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Abstract 
Purpose/objective The purpose of the study is to externally validate published 18F-FDG-PET radiomic models for outcome 
prediction in patients with oropharyngeal cancer treated with chemoradiotherapy. 
Material/methods Outcome data and pre-radiotherapy PET images of 100 oropharyngeal cancer patients (stage IV:78) 
treated with concomitant chemotherapy to 66–69 Gy/30 fr were available. Tumors were segmented using a previously 
validated semi-automatic method; 450 radiomic features (RF) were extracted according to IBSI (Image Biomarker 
Standardization Initiative) guidelines. Only one model for cancer-specific survival (CSS) prediction was suitable to be 
independently tested, according to our criteria. This model, in addition to HPV status, SUVmean and SUVmax, included 
two independent metafactors  (Fi), resulting from combining selected RF clusters. In a subgroup of 66 patients with complete 
HPV information, the global risk score R was computed considering the original coefficients and was tested by Cox 
regression as predictive of CSS. Independently, only the radiomic risk score  RF derived from  Fi was tested on the same 
subgroup to learn about the radiomics contribution to the model. The metabolic tumor volume (MTV) was also tested as a 
single predictor and its prediction performances were compared to the global and radiomic models. Finally, the validation 
of MTV and the radiomic score  RF were also tested on the entire dataset. 
Results Regarding the analysis of the subgroup with HPV information, with a median follow-up of 41.6 months, seven 
patients died due to cancer. R was confirmed to be associated to CSS (p value = 0.05) with a C-index equal 0.75 (95% 
CI=0.62–0.85). The best cut-off value (equal to 0.15) showed high ability in patient stratification (p=0.01, HR=7.4, 95% 
CI=1.6–11.4). The 5-year CSS for R were 97% (95% CI: 93–100%) vs 74% (56–92%) for low- and high-risk groups, 
respectively.  RF and MTV alone were also significantly associated to CSS for the subgroup with an almost identical C-
index. According to best cut-off value (RF>0.12 and MTV>15.5cc), the 5-year CSS were 96% (95% CI: 89–100%) vs 65% 
(36–94%) and 97% (95% CI: 88–100%) vs 77% (58–93%) for RF and MTV, respectively. Results regarding RF and MTV 
were confirmed in the overall group. 
Conclusion A previously published PET radiomic model for CSS prediction was independently validated. Performances of 
the model were similar to the ones of using only the MTV, without improvement of prediction accuracy. 
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Introduction 

Head and neck cancer (HNC) is the sixth most common 
malignancy, with an incidence of about 650,000 cases and 
330,000 deaths annually worldwide [1, 2]. It continues to be 
a clinically challenging problem because of several factors, 
including delayed detection, heterogeneous tumor subtypes 
that respond differently to treatment, difficult anatomical 
locations leading to adverse events, risk factors resulting in 
tumor recurrence, and comorbidities [3]. Although 
technologies are reaching their developmental peak, the 
question that still remains is inside the tumor that dictates 
different treatment responses from individuals despite 
similar tumor classification and/or clinical characteristics. 
Therefore, the interest in exploring biomarkers that could 
reliably and individually predict the tumor response to 
treatment is high. Quantitative extraction of high-
dimensional data from medical images dealt with the field 
of Radiomics, a highly promising diagnostic, prognostic, 
and predictive tool for cancer characterization. Ideally, the 
integration of multiple-omics, i.e., “panomics” data 
(genomics, transcriptomics, proteomics, metabolomics, 
etc.), could efficiently unravel biological mechanisms [4–
6]; in this context, radiomics may quantify tumor’s texture, 
shape, and other geometric features, aiming to characterize 
tumor behavior, ideally functioning as a non-invasive, low-
cost bridge between “biology” and “clinic” at individual 
level. 

The translation of radiomic biomarkers into standard 
cancer care, to support treatment decision-making, involves 
the development of prediction models. Nowadays, there are 
several studies dealing with the development of models of 
outcome prediction for HNC [7–19] with the general 
impression that the scientific community is dragged by the 
current trend of a chaotic run in developing in-house 
models, mostly with limited validation. In addition, it is well 
known that still several aspects may impact the reliability of 
radiomic features (RF) as delineation, image 
acquisition/reconstruction, and bin size. Due to this lack of 
standardization, robustness studies are needed to assess the 
sensitivity of RF. A document with standardized feature 
definition was recently provided by the Image Biomarker 
Standardization Initiative (IBSI) [20] and is gradually 
becoming a reference guide. This implies that prognostic 
models based on RF analyses not IBSI compliant are 
expected to be discarded in the near future. In addition, 
models may intrinsically be more generalizable and easier 

to be adopted if the variables included are few, simple, and 
interpretable [21, 22]. 

