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A B S T R A C T   

Although the Covid-19 pandemic is still ongoing, the environmental factors beyond virus trans
mission are only partially known. This statistical study has the aim to identify the key factors that 
have affected the virus spread during the early phase of pandemic in Italy, among a wide set of 
potential determinants concerning demographics, environmental pollution and climate. Because 
of its heterogeneity in pollution levels and climate conditions, Italy provides an ideal scenario for 
an ecological study. Moreover, the selected period excludes important confounding factors, as 
different virus variants, restriction policies or vaccines. The short-term relationship between the 
infection maximum increase and demographic, pollution and meteo-climatic parameters was 
investigated, including both winter-spring and summer 2020 data, also focusing separately on the 
two seasonal periods and on North vs Centre-South. Among main results, the importance of 
population size confirmed social distancing as a key management option. The pollution hazardous 
role undoubtedly emerged, as NO2 affected infection increase in all the studied scenarios, PM2.5 
manifested its impact in North of Italy, while O3 always showed a protective action. Whereas 
higher temperatures were beneficial, especially in the cold season with also wind and relative 
humidity, solar irradiance was always relevant, revealing several significant interactions with 
other co-factors. Presented findings address the importance of the environment in Sars-CoV-2 
spread and indicated that special carefulness should be taken in crowded areas, especially if 
they are highly polluted and weakly exposed to sun. The results suggest that containment of 
future epidemics similar to Covid-19 could be supported by reducing environmental pollution, 
achieving safer social habits and promoting preventive health care for better immune system 
response, as an only comprehensive strategy.   

1. Introduction 

Early phase of SARS-CoV-2 pandemic in Europe started in Italy on January 30th, 2020, giving rise to the so-called 1st wave. 
Lockdown restrictions were adopted on the whole nation from March to May, when the restrictions were gradually eased because of 
the important reduction of infections, then the 1st wave was considered ended in June [1]. 
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This time frame probably represents the most reliable period to be investigated, because many confounding/modifying factors were 
still absent or mitigated (i.e. vaccination campaign, region-dependent restriction policies, different methodologies for SARS-CoV-2 
tests, virus variants leading to different symptomatology and transmissibility [2], etc). 

Italy represents an interesting study scenario because of its territorial heterogeneity, in terms of pollution, land morphology, which 
in turn affects climate variability. In fact, Northern Italy is attached to the European continent and protected from winds by the Alps 
and Apennine mountains, while the Centre-South is a peninsula dominated mainly by Mediterranean climate and subjected to Atlantic 
and African winds (Fig. 1). The unbalanced virus spread between the North and the remaining part of the nation addressed many 
researchers to hypothesize a detrimental effect of long-term pollution on infection probability and/or COVID-19 severity, as the Po 
Valley is one of the most polluted areas of Europe [3–7]. It is however to consider that other aspects could have mitigated the virus 
transmission in the South of the nation, as the implementation of mobility restrictions just after the first outbreaks in Lombardy. 
However, other than the risk due to uncontrolled movements before ‘getting locked’ [8], it is interesting that also in very crowded 
southern cities, as Rome or Naples, the virus outbreaks led to a very milder spread, suggesting some other possible unknown protective 
factors [7]. Another intriguing aspect is the impressing reduction of infections in summer, giving rise to different causal in
terpretations, as the prolonged lock-down period before summer, the different environmental conditions in terms of both climate and 
pollution, or the seasonal trends in immunological reactivity that support the view of SARS-CoV-2 as a ‘seasonal virus’ just like other 
coronaviruses [9]. 

Although most of infections happen in indoor settings [10], the role of outdoor pollution and climatic conditions seems ascertained 
by several ecological studies [11,12]. One reason why exposure to air pollutants and unhealthy climatic conditions could affect viral 
transmission might rely on the deleterious effects of air pollution on humans, through the weakening of the immune system reaction 
[4,13] bringing to comorbidities that can rise up the number of symptomatic cases with consequent increases in positive swabs. Also, 
indoor environments are affected by ambient pollution. While opening windows in temperate and unpolluted areas can improve the 
indoor environmental quality (IEQ), in polluted areas, pollutants can infiltrate indoors through windows and HVAC systems [14]. That 
is one of the reasons why a correct design and management (e.g. filtering clean-up frequency and ventilation efficiency) of HVAC 
systems requires major attention [15,16]. Virus transmission can also occur outdoors, in a lesser extent and especially in case of 
crowding – e.g. during super-spreading events (sport matches, concerts etc.) [17]. 

The scientific literature reported different sets of possible determinants to be investigated. Among them, climatic conditions (as 
temperature, relative humidity, wind, air pressure, solar irradiation) were extensively studied and usually linked to a seasonal pattern 
of viral spread [9]. For instance, solar irradiation, affects the levels of vitamin D in the body, which helps the immune system response 
[18]. Among majorly studied pollutants, NO2 and PM were frequently associated to increases in COVID-19 infections, the first because 
of its interaction with alveolar cells, the second by triggering the inflammatory response just like SARS-CoV-2, thus increasing 
cardio-respiratory risk [16,19]. Irritants for the lungs are also SO2 and O3, leading to controversial findings in the literature [5,20–22]. 
Other factors can affect SARS-CoV-2 infection, as people size and density, the social behaviour of people (e.g. family size, people 
standing alone, vehicular mobility), vulnerability (age, oldness index, gender) [6]. In previous findings, population size and density 

Fig. 1. Selected capital provinces on the Italian territory (created by internet application Google Maps, Alphabet Inc. - Mountain View, CA).  
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were contradictorily linked to Covid-19 spread, as these variables can involve socio-economic factors, restriction policies and cultural 
compliance to their respect, besides reflecting the probability of interpersonal contacts [23,24]. The altitude and presence of the sea 
were also considered among the determinants because they can affect pollutant levels and aerosol composition [11,25]. 

Our work aims to investigate environmental and human factors that could have affected the spread of Covid-19. As a novelty of the 
study, the focus was on the difference in the impact of the virus depending on the geographical area as well as on the time of the year, 
trying to highlight area- and time-specific determinants. In detail, the main determinants concurring in infection spreading were 
investigated during the early pandemic phase in 57 Italian provinces (Fig. 1) including also the summer period, and investigated the 
previous environmental conditions, including pollutant concentrations (PM2.5-10, PM2.5, O3, SO2 and NO2) and climatic factors 
(temperature (T), solar irradiance (IR), wind speed (WS) and relative humidity (rH)), and controlling for demographics characteristics 
(number of province inhabitants, population density etc.) and vehicular mobility. This research focused on short-term correlations, so 
the time of the maximum increase of positive cases (MaxΔ+) was deemed as a good proxy of the infectious trend. This choice allowed 
to disregard some important latent factors (i.e. socioeconomic status, symptom gravity, comorbidities, quality of local sanitary sys
tem), as it simply represents the maximum strength of the virus spread in a well-defined area and investigated the preceding envi
ronmental conditions. Moreover, it is not directly related to incidence, as it represents the maximum positive variation of confirmed 
cases during a defined period, so the size of related province population was tested as a possible determinant factor. Daily determinant 
data were recorded and averaged in the days from 20 to 14 before the MaxΔ+7. This (14–20)-day lag period was chosen starting from 
the known average incubation phase of 6/7 days with a range between 1 and 14 days [26], and considering the time needed to perform 
the PCR test, get the positive result and communicate it to central authority, a latency period of two weeks (i.e. 14 days) before the 
moment of the MaxΔ+ was considered reasonably correct. Finally, the MaxΔ+ was averaged on a three-day period, to account for 
possible delays in the communication process from local to central authorities and reduce overestimation, especially after the weekend 
(3d-MaxΔ+). Thus, briefly the dependent variable represents the peak of new infections (one during the 1st wave and one during 
summer) (averaged on the 3 day before the peak) for each selected province, that was studied in association with potential de
terminants collected with a 2-weeks lag. 

