genesis, this area has been strongly influenced by tectonic 
activity (Forcella  1984; Fossati and Mannucci  1996; Pozzi, 
Bollettinari, and Clerici 1990). The main tectonic lineaments 
are the “Linea Insubrica” and “Linea del Mortirolo” faults, but 
there are also minor dislocation systems, dense and numer-
ous with prevailing NW–SE, NE–SW and N–S directions that 
profoundly influenced the development of the hydrographic 
network (Assi et al. 1995).

The climate is of central-alpine type (Belloni and Pelfini 1987), 
with medium-low average annual precipitation (800–1000 mm 
at the medium altitudes between 1000 and 1500 m a.s.l.), which 
in extremely wet years can reach values around 1700 mmy−1 
(Ceriani and Carelli 2000). The rainiest season is spring–summer. 

The average annual temperature value is around 20°C in the 
medium part of the valley and decreases going further inland 
and at higher altitudes (Assi et al. 1995).

Since the 20th century, dams and hydroelectric plants have 
been built in Italy to regulate the flow of natural water-
courses, creating a water reserve for periods of drought, and 
exploiting the resource for the generation of clean energy 
(Bocchiola and Rosso 2014; McCully 2001; World Commission 
on Dams 2000). In the case of the Upper Valtellina, there was 
intense interest beginning in the early decades of the 1900s to 
provide electricity for the tramways and lighting of the city of 
Milan (Toso 2014). In the 1920s, an initial masonry arch dam 
was built in Valgrosina, which in 1960 was replaced by a spur 
and gravity-relieved dam further upstream in correspondence 
to the closing section of the Eita Valley (A2A S.p.A.  1954, 
1956, 1990, 1990, 1990, 2010). The dam directly collects water 
from the Eita stream and, through two diversion channels, 
part of the water from the Sacco stream and the outflow water 
from the Upper Valtellina hydropower park (Figure 1b). The 
Valgrosina dam, used for daily modulation of inflow waters, 
feeds the Grosio power plant downstream.

2.2   |   Data Resources

The data used in this study were derived from four main 
sources: the Regional Environmental Agency of Lombardy 
(ARPA), Lombardy Region, A2A S.p.A. and MeteoSWISS. The 
available rainfall data are essentially of two types: measured by 
rain gauges or obtained from radar estimates. The 22 stations 
(tipping bucket rain gauges) selected within a 25-km radius buf-
fer zone centered on the study area provide hourly precipitation 
values and they belong to three different monitoring networks 
(Figure 2): the Regional Environmental Agency ARPA, the A2A 
hydroelectric company, and the Swiss meteorological service 
MeteoSWISS. Data were collected for the period October 2010 
to September 2020 (10 hydrologic years, from 1 October to 30 
September of the following year). Within the study area there 
are three stations, one from ARPA and two from the A2A com-
pany. The other 19 are arranged around the area of interest. All 
weather stations are also equipped with thermometers at 2 m 
above the ground, recording hourly (Figure  2, from point A 
to V).

Regarding radar data, the CombiPrecip dataset is a ground-
based weather radar–rain gauge composite at 1-km horizon-
tal resolution. MeteoSWISS provides these data in raster 
form (.gif) as hourly aggregated radar precipitation estimates 
(Swiss coordinates EPSG: 21781) (Germann et  al.  2006; 
Sideris, Gabella, Erdin and Germann, 2014, 2014). Within the 
Swiss territory, the rain gauges series and the radar values at 
the same locations are retrieved to be used as input for the 
geostatistical algorithm (co-kriging with external drift) that 
generates the composite dataset (Sideris, Gabella, Erdin and 
Germann,  2014, 2014). The quality of the composite dataset 
decreases as the distance from a rain gauge location increases. 
This situation does not affect the general quality of the dataset 
within the Swiss territory (evaluated only for Switzerland in 
Sideris et al. (2014)), but it is expected to affect it in areas out-
side the Swiss border since information from the ground-based 
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monitoring network is not acquired. Essentially, at some dis-
tance from the border the influence of the ground-based data 
is zero and the data is raw radar. This method has been used 
operationally since 2012 by the Swiss weather service (Sideris, 
Gabella, Erdin and Germann,  2014, 2014). There is a value 
that varies from 0 to 255 in each pixel and these values can 
be converted to a minimum, mean, and maximum precipita-
tion intensity. The radar acquisition is generated every 5 min 
based on a combination of the data of the available radars over 
Switzerland (Figure 2).

In addition to the meteorological variables, the digital eleva-
tion model (DEM) at 20 × 20 m resolution obtained from the 
Lombardy Region geoportal (www.​geopo​rtale.​regio​ne.​lomba​
rdia.​it) and the datasets of the in-flow discharge (m3s−1) into the 
artificial reservoir were used to conduct the study. Hourly dis-
charge rates were made available by A2A at the flow stations of 
the Eita stream just upstream of the dam-lake and at the inlet of 
the diversion canal from the Sacco stream to the dam-lake, and 
cover the October 2010–September 2020 period. Furthermore, 
minimum environmental flow (MEF) values of the Sacco stream 
(0.266 m3s−1 in the summer season and 0.406 m3s−1 in the winter 
season) were added to the Sacco diversion canal flows for the 
calibration of the Sacco basin (see Section 2.3.4).

2.3   |   Methods

The workflow can be divided into three main steps: (i) the 
hourly CombiPrecip data (henceforth “radar data”) were cor-
rected with rain gauge values by applying two point-based 
(Sections  2.3.1 and 2.3.2) and four spatial (Section  2.3.3) cor-
rection approaches; (ii) the hydrologic model was fed in each 
sub-basin centroid (see Section  2.3.4) by the corrected pre-
cipitation series and calibrated for the study area and (iii) the 
performances of both the precipitation corrections and the 
simulated hydrologic responses were evaluated. Among these 
two correction approaches, the point-based methods present 
the advantage of a possible application for both “historical” (ob-
served) data (e.g., Vogl et al. (2012)) and “future” data such as 
nowcasts (e.g., Shehu and Haberlandt (2021) and Yazdandoost 
et al. (2020)). The spatial approach can be applied only to cor-
rect observed radar data since they always require the simul-
taneous knowledge of ground (rain gauges) records. In this 
study, both correction approaches were evaluated in relation 
to a simple Triangular Irregular Network (TIN) interpolation, 
the OK interpolation of the rain gauge data, and the raw radar 
data. The latter were considered as the benchmark dataset. 
Acronyms related to the datasets investigated and referred to 
hereafter are given in Table 1.