To date, many studies were conducted in order to assess 
prognostic value of RF. Importantly, very few investigations 
considered functional imaging, primarily PET [7, 9, 19], that 
should in principle be more suitable in capturing tumor 
biological characteristics, potentially associated to a worse 
outcome. 

CT radiomics was much more explored with several 
recent studies dealing with large cohorts [10–18], although 
external validation studies remain very rare and most 
investigations showed a clear correlation between RF-based 
scores and CT-based tumor volume [9–11, 13]. 

At our institute, PET imaging was introduced in planning 
optimization since mid-00s’ [23, 24] and IBSI compliant 
procedures for radiomic analyses and outcome prediction 
studies in radiotherapy were implemented in the last years 
[25]. In this context, the aims of the current study were (1) 
to select from published PET-FDG radiomics prognostic 
models the ones, IBSI-consistent, considered to be suitable 
for an external validation on our population of patients 
treated for oropharyngeal cancer with radio-chemotherapy 
with PETFDG available; (2) to validate such models to 
possibly predict local recurrence (LRFS), distant metastasis 
(DRFS), and overall survival (CSS); and (3) to compare the 
performance of such models against the PET-based 
metabolic tumor volume (MTV) used as a single outcome 
predictor. 

Materials and methods 

Selection of published models 

An extensive literature review was preliminary conducted to 
define suitable models for the current validation study. 
PubMed was used with the following search query: (“head 
neck”[Journal] OR (“head”[All Fields] AND “and”[All 
Fields] AND “neck”[All Fields]) OR “head and neck”[All 
Fields]) AND “pet”[All Fields] AND (“radiomic”[All 
Fields] OR “radiomics”[All Fields]) AND (“outcome”[All 
Fields] OR “outcomes”[All Fields]). Synonyms “cancer,” 
“tumor,” etc. were intentionally not used in the search to 
increase the comprehensiveness/inclusiveness of the search 
and to screen as much as possible the available literature on 
HNC. No date limit was used, and the search was updated 
until January 2022. As reported in the Supplementary 
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material (Table S1), 24 articles were selected. Papers were 
excluded because focused on hypoxia (5), reviews (1), 
works including the development of models based on 
imaging acquired during the treatment (4), presence of 
surgery (1), works based on (68)GA-DOTATOTE (1), RF 
extracted from CT and PET fusion (2), and no stated 
declaration of compliance with the IBSI guidelines (8). 
Finally, only one paper from the group of Martens [18] was 
selected: the resulting models were internally validated, in 
accordance with the TRIPOD level 2a of validation [26], 
while no independent validation is available. 
Patient dataset 

Outcome data and pre-radiotherapy PET images of 100 
oropharyngeal cancer patients (stage IV: 78/100) treated at 
our institute between 2006 and 2021 according to an internal 
protocol delivering moderate hypo-fractionation (66 Gy/30 
fr) were available: details of contouring, planning, and 
delivery procedures may be found elsewhere [23, 24]. 
Current study was approved by the Institutional Ethical 
Committee (n° 12/INT/2022). All patients underwent a 
planning 18F-fluorodeoxyglucose (FDG) positron emission 
tomography/computed tomography (PET/CT) at most one 
month before Radiotherapy, to assess MTV, and were 
treated with Helical TomoTherapy (HiArt 2, Accuray Inc.). 
Written informed consent for the execution of PET/CT and 
anonymous publication of disease-related information was 
signed by each patient. All patients were treated with SIB 
delivering 54 Gy (1.8 Gy/fr), 66 Gy (2.2 Gy/fr), and 69 Gy 
(2.3 Gy/fr) in 30 fractions on PTV-N, PTV-T, and MTV, 
respectively; in 84% of patients, concomitant CDDP 
chemotherapy (at least 200 mg/m2 total dose) or cetuximab 
was also administered. For a subgroup of 66 patients, the 
HPV information was available. Table 1 summarizes the 

patient characteristics of both, the subgroup and of the 
complete dataset; patients were staged according to 
American Joint  
Committee on Cancer (AJCC) staging manual 7th edition.  
In the Martens et al. study, treatment consisted of a 
chemoradiotherapy (CRT) during a period of 7 weeks 
followed by 70 Gy in 35 fractions with concomitant 
cisplatin (100 mg/ m2 on days 1, 22, and 43 of radiotherapy) 
or cetuximab (400 mg/m2 loading dose followed by seven 
weekly infusions of 250 mg/m2). Like in the Martens et al. 
study, loco-regional recurrence was measured from the end 
of CRT to the date of local or regional proven relapse. 
Metastases were defined as a distant location from the loco-
regional primary tumor and lymph nodes. CSS time was 
measured from the end of CRT until death or the last follow-
up date. 

