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Every open-system dynamics can be
associated to infinitely many stochastic pictures,
called unravelings, which have proved to be
extremely useful in several contexts, both from
the conceptual and the practical point of view.
Here, focusing on quantum-jump unravelings,
we demonstrate that there exists inherent
freedom in how to assign the terms of the
underlying master equation to the deterministic
and jump parts of the stochastic description,
which leads to a number of qualitatively
different unravelings. As relevant examples,
we show that a fixed basis of post-jump states
can be selected under some definite conditions,
or that the deterministic evolution can be set
by a chosen time-independent non-Hermitian
Hamiltonian, even in the presence of external
driving. Our approach relies on the definition
of rate operators, whose positivity equips each
unraveling with a continuous-measurement
scheme and is related to a long known but so far
not widely used property to classify quantum
dynamics, known as dissipativity. Starting
from formal mathematical concepts, our results
allow us to get fundamental insights into open
quantum system dynamics and to enrich their
numerical simulations.

1 Introduction
Quantum jumps provide a powerful and insightful tool
to describe the dynamics of open quantum systems
[1, 2]. In the quantum-jump unraveling, the open-
system state satisfying an assigned master equation is
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expressed as the average of – in principle, infinitely
many – trajectories of pure states, which consist of
deterministic evolutions interrupted by discontinuous,
randomly distributed jumps [3]. Quantum jumps have
been observed in several experimental platforms [4–9]
and are computationally convenient to solve high-
dimensional master equations, thus being routinely used
to describe, e.g., quantum optical [10] or open many-
body systems [11]. Interestingly, if the jumps are
frequent and small enough, one can recover a different
stochastic description of the open-system evolution,
characterized by diffusive trajectories [12–17], which
have also been investigated extensively in experiments
[18–21].

In the standard quantum-jump method, named
Monte Carlo wave function (MCWF), the state
transformations induced by the jumps and their
occurrence probabilities are directly fixed by the
operators and coefficients of the master equation [3,10].
This allows one to associate each trajectory with a
continuous selective measurement performed on the
open system [22], so that the master equation can
be seen as the result of the action of a non-selective
observer, replacing the environment. However, the
very definition of MCWF calls for a master equation
with positive coefficients. Under some regularity
conditions, this requirement is equivalent to the
completely-positive(CP)-divisibility of the dynamics
[23–25], meaning that the dynamics can be decomposed
into intermediate completely positive maps. CP-
divisibility has been introduced within the context of
the definition of quantum Markovianity [26, 27] and its
validity implies the absence of memory effects [23, 28,
29].

While generalizations of MCWF for master equations
with negative coefficients have been introduced
[30, 31], the possibility to extend the continuous-
measurement picture beyond the realm of the CP-
divisible evolutions has been extensively debated [32–
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34]. Only very recently, a systematic approach has
been put forward [35] to read the quantum-jump
unraveling of non-CP-divisible evolutions in terms of
continuous measurements. The approach relies on
the definition of a proper rate operator [36–39] and
it has hence been named rate operator quantum
jumps (ROQJ). It is associated with a continuous-
measurement scheme applying to any positive(P)-
divisible dynamics [29,40–42], i.e., dynamics that can be
decomposed into intermediate maps which are positive,
but not necessarily completely positive. Such a scheme
calls for an adjustment of the measurement apparatus
conditioned on the previous sequence of outcomes, along
the same lines of what happens in measurement-based
feedback protocols [43–47].

In this paper, we define a class of jump unravelings
interpolating between and combining the advantages
of MCWF and ROQJ. We exploit the freedom in
dividing any master equation into a deterministic and a
jump part, possibly even mixing the contributions from
the Hamiltonian and the dissipative terms. Besides
its conceptual interest, this allows us to simplify the
numerical and experimental implementation of the
trajectories. On the one hand, we can select a
fixed set of post-jump states for a well-defined class
of master equations. On the other, we can instead
set a desired time-independent, non-Hermitian linear
operator ruling the deterministic evolution, also in
the presence of an external time-dependent driving
on the open system. Importantly, our analysis also
shows that, under a constraint on P-divisible dynamics
known as dissipativity [48], there exist (infinitely)
many unravelings that can be associated with positive
rate operators, bringing along different continuous-
measurement schemes.