The study aims to highlight: 1. the statistically-significant relationships between the outcome and potential determinants 
considered on the whole, 2. the period-specific factors, concurring in so different pandemic scenarios, studying the cold and warm 
season separately (1st wave vs summer), so freezing the effect of the restriction policy of the 1st wave on the summer (as the rela
tionship between the MaxΔ+ and the 14-20-lagged determinant factors cannot be affected by the trend of the previous months), 3. the 
impact of different pollution levels and climatic factors on confirmed positive cases in the two areas of Italy, by splitting the territories 
included at the borders of the Po valley from the remaining part of the nation (North vs Centre-South). The applied statistical approach 
investigated, into the same picture, the contribution of different factors considered together, identifying the most impacting on virus 
spread, starting from a single-determinant selection, then assessing their overall contributions to the variability of the outcome. 
Finally, the applied mixed model allows accounting for latent factors, linked to specific regional scenarios (including regional specific 
policies added to the national regulation, heterogeneity of people habits, cultural and socioeconomic status, etc.). 

2. Methods 

2.1. Data collection 

The study involved 57 Italian province capitals, at least two for each region (if present), always including the region capitals while 
the others were randomly selected. Province position on the national territory is graphically depicted in Fig. 1. The study was focused 
on MaxΔ+ (i.e. the maximum increase of confirmed cases, identified among daily data of new cases, communicated by the provinces to 
the Italian National Institute of Health [27]. Infected persons were recognized by a positive nasopharyngeal swab with a real-time PCR 
process. This approach remained unchanged for the different phases of the pandemic considered in this study, as antigen tests were 
included in the count starting only from January 2021 [28]. 

To include accumulation effect due to possible delays in the communication process, caused by the high pressure of the emergency 
or for organizational issues, the MaxΔ+ was averaged including cases of the two days before the peak. This approach reduced the 
possible overestimation of the number of the maximum number of registered new positives (3d-MaxΔ+). 

The 3d-MaxΔ+ was established in relation to two different periods: the first ranged from the start of the pandemic to the end of 
spring (i.e. from February 20th to June 20th, 2020, briefly called ‘1st Wave’), while the second period included the entire summer (21st 
June to 21st September, i.e. ‘Summer’). 

As mentioned, daily data of determinants were recorded in the days from 20 to 14 before the MaxΔ+. This lag was selected taking 
into account the mean incubation period and the time required to perform the PCR test and obtain the positivity result. In detail, for the 
summer, if the period of data collection fell in the spring, due to considered temporal lag (i.e. before June 21st), the successive peak 
was studied, in order to don’t overlap infections still linked to the ‘1st wave’. 

All collected data were publicly available data, except for irradiance. Demographic data were retrieved from the official website of 
the Italian National Institute of Statistics referring to 2019 data [29]. Demographic characteristics were the number of inhabitants of 
the province, population density (resident inhabitants per km [2]), mean age (weighted on the population number in each age class), 
gender (expressed as percentage of males on total province population), index of oldness (defined as number of people >65 years 
old/nr of people 0–14 years old)*100), family size (number of persons belonging to the same residential unit), number of persons living 
alone (unipersonal family). 

Environmental pollution data concerned daily levels of PM10, PM2.5, O3, SO2 and NO2, and were obtained from public databases 

P. Urso et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e15358

4

managed by the Regional Environmental Protection Agencies. In order to assess the impact of coarse particles, the concentration of the 
PM2.5-10 fraction was calculated by subtraction of PM2.5 from PM10. 

The average daily data regarding T, rH, WS and IR, were retrieved by the databases mentioned above, when available, otherwise by 
free public websites [30]. 

Daily values of irradiance were kindly furnished by the meteorological service of Italian Military Airforce (“Centro Operativo per la 
Meteorologia (COMET)”), that is supported by EUMETSAT, responsible of data and satellite service in Italy. Irradiance was provided by 
Daily Surface Solar Irradiance (netCDF), that furnishes an estimate of the daily solar irradiance reaching the Earth surface, derived 
from the 0.6 μm visible channel of SEVIRI on board the geostationary satellite Meteosat. The integration of all the hourly values in the 
UT day allows obtaining the daily value, that is then remapped onto a 0.05◦ regular grid and data are reported in function of longitude 
and latitude [31]. 

Vehicle mobility was expressed as the percentage of variation in traffic volume with respect to a baseline period (i.e. January 13th 
to 16 February 16th, 2020). These data were obtained by an interactive mobility map, implemented by Enel X with HERE Technol
ogies, in order to depict the trend of different parameters, as the percentage variation in macro-mobility flux of trips compared to well 
defined periods, with data available in regional, province and municipal scale and updated daily [32]. 

Territorial characteristics included in the analysis as covariates were altitude and presence of the sea on the capital province coast. 
Geographically, the ‘North’ area was identified by regions included among the Alpine arch, the Po Valley and the Apennine chain, 

so covering the provinces of Val d’Aosta, Piedmont, Lombardy, Veneto, Trentino, Friuli-Venezia Giulia, Emilia-Romagna regions, 
while the ‘Central-South’ area involved all provinces of the remaining territory. 

2.2. Statistical analysis 

The p-value cut-off for significance was set at 0.05. The statistical software used was SPSS.27 (IBM Corp., Armonk, NY, USA). 
The outcome was tested for normality by Kolmogorov-Smirnov test and data log-transformation was performed to achieve a loge- 

normal distribution and reduce heteroscedasticity. Daily continuous determinants were represented by the average value on the 
monitoring week. Descriptive statistics of the outcome and of the potential determinants was performed (Tables 1–3). Parameters were 
also tested for difference between the two monitoring periods by Wilcoxon test or t-paired test, and the two geographic areas by Mann- 
Whitney test or by t-test, depending on the data distribution, if parametric or not. 

Association of potential determinants to the outcome was assessed by linear mixed models for repeated measurements (LMM). This 
approach allows to correctly model the cross-sectional repeated observation design. Mathematically, the model can be briefly syn
thetized by the expression: Yi = Xiβi + Ziui + εi where i = 1, …, n is the case number ranging among the n provinces (n = 57), Yi 
represents the studied dependent variable (3d-MaxΔ+), Xi is the fixed effects matrix of the study and βi the fixed effect vector (un
derlying the tested independent variables), while Zi is the random effect matrix of the study and ui is the random vector (i. e. belonging 
regions), with εi representing the residuals [14]. 

Indeed, as the study considered the same variables in the same set of provinces (subjects), repeated in two different temporal 
scenarios (i.e. the 1st wave and the summer period), the statistical model has to take into account the inter-variability between 
provinces (i.e. different associations to the potential determinants) and the intra-variability of the same province between the two 
moments of monitoring, which is expected to give site-specific dependent associations. Moreover, the study design contains a 
multilevel structure, as different provinces belong to the same region, and each region is considered to have unmeasured latent factors 
(i.e. different restrictions due to pandemic, industrialization or agricultural prevalence, occupational issues, population habits, specific 
management of emergency and organizational issues in Covid-19 test performing and communication to the ISS, etc.): so the regions, 
where the provinces are located, were included as random factors. 

Interactions among determinants were tested, always including in the model main effects, even not significant [33]. As generally 
adopted, variables were ‘centered’ by subtracting the mean from each score, yielding a ‘centered score’ [34], and standardized Z 

Table 1 
Descriptive statistics for the number of the maximum increase of positive cases (MaxΔ+) for each studied province capital and the average over 3-days 
including the MaxΔ+ day (3d-MaxΔ+). Results are summarized for the total sample, the two studied periods separately (1st Wave and summer) with 
significant difference reported by p-value of Wilcoxon or t-paired test, and geographic position (North and Centre-South) with significant differences 
reported by p-value of Mann-Whitney or t-test (depending on data distribution).  