FIGURE 1    |    (a) Location of the study area within south-central Europe, (b) geographical focus on the Alta Valtellina and tracks of the two 
diversion channels involved, and (c) geological context of the study area derived from the Geological Map of Switzerland 1:500.000 (University of 
Bern–Institute of Geology and Federal Office for Water and Geology 2005).
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2.3.1   |   TIN Interpolation

To obtain the rainfall amount from the gauges at the sub-basin 
centroids, the study area is subdivided into a TIN considering the 
rain gauges as nodes and performing a Delaunay triangulation 
(Delaunay 1934; Lazoglou, Gräler, and Anagnostopoulou 2019; 
Renka et al. 2020). This triangulation prevents other nodes (rain 
gauges) other than the vertices of a triangle from being inside 

the circumcircle defined by the triangle itself, avoiding sliver tri-
angles (Figure 3a,b). For each triangle, three weight coefficients 
are derived by dividing the sum of the distances by the centroid-
vertex distance:

(1)kj =

∑

di

dj ⋅
�

∑

di
da

+

∑

di
db

+

∑

di
dc

�

FIGURE 2    |    Location of the 22 weather stations used and radar stations on Swiss territory. The legend indicates the altitude of the stations in m 
a.s.l. in parentheses.

TABLE 1    |    Acronyms of the investigated datasets.

Acronym Approach Explanation

Raw radar data Benchmark Raw radar data dataset

Rain gauge TIN — Triangular irregular network 
interpolation of the rain gauge data

Rain gauge OK — Interpolation of rain gauge data 
according to ordinary kriging

TIN-Copula Point-based Copula correction based on a 
triangular irregular network

TIN-CDF Point-based Cumulative distribution unction correction 
based on a triangular irregular network

Radar + IDW Spatial (deterministic) Radar data as a trend and inverse 
distance weighting on the residuals

Radar + TPS Spatial (deterministic) Radar data as a trend and Thin 
Plate Spline on the residuals

Radar + OK Spatial (geostatistical) Radar data as a trend and ordinary 
kriging on the residuals

Radar + DK Spatial (geostatistical) Radar data as a trend and detrended 
kriging on the residuals
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where k denotes the weight coefficient of gauge j (a, b or c), d the 
centroid-vertex distances, and i represent all three gauge indices 
(a, b and c). This equation implies that the closer the gauge is to 
the centroid, the more weight its coefficient will have since the 
sum of the three coefficients (a, b and c) is equal to 1. Once the 
TIN is defined (Figure 3b), PX precipitation at the centroid X (rain 
gauge TIN dataset) for each timestep can be computed as follows:

where ka,b,c represent the three coefficients defined for each 
sub-basin centroid triangle by Equation  (1) and Pa,b,c are 
the hourly precipitation value at the rain gauge a, b and c, 
respectively.

2.3.2   |   Copula and CDF Techniques

In the case of the point-based approach, the first step consists 
of extracting the hourly precipitation series from the radar data 

(October 2010–September 2020) of the 1-km2 cells where the 
centroids are located (Figure 3b). These radar data series are ad-
justed taking into account only values greater than 0.2 mm/h, 
which is the detection limit of rain gauges.

In the second step, two statistical techniques are performed: 
Copula and Cumulative Distribution Function (CDF) tech-
niques. For each of the three rain gauges-centroid compari-
sons, the hourly time series of positive pairs were obtained. 
The term “positive pairs” means precipitation values greater 
than 0.2 mm/h for both observed and radar data in each time-
step following the suggestion of Foehn et  al.  (2018) but with 
a case study-specific limit of detectability. For each target tri-
angle, in the vertex-centroid comparison, the bivariate copula 
families that best describe the dependence between each rain 
gauge and radar data pair were tested and the best one accord-
ing to the largest Akaike information criterion (AIC) value 
(Akaike  1974) was selected. Gamma, log-normal and Weibull 
distributions were tested, as the most common distributions 
for describing precipitation timeseries. The hourly values at the 

(2)PX = kaPa + kbPb + kcPc

FIGURE 3    |    (a) An example of a typical alpine environment with three weather stations (a–c) at different elevations. (b) In this situation, radar 
values from the cells corresponding to stations a, b and c are used to correct the X centroid by exploiting a TIN. (c) Differences between rain gauge 
values and corresponding radar cells are calculated. (d) The corrected surface is obtained from the cell-by-cell algebraic sum between radar values 
and spatial interpolation on the residuals.
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centroids were derived from the hourly values obtained from the 
copula corrections with Equation (2) (in this case, Pa,b,c are the 
hourly corrected precipitation value at the rain gauge a, b and c, 
respectively).

Likewise, based on positive pairs, the CDF matching bias 
correction method was tested. As explained by Reichle and 
Koster (2004) in a study where satellite soil moisture data were 
corrected with those from a land surface model, the idea is to 
reduce the bias by matching the CDF of the rain gauge and 
radar data. The x′ corrected radar data are then obtained by the 
formula:

where CDFrad and CDFobs denote the CDF's of the radar and rain 
gauge precipitation values, respectively, and x is the unscaled 
radar value. The code in MATLAB by Singh  (2022) was used 
for the application of this technique. Also, for this technique, 
the corrected series at the centroid location was finally obtained 
through Equation (2).

2.3.3   |   Spatial Radar Corrections

Spatial correction aims to correct the radar values by spatially 
interpolating the error between the rain gauges and the cor-
responding radar cell (Borga et  al.  2002; Cecinati, Wani, and 
Rico-Ramirez 2017; Delrieu et al. 2014). This approach was im-
plemented in three steps:

•	 The residuals, namely the differences between the hourly 
radar values and the rain gauge values, in the radar cells 
where a rain gauge is located (Figure 3c), were calculated.

•	 The error field (residuals) was interpolated by applying dif-
ferent deterministic and geostatistical algorithms.

•	The interpolation was combined with the radar trend 
in each cell, and finally, the corrected surface was ob-
tained by setting values below the detection limit to zero 
(Figure 3d).

In this study, two deterministic techniques, namely IDW and 
thin plate spline (TPS), and two geostatistical techniques, 
namely OK and Detrended Kriging (DK), were tested on the 
residuals.