Image acquisition, target segmentation, and RF 

extraction 

The characteristics of scanners and acquisition protocols as 
well as the differences with the Martens et al. study are 
reported in detail in the Supplementary material. 
Segmentation of tumor MTV was performed using the semi-
automatic contour method, named “PET_Edge,” based on a 
gradient edge search (MIM Software Inc., Cleveland, OH, 
USA). The method was previously tested as reproducible 
and accurate compared to manual segmentation [27]. In the 
Martens’ study, delineation of primary tumors was 
performed semiautomatically on 18F-FDG-PET/CT using a 
50% isocontour of the SUV-peak of the tumor volume. SUV 
was normalized to body weight. Since this part of the study 
was the  

Table 1  Patient’s characteristics 
 Subgroup of 66 

patients with HPV 
data 

Complete 
dataset of 100 
patients 

Age (years), (range) 65 (38–84) 65 (38–89) 

Gender (male vs female) 51 vs 15 68 vs 32 
Smoking history 
Yes 
No 
Missing 

45 (68.1%) 
16 (24.4%) 
5 (7.5%) 

60 (60.0%) 
26 (26.0%) 
14 (5.0%) 

Alcohol history 
Yes 
No 
Missing 

11 (16.7%) 
49 (74.2%) 
6 (9.1%) 

23 (23.0%) 
61 (61.0%) 
16 (16.0%) 

HPV status 
Positive 
Negative 
Missing 

50 (75.8%) 
16 (24.2%) 
0 (0%) 

50 (50.0%) 
16 (16.0%) 
34 (34.0%) 



 

 

Clinical stage 
II 
III 
IV 

1 (1.5%) 
13 (19.7%) 
52 (78.8%) 

3 (3.0%) 
19 (19.0%) 
78 (78.0%) 

Concomitant chemotherapy 
No 
Cetuximab 
Cisplatin 

9 (13.6%) 
9 (13.6%) 
48 (72.8%) 

16 (16.0%) 
10 (10.0%) 
74 (74.0%) 

only which could be done prospectively, all images were 
processed to reach conditions similar to those reported by 
Martens et al. Given the different activities administered to 
patients, we limited the adaptation to the process of all the 
PET images to the same voxel size of 4×4×4  mm3. Images 
were discretized to a fixed bin number of 64, due to the 
improved reproducibility as reported by Tixier et al. [28] 
and confirmed in an ad hoc phantom study [29]. As Martens 
et al. used a fixed bin size (0.25 SUV) approach, potentially 
different results could derive from this different technical 
process. Similar to Martens et al., RF directly computed 
from the DICOM images were scaled to the interval [0, 1] 
to avoid a situation where the features with the largest scale 
dominate the analysis. DICOM files were imported to 
MATLAB using the Computational Environment for 
Radiological Research (https://cerr .github .io /CERR /) . 
RF extraction was performed with SPAARC Pipeline for 
Automated Analysis and Radiomics Computing (SPAARC 
[30, 31]) developed at Cardiff University School of 
Engineering. SPAARC complies with the IBSI guidelines 
[20]. We extracted 450 RF belonging to all the families 
included in IBSI: Morphology, Statistical, Intensity 
Histogram, Grey Level Co-occurrence Matrix 3D_average 
(GLCM3D_avg), Grey Level Co-occurrence Matrix 
3D_combined (GLCM3D_comb), Grey Level Run Length 
3D_average (GLRL3D_avg), Grey Level Run Length 
3D_combined (GLRL3D_comb), Grey Level Size  

Zone Matrix 3D, Neighbors Grey Tone Difference Matrix 
3D (NGTDM3D), and Grey Level Distance Zone Matrix 3D 
(GLDZM3D). In Fig. 1, a workflow of the whole pipeline 
was summarized. 