Outcome n Arithmetic Mean ± S.D. Median [IQR] Min-Max p-value 1stW vs S p-value N vs C–S 

MaxΔ + (Maximum increase of new positive cases) (n) 
Total 114 93.2 ± 141.0 45 [87] 4–868 <0.001 0.002 
1st Wave 57 146.0 ± 180.9 80.0 [119] 10–868  <0.001 
Summer 57 40.5 ± 41.1 27.0 [38] 4–185  0.732 
North 46 142.8 ± 186.3 78 [145.3] 4–868   
Centre-South 68 59.7 ± 85.9 31.5 [56.0] 4–628   
3d-MaxΔ+ (Average of cases including 3-days from MaxΔ+) (n) 
Total 114 54.9 ± 85.6 25.3 [520] 1.3–521.3 <0.001 0.002 
1st Wave 57 85.2 ± 109.3 49.3 [83.5] 4.0–521.3  <0.001 
Summer 57 24.7 ± 31.1 12.3 [25.7] 1.3–151.0  0.678 
North 46 85.9 ± 116.6 40.3 [83.3] 1.7–521.3   
Centre-South 68 34.0 ± 46.0 16.2 [30.9] 1.3–287.0    
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models were performed, in order to achieve better understanding of results (estimate and significance reported as bZ and pZ). The 
modification of the effect on the outcome of interacting variables was graphically addressed by the Simple-Slope method, that allows to 
study the relationship grouping the ‘moderator’ (or interacting variable) in terms of ±1 SD (Figs. 4 and 5) [35]. 

The statistical approach comprises the bivariate analysis of 3d-MaxΔ+ versus its potential determinants, which were tested 
singularly (estimate and significance reported as bbiv and pbiv) (Table 4). Then, only the ones presenting a significant association were 
included in the multi-determinant models, using a backward stepwise approach. Rival models were compared by the Akaike and 
Bayesian Information Criteria, based on the restricted maximum likelihood estimation (AIC and BIC), the lower the better will be the 
fitting (with a threshold in difference between models <2) and the unstructured covariance matrix for repeated measures was chosen 
[36]. Collinearity of determinants was tested by the evaluation of the Variance Inflaction Factor (VIF), with a cut-off of 1.5. 

The study of determinants, both seasonal (i.e. 1st Wave and Summer) and geographic (i.e. North and Centre-South), was carried out 
applying the same statistical approach. 

As environmental data were sometimes unavailable, missing data were assigned by multiple imputation (MI) if present in at least 
20% of cases. Ten imputations were obtained by an iterative Markov Chain Monte Carlo method, using available predictors showing a 
very strong association (R > 0.85) and confirmed by scientific knowledge. Missing data were excluded by MI when no predicting 
factors for imputation were available. The average of the assigned values was then included in the dataset. The use of multiple 
imputation was aimed to diminish loss of information on other parameters included in the model owing to the reduced statistical 
power. For this reason, dataset completed by MI was used in the only multivariate statistical models, and missing values were left in 
descriptive and bivariate analysis. 

3. Results and discussion 

Data were completely collected for every data-set except for environmental pollutants, which had 26.3% missing data for SO2, 
15.8% for PM2.5, 2.6% for PM10 and 5.3% for O3; in only one case air pollution data were unavailable (i.e. Autonomous Province of 
Bolzano-South Tyrol). SO2 was analyzed for descriptive statistics and bivariate models, but it was excluded from MI process in multi- 
determinant models, as missing data exceeded the defined cut-off (20%). 

Descriptive statistics of the outcome are reported in Table 1 and graphically represented by map clustering in Fig. 2(a and b), 
showing significantly higher 3d-MaxΔ+ in the North of the nation during the 1st wave (Fig. 2(a)), and a drastic reduction in the 
summer period (Fig. 2(b)). 

Potential determinants are shown in Tables 2 and 3, while Tables 4 and 5 summarize single- and multi-determinant linear mixed 
models, with model coefficients estimates representing bbiv in Table 4 and bZ in Table 5. Interaction terms are graphically depicted in 

Table 2 
Descriptive statistics for demographic and geographical parameters. Results are summarized for the total sample, the two studied periods separately 
(1st Wave and summer) with significant difference reported by p-value of Wilcoxon or t-paired test, and geographic position (North vs Centre-South) 
with significant differences reported by p-value of Mann-Whitney or t-test (depending on data distribution).  

Potential determinants N Arithmetic Mean ± S.D. Median [IQR] Min-Max p-value N vs C–S 

Demographics 
% males vs 100 females 57 48.8 ± 0.5 48.9 [0.8] 47.7–49.8 0.193 
North 23 48.9 ± 0.4 49.0 [0.7] 48.0–49.6  
Centre-South 34 48.8 ± 0.5 48.8 [0.8] 47.7–49.8  
Nr hinabitants (thou) 57 703.3 ± 799.8 430.9 [660.3] 32.8–4333.3 0.248 
North 46 755.7 ± 730.4 532.1 [627.0] 125.5–3280.0  
Centre-South 68 667.8 ± 852.3 429.6 [583.1] 32.8–433.3  
Population density (n/Km2) 57 309.3 ± 439.7 219.0 [228.0] 49.0–2615.0 0.202 
North 23 343.1 ± 437.0 275.0 [234.0] 57.0–2082.0  
Centre-South 34 286.3 ± 446.6 187.0 [219.0] 49.0–2615.0  
Average age (y) 57 46.1 ± 1.7 46.2 [2.1] 42.1–49.2 0.974 
North 23 46.2 ± 1.5 46.2 [1.8] 43.0–49.2  
Centre-South 34 46.0 ± 1.8 46.2 [2.2] 42.1–49.2  
Oldness index (%) 57 191.4 ± 36.1 190.4 [42.7] 121.5–212.8 0.235 
North 23 187.2 ± 34.3 184.7 [36.5] 126.6–263.8  
Centre-South 34 194.2 ± 37.5 195.7 [44.1] 121.5–272.8  
Family size (n) 57 2.3 ± 0.1 2.3 [0.2] 2.0–2.7 0.002 
North 23 2.2 ± 0.1 2.3 [0.2] 2.0–2.4  
Centre-South 34 2.4 ± 0.1 2.4 [0.2] 2.0–2.7  
People standing alone (n) 57 549.3 ± 413.2 553.0 [504] 32.0–1499.0 0.001 
North 23 780.6 ± 491.8 723.0 [883.0] 32.0–1499.0  
Centre-South 34 392.9 ± 256.9 309.0 [388.0] 47.0–936.0  
Geomorphologic characteristics 
Altitude 57 174.7 ± 233.8 54.0 [269.5] 2.0–931.0 1.000 
North 23 133.6 ± 161.2 61.0 [177.0] 2.0–583.0  
Centre-South 34 202.5 ± 271.2 40.0 [393.5] 3.0–931.0  
Province coasting sea 57 23 (40.4%) – – 0.235 
North 23 3 (13.0%) – –  
Centre-South 34 20 (58.8%) – –   
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Table 3 
Descriptive statistics for environmental pollutants, meteorological parameters and vehicular mobility. Results are summarized for the total, the two 
studied periods separately (1st Wave and summer) with significant difference reported by p-value of Wilcoxon or t-paired test, and geographic 
position (North and Centre-South) with significant differences reported by p-value of Mann-Whitney or t-test (depending on data distribution).  