The rest of the paper is organized as follows. In
Sec. 2, we present the notation and the general
notions of quantum-jump unravellings that will be used
throughout the paper, along with a detailed description
of the continuous-measurement scheme associated with
ROQJ unravelings. In Sec. 3, we introduce a whole
class of rate-operator unravelings, which interpolates
between MCWF and ROQJ and allows for a rather
versatile control of the resulting trajectories. The
positivity of such unravelings is discussed in Sec. 4,
where we prove that it is guaranteed by dissipativity of
the dynamics. Sec. 5 is devoted to an extended analysis
of a case study, a two-level system dynamics where
CP-divisibility is broken at any time, for which we
compare the descriptions obtained via different ROQJ
unravelings. Finally, the conclusions of our work are
discussed in Sec. 6.

2 Quantum-jump unravelings
We start off by recalling briefly the formalism of
quantum jumps to describe the dynamics of open
quantum systems; in particular, we focus on the
standard quantum-jump unraveling, i.e., MCWF [3,10],
and the recently introduced ROQJ [35].

2.1 Open quantum system dynamics
We consider the evolution of finite-dimensional open
quantum systems, given by the time-local master
equation dρ(t)/(dt) = Lt(ρ(t)), where Lt is the
generator

Lt(ρ) = −i[H(t), ρ] + Jt(ρ)− 1
2{Γ(t), ρ}, (1)

with Jt(ρ) =
∑N2−1
α=1 cα(t)Lα(t)ρL†α(t) and Γ(t) =∑N2−1

α=1 cα(t)L†α(t)Lα(t), where N is the dimension of
the open-system Hilbert space HS , Lα(t) and the
Hamiltonian H(t) = H†(t) are linear operators on HS ,
and cα(t) are real functions of time. Importantly, Jt is
a Hermiticity-preserving map and one has the duality
relation

Γ(t) = J †t (1), (2)

where 1 is the identity operator and J †t is the dual
map of Jt. The structure of the generator follows from
the trace- and Hermiticity-preservation properties of the
dynamics [49] Λt = T exp

(∫ t
0 dτLτ

)
(T is the time-

ordering operator); moreover, the functions cα(t) can
take negative values, yet with the resulting evolution
being positive and even completely positive [1, 50].
On the other hand, under some regularity conditions
[23–25], the positivity of the coefficients, cα(t) ≥ 0
for every α and t ≥ 0, is equivalent to the CP-
divisibility of the dynamics, i.e, for any t ≥ s ≥ 0
one has the decomposition Λt = Vt,sΛs, where the
so-called propagator Vt,s is completely positive and
trace preserving; CP-divisibility has been identified
with quantum Markovianity in [26,27].

A crucial remark for our following analysis is that
the representation of the generator Lt via Eq.(1) – with
a Hamiltonian term, a Hermiticity-preserving map and
an operator fixed by the duality relation (2) – is highly
non-unique. In fact, one can define a new map

J ′t (ρ) = Jt(ρ) + 1
2
(
C(t)ρ+ ρC†(t)

)
, (3)

with an arbitrary linear operator C(t) on HS , so that
decomposing

C(t) = A(t) + iB(t) (4)
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(with A(t) and B(t) Hermitian operators), together
with

H ′(t) = H(t) + 1
2B(t), Γ′(t) = Γ(t) +A(t), (5)

the same generator Lt can be written as

Lt(ρ) = −i[H ′(t), ρ] + J ′t (ρ)− 1
2{Γ

′(t), ρ} (6)

and one still has

Γ′(t) = J ′†t (1); (7)

indeed, Γ′(t) is Hermiticity-preserving.
In the following we are going to introduce a class

of jump unravelings where the map J ′t and the
operator Γ′(t) along with the Hamiltonian H ′(t) lead
to, respectively, the jump and deterministic part of the
trajectories; different unravellings of the same dynamics
are thus defined for each set {H ′(t),J ′t ,Γ′(t)} such that
the non-Hamiltonian terms satisfy the duality relation
in Eq.(7) and that leads to the same generator Lt.
Let us stress that this is at variance with other jump
unravelings, such as MCWF and ROQJ, which are
instead typically defined starting from the Lindblad
operators and coefficients (Lα(t) and cα(t)), and are
thus not affected by the rewriting of the generator via
Eq.(3)-(6).

2.2 Monte Carlo wave function vs rate operator
quantum jumps
Both the MCWF and the ROQJ unravelings consist
in piecewise deterministic processes on the set of pure
states in HS , that is, they combine a deterministic time
evolution and a jump process [1]. However, the specific
form of the deterministic and jump parts are different in
the two kinds of unraveling and, as a consequence, the
range of applicability of the two methods is different.