The IDW interpolation (Shepard 1968) assigns a target point a 
value given by the weighted average of known values located in 
its proximity (Gilewski 2021). With the condition that the sum is 
equal to one, the weight coefficients are defined by the inverse of 
the distance and normalised. The TPS interpolation represents 
a data-oriented, non-parametric technique involving locally 
weighted polynomial procedures (Duchon 1977). From the ini-
tial dataset, the TPS allows the interpolated surface to pass as 
neatly as possible close to the known points by minimising dif-
ferences through a smoothing procedure. These two determin-
istic methods were performed on the residuals through the use 
of two packages in the R environment, “idw” in the “gstat” pack-
age (Gräler, Pebesma, and Heuvelink 2016; Pebesma 2004) and 

“Tps” in the “fields” package (Nychka et al. 2017), respectively. 
The “Tps” package allows the automatic setting of the smooth-
ing parameter (lambda) through an internal estimation proce-
dure based on the data provided for each time step (generalised 
cross-validation).

Geostatistical interpolations on the residuals were carried out 
with the Spatial Interpolation Kriging package (SIK), a routine 
of the GEOframe model, exhaustively described in Bancheri 
et al.  (2018). Specifically, OK addresses variations in the local 
mean by confining stationarity to the nearby area, where the 
mean remains uncertain; and DK recognises the variations of 
the local mean within the immediate neighbourhood also ex-
ploiting a trend model. Since the trend is defined by an auxiliary 
variable, the elevation of rain gauges was used in the applica-
tion of the method (rain gauge elevation values can be seen in 
Figure 2 legend). Finally, the new corrected precipitation data-
sets at model input locations (sub-basin centroids) were obtained 
by extracting the values in the corresponding cells for the raw 
radar values and from the corrected surfaces using the spatial 
approaches.

2.3.4   |   Hydrologic Model

The GEOframe model (Bancheri  2017; Bancheri, Rigon, and 
Manfreda 2020; Formetta et al. 2014) was selected to simulate 
the streamflow. GEOframe is a semi-distributed, component-
based hydrologic system. It includes several components that 
individually simulate the physical processes of the hydrologic 
cycle in a sequence. These assembled components reproduce 
the surface runoff and hydrologic response of the catchment 
from hourly meteorological, rainfall and hydrometric data. 
The study area is divided into a series of sub-basins, for which 
the model solves the hydrologic budget and finally connects 
the individual units to obtain the overall response of the entire 
catchment.

The model is developed in four main steps. First, starting from 
the DEM, a geomorphological analysis is carried out that re-
turns the sub-basins and their centroids. This analysis considers 
several features including river network characteristics, total 
contributing area values and drain direction. Second, the data 
series of temperature and precipitation, with the temporal res-
olution of interest, are obtained at each sub-basin centroid by 
interpolation of station-based data and, through internal rou-
tines, the radiation and evapotranspiration series are calculated. 
The model allows the interpolation phase to be by-passed if 
externally obtained spatial dataset are available. Third, the hy-
drologic components are computed in each sub-basin centroid 
(Bancheri, Rigon, and Manfreda  2020). Interacting with each 
other, these components provide the delay time and the amount 
of water discharged to the sub-basin outlet. The components are 
governed by mathematical equations that describe, in a simpli-
fied form, the phases of the hydrologic cycle and are schema-
tized in the snowpack, canopy layer, root zone, direct runoff and 
groundwater storage (Figure A1). Finally, the streamflow at the 
closure section is simulated following the topology scheme that 
considers the upstream-downstream relations to connect the 
sub-basins.

(3)CDFobs
(

x�
)

= CDFrad(x)
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8 of 27 Hydrological Processes, 2024

The discretization of the study area into sub-basins was carried 
out using the geomorphological analysis routine of GEOframe. 
The 20 × 20 m DEM was the only input in this first step and a 
surface threshold of 2.5 km2 was used for the delineation of the 
sub-basins. The outlets of the two basins were placed at the 
flow stations at the inflow to the dam (Eita) and at the diver-
sion channel inlet (Sacco). For each of the sub-basin centroids, 
GEOframe components were run to obtain the hourly values 
of temperature (through DK interpolation), evapotranspiration 
(Priestley and Taylor 1972), and radiation, by applying the Idso 
model (Idso 1981). The precipitation was divided into snow and 
rain using the Hock's model (Hock 1999).

In the GEOframe environment, it is possible to calibrate 17 
parameters, which are listed in Table  2 with their suggested 
ranges (Bancheri 2017). The αr and αs coefficients allow correc-
tion for the amount of liquid and solid precipitation entering the 
system since the input represents only the centroid of the sub-
basin value and not a spatial average of the entire sub-basin. 

The Melting temperature, Combined Melting factor and αl coef-
ficient give the amount and rate of snowmelt for each timestep, 
while the Kc and p coefficients govern the amount of water 
reaching the soil from the canopy layer and the pB soil fac-
tor gives the value of the moisture content. The three storages 
(Root zone, Runoff and Groundwater) are governed by three 
factors each: a maximum storage value (in mm), a coefficient 
(g, c and e, respectively) that gives an estimate of the discharge 
delay, and an exponent (h, d and f, respectively) responsible for 
the shape/slope of the discharge curve. The last two factors are 
dimensionless.

Model calibration was carried out through a stepwise multiple-
objective and automated procedure, based on a Shuffled Complex 
Evolution algorithm (Duan, Gupta, and Sorooshian 1993) ran in 
a defined parameters space and a Goodness of Fit function (in 
this case Kling–Gupta efficiency, KGE) that reports the perfor-
mance of the model. One set of coefficients was derived for each 
basin (Sacco and Eita).

TABLE 2    |    Parameters and their suggested ranges, according to (Bancheri 2017), to be calibrated in the GEOframe model.