Potential determinants n Arithmetic Mean ± S.D. Median [IQR] Min-Max p-value 1stW vs S p-value N vs C–S 

Environmental pollutants 
PM2.5 (μg/m3) 
Total 96 12.1 ± 5.3 11.9 [6.3] 3.2–32.9 <0.001 0.053 
1st Wave 48 14.0 ± 6.1 13.1 [9.0] 3.2–32.9  0.001 
Summer 48 10.1 ± 3.6 9.2 [5.2] 3.4–21.0 0.544 
North 36 13.4 ± 5.3 12.9 [9.5] 4.9–25.7   
Centre-South 60 11.3 ± 5.3 11.0 [5.3] 3.2–32.9   
PM2.5-10 (μg/m3) 
Total 110 7.7 ± 4.2 7.1 [4.6] 1.3–27.3 0.378 0.559 
1st Wave 56 7.6 ± 4.8 6.8 [5.0] 1.3–27.3  0.268 
Summer 54 7.8 ± 3.5 7.4 [4.1] 1.4–16.1  0.716 
North 43 7.8 ± 3.7 6.9 [5.1] 1.3–20.5   
Centre-South 67 7.7 ± 4.5 7.1 [3.4] 1.4–27.3   
NO2 (μg/m3) 
Total 112 24.5 ± 13.2 21.8 [17.8] 3.0–60.9 0.004 0.819 
1st Wave 56 28.2 ± 14.3 27.3 [20.6] 6.3–60.9  0.597 
Summer 56 20.7 ± 11.0 17.4 [13.9] 3.0–55.4  0.330 
North 44 23.6 ± 11.2 21.9 [14.7] 7.7–57.0   
Centre-South 68 25.1 ± 14.5 21.2 [20.0] 3.0–60.9   
O3 (μg/m3) 
Total 108 75.1 ± 24.7 79.9 [33.2] 24.9–128.1 <0.001 0.030 
1st Wave 55 65.2 ± 22.7 71.7 [45.1] 24.9–104.3  0.002 
Summer 53 85.4 ± 22.4 89.0 [30.2] 29.6–128.1  0.563 
North 42 67.7 ± 26.5 72.7 [49.8] 24.9–112.9   
Centre-South 66 79.8 ± 22.4 83.5 [29.3] 29.6–128.1   
SO2 (μg/m3) 
Total 84 3.2 ± 2.5 2.8 [2.7] 0.3–16.1 0.549 0.548 
1st Wave 43 3.5 ± 3.0 3.0 [3.3] 0.7–16.1  0.559 
Summer 41 2.9 ± 2.0 2.7 [2.4] 0.3–8.6  0.831 
North 33 3.5 ± 3.0 3.0 [2.9] 0.9–16.1   
Centre-South 51 3.0 ± 2.2 2.7 [2.7] 0.3–10.4   
Meteorological parameters 
T (◦C) 
Total 114 17.2 ± 7.8 16.1 [14.9] 2.6–29.4 <0.001 0.014 
1st Wave 57 9.9 ± 2.4 10.3 [2.9] 2.6–14.0  <0.001 
Summer 57 24.6 ± 2.9 25.1 [4.4] 18.2–29.4  0.055 
North 46 15.8 ± 8.3 15.0 [15.8] 2.6–28.7   
Centre-South 68 18.2 ± 7.4 16.1 [14.5] 6.0–29.4   
rH (%) 
Total 114 65.1 ± 9.8 65.1 [13.9] 41.2–90.9 0.267 0.021 
1st Wave 57 66.6 ± 9.4 65.0 [14.0] 46.0–90.9  0.276 
Summer 57 63.7 ± 10.1 65.1 [14.6] 41.2–81.5  0.018 
North 46 68.0 ± 9.8 69.4 [15.9] 49.4–90.9   
Centre-South 68 63.2 ± 9.4 64.0 [10.8] 41.2–80.9   
WS (m/s) 
Total 114 2.2 ± 1.1 2.1 [1.3] 0.4–5.5 0.132 <0.001 
1st Wave 57 2.1 ± 1.1 1.8 [1.4] 0.4–5.5  0.055 
Summer 57 2.4 ± 1.1 2.1 [1.5] 0.5–5.2  <0.001 
North 46 1.7 ± 0.8 1.7 [1.0] 0.4–4.2   
Centre-South 68 2.6 ± 1.1 2.5 [1.4] 0.9–5.5   
IR (MJ/m2) 
Total 114 14.6 ± 41.0 14.7 [61.0] 39.7–21.8 <0.001 <0.001 
1st Wave 57 11.5 ± 29.1 11.8 [38.0] 39.7–17.5  <0.001 
Summer 57 17.7 ± 25.1 17.7 [37.5] 11.6–21.8  <0.001 
North 46 12.6 ± 41.2 13.0 [73.1] 39.7–20.1   
Centre-South 68 16.0 ± 34.8 16.5 [57.2] 98.3–21.8   
Vehicular mobility vs baseline (%) 
Total 114 − 2.9 ± 41 − 7.2 [42.1] − 75.0–141.0 <0.001 0.054 
1st Wave 57 − 30.6 ± 21.2 − 23.7 [38.4] − 75.0-(-1.0)  0.929 
Summer 57 24.8 ± 37.0 17.6 [32.5] − 51.6–141.0  <0.001 
North 46 − 11.6 ± 34.3 − 12.3 [29.0] − 75.0–141.0   
Centre-South 68 3.0 ± 44.2 − 3.4 [54.1] − 68.1–128.7    
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Figs. 4–5 and the statistical parameters referred to ±1SD of the interaction terms are indicated by Z/±1SD. 

3.1. Demographic determinants 

Demographic parameters showed an important effect on the outcome in single-determinant models. The crucial parameter was the 
province population size, visually represented in Fig. 3, as our data showed that high-population provinces had higher increases of 

Table 4 
Linear mixed models for potential single determinant vs MaxΔ+ (average on 3 days, log-transformed) for the whole sample (repeated measurements). 
The study periods separately (1st Wave and summer) and the geographic position with respect the Apennine chain (North vs Centre-South) (repeated 
measurements). Results are reported as estimate bbiv and p-value.  

Single determinant models 

y = Ln (3d-MaxΔþ) Total 1st Wave Summer North Centre-South  

bbiv p-value bbiv p-value bbiv p-value bbiv p-value bbiv p-value 

Demographic characteristics 
% males − 0.070 0.806 − 0.008 0.980 − 0.120 0.707 0.337 0.411 − 0.511 0.138 
Nr inhabitants 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 
Population density 0.001 0.001 0.001 0.017 0.001 0.001 0.001 0.074 0.001 0.008 
Average age − 0.095 0.234 − 0.011 0.911 − 0.156 0.079 − 0.230 0.043 0.002 0.987 
Oldness index − 0.007 0.048 − 0.006 0.197 − 0.008 0.038 − 0.010 0.044 − 0.003 0.571 
Family size − 1.198 0.209 − 2.785 0.011 0.469 0.661 3.222 0.078 − 1.411 0.215 
People alone 0.001 <0.001 0.002 <0.001 0.001 0.095 0.001 0.001 0.002 0.015 
Geomorphologic characteristics 
Altitude − 0.002 0.005 − 0.001 0.063 − 0.002 0.004 − 0.001 0.457 − 0.001 0.027 
Coasting sea − 0.019 0.945 − 0.580 0.065 − 0.445 0.140 − 0.681 0.175 0.652 0.053 
Environmental pollutant (μg/m3) 
PM2.5 0.092 <0.001 0.062 0.023 − 0.023 0.628 0.179 <0.001 0.022 0.358 
PM2.5-10 − 0.038 0.206 − 0.008 0.808 − 0.066 0.140 − 0.016 0.722 − 0.047 0.082 
NO2 0.041 <0.001 0.026 0.019 0.029 0.035 0.062 0.001 0.029 0.002 
O3 − 0.034 <0.001 − 0.028 <0.001 − 0.002 0.823 − 0.032 <0.001 − 0.018 0.005 
SO2 − 0.005 0.936 − 0.018 0.792 − 0.109 0.229 − 0.029 0.658 − 0.015 0.839 
Meteorologic parameters 
T (◦C) − 0.084 <0.001 − 0.234 <0.001 − 0.023 0.663 − 0.123 <0.001 − 0.049 <0.001 
rH (%) 0.026 0.033 0.026 0.124 0.012 0.434 0.027 0.162 0.010 0.454 
WS (m/s) − 0.292 0.009 − 0.294 0.044 − 0.181 0.183 − 0.262 0.232 − 0.161 0.136 
IR (MJ/m2) − 0.175 <0.001 − 0.183 <0.001 − 0.045 0.457 − 0.237 <0.001 − 0.104 <0.001 
Vehicular mobility (%) 
vs baseline − 0.013 <0.001 − 0.003 0.887 − 0.010 0.004 − 0.017 0.003 − 0.009 <0.001  