In the case of CP-divisible dynamics, the master
equation fixed by Eq.(1) can be unravelled by means
of the MCWF method. The deterministic parts of
the trajectories are fixed by the non-Hermitian linear
operator

K(t) = H(t)− i

2Γ(t), (8)

according to

|ψ(t)〉 → |ψ(t+ dt)〉 = (1− iK(t)dt)|ψ(t)〉
‖(1− iK(t)dt)|ψ(t)〉‖ , (9)

while the discontinuous parts, the jumps, are given by

|ψ(t)〉 → |ψ(t+ dt)〉 = Lα(t)|ψ(t)〉
‖Lα(t)|ψ(t)〉‖ , (10)

and each jump occurs between t and t + dt with
probability

pψ(t),α = cα(t)‖Lα(t)|ψ(t)〉‖2 dt, (11)

where dt is an infinitesimal time increment. It is clear
that the previous formulation requires all the rates cα(t)
to be positive.

Extending the results of [36–38], recently in [35] it has
been shown that such a requirement can be weakened
considerably via the definition of a different quantum
jump unraveling, named ROQJ. The latter relies on the
definition of the rate operator

Wψ =
N2−1∑
α=1

cα(t)(Lα(t)− `ψ,α)Pψ(Lα(t)− `ψ,α(t))†,

(12)
with `ψ,α(t) = 〈ψ|Lα(t)|ψ〉 and the projector Pψ =
|ψ〉〈ψ|. As observed in [37, 38], Wψ is directly
associated with the time-local generator Lt and does
not depend on its specific representation via H(t),Jt
and Γ(t): in fact, it can be equivalently written as

Wψ = (1− Pψ)Lt(Pψ)(1− Pψ). (13)

The building block of ROQJ is the observation that
Wψ ≥ 0 for any state vector |ψ〉 if and only if the
corresponding dynamics is P-divisible [51], i.e., for any
t ≥ s ≥ 0 Λt can be decomposed as Λt = Vt,sΛs, and the
propagator Vt,s is trace preserving and positive, but not
necessarily completely positive; P-divisibility, which is
a significantly weaker requirement than CP-divisibility,
has been identified with quantum Markovianity in [29,
42]. Focusing on P-divisible evolutions, one has then
the spectral resolution

Wψ(t) =
N∑
k=1

λψ(t),k|ϕψ(t),k〉〈ϕψ(t),k|, (14)

with λψ(t),k ≥ 0 for all k and t ≥ 0. Introducing the
non-Hermitian state-dependent operator

Kψ(t) = K(t) + ∆ψ(t), (15)

with the non-linear correction

∆ψ(t) = i

2

N2−1∑
α=1

cα(t)(2Lα(t)`∗ψ,α − |`∗ψ,α|2),

one realizes the jump unraveling as follows [35]: the
deterministic evolution

|ψ(t)〉 → |ψ(t+ dt)〉 =
(1− iKψ(t)dt)|ψ(t)〉
‖(1− iKψ(t)dt)|ψ(t)〉‖ (16)
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is interrupted by the sudden jumps

|ψ(t)〉 → |ψ(t+ dt)〉 =
Vψ(t),j |ψ(t)〉
‖Vψ(t),j |ψ(t)〉‖ , (17)

where
Vψ(t),j =

√
λψ(t),j |ϕψ(t),k〉〈ψ(t)|, (18)

and the probability that the jump j occurs between t
and t+ dt is

p′ψ(t),j = ‖Vψ(t),j |ψ(t)〉‖2dt = λψ(t),jdt; (19)

indeed the deterministic evolution occurs with
probability

p′detψ = 1−
N∑
j=1

p′ψ,j . (20)

Compared to MCWF, the operators Lα(t) and rates
cα(t) are replaced in ROQJ by the eigenvectors and
eigenvalues of the rate operator Wψ(t). This is the key
that allows one to formulate a well-defined unraveling,
with positive probabilities p′ψ(t),j , for the set of P-
divisible dynamics, rather than just for CP-divisible
dynamics as in MCWF. For positive semigroups (for
which the generator does not depend on time, Lt = L),
a jump-unravelling fully equivalent to the ROQJ has
been introduced in [37, 38], and further investigated
(under the name of ortho-jumps) in [52, 53]; see also
[54]. Later [35, 51], the positivity of the rate operator
has been shown to be in one-to-one correspondence
with the P-divisibility of the dynamics, thus extending
the definition of the unraveling to this whole class of
dynamics. In this paper, we show how it is possible
to exploit the non-uniqueness of the master equation
representation to define a whole class of positive
unravelings.