Parameter Unit Suggested range Description

αr — 0.8 ÷ 1.2 Adjustment coefficient for the 
rainfall measurement errors

αs — 0.5 ÷ 1.2 Adjustment coefficient for the 
snow measurement errors

Melting temperature °C −1.0 ÷ 0.5 Melting temperature

Combined melting factor mm/°C/h 0.001 ÷ 1 Melting factor

αl — 0.3 ÷ 0.9 Coefficient for the computation 
of the maximum liquid water

kc — 0.1 ÷ 0.9 Coefficient canopy out

p — 0.1 ÷ 0.9 Partitioning coefficient 
free throughfall

s_RootZoneMax mm 10 ÷ 200 Maximum value of the 
rootzone water storage

g — 0.01 ÷ 10 Coefficient of maximum 
percolation rate

h — 1 ÷ 3 Exponent of non-linear root 
zone reservoir model

pB_soil — 0.2 ÷ 3 Degree of spatial variability of 
the soil moisture capacity

s_RunoffMax mm 10 ÷ 200 Maximum runoff storage

c — 1 ÷ 50 Coefficient of the non-linear 
runoff reservoir model

d — 1 ÷ 3 Exponent of the non-linear 
runoff reservoir model

s_GroundWaterMax mm 50 ÷ 300 Maximum groundwater storage

e — 0.001 ÷ 10 Coefficient of the non-linear 
groundwater reservoir model

f — 1 ÷ 3 Exponent of the non-linear 
groundwater reservoir model
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2.3.5   |   Evaluation of Radar Corrections

To evaluate the radar correction, the corrected series were 
cross-validated by performing the leave one out test (LOO) 
(Bancheri et  al.  2018). For the spatial approach, the cross-
validation involves a process where individual data points 
are taken out one by one, and the interpolation is conducted 
using the remaining stations (GEOframe-SIK routine for geo-
statistical methods and a R script for the deterministic ones). 
Regarding the point-based procedure, LOO tests were carried 
out by pretending to correct a radar cell where a rain gauge 
is located. This process involves recalculating the TIN for 
each rain gauge, including the location of the rain gauge to 
be evaluated in the target triangle area on which the weighted 
coefficients will be obtained for the evaluation. Due to these 
conditions, some boundary weather stations will not be eligi-
ble for cross-validation (6 out of 22 rain gauges). For this rea-
son, the comparison of all tested datasets will be presented 
only for the common 14 weather stations (14WS). For the eval-
uation of the radar correction, five performance criteria, de-
scribed in the following text, were calculated.

The KGE (Gupta et al. 2009; Kling, Fuchs, and Paulin 2012) was 
used to evaluate the radar correction. The KGE represents how 
far the correction performance deviates from the ideal point in 
a space defined by its three constituent elements: correlation (r 
namely the Pearson correlation coefficient), variability bias (γ) 
and mean bias (β).

where OBS and SIM denote the observed precipitation recorded 
at the rain gauge and the corrected radar series, respectively, 
μ represents the mean precipitation, and σ the precipitation 
standard deviation. This index ranges from 1 to minus infinity, 
where 1 indicates the perfect match between the observed and 
the corrected series. KGE values greater than 0.75 are considered 
as highly acceptable (Towner et al. 2019), in contrast, values less 
than 0.50 are not considered optimal (Andersson et al. 2017).

The Nash–Sutcliffe efficiency index NSE (Nash and 
Sutcliffe 1970) was also calculated. Given the number of ob-
servations from i = 1 to n (the total) and the corrected values 
corresponding to the same timestep, the NSE index is de-
fined as:

The root mean square error (RMSE) to provide a complete over-
view of the distribution of errors (Chai and Draxler 2014):

The percentage bias (PBIAS) was also considered. Like the for-
mer, it measures the average tendency of the simulated values to 
be larger or smaller than their observed ones, but it is expressed 
in percentage. Negative values indicate model underestimation, 
while positive values indicate overestimation:

The closer the RMSE and PBIAS are to zero, the better the cor-
rection is.

(4)KGE=1−

√

(r−1)2+(�−1)2+(�−1)2

(5)� =
�SIM

�OBS

(6)� =
�SIM ∕�SIM

�OBS∕�OBS

(7)NSE = 1 −

∑n
i=1

�

OBSi−SIMi

�2

∑n
i=1

�

OBSi−OBS
�2

(8)
RMSE =

√

√

√

√
1

n

n
∑

i=1

(

OBSi−SIMi

)2

(9)PBIAS = 100

∑n
i=1

�

SIMi −OBSi
�

∑n
i=1 OBSi

TABLE 3    |    Hydrological signatures for the discharge evaluation.

Hydrological signatures Parameter name Description

Mean winter discharge Qmean winter Mean daily discharge (from October to March)

Mean summer discharge Qmean summer Mean daily discharge (from April to September)

Runoff ratio Ratio Q/P Runoff ratio (ratio of mean daily discharge 
to mean daily precipitation)

Slope of the flow duration 
curve

slopeFDC Slope of the flow duration curve considering the log-
transformed 33rd and 66th streamflow percentiles

Baseflow index BFI Ratio of mean daily baseflow to mean daily 
discharge, hydrograph separation performed 

using Ladson et al. (2013) digital filter

Mean half-flow date HFDmean Julian day on which the cumulative discharge since 
1 October reaches half of the annual discharge

Low-fow Q5 5% Flow quantile

High-flow Q95 95% Flow quantile

Frequency of days below 
threshold

05Q freq Frequency of days with Q < 0.5 m3 day–1
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10 of 27 Hydrological Processes, 2024

In the specific case of hourly radar corrections, the compos-
ite scaled score (CSS) proposed by Sofokleous et al. (2021) was 
calculated to better rank the correction methods applied. This 
index combines into a single score the values of KGE, RMSE 
and two deterministic verification scores: the extreme event 
score, EES (Sofokleous et  al.  2021) and the Peirce skill score, 
PSS (Peirce 1884). The latter skill scores are based on the com-
bination of hit rate (H) and frequency bias (fBIAS), which are 
themselves obtained according to a 2 × 2 contingency table that 
allows for each timestep to count hits (positive pairs—OBS and 
SIM events), false positives (only SIM event), misses (only OBS 
event) and correct non-events (both no events). For this case 
study, the CSS index was calculated according to this formula:

where j is the index that identifies the tested correction 
method, s represents the index of the four statistical measures 
(Ns = 4), xs,j is the values of the measure s from the correc-
tion method j, and xs,worst and xs,best are the worst and the best 
values, respectively, obtained for the measure s considering 
all tested methods (Table 1). Only datasets with a CSS value 
greater than the benchmark were considered for the hydro-
logic simulation step.