Fig. 2. Map clustering of the study outcome (3d-MaxΔ+)[n] for the selected capital provinces during (a) the 1st wave and (b) the summer. The 
maps were generated with Archicad v.18. 
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positive cases. As showed in Table 2, it resulted comparable in the two considered macro-areas (p = 0.248), together with population 
density (p = 0.202), and it was strongly linked to the outcome either in the single- (bbiv = 0.001, pbiv<0.001) or in the multi- 
determinant model (bZ = 0.502, pZ < 0.001), both in the North (bZ = 0.401 ÷ 0.461, pZ<=0.001) and in the Centre-South of Italy 
(bZ = 0.442 ÷ 0.457, pZ < 0.001), both in summer (bZ = 0.600, pZ < 0.001) and in the 1st wave (bZ = 0.279 ÷ 0.276, pZ < 0.001). This 
reflects the importance of inter-relationship between persons and the difficulties in physical distancing among subjects living in high- 
density population areas, as reported by Boterman et al. [17]. Interestingly, in the Centre-South and in summer, that is the lower 

Table 5 
Multi-determinant linear mixed models for standardized maximum increase of cases (average on 3 days, log-transformed) for the whole sample 
(repeated measurements), the study periods separately (1st Wave and summer) and the geographic position (North vs Centre-South) (repeated 
measurements). Results are reported as estimate bZ, confidence interval and p value. All variables were standardized. Models with difference in AIC or 
BIC <2 were reported as equivalent.  

Multi-determinant models: y = Z Ln (3d-MaxΔþ) 

Total (N = 112, Subj = 56)  

AIC = 213.6; BIC = 243.5  
bZ CI 95% p-value    

Nr inhabitants (K) 0.502 (0.374; 0.629) <0.001    
NO2 (μg/m3) 0.169 (0.043; 0.295) 0.009    
O3 (μg/m3) − 0.196 (-0.335; − 0.057) 0.006    
T (◦C) − 0.259 (-0.463; − 0.056) 0.013    
IR (MJ/m2) − 0.135 (-0.345; 0.075) 0.206    
IR * + 1DS(T) 0.076 (-0.189; 0.341) 0.569    
IR* -1DS(T) − 0.345 (-0.564;-0.126) 0.002    
1st wave (N = Subj = 56)  

AIC = 88.3; BIC = 114.6 AIC = 89.3; BIC = 113.6  
bZ CI 95% p-value bZ CI 95% p-value 

Nr inhabitants (K) 0.279 (0.149; 0.408) <0.001 0.267 (0134; 0.400) <0.001 
Family size − 0.196 (-0.333; − 0.059) 0.006 − 0.269 (-0.401;-0.136) <0.001 
NO2 (μg/m3) 0.241 (0.124; 0.358) <0.001 0.429 (0.231; 0.626) <0.001 
O3 (μg/m3) − 0.329 (-0.478; − 0.180) <0.001 − 0.410 (-0.564; 0.256) <0.001 
T (◦C) − 1.173 (-1.829; − 0.518) 0.001 − 1.213 (-1.869;-0.556) <0.001 
T * + 1DS (rH) − 1.852 (-2.597;-1.107) <0.001 – – – 
T * -1DS (rH) − 0.495 (-1.324; 0.334) 0.237 – – – 
IR (MJ/m2) − 1.189 (-1.804;-0.574) <0.001 − 0.763 (-1.406;-0.133) 0.021 
IR * + 1DS(T) − 2.122 (-3.259;-0.984) <0.001 − 1.461 (-2.649; − 0.273) 0.017 
IR* -1DS(T) − 0.256 (-0.487;-0.024) 0.031 − 0.065 (-0.302; 0.173) 0.588 
IR *þ1DS(NO2)    − 0.468 (-1.211; 0.276) 0.213 
IR * -1DS(NO2)    − 1.058 (-1.673;-0.442) 0.001 
WS (m/s) − 0.142 (-0.269;-0.015) 0.029 − 0.138 (-0.269;-0.006) 0.040 
rH (%) − 0.730 (-1.188;-0.272) 0.002 – – – 
Summer (N = Subj = 57)  

AIC = 108.3; BIC = 122.6  
bZ CI 95% p-value    

Nr inhabitants (K) 0.600 (0.451; 0.750) <0.001    
O3 (μg/m3) 0.280 (-0.034; 0.594) 0.079    
IR (MJ/m2) − 0.032 (-0.294; 0.229) 0.805    
IR * + 1DS(O3) − 0.416 (-0.782;-0.050) 0.027    
IR * -1DS(O3) 0.351 (-0.072; 0.775) 0.102    
North (N = 46; Subj = 23)  

AIC = 71.1; BIC = 92.5 AIC = 72.2; BIC = 93.6  
bZ CI 95% p-value bZ CI 95% p-value 

Nr inhabitants(K) 0.401 (0.189; 0.613) 0.001 0.461 (0.245; 0.678) <0.001 
PM2.5 (μg/m3) 0.372 (0.242; 0.501) <0.001 0.343 (0.196; 0.489) <0.001 
NO2 (μg/m3) 0.411 (0.072; 0.749) 0.019 0.386 (0.196; 0.489) 0.023 
O3 (μg/m3) − 0.498 (-0.669;-0.326) <0.001 − 0.325 (-0471;-0.178) <0.001 
IR (MJ/m2) − 0.159 (0.334; 0.015) 0.072 − 0.152 (-0.346;-0.041) 0.119 
IR *þ1DS(NO2) 0.355 (-0.042; 0.752) 0.078 0.335 (-0.068; 0.739) 0.101 
IR * -1DS(NO2) − 0.674 (-0.851;-0.497) <0.001 − 0.640 (-0.837; − 0.443) <0.001 
IR * + 1DS(O3) − 0.301 (-0.483;-0.118) 0.002 – – – 
IR * -1DS(O3) − 0.018 (-0.235; 0.198) 0.862 – – – 
Mobility (%) – – – − 0.166 (-0.328; − 0.003) 0.046 
Centre-South (N = 68; Subj = 34)  

AIC = 138.3; BIC = 156.1 AIC = 137.4; BIC = 166.4  
bZ CI 95% p-value bZ CI 95% p-value 

Nr inhabitants (K) 0.457 (0.289;0.625) <0.001 0.441 (0.284; 0.597) <0.001 
NO2 (μg/m3) 0.172 (0.401;0.323) 0.027 0.197 (0.044;0.349) 0.013 
O3 (μg/m3) - - - − 0.198 (-0.383; -0.014) 0.036 
T (◦C) − 0.265 (-0.020; -0.323) <0.001 - - - 
IR (MJ/m2) - - - − 0.221 (-0.399;-0.044) 0.016  
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pollution period, this was the most impacting determinant. Also, population density, typically used as a surrogate for the 
inter-relationships among persons, was significant in single-determinants models excluding the North (bbiv = 0.001; pbiv =

0.001–0.074), but it loses significance when other predictors were included. Familiar size, greater in the Centre-South (p = 0.002), was 
inversely associated with 3d-MaxΔ+ during the only 1st wave, also in multi-determinant models (bZ = − 0.196; pZ = 0.006), suggesting 
a relationship with lockdown-related behaviors: as the kindergartens and schools were closed, parents of infants/children/teen-agers 
were prevented from going to work physically, because of take care of children, and working from home was more likely than for single 
or couples, ensuring them greater isolation from people outside the family unit. In addition, severe Covid-19 disease was very rare for 
young people/children [37], so the presence of a high family size may also be related to a higher number of asymptomatic or mild 
symptomatic patients, who did not undergo a diagnostic swab, especially in the 1st wave, because of the sanitary stress. These con
siderations are confirmed by the result that, in single-determinant models only, the number of people living alone, significantly higher 

Fig. 3. Map clustering of (a) the inhabitant number [thou], (b) NO2 [μg/m3], (c) solar irradiance [MJ/m2] for the selected capital provinces during 
the 1st wave. The map was generated with Archicad v.18 (https://graphisoft.com/). 