Both MCWF and ROQJ can be extended to deal
with, respectively, non-CP-divisible and non-P-divisible
evolutions, via the use of reversed jumps connecting
different trajectories [30, 31, 35]. However, ROQJ
applies to general not necessarily P-divisible evolutions
[35], and it can be used to treat certain non-CP-divisible
dynamics [55–57] where the non-Markovian version of
MCWF cannot be used.

Finally, we stress that the ROQJ involves the
diagonalization of the rate operator, which adds
complexity to the actual implementation of the
unraveling. On the other hand, such a diagonalization
concerns an N × N matrix and it is thus significantly
simpler, for example, than the direct diagonalization
of the N2 × N2 matrix associated with the generator
of the master equation. In addition, crucially, the
diagonalization in ROQJ needs not to be done at each
time step, contrary to what would happen for example

in a diffusive unraveling [51]. Rather, one has to
diagonalize the rate operator only if a jump occurs
and jumps are indeed rare events, whose probability
is proportional to the infinitesimal time step dt. The
key point is that one can fix whether a jump occurs or
not by looking at the deterministic part of the evolution
only, as the probability of having any jump is∑

j

p′ψ(t),j =
∑
j

λψ(t),jdt = Tr
{

Wψ(t)
}
dt, (21)

where Tr denotes the trace, which leads us to
(neglecting as usual terms of order dt2)∑

j

p′ψ(t),j = 1− ‖(1− iK(t)dt)|ψ(t)〉‖2. (22)

Therefore, since we know the operator K(t) giving the
deterministic evolution, we need to construct the rate
operator and diagonalize it only at those (rare) times
when a jump takes place. Note that an analogous
reasoning applies to the rate operators Rψ described
in the following.

2.3 Continuous-measurement scheme
Both in MCWF [22] and in ROQJ [35] unraveling
the trajectories can be seen as due to a continuous
measurement on the open system. The state
transformations and corresponding probabilities can be
associated with a quantum instrument [58], mapping
the set of outcomes into a set of open-system completely
positive trace non-increasing maps that sum up to
a trace preserving map, but, crucially, in ROQJ
continuous-measurement schemes can be defined for the
whole set of P-divisible dynamics.

Let us in fact consider the rate operator Wψ

of a P-divisible dynamics, and the corresponding
jump operators {Vψ,j}j=1,...N and jump probabilities
{p′ψ,j}j=1,...N defined as in Eqs.(18) and (19). In
addition, let us denote as Vψ,∅ the operator obtained
from the first-order evolution associated with the
effective Hamiltonian in Eq.(15) according to

Vψ,∅ = (1− iKψdt) |ψ〉 〈ψ| , (23)

and as p′ψ,∅ = p′detψ the probability of having a
deterministic evolution according to Eq.(20). It is
then readily seen that these operators and probabilities
correspond to the state transformations and associated
probabilities of a well-defined quantum instrument, for
any fixed |ψ〉 ∈ HS .

Take in fact the set of outcomes O = {a, ∅, j}j=1,...N
and the maps {Iψ,j}j=a,∅,1,...N whose action on a
generic state ρ on HS is given by

Iψ,j(ρ) = Vψ,jρV
†
ψ,j j = a, ∅, 1, . . . N, (24)
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where we introduced also the (auxiliary) outcome a,
along with the operator Vψ,a = 1 − |ψ〉 〈ψ|. Now,
for any fixed |ψ〉 ∈ HS , the maps in Eq.(24) are
indeed completely positive and trace non-increasing
and they sum up to a trace preserving map, since∑
j=a,∅,1,...N V

†
ψ,jVψ,j = 1, as follows from Eqs.(14),

(18), (21) and (22). Thus, the state transformations
and associated probabilities

ρ 7→ Iψ,j(ρ)
Tr {Iψ,j(ρ)} Pψ,j = Tr {Iψ,j(ρ)} (25)

correspond to the post-measurement states and
probabilities of the measurement with outcomes O and
described by the quantum instrument {Iψ,j}j=a,∅,1,...N .
But if we now focus on the action of the maps on
the pure state ρ = |ψ〉 〈ψ|, we see that the state
transformations and probabilities in Eq.(25) for j =
1, . . . , N are nothing else than, respectively, the state
after the jump as in Eqs.(18) and the jump probability
in (19), Pψ,j = p′ψ,j , while for j = ∅ we get the
deterministic evolution in Eq.(16) and the probability in
Eq.(20), Pψ,∅ = p′ψ,∅, where the latter follows from the
identity in Eq.(22); on the other hand, the (auxiliary)
outcome a occurs with zero probability, Pψ,a = 0. The
instrument in Eq.(24) can be realized, for example, by
N counters surrounding the system and parametrized
by the index j: a click of the j-th counter indicates
that the system jumps to the j-th eigenstate of Wψ.
Importantly, also the scenario where no counter clicks
corresponds to a measurement performed on the system,
with null result ∅ [59] and, as said, resulting in the
evolution fixed by Eq.(23).