2.3.6   |   Assessment of the Hydrologic Model 
Performance

The evaluation of the hourly hydrologic simulations was done 
by comparing the observed discharge with those simulated with 
the different precipitation datasets with which the model was 
forced. In this study, a spin-up year was considered between 
October 2010 and September 2011. The calibration period was 
between October 2011 and March 2016, and the validation phase 
was between April 2016 and September 2020. KGE, NSE, RMSE 
and PBIAS were computed similarly to the radar correction. In 
addition, the logarithmic NSE (lnNSE) was calculated, because 
it gives more weight to low flows than the NSE (Krause, Boyle, 
and Bäse 2005). As with the evaluation of the datasets, the CSS 
index was exploited to compare the performance of the hydro-
logical model for the tested rainfall series taking into consider-
ation the scaled KGE, RMSE, lnNSE and PBIAS values.

Besides the goodness-of-fit indicators for hydrologic model 
performance derived under calibration and validation phases, 
other indices characterising the general hydrologic behaviour 
(hydrological signatures) were evaluated over the entire avail-
able period from October 2011 to September 2020. Following 
the approach of Addor et  al.  (2018), nine hydrological signa-
tures were selected by modifying them considering their rele-
vance for this case study (Table 3). For the low flow threshold 
(05Q freq), a value of 0.5 m3s–1 was selected to account for the 
limitations given by adding the MEF to the Sacco discharge se-
ries (see Section 2.2). These indices were calculated on the re-
cords obtained through streamflow simulations forced with the 
tested rainfall datasets and then compared with those obtained 
from the observed discharge with the coefficient of determina-
tion (R2).

(10)CSSj =
1

Ns

Ns
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3   |   Results

3.1   |   Radar Correction

The results of the LOO cross-validation test in terms of perfor-
mance metrics (KGE, NSE, RMSE PBIAS), and mean annual 

precipitation values are shown in Table 4 for all the tested data-
sets. These results show the values for the 14 weather stations 
on which the test could be performed (14WS) for all applied 
methods. The rain gauge network mean annual precipitation 
for 14WS is equal to 1230 and 962 mm/y. In this case study, the 
need for the radar data correction process is supported by the 

FIGURE 4    |    CSS values for all the tested datasets (refer to Table 1) considering the 14 stations in common. The distribution of scaled scores SS 
combined into the CSS index for each correction method considered is also presented.

FIGURE 5    |    The 21 sub-basins and their corresponding centroids (whose location is indicated by the number label).
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evidence that radar values underestimate observed values in 
study area by about 20% (annual cumulative values over the 
2010–2020 period). The characteristics of triangles and the 
coefficient values to carry out the LOO test on corrections ex-
ploiting TIN are shown in Table  A1. The results of the CSS 
index for the 14 weather stations are shown in Figure 4 and 
Table A2.

Table  4 and Figure  4 clearly show how the spatial approach 
outperforms the raw radar data, Rain gauge OK and the 
point-based datasets in all respects. The high performance 

of the spatial approach is confirmed by the CSS index, which 
attests that the Radar + OK correction is the best out of the 
nine tested data series with a value of 0.87. Despite not em-
ploying radar data in its calculation, Rain gauge TIN obtains 
solid results that are comparable to the spatial approach 
(CSS = 0.68) and improve on the benchmark dataset (raw 
radar data).

An advantage of the spatial approach is also its simplic-
ity of application compared with the point-based method. 
The latter is quite laborious to apply and time-consuming 

TABLE 5    |    Hydrologic simulation results for the Sacco and Eita basins regarding the calibration (from 2011-10-01 to 2016-03-31) and the validation 
phases (from 2016-04-01 to 2020-09-30).

Sacco basin

Calibration phase (from 2011-10-01 to 2016-03-31)

Raw radar 
data

Rain gauge 
TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

KGE 0.71 0.71 0.77 0.77 0.75 0.79 0.75

NSE 0.61 0.67 0.64 0.60 0.55 0.59 0.53

lnNSE −0.20 0.71 −0.25 −0.07 −0.24 0.25 0.10

RMSE (m3s−1) 1.42 1.30 1.36 1.45 1.52 1.46 1.57

PBIAS (%) −18.70 −6.20 −11.00 −4.70 −8.50 −1.90 −6.60

Sacco basin

Validation phase (from 2016-04-01 to 2020-09-30)

Raw radar 
data

Rain 
gauge TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

KGE 0.73 0.67 0.71 0.77 0.75 0.75 0.71

NSE 0.47 0.40 0.55 0.59 0.51 0.59 0.40

lnNSE −0.08 0.50 −0.18 0.22 −0.05 0.35 0.17

RMSE (m3s−1) 1.57 1.66 1.44 1.38 1.51 1.37 1.66

PBIAS (%) 10.30 11.60 18.80 12.70 6.40 13.90 6.40

Eita basin

Calibration phase (from 2011-10-01 to 2016-03-31)

Raw radar 
data

Rain 
gauge TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

KGE 0.71 0.84 0.76 0.74 0.72 0.79 0.82

NSE 0.61 0.76 0.63 0.55 0.53 0.70 0.66

lnNSE −0.20 0.81 0.69 0.38 0.62 0.81 0.73

RMSE (m3s−1) 1.42 0.93 1.17 1.28 1.31 1.05 1.11

PBIAS (%) −18.70 −4.80 −10.20 −4.60 −4.60 −4.60 −3.30

Eita basin

Validation phase (from 2016-04-01 to 2020-09-30)

Raw radar 
data

Rain 
gauge TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

KGE 0.73 0.72 0.71 0.70 0.78 0.76 0.72

NSE 0.47 0.44 0.55 0.42 0.59 0.54 0.44

lnNSE −0.08 0.18 −0.18 0.45 0.66 0.50 0.18

RMSE (m3s−1) 1.57 1.49 1.44 1.52 1.29 1.35 1.49

PBIAS (%) 10.30 10.40 18.80 10.40 8.10 7.60 10.40
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since it involves an initial phase of extracting the series, then 
calculating the TIN and weight coefficients, and, finally, 
the more time-demanding phase where the actual correc-
tion is applied and weighted averages are computed. In ad-
dition, with this approach, some important spatial pieces of 
information that the radar data carries are lost. For instance, 
the spatiotemporal evolution during rainstorm phenomena 
(Berne and Krajewski 2013; Sokol et al. 2021), which does not 
have to be interpolated again or reproduced through a TIN 
but is already provided by the radar resource cell by cell (even 
though it is not a direct measurement but a processed one). 
Therefore, even conceptually, the spatial approach proves to 
be successful because the radar data with all its information 
and field variations is taken as a trend and corrected at the 
weather station locations where underestimates or overesti-
mates are found.