Fig. 4. (a-b-c-d) Simple slope graphs for significant interaction terms between irradiance and co-pollutants vs the outcome (ln 3d-MaxΔ+ (z)): (a) 
during 1st wave with NO2, (b) in summer with O3, in North of Italy (c) with NO2 and (d) with O3. All variables are standardized. 
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in the North (p = 0.001), was associated to the increase of the number of cases (bbiv = 0.001 ÷ 0.002, pbiv≤0.001 ÷ 0.095). Average 
age, comparable in the two subgroups (p = 0.974), was linked to a reduction of cases in the North of Italy (bbiv = − 0.230; pbiv = 0.043), 
as younger was the population, more interrelationship due to job or recreational activities was probable. Similarly, provinces with 
higher percentage of persons more than 70-years old, which presented a comparable distribution in the studied macro-areas (p =
0.235), were less prone to get infection (to be distinguished from mortality), as the retirement allowed them to avoid the exposure due 
to working activity and to conduct a more prudent life-style, also because of the deterrent effect played by the enhanced severity of 
COVID-19 in the elderlies (bbiv = − 0.003÷-0.010; pbiv = 0.038 ÷ 0.197). This was confirmed by the lack of significance during the 1st 
wave, as the lockdown restrictions resulted also in a conspicuous number of workers remaining at home. Gender distribution, com
parable in North and Centre-South (p = 0.193), was not found to be related to differences in contagious increase. This result is coherent 
with official reports of Istituto Superiore di Sanità, that indicates only a slight higher percentage of infected females (51.1%) compared 
to males (48.9%) [38]. Vehicle mobility was significantly lower in the 1st wave than in the summer period (p < 0.001), because of the 
restriction policy, especially in the North of Italy (p = 0.014). Its increase was linked to a reduction of cases in all the considered 
scenarios (bbiv = − 0.013÷-0.017; pbiv<0.001 ÷ 0.004), except for the 1st wave (pbiv = 0.887), when lockdown restrictions were in 
force. Interestingly, during summer, when all the restrictions were homogeneously abandoned in the whole nation, a reduction of 
3d-MaxΔ+ was related to an increase of vehicular mobility (bbiv = − 0.010; pbiv = 0.004). Similarly, in multi-determinant models, in 
the northern area, where public transport are widely utilized and commuting is a frequent working condition [39], its increase results 
in a protective effect (bZ = − 0.166, pZ = 0.045). So, this result can be conceivably linked to the shift to the use of private cars, instead of 
public transfer vehicles, that can be assumed as an indirect indicator of a reduction potential of infection contexts. 

All these population characteristics coherently showed the very important effect of people behavior on the virus spread, most of 
them remaining significant also in summer, when most part of pollutants and meteorological parameters, very important during the 1st 
wave, lost their impact. However, as already underlined [7], spread was very different also in big province capitals, (i.e. Rome, Naples, 
Palermo), requiring to focusing the investigation also on potential environmental determinants. 

3.2. Pollution determinants 

In our study, almost all the considered pollutants were associated to the outcome but not for the summer period: this lack of 
correlation could be linked to the reduced variability of pollution on the whole territory (Table 3, Fig. 2(b)) or, on the other hand, to 
the substantial decrease of infected persons (Table 1). Nevertheless, NO2 levels remained linked to the variability of the 3d-MaxΔ+ also 
during summer period, confirming its well-known deleterious effect for human health and suggesting its impact on COVID-19 sus
ceptibility [19,40]. 

During the warm season, NO2 outdoor concentration was lower than in the 1st wave (p = 0.004), however its effect remains 
significant in the single determinant model (bbiv = 0.029; pbiv = 0.035), and during the 1st wave (bbiv = 0.026, pbiv = 0.019). 
Negligible differences emerged between NO2 concentrations in the two considered macro-areas (p = 0.819), and it remained positively 

Fig. 5. (a-b-c) Simple slope graphs for significant interactions among the outcome (ln 3d-MaxΔ+ (z)) and meteo-climatic parameters: (a) IR with T 
in the total sample (1st wave + Summer), during 1st wave (b) IR with T and (c) T with rH. All variables are standardized. 
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linked to 3d-MaxΔ+ in both North (bbiv = 0.062; pbiv = 0.001) and Centre-South (bbiv = 0.029; pbiv = 0.002). NO2 affected the 3d- 
MaxΔ+ in all the multi-determinant models (excluding summer, with a borderline significance pZ = 0.068). Another interesting result 
is its modifier effect on irradiance, that was stronger protective for lower levels of NO2 (-1SD) during the 1st wave and in the northern 
area (bZ/-1SD = − 1.058, pZ/-1SD = 0.001 and bZ/-1SD = − 0.640, pZ/-1SD < 0.001, respectively) (Fig. 4a-c), indicating that, when pollution 
and atmospheric stability are high, the beneficial solar action can be influenced by NO2 reduction, because of the concurring O3 
production [41], other than the NO2 absorption itself [42]. 

The positive association of short-term exposure to NO2 with COVID-19 incidence rate was already reported elsewhere [4,19,20]. 
One possible explanation lies on the role of NO2 exposure in incrementing the activity of Angiotensin-converting-enzyme-2 (ACE2), the 
SARS-CoV-2 receptor in the alveolar cell [40]. An epidemiological study in the U.S. showed also that long-term exposure to NO2 can 
contribute to some extent to severe COVID-19 outcomes, independently from long-term PM2.5 and O3 exposures, making people more 
biologically vulnerable to COVID-19 and its severe outcomes [43]. 

Our data indicated that O3 played a protective role in virus spread. It was higher in summer and in the Centre-South of the nation (p 
< 0.001 and p = 0.030), as expected because of its photochemical origin, that depends on solar radiation. Our findings indicated its 
role in the reduction of 3d-MaxΔ+ in all the considered scenarios and in single-determinant models (bbiv = − 0.034÷-0.018; 
pbiv<0.001 ÷ 0.005), excluding summer (bbiv = − 0002, pbiv = 0.823) (Table 4). Interestingly, in multi-determinant models, during 
summer it had a crossover interaction with irradiance, with protective impact when, for increasing IR, its levels were high (1SD) (bZ/ 

1SD = − 0.416, pZ/1SD = 0.027) (Fig. 4-b). In all the remaining scenarios, it presented always significant main effect on the outcome (bZ 
= − 0.196÷-0.498; pZ < 0.001 ÷ 0.036), and, in the Northern area, similarly to summer, a synergic effect with solar irradiation for its 
higher levels (bZ/1SD = − 0.301, pZ/1SD = 0.002) (Fig. 4-d). This association can be related to two concurring factors: by one side, ozone 
concentration is inversely associated to NOx presence, being a product of photochemical reaction of NO2 itself, even if no higher 
correlation neither significant interaction terms emerged in the models. On the other side, it is widely used for its virucidal action due 
to the oxidizing power, which typically inactivates SARS-CoV-2 and other enveloped viruses, causing damages to the viral capsid and 
genetic material [44] at concentrations much higher than those measured in this study. It could be hypothesized that high short-term 
outdoor O3 concentrations could lead to low indoor O3 levels sufficient to reduce viral viability and SARS-CoV-2 lifetime also in indoor 
air. Such a finding is not properly in contradiction with the well-known deleterious effect of ozone for human health, because of its 
irritant action and oxidative stress on the respiratory tract, as the outcome here considered was unrelated to the severity of symptoms 
or deaths, but to only the 3d-MaxΔ+. Actually, the effect of O3 short-term exposure on SARS-CoV-2 spread brought to controversial 
findings. It was linked to an increase of new cases in some studies [5,20,45,46] but all of them analyzed the effect of this pollutant 
considering a short time-span (1–2 months) during the only lockdown period, when the gradual increase of O3, reasonably due to the 
containment measures that reduced the concurrent NOx levels, could result in an apparent positive relationship with pandemic spread 
[5]. On the other side, Kolluru et 2020 [47] approached the study including pre-lockdown, lockdown and unlocked period (Febru
ary–June 2020), obtaining the opposite relationship, coherently with our study. Moreover, all the cited studies did not considered 
multi-determinant models, with controlling factors or interaction terms, and they are sometimes related to very homogeneous or small 
areas. So, comparison with the current scientific literature can be somewhat misleading. 