Validating the Martens model and comparing 

performances against MTV 

Martens et al. condensed the predictive RF in 8 independent 
meta-factors  (Fi), consisting of a combination of selected 
RF with variable importance weight. According to their 
publications [18],  Fi were built using the weights reported 
for each RF. A global score risk R was computed for DRFS 
(not including  Fi), LRFS (including HPV, SUVmean, 
SUVpeak, F3, F4, F6) and CSS (including HPV, SUVmean, 
SUVmax, F1 and F5). Due to the limited availability of the 

HPV-status, we limited the validation of the Martens 
models to the subgroup of 66 patients with HPV information 
available, testing the global score risk R prediction by Cox 
regression. R was computed as a liner combination of the 
original coefficients of the Martens study and the covariates 
selected. Moreover, a radiomic risk score  RF involving only  
Fi was tested on both the subgroup and on the complete 
dataset. It was computed as well using the original 
coefficients of the Martens model applied to F i in order to 
compare results between the global and an “only radiomic” 
model. The resulting R and  RF indexes were then used to 
stratify risk according to the best cut-off value derived from 
the ROC analysis [25]. Kaplan-Meier test was finally 
performed. Due to the evidence that RF may be a surrogate 
of the tumor volume as reported for CT-based volumes [9–
11, 13], the semi-automatically segmented MTV was 

https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
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independently tested as a single potential predictor of 
outcome. The same procedures followed for the considered 
R and  RF scores to test their prediction performances were 
applied. The performances of the two approaches, Martens 
risk model (global and radiomic) vs MTV, were compared 
in terms of concordance index (C-index), hazard ratios 
(HR), and p value. 

Results 

The median follow-up was 42.7 months (IQR: 21–71). At 
the time of analysis, 69/100 patients were alive and 4, 13, 
and 15 events for LRFS, DRFS, and CSS were registered. 

Regarding the subgroup with HPV data information, the 
median follow-up was 41.6 months (IQR: 19.1–67.4). At the 
time of analysis, 41/66 patients were alive and 2, 10, and 7 
events for LRFS, DRFS, and CSS were registered. In 
Martens et al., RF selected as predictive were found only for 
LRFS and CSS prediction. Due to the too small number of 
LRFS events in our population, only the model for CSS 
could be tested. The significant radiomic predictors for CSS 
in Martens’ study were F1 and F5 [18]. F1 and F5 together 
with HPV, SUVmean, and SUVmax were included in the 
global model. The global risk score R was calculated by 
using the original coefficients derived by Martens on the 
subgroup with HPV data. The radiomic risk score R F was 
calculated  

 

Fig. 1  Summary of the workflow followed for model’s validation Table 2  Cox regression of global, radiomic risk scores (R and R F) and the MTV 
for the prediction of CSS on the same subgroup of patients with  
HPV information 
Risk score b p Exp(b) C-index 

Global risk score R 3.4962 0.050 12.99 (95% CI: 0.90–47.25) 0.75 (95% CI: 0.62–0.85) 

Radiomic risk score  RF 3.6132 0.030 17.09 (95% CI: 1.41–58.44) 0.75 (95% CI: 0.62–0.85) 
MTV 3.3524 0.041 28.57 (95% CI: 1.90–49.35) 0.76 (95% CI: 0.67–0.89) 



 

 

 
Fig. 2   Kaplan Meier curves of CSS patients’ stratification according 
to the best cut-off for the risk score R (low risk: R<0.15 grey line; high 
risk: R>0.15 black line) 

from F1 and F5 as well, but, as the coefficients referred to 
the “combined” model, we assumed that the relative weight 
of the two meta-factors was independent on the other 
variables. Then, we used the original coefficients 
renormalized to the value referred to F1 (1 and 1.04 for F1 
and F5, respectively). From the Cox regression analysis, the 
resulting risk scores R and  RF resulted associated to CSS 
(Table 2) (p=0.05 and p=0.03, respectively) and for both the 
C-index was found equal to 0.75 (95% CI=0.62–0.85). 
According to the Youden criterion, the best cut-off for R and 
RF were found >0.15 and >0.12 respectively, showing in 
both cases a high ability in patients’ stratification, as 
depicted by the Kaplan Maier curves reported in Fig. 2 
(p=0.01, HR=7.4, 95% CI=1.6–11.4 for R) and in Fig. 3 
(p=0.006, HR=11.1, 95% CI=2.02–15.3 for RF). The 5-year 
CSS for R were 97% (95% CI: 93–100%) vs 74% (56–92%) 
and for  RF 96% (95% CI: 89–100%) vs 65% (36–94%) for 
low- and high-risk groups, respectively. 