3.2   |   Hydrologic Model Results

The geomorphological analysis delineated 10 sub-basins in 
the Eita basin and 11 sub-basins in the Sacco basin (Figure 5). 
The weather stations that constitute the vertices of the con-
sidered triangles and the relative weight coefficients for each 
sub-basin centroid are displayed in the Table A3. The hydro-
logic simulation results for the seven precipitation datasets 
that exceeded the benchmark CSS threshold of 0.33 are pre-
sented in Table 5 for the Sacco and Eita basins, respectively. 
Figure  A2 represents the comparison of the two basins by 
CSS values for both calibration and validation phases while 
Figure 6 depicts the coefficient of determination (R2) between 
the hydrological signatures selected for the tested datasets 
against the observed streamflow. Also, the ensemble hydro-
graphs are presented in Figure 7 (Sacco) and Figure 8 (Eita), 

FIGURE 6    |    Coefficient of determination (R2) between the hydrological signatures of the observed and simulated discharges for the two basins 
(see Table 3 for parameter names).
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highlighting the results obtained with the most robust dataset 
(Radar + OK). Tables A4 and A5 show the calibrated param-
eters for the two basins for the seven precipitation datasets 
used as input to feed the model.

The hydrologic modelling output confirms the benefit of ap-
plying the radar data correction. The best performance is 
obtained using the Radar + OK and Rain gauge TIN as the 
precipitation dataset, outperforming the other simulations fed 
with the other corrected series. Analysing the CSS values for 
the two branches of the hydrologic model (Figure 6), the aver-
age values between the calibration and validation phase rela-
tive to the Radar + OK dataset are better than the Rain gauge 
TIN for Sacco (0.81 vs. 0.67) and slightly higher for Eita as well 
(0.88 vs. 0.87). Remarkably, the model forced by Radar + OK 
precipitation data is robust for both basins considered, main-
taining in both the calibration and validation phases values 
of KGE and NSE above 0.75 and 0.59, respectively (Table 5). 
The hourly analysis of the RMSE and PBIAS values reveals 
the first weaknesses, with non-negligible RMSE ranging 

between 1.05 and 1.46 m3s−1, but not exceeding 14% bias. 
Even graphically it is possible to notice the error (grey shad-
ing in Figures 7 and 8) with higher dispersion in the summer 
periods (July–August) in comparison to other periods of the 
year throughout the time series. The low flow behaviour, on 
the other hand, is well captured, with relatively good hourly 
lnNSE values for the Radar + OK dataset in the Sacco basin 
(calibration 0.25—validation 0.35) and very good for the Eita 
basin (calibration 0.81—validation 0.86). In the specific case 
of the Sacco branch, the low flow is best captured by the Rain 
gauge TIN dataset with hourly lnNSE values of 0.71 and 0.50 
for calibration and validation, respectively. This situation can 
be ascribed to uncertainties related to the MEF considered 
only for the Sacco basin. Finally, regarding the calibrated pa-
rameters of the model (Tables A4 and A5), it is interesting to 
focus on the α correction coefficients for liquid precipitation 
which in all cases correct the overestimation of precipitation 
except for the TIN-CDF correction where the volume of water 
entering the system as precipitation is increased However, this 
trend does not seem to be related to relative rain differences 

FIGURE 7    |    Discharge rates (m3s−1) for the Sacco basin for (a) the calibration (October 2011–March 2016) and (b) the validation period (April 
2016–September 2020) and the precipitation of the Grosio rain gauge (C).
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in Table  4. The analysis of storage characteristics depicts a 
typical behaviour of a mountain catchment. The runoff com-
ponent is characterised by low maximum storage volumes 
with high response, compared to those of the Root zone and 
Groundwater components.

Regarding the analysis of hydrological signatures, as shown in 
Figure 6, the benchmark dataset (Raw radar data) presents rel-
atively good values for many signatures (e.g., on the frequency 
of values below the threshold of 0.5 m3s–1, 05Q freq) except 
for the baseflow index (BFI) and the reach of mean half-flow 
date (HDFmean). The lower values for Qmean summer com-
pared with Qmean winter highlight issues related to the dif-
ficulty of correctly simulating snowmelt dynamics. Overall, 
the Radar + OK dataset performs better than the others with 
an average R2 of around 57% for both basins but does exhibit 
below-average values for BFI and HDFmean, indicating them as 
weaknesses of the hydrologic model in reproducing this aspect 
of the hydrologic behaviour of the two basins. The Rain gauge 

TIN and Radar + DK datasets also show consistently good per-
formance with similar average R2 values around 50% and 56% 
for Sacco and Eita, respectively.

4   |   Discussion

Many radar adjustments can be found in the literature that com-
bine radar data with rain gauges networks and apply geostatisti-
cal techniques (mostly kriging with external drift) to adjust the 
mean-field bias (e.g., Haberlandt  2007; Seo, Breidenbach, and 
Johnson 1999; Velasco-Forero et al. 2009; Wang et al. 2013). For 
instance, in Borga et al. (2002), a correction of the hourly radar 
signal was successfully applied over an area of the same size 
as Valgrosina (about 130 km2) focusing on the vertical profile 
of reflectivity, anomalous propagation of the radar beam, and 
Mean-Field bias, adjusting an underestimation of about 24% 
(very close to the 20% of this case study). Likewise the spatial 
approach applied in this work, in Sinclair, and Pegram. (2005) 