A largely investigated pollutant was PM, that, in our study, was related to the worsening of the spread of Covid-19. First of all, we 
found a positive association of 3d-MaxΔ+ with the levels of PM2.5, but not for PM2.5-10 (i.e. the only coarse fraction). This was un
surprising as the coarse fraction is unable to reach the lung alveolar region, while the PM2.5 is a well-known hazard for human health. 
This pollutant follows a typical seasonal trend and thus resulted higher during the 1st wave (p < 0.001), when was significantly higher 
in the North (p = 0.001). The effect of PM2.5 on 3d-MaxΔ+ in single determinant models was always present in the whole sample, 
during the 1st wave and in the North of Italy (bbiv = 0.062 ÷ 0.179; pbiv<0.001 ÷ 0.023), suggesting that PM2.5 pollution is someway 
linked to the outcome when high levels occur. In multi-determinant models, fine PM manifested its worsening impact on the infection 
spread in the only Northern area (bZ = 0.372 ÷ 0.343; pZ < 0.001), suggesting that the environmental pollution of the Po valley played 
a not negligible role in promoting the infection process. These results are coherent with most of previous findings on the relationship 
between short- and long-term exposure to PM2.5 and COVID-19 incidence indicators [3–6,20,47]. It should be noted that our approach 
did not allow to discern if PM2,5 acts as a SARS-CoV-2 carrier or a COVID-19 booster, as the applied statistical method can only reveal 
the association but not the underlying mechanisms. However, the health impacts of fine PM on the respiratory and cardiovascular 
systems are well-established [48] and linked to inflammatory response, contributing to the cytokines storms and interacting with the 
same molecular targets of SARS-CoV-2 [49]. On the other side, the inhalation of saliva aerosol and droplets is of primary importance in 
COVID-19 infection [50] and thus the presence of SARS-CoV-2 RNA in PM samples is more than expected, especially in indoor en
vironments occupied by positive cases. Some authors have argued that SARS-CoV-2 can be transported via solid aerosols [51,52], but 
SARS-CoV-2 viability in outdoor aerosols has to be better assessed, as infection through inhalation of SARS-CoV-2 contaminated solid 
particles is considered very unlikely [53] because of the almost negligible probability of coagulation of virus-laden aerosol with 
pre-existing atmospheric particles and further inhalation [54], other than of maintaining the virus viable in conditions of high tem
perature and UV radiation [55]. 

Even if some studies conducted in other parts of the world indicated that SO2 was negatively correlated to virus transmission, 
suggesting a possible anti-viral action [20], no significant association emerged for this pollutant in our study. This is unsurprising, as 
ambient concentrations of SO2 are extremely low in Italy and no significant variability resulted in all the considered scenarios (p >
0.548). 

P. Urso et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e15358

12

3.3. Meteorological determinants 

A fundamental added value to the overall picture is brought by meteorological parameters, that are well recognized as affecting the 
vitality of viruses and their spread, and several studies confirmed SARS-CoV-2 does not represent an exception [7,56,57]. Several 
ecological and epidemiological studies have suggested that COVID-19 could be a seasonal disease, as summer climatic conditions (as 
warm temperatures, low humidity and higher solar irradiation) can strengthen the immune system response [9]. 

In our study, the correlation between temperature and irradiance (R = 0.839, VIF = 3.4) complicates the understanding of their 
concurrent actions. In all the scenarios, except for summer, the two parameters had a direct effect on the outcome in single- 
determinant models (bbiv = − 0.049 ÷ 0.234, pbiv<0.001 for T and bbiv = − 0.104 ÷ 0.237, pbiv<0.001 for IR) and maintained a 
significant relationship in multi-determinant models. Statistically speaking, almost all the models that better fit data contained 
interaction terms. When considering 1st wave and summer together, temperature increase was linked to a decrease of cases (bZ =

− 0.259, pZ = 0.013). Moreover an enhanced protective effect with increasing IR was significant in the range of around 10 ◦C (-1SD) 
(bZ = − 0.345, pZ = 0.002) (Fig. 5-a). Interesting, this is coherent with models concerning only the 1st wave, with temperatures 
centered around 9.9 ± 2.4 ◦C, when both the T and IR resulted main predictors and their concurring positive effect was confirmed by 
data (bZ = 2.122 ÷ 1.461, pZ < 0.001 ÷ 0.017) (Fig. 5-b). This leads to the interpretation that irradiance plays a synergic protective 
effect at Italian typical winter temperatures, so more in cold than in warm scenarios (1st wave vs summer). Finally, while in the North 
of Italy IR was majorly impacting in the multi-determinant analysis, in the Centre-South two concurring models emerged, including 
temperature and IR separately (ΔAIC<2, lower BIC for T model), and again T resulted in a decrease of the outcome (bZ = − 0.265, pZ <

0.001) (Table 5). 
Other than IR, rH resulted to play a synergic protective effect with higher temperature, during the only 1st wave. rH was com

parable in the two periods (p = 0.267) and it resulted higher in the North (p = 0.021); moreover, it was associated to an increase of the 
outcome in the single-determinant model for the whole sample (bbiv = 0.026, pbiv = 0.033), which is confirmed by literature [6]. 
However, a significant negative interaction with increasing temperatures emerges when its levels were medium-high (1SD) (bZ =

− 1.852, pZ < 0.001) (Fig. 5-c), confirming that droplets travel shorter in high-humidity environments, when atmospheric stability is 
higher with moderate cold weather [58], typical of the 1st wave scenario, because of slower evaporation dynamics [7]. Last researches 
on turbulence dynamic of puff, as the ones generated by sneezes and coughs, mainly responsible of Covid-19 transmission among 
individuals, just highlighted they buoyant and travel faster and longer when temperature are lower, both indoor that outdoor [59], and 
humidity can reasonably affect the evaporation process, so the dimension and pathway of the puff. 

The inverse effect of temperature is widely found in literature [60–62]. Consistently, Harmooshi et al., 2020 [63] argued a 
decreased transmissibility of COVID-19 at high outdoor temperatures, and virus survival and/or droplet/aerosol evaporation also 
depend on the microclimatic conditions of indoor environments. However, the association between temperature and COVID-19 spread 
leads to controversial results, as reviewed by Pareskevis et al., 2021 [64] and by Rahimi et al., 2021 [22]. This can be due by different 
possible reasons. First of all, ignoring the interaction with other environmental or climatic modifier factors can produce different 
results, and also the effect of high outdoor temperature can be modified by the huge use of air conditioning at indoor level; finally a 
non-linear relationship, as the hypothesized inverse U-shape relationship [61,65], can bring to different conclusions depending on the 
area of the study, if tropical or temperate. It was found that temperatures increasing to about 5 ◦C were linked to a major transmission 
of the virus, while when T was higher than 5 ◦C transmissibility was reduced [66]. Moreover, when temperatures exceeded 20 ◦C, then 
a non-correlation was found [67], as demonstrated by the pandemic spread in most US states even in summer days with temperature 
above 37 ◦C [45]. We totally confirmed this behavior, as increasing temperatures were linked to a decrease of cases, especially with 
high IR, but, during the most warm period of summer, the 3d-MaxΔ+ resulted to be totally independent by temperature, suggesting 
some different mechanism of spread in the higher range of typical Italian summer period (about 24.5 ± 3 ◦C) and that warm tem
peratures alone cannot contain virus spread [64]. 