MTV alone was significantly associated to CSS in this 
subgroup (p=0.04) with a C-index=0.76 (95% CI=0.67–
0.89). When considering the best cut-off value 
(volume<15.5cc), patients were well stratified (p<0.0097, 
HR=7.5, 95% CI=1.6–34.4), and the 5-year CSS were 97% 
(95% CI: 88–100%) vs 77% (58–93%) for low- and high-
risk groups, respectively (Fig. 4). 

When looking to the complete dataset, the validation of 
the radiomic score R F and the MTV was confirmed.  
Fig. 3  Kaplan Meier curves of CSS patients’ stratification according to 
the best cut-off for the radiomic risk score (low risk: RF<0.12 grey line; 
high risk: RF>0.12 black line) 

 

Fig. 4  Kaplan Meier curves of CSS patients’ stratification according to 
the best cut-off of the semi-automatically segmented PET-based 
volume (low risk: MTV<15.5 cc grey line; high risk: MTV>15.5 cc 
black line) 

The results are similar (C-index=0.75 (95% CI=0.66–0.83, 
p=0.008 for RF and C-index=0.76 (95% CI=0.67–0.85, 
p=0.008 for MTV). Results are summarized in the 
Supplementary material. 

Discussion 

Currently, pre-treatment imaging of head and neck cancers 
serves the purpose of evaluating primary tumor dimensions, 
anatomical extent, involvement of regional lymph nodes, 
and detecting distant metastases, which constitute the basis 
for staging and therapeutic choice. While PET/CT 
represents a mainstay of disease work-up, human visual 
interpretation cannot seize the full prognostic utility 
encoded in metabolic and structural bioimaging patterns. By 
capturing such bioimaging features, radiomic biomarkers 
may, in principle, improve stratification of patient risk 
groups and patient selection in better guiding personalized 
therapy. Quantitative imaging biodata reflecting tissue 
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density, texture patterns, lesion shape, and metabolic 
activity of primary tumors and metastatic cervical nodes 
may encode valuable information pertaining to tumor 
behavior with potential prognostic relevance. 

To date, many studies were conducted to assess 
prognostic value of RF. Although functional imaging should 
in principle be more suitable in capturing tumor biology, CT 
radiomics was much more explored with several recent 
studies dealing with large cohorts [10–18]. 

Focusing on CT radiomic investigations with extensive 
validation, results are in part contradictory with few 
negative studies reporting no advantage in including 
radiomic features compared to clinical and 
geometrical/anatomical features into models [9, 10]. These 
results were explained by the strong correlation of most 
selected features with tumor volume that was able alone to 
perform predictions similarly to more complex radiomic 
scores, as previously shown by Welch et al. [11] in re-
analyzing the early study by Aerts et al. [8]. The issue of the 
dependence of many RF on tumor volume is relevant and, 
due to this, results showing high performances of radiomic 
scores that did not consider this issue should be regarded 
with caution. Our study, despite the use of PET in place of 
CT, indirectly confirmed that tumor volume is likely to be 
the major predictor, making difficult to demonstrate an 
additional value of more complex radiomic patterns. 

Among the positive studies using radiomic CT, the ones 
with the strongest ability of radiomic scores to stratify 
patients according to their prognosis were driven to identify 
few, highly predictive, features taken as the major 
predictors, once redundancy filters were applied. For 
instance, Elhalawani et al. [30] showed that the addition of 
a radiomic score composed of the combination of only two 
features (“intensity direct local range max” and “neighbor 
intensity difference 2.5 complexity”) improved the 
prediction of local recurrences in a population of 465 
oropharyngeal patients. Cozzi et al. [12] identified the 
combination of two-three features in stratifying 110 patients 
in high- and low-risk groups. Meneghetti et al. [13] recently 
showed that the combination of tumor volume with two 
independent radiomic features improved prediction of loco-
regional relapses in a large population merging 6 German 
cohorts. They showed that, once properly managed, 
additional contribution of radiomic features not depending 
on volume can be detected. Similarly, Zhai et al. [14] 
showed that the combination of one feature related to the 
volume (least axis length) and one independent (gray level 
co-occurrence base correlation) extracted from positive 
nodes can carefully predict individual lymphnode failure in 
a group of 112 patients (with 558 analyzed nodes). 