FIGURE 8    |    Discharge rates (m3s−1) for the Eita basin for (a) the calibration (October 2011–March 2016) and (b) the validation period (April 2016–
September 2020) and the precipitation of the Grosio rain gauge (C).
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radar data were used to refine spatially confined information 
derived from interpolation between rain gauges performing the 
Conditional Merging technique (Ehret 2002). This process gen-
erates an estimate of the precipitation field that preserves the ac-
curate spatial structure while meeting the constraints imposed 
by the ground-measurements. The results of the tests conducted 
in this study support the findings of Thorndahl et  al.  (2017), 
namely, that spatial geostatistical approaches appear to be the 
most advanced among those applied in the research community. 
A similar approach was applied by Cheng et al.  (2017), where 
different rainfall sets derived from rain gauge-based interpo-
lations were used as input of a hydrologic model. The authors 
showed that the Principal Component Regression with resid-
ual correction technique, which considers the morphological 
characteristics of the study area such as, for instance, elevation 
and slope, is the best against deterministic techniques. In this 
research, no technique that involved the morphological char-
acteristics was tested (except for Radar + DK correction where 
the elevation of weather stations was considered), because the 
goal was to find a correction that needed a minimum of data 
and was improved by the integration of the rain gauge network 
to increase its operational efficiency. Furthermore, it should be 
recalled that the radar data used is a product of the application 
of co-kriging with external drift, calibrated for the Swiss terri-
tory and not outside the Swiss borders, where the radar signal 
is practically raw. A further step of investigation could be to test 
geostatistical techniques that massively integrate descriptive 
variables of the morphology of the study area. Using the same 
modelling approach (GEOframe system) but only by exploiting 
the interpolation routine embedded in the model (Rain gauge 
OK in this study) for the meteorological variables (temperature 
and precipitation), examples can be found applied in southern 
Italy (Bancheri, Rigon, and Manfreda 2020) and north-eastern 
Italy (Arnone et al. 2023), under data-scarce conditions in con-
trast to this case study.

Since spatial methods have a comparable performance in 
terms of CSS (quality of precipitation data) and model robust-
ness, they could be used collectively as an ensemble to evalu-
ate possible uncertainties in the estimation of the discharge at 
the dam lake inlet. This potential next step would represent 
a strategic operational tool by which probabilistic streamflow 
simulations can be obtained. In detail, if used operationally, 
these simulations could represent different initial conditions 
for forecast runs. Also, by defining a water storage threshold 
level for the dam lake, the ensemble of streamflow simulations 
can be used to optimise hydropower production in the study 
area by considering different management scenarios with 
their associated uncertainties. This represents a crucial factor 
for integrated reservoir management since it indicates the op-
erational threshold of water availability. Conversely, the point-
based methods showed a lower performance compared to the 
spatial ones and were very complex to develop. Therefore, the 
added value in including them in such an implementation 
would be extremely limited. However, considering the compa-
rable performance of the model calibrated with TIN-CDF and 
the benchmark dataset, the point-based approach showed the 
potential to be tested by transferring the bias-correction ap-
plied on legacy records to nowcast radar data, when available 
from the same source.

5   |   Conclusions

In this study, precipitation data derived from weather radar 
were corrected based on a network of 22 rain gauges in the 
Italian Alps, using a point-based and a spatial method. 
The point-based method exploits a system of TINs and 
weighted averages. The spatial approach applies determin-
istic and geostatistical techniques on residuals and then 
obtains a corrected surface by exploiting the radar value as 
a trend (Radar + correction on residuals). By LOO cross-
validation tests, the observed precipitation series recorded 
at the 14 common rain gauges were compared with all nine 
datasets: the raw radar data, precipitation interpolations 
(Rain gauge TIN and Rain gauge OK), point-based cor-
rections (TIN-copula and TIN-CDF), spatial corrections 
(Radar + IDW, Radar + TPS, Radar + OK, and Radar + DK). 
Datasets with a CSS value greater than benchmark precipi-
tation series (raw radar data) were used as input to the semi-
distributed GEOFrame hydrologic model and parameters 
were calibrated.

From both the radar correction and modelling perspectives, 
the Radar + OK correction emerges the best, outperforming the 
other datasets with mean KGE with values of 0.51 for precipita-
tion correction and 0.79 and 0.75 for hydrologic model calibra-
tion and validation, respectively. Although there are problems 
in modelling summer periods (average overestimation of 12% for 
Eita and 18% for Sacco, for the June–September months), forcing 
the model with the Radar + OK (and Rain gauge TIN) precipita-
tion datasets produced significant improvements in simulating 
low flows compared with using the other corrected precipitation 
datasets with mean hourly lnNSE values of 0.30 (0.61) and 0.74 
(0.63) considering all the record for Sacco and Eita, respectively. 
This represents a crucial factor for integrated watershed man-
agement because it indicates the operational threshold of water 
availability.

This study presented two approaches of hourly radar correc-
tion techniques that can be improved by adding terrain mor-
phological attributes as co-variates. These results emphasise 
the potential of exploiting radar data in hydrologic modelling. 
This not only expands the possibilities of having increasingly 
accurate and responsive streamflow simulations, but also pro-
motes more resilient management of water resources in this 
ever-changing field.
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Appendix A

FIGURE A1    |    Schematic diagram of components and their connection in the GEOframe hydrological system using Petri Nets representation 
(Bancheri, Serafin, and Rigon 2019) (modified from GEOframe Winter school supporting material).
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TABLE A1    |    Weather stations representing the triangle vertexes used to carry out the LOO cross-validation test on a specific rain gauge (first 
column) are listed in the table.

Name Station 1 Station 2 Station 3 ka kb kc

A-Eita Q-Valdisotto, Oga S.Colombano N-Valdidentro, Arnoga C-Grosio 0.29 0.33 0.38

B-Malghera A-Eita U-Poschiavo/Robbia C-Grosio 0.27 0.42 0.31

C-Grosio M-Tirano J-Monno A-Eita 0.26 0.29 0.46

D-Aprica — — — — — —

E-Bormio R-Valfurva O-Valdidentro, Cancano P-Valdisotto, 
Arginone

0.23 0.41 0.37

F-Edolo, Ist. Meneghini D-Aprica G-Edolo, Pantano d'Avio J-Monno 0.21 0.29 0.51

G-Edolo, Pantano d'Avio — —— — — — —

H-Livigno, la Vallaccia K-Livigno, Foscagno S-Passo del Bernina B-Malghera 0.76 0.11 0.14

K-Livigno, Foscagno T-Buffalora H-Livigno, la Vallaccia O-Valdidentro, 
Cancano

0.11 0.72 0.17

J-Monno F-Edolo, Ist. Meneghini P-Valdisotto, Arginone C-Grosio 0.43 0.24 0.34

I-Ponte di Legno — — — — — —

L-Teglio — — — — — —

M-Tirano B-Malghera D-Aprica C-Grosio 0.35 0.31 0.33

N-Valdidentro, Arnoga Q-Valdisotto, Oga S.Colombano K-Livigno, Foscagno A-Eita 0.31 0.41 0.28