Since now, solar irradiance has been poorly investigated when controlling with the other concurring factors [68]. Our data show 
that solar irradiance has an important protective effect on COVID-19 spread, both through its direct role and through interaction with 
other determinants. Indeed, models indicate IR had an important main effect during the 1st wave, as higher levels were linked to a 
decrease of the outcome (bZ = − 1.189÷-0.763, pZ < 0.001 ÷ 0.017), and this impact was confirmed when considering the only 
Centre-South (bZ = − 0.221, pZ = 0.016). However, other to its direct action, all the possible interaction terms were tested, obtaining 
interesting findings. Indeed, as previously showed, it increased the protective effect of temperature in a relatively cold range of Celsius 
degrees (~10 ◦C). Inversely, with high atmospheric stability, typically during the 1st wave and in the Northern area, high levels of 
irradiance acted stronger for low levels of NO2, reasonably due for the concurring O3 production and NO2 filtering of solar rays from 
the atmosphere [42]. Coherently, it contributed to the reduction of cases when interacting with O3 in northern area (i.e. Po Valley) and 
in summer, when presents a cross-over relationship, suggesting a synergic effect against the virus spread. So, it is reasonable to affirm 
that without considering interaction with co-factors (very often ignored in the scientific literature), the study of determinants models is 
probably incomplete and could bring to some controversial issues or interpretation mistakes. 

The direct role of irradiance was already investigated and relies on two biological processes [13]: the first regards the well-known 
virucidal action of solar UV radiation, especially UV-B and UV-C, which can efficiently reduce the viral infectivity by inactivation, 
estimated up to 90% after 90 min of exposure for mid-latitude sites in the spring-summer months [57]. The second is linked to the 
synthesis of vitamin D, that is promoted by the exposure to solar UV radiation, as lead to photo-conversion of the pro-vitamin D3 in the 
skin [69]. Moreover, vitamin D produces a well-recognized response of the body immune system to viral and bacterial infections [70] 
protects pulmonary barrier, reduces inflammation. Symmetrically, D hypovitaminosis, very frequent in elderly (majorly hit by 
SARS-CoV-2), can enhance susceptibility to infection, as supported by studies on the association of clinical outcome and vitamin D 
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levels [18]. Two specific issues have to be underlined in relation to our study: Italy has a latitude extension sufficient to present very 
different solar irradiance, with significantly greater levels e in the central-southern regions. Moreover, on a temporal scale, it was 
found that in Italy the irradiance is about 10-fold higher during summer than in winter and, consequently, blood sampling showed the 
minimum level of vitamin D in April and maximum in September [71]. Both aspects are well-fitting the early phase of Covid-19 
pandemic and our most convincing result on the importance of irradiance is its crucial association when data of the only 1st wave 
were studied. The very heterogeneous levels of irradiance, present in Italy during the national lockdown of the 1st wave, allows to 
impute a protective effect of the solar power on the population, that was less prone to manifest infection in the southern part of the 
country as well as in summer, reasonably enhanced by the possible concurring action of ozone. Indeed, the unknown mixing effect on 
infection decrease in summer, given by lock-down policy of preceding months and very different environmental conditions (in terms of 
both air pollution and climate), can act in the same direction but with unwell defined weights. However, freezing the data at the only 
summer period and studying the variability of the only summer outcome, even notably reduced respect to the 1st wave, undoubtedly 
shows that environment pollution loses its importance, probably because of the significantly lower concentrations of PM and NO2, 
while IR and O3 were protective only if both presented high levels (Fig. 4-d). So, in summer, the interrelation among persons, rep
resented by population size, but also, with less extent, by the vehicular mobility, are the parameters that mainly account for. 

Wind speed resulted a significant contributor to the decrease of the outcome overall and during the 1st wave (bbiv = − 0.292÷- 
0.294, pbiv = 0.009 ÷ 0.044). During the 1st wave it remained significant also in multi-determinant model (bZ = − 0.138 ÷ 0.142; pZ =

0.029 ÷ 0.040), as its presence has a major impact in ambient air cleaning and virus droplets dispersion during the major atmospheric 
stability period, other that the reduction of pollutants than are hypothesized to favor infections. This was also the interpretation of 
previous works [5,62,68] linking the low atmospheric stability to the dispersion and dilution of the air pollutants (PM2.5 and NO2), 
positively correlated with the peak of COVID- 19 cases on a 14-days lag basis. 

In summary, our study has the strength to identify the demographic, climatic, and pollution-related determinants of Covid-19 
spread, which hit northern Italy more dramatically than the remaining part of the nation during the first wave. Similarly, it ad
dresses the reasons behind the drastic reduction of infections in summer and suggests interpretation of the determinants resulting from 
the statistical analysis. Moreover, the applied statistics approach is tailored on the specific study design, as it allows to investigate the 
factors of greatest impact on a single dependent variable, when considering repeated measures with a hierarchical structure. 

The main drawback of the study is the intrinsic limitation of the ecological study design, useful to generate hypotheses but not to 
verify them [12] and the use of ambient data. Much more attention should be given to indoor environments, where transmission 
usually occurs [10], but it is practically unfeasible to collect quantitative information on indoor air pollutants and microclimate on a 
national scale, or even estimate accurately their variability. Thus, the outdoor data used here must be considered as surrogates of 
indoor data and actual human exposures because of the well-known influence of outdoor pollution on indoor air quality [72] (infil
tration processes) and meteorological conditions on indoor microclimate. Another critical point was the choice of the (14–20)-lag 
period [45], that was supposed the same for all the variables. However, such a choice was supported by other studies [5, 6, 13, 21]. 
Moreover, in the non-lockdown summer period scenario, contagions were probably affected by specific social context (concerts, events 
etc.), ignored in the study. Data have been aggregated on provincial level, allowing a discretization of the analysis on a national level. 
An advantage of the chosen statistical approach is that it accounts for regional-specific variability, as the heterogeneous testing ca
pacity across regions. Moreover, the selected outcome is independent on subject specific characteristic (social, economic, 
health-related) as it represents a picture of the scenario retrospectively linked to the moment of the 3d-MaxΔ+. Another important 
strength of our study is that interactions among covariates were tested, revealing the crucial synergic action of solar irradiance with T, 
NO2 and O3. 

4. Conclusions 

In conclusion, the spread of SARS-CoV-19 is linked to a very tangle mesh of causes and all the studies proposed by the international 
scientific community can add a peace to the whole puzzle. As a contribute to this, the key point of our study is that people interre
lationship remains an important risk management option in pandemic control, as the population size impact on the outcome in all the 
considered scenarios. High population size and density can be considered a proxy of different aspects: large cities are usually provided 
by good interconnections as highways and airports, favoring mixing of people from different areas [24]. Moreover, important drivers 
of the epidemic as schools and universities are majorly present in areas of high population density and healthcare systems can be more 
efficient in cities than in remote areas, thus favoring the easiest performing of diagnostic swabs [17,73]. Despite affected by policy 
measures and socio-economic and cultural aspects, distancing of people, test-and-trace and self-quarantine remain effective tools in 
control of pandemics [17]. As Covid-19 transmission predominantly occurs in indoor environments, prevention and protection stra
tegies remain crucial, such as physical distancing, face masks, proper air-conditioning/ventilation systems, or less common options as 
the use of air purifiers or IAQ monitors [15]. 

Even if our analysis does not allow inferring causality, the correlation of infection spread with NO2 and PM2.5 levels suggests the 
importance of air pollution control to prevent its deleterious effect on Covid-19 susceptibility. The meteorological aspects, especially 
linked to higher temperatures and irradiance, strongly interacting with both NO2 and O3, address the importance of area-specific 
studies. In particular, especially in areas with low irradiance and high pollution, it can suggest the benefit of integration of Vitamin 
D to population, as widely confirmed and reviewed [18]. 

Moreover, considering the short-term effect of widely used mRNA vaccination doses [74], these results can address to schedule the 
vaccination campaign nearly before the contagious-prone period of the year. Finally, a study methodology that allows considering the 
different concurring factors together, including their possible interactions, is more reliable in representing the correct picture of the 
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virus spread scenario, and preserve from drawing false or controversial conclusions. The synergic actions can so explain some different 
results of ecological studies, because of site-specific combinations in the effect of concurring factors, whether climatic, demographic or 
environmental. 
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