More sophisticated advanced machine learning and deep 
learning approaches to build radiomic scores have also been 

explored, most of them still using CT [15–17]. Among them, 
the most relevant is probably the one by Giraud et al. [17], 
due to their effort to make the resulting models for 
locoregional and overall survival interpretable though a 
graphic representation of the weight of many features 
(radiomic and clinical) included in the models. On the other 
hand, the large number of features compared to the number 
of patients could have generated some overfit. The same 
study still reported the “shape voxel volume” features, 
strongly correlated with tumor volume, as the most 
prominent predictor. CT radiomic in the field of HN cancer 
was also investigated in HPV classification [33] or in 
assessing outcome of therapies other than radiotherapy [34, 
35]. 

When considering PET imaging, very few investigations 
were reported: for instance, Ger et al. [9] in the previously 
discussed negative study tested also PET-FDG-related 
features, and none was retained in the final model. Feliciani 
et al. [19] found one single feature (“low-intensity longrun 
emphasis”) able to predict outcome in a heterogeneous 
cohort of 129 patients. In the pioneer work by Vallieres et 
al. [7], several PET-FDG features were combined to develop 
radiomic models in predicting outcome. The combination of 
features extracted by using different processing parameters 
made these models hard to apply. In addition, PET features 
did not demonstrate any additional benefit compared to 
clinical/volume variables neither to CT features. 

More in general, the possibility to replicate performances 
is a critical issue for radiomic models. As a matter of fact, 
our exercise was in the direction of selecting models that 
could be replicated, even considering the consistency with 
IBSI guidelines. Not by chance, it is hard to find models that 
explicitly satisfy these criteria, also due to the quite recent 
publications of these guidelines that appeared only in 2020 
[20]. After a careful selection, the paper by Martens et al. 
[18] was found to satisfy them and chosen for independent 
validation on our institutional cohort. Their study applied a 
quite innovative, cluster-based, analysis that allowed to 
identify different scores representing “meta-features” 
independently predictive of outcome. In particular, due to 
our available data, we focused on the “radiomic-only” 
model for overall survival. Interestingly, the above-
mentioned approach made possible to split the contributions 
of features depending on tumor volume (as identified by a 
previously validated semi-independent method based on 
SUV gradient, F1) against the ones not depending on 
volume (F5). 

Our results show a good replication of the previously 
reported ability of the Martens risk score R in stratifying 
patients in low and high risk based on cancer-specific 
survival. 



 

 

On the other hand, very importantly, R showed 
performances similar to the ones of the radiomic-only score  
RF, suggesting that the additional benefit of HPV and other 
variables SUV-related could be already included in the 
radiomics information, according to a recent published work 
[36]. On the other hand, the limited statistics cannot permit 
to fully clarify this issue. 

If considering MTV, the performances are quite similar 
in terms of C-index; when assessing best cut-off values, 
MTV showed a similar trend in stratifying patients 
compared to R and  RF. Very importantly, results regarding  
RF and MTV were confirmed on the complete dataset, 
corroborating our positive results. 

Of note, the outcome prediction power of MTV was 
already reported in other investigations [37–40] and 
confirms the potential of using a simple, reproducible, 
operatorindependent parameter to classify patients 
according to their outcome. Of note, MTV can be reliably 
obtained semi-automatically [27], as done in current study, 
overcoming the issue of contouring uncertainty, so relevant 
in the case of CT. 

To the best of our knowledge, this is the first study 
reporting an independent validation of a published PET-
based radiomic model predicting outcome in patients treated 
with radio-chemotherapy for head-neck cancer. In our 
population, the performances of such radiomic score in 
predicting CSS were not significantly superior to using just 
the MTV. The unavailability of the HPV status for all 
patients limited the possibility to replicate the prediction of 
the combined model incorporating this and other factors. 

Conclusions 

Pre-treatment PET/CT radiomics biomarkers may provide 
complementary prognostic value for oropharyngeal cancer 
via systematic quantification of tissue density, texture 
patterns, lesion geometry, and metabolic properties. We 
independently confirmed the value of a previously 
published model based on clinical data and radiomic meta-
factors for CSS prognostication and risk stratification. The 
reproducibility of the dataset used, as results, probably 
depict the prognostic potentials of radiomic biomarkers for 
CSS in a realistic fashion. However, a similar predictive 
power was reached if using only the (semi-automatically 
segmented) MTV, suggesting that the additional benefit of 
more complex PET RF-based signatures remains to be 
demonstrated and, consistently with recent CT-based 
radiomic results, could be limited. Despite this promising 
result, more studies are needed to evaluate the predictive 
power of different PET RF-based signatures and their 
potential benefit to clinical practice. 
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