O-Valdidentro, Cancano E-Bormio T-Buffalora Q-Valdisotto, Oga 
S.Colombano

0.37 0.19 0.44

P-Valdisotto, Arginone I-Ponte di Legno E-Bormio J-Monno 0.23 0.49 0.28

Q-Valdisotto, Oga S. 
Colombano

E-Bormio N-Valdidentro, Arnoga P-Valdisotto, 
Arginone

0.35 0.37 0.28

R-Valfurva — — — — — —

S-Passo del Bernina — — — — — —

T-Buffalora — — — — — —

U-Poschiavo/Robbia S-Passo del Bernina L-Teglio B-Malghera 0.42 0.17 0.41

V-S. Maria — — — — — —

Note: The relative coefficients (function of the point-weather station distance) to perform the weighted average are also shown.
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TABLE A3    |    Weather stations representing the triangle vertexes used to correct the hourly radar precipitation series in the cell corresponding to 
the centroid sub-basin (first column) are listed in the table.

ID sub-basin Station 1 Station 2 Station 3 k_a kb kc

45 B-Malghera M-Tirano C-Grosio 0.35 0.36 0.29

39 B-Malghera M-Tirano C-Grosio 0.50 0.28 0.22

35 B-Malghera M-Tirano C-Grosio 0.25 0.26 0.49

34 B-Malghera M-Tirano C-Grosio 0.27 0.20 0.53

33 B-Malghera M-Tirano C-Grosio 0.34 0.22 0.44

32 B-Malghera M-Tirano C-Grosio 0.48 0.23 0.30

30 U-Poschiavo/Robbia M-Tirano B-Malghera 0.19 0.18 0.63

29 P-Valdisotto A-Eita C-Grosio 0.09 0.20 0.71

25 B-Malghera U-Poschiavo/Robbia M-Tirano 0.76 0.14 0.09

24 P-Valdisotto A-Eita C-Grosio 0.17 0.38 0.45

21 P-Valdisotto A-Eita C-Grosio 0.14 0.48 0.38

17 A-Eita B-Malghera C-Grosio 0.18 0.60 0.22

16 N-Valdidentro B-Malghera A-Eita 0.06 0.86 0.08

14 A-Eita B-Malghera C-Grosio 0.76 0.08 0.16

12 A-Eita B-Malghera C-Grosio 0.43 0.22 0.36

11 N-Valdidentro B-Malghera A-Eita 0.21 0.50 0.29

10 N-Valdidentro B-Malghera A-Eita 0.26 0.34 0.40

9 N-Valdidentro S-Passo del Bernina B-Malghera 0.15 0.14 0.71

8 P-Valdisotto A-Eita C-Grosio 0.26 0.50 0.24

6 Q-Valdisotto A-Eita P-Valdisotto 0.13 0.76 0.11

4 A-Eita N-Valdidentro B-Malghera 0.74 0.18 0.09

Note: The relative coefficients (function of the point-weather station distance) to perform the weighted average are also shown.
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FIGURE A2    |    Performance comparison using CSS values for the two basins and for both calibration and validation periods.

TABLE A4    |    GEOframe parameters calibrated for the Sacco basin considering all the precipitation datasets.

Sacco basin
Raw radar 

data
Rain gauge 

TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

αr 0.93 0.91 1.11 0.83 0.92 0.88 0.82

αs 1.19 0.97 1.18 0.59 0.56 0.80 0.83

Melting temperature 0.10 −0.18 0.32 −0.01 0.31 −0.49 −0.67

Combined Melting factor 0.88 0.93 0.79 0.97 0.94 0.97 0.74

αl 0.70 0.82 0.76 0.77 0.88 0.65 0.73

Kc 0.59 0.45 0.70 0.57 0.78 0.31 0.46

p 0.85 0.86 0.80 0.89 0.63 0.76 0.11

s_RootZoneMax 38.40 34.74 43.16 149.13 97.81 94.56 70.83

g 7.99 7.36 2.54 5.23 0.55 2.46 1.44

h 1.10 2.31 1.36 2.49 2.84 2.57 2.62

pB_soil 1.11 2.79 0.49 1.58 1.55 2.20 2.01

s_RunoffMax 168.92 123.69 148.46 38.91 85.36 73.80 139.46

c 1.20 9.86 10.92 13.55 3.41 9.62 2.26

d 1.87 2.77 1.69 2.41 2.33 2.85 2.60

s_GroundWaterMax 193.90 181.93 114.35 164.75 122.67 190.17 82.11

e 6.65 1.84 5.21 7.82 9.92 3.52 8.63

f 2.19 2.48 2.20 1.95 1.97 1.36 1.41
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TABLE A5    |    GEOframe parameters calibrated for the Eita basin considering all the precipitation datasets.

Eita basin
Raw radar 

data
Rain gauge 

TIN TIN-CDF Radar + IDW Radar + TPS Radar + OK Radar + DK

αr 0.82 1.02 1.19 0.87 1.18 0.93 0.88

αs 0.83 0.95 1.19 0.61 1.15 0.83 0.68

Melting temperature −0.35 0.07 −0.19 0.20 −0.31 −0.27 −0.09

Combined Melting factor 0.90 0.87 0.76 0.97 0.54 0.98 0.99

αl 0.60 0.81 0.78 0.80 0.71 0.61 0.83

Kc 0.59 0.21 0.28 0.53 0.18 0.36 0.68

p 0.74 0.81 0.70 0.83 0.90 0.67 0.68

s_RootZoneMax 96.65 109.78 65.26 135.74 79.94 107.78 49.25

g 0.95 3.69 6.41 6.33 8.87 1.37 1.73

h 2.85 2.37 2.44 2.55 1.01 2.59 2.33

pB_soil 1.73 1.79 1.86 0.99 1.37 1.48 2.18

s_RunoffMax 83.03 95.17 56.06 26.61 41.85 61.07 74.68

c 6.59 9.05 18.31 14.43 5.75 3.06 3.18

d 2.66 1.88 2.63 2.58 2.29 1.64 2.91

s_GroundWaterMax 78.02 105.84 283.12 158.79 107.09 239.00 233.56

e 5.98 2.57 5.69 6.85 1.90 9.13 7.13

f 1.93 2.99 1.22 1.52 1.91 2.05 1.71
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