If we now consider any trajectory of the jump
unraveling1 defined by Wψ in Sec.2.2, we can repeat
the reasoning above for any infinitesimal time dt
starting from any pure initial state |ψ0〉, which means
that such a trajectory is equivalently obtained as the
result of a continuous measurement performed on the
quantum system associated with HS and described by
the quantum instrument in Eq.(24). As a consequence,
the open-system dynamics fixed by the master equation
(1) and resulting from the average over the trajectories
of the unraveling is equivalently obtained as the
consequence of a continuous non-selective monitoring of
the system at hand, meaning that one is continuously
measuring the system via the measurement apparatus
described by the instrument in Eq.(24), but without
selecting the system according to the measurement
outcomes.

1On more precise mathematical terms, one should consider a
stochastic pure state, that is a stochastic process with values in
HS , defined by a counting process whose trajectories correspond
to the sequences of jumps [22,35].

Crucially, the instrument to be applied on each
trajectory at any time t depends on the (stochastic)
state |ψ(t)〉 or, equivalently, on the previous sequence
of events, which is what allows us to introduce
a proper continuous-measurement scheme in the
presence of P-divisible, but not necessarily CP-divisible
dynamics [35]. On a practical level, this means that
the actual realization of the continuous-measurement
scheme described in this section calls for a continuous
adjustment of the measurement apparatus monitoring
the system, depending on the sequence of outcomes.
While the strategy to implement this procedure will
crucially depend on the specific experimental platform
at hand, we can already point to a correspondence with
the adaptive approaches that characterize, for example,
the measurement-based feedback strategies described
in [45–47], where the measurement basis is changed
dynamically and according to the previous sequence of
measurement outcomes.

3 A new class of rate operator quantum
jumps
We are now ready to present a novel class of quantum-
jump unravelings, which is based on a family of rate
operators defined starting from Eqs.(3)-(5). This class
combines features of both MCWF, allowing for a linear
effective Hamiltonian, and the ROQJ discussed above,
being positive for dynamics with possibly negative
rates. In addition, we show how the freedom in
choosing the rate operator allows us to control and
manipulate some basic properties of the trajectories of
the unraveling, which can be useful for the numerical
simulation of the dynamics and the actual experimental
implementation of the jumps.

3.1 Definition of the unravelings
The basic observation to define the class of ROQJs is
that Wψ in Eq.(13) can also be written as

Wψ = (1− Pψ)Rψ(1− Pψ), (26)

where
Rψ(t) = Jt(|ψ(t)〉〈ψ(t)|). (27)

Now, if Rψ(t) ≥ 0 for any |ψ(t)〉 one can define a jump
unraveling that merges (8)-(9) with (17)-(18); that is,
the deterministic evolution is governed by (9), but the
jumps are realized via

|ψ(t)〉 → |ψ(t+ dt)〉 =
Rψ(t),k|ψ(t)〉
‖Rψ(t),k|ψ(t)〉‖ , (28)

with
Rψ(t),k = √rψ(t),k|φψ(t),k〉〈ψ(t)|, (29)
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and the probability that the jump k occurs between t
and t+ dt reads now

p′′ψ(t),k = ‖Rψ(t),k|ψ(t)〉‖2dt = rψ(t),k dt; (30)

indeed, rψ(t),k and |φψ(t),k〉 are the eigenvalues and
eigenvectors of Rψ(t), i.e.,

Rψ(t) =
N∑
k=1

rψ(t),k|φψ(t),k〉〈φψ(t),k| (31)

and the deterministic evolution will occur with
probability p′′detψ(t) = 1−

∑N
k=1 p

′′
ψ(t),k. General conditions

guaranteeing the positivity of Rψ(t) will be presented in
Sec. 4. We stress that whenever Rψ(t) is positive the
analysis performed in Sec.2.3 can be readily adapted
to the unraveling fixed by this rate operator, so
that a continuous-measurement scheme can be defined
via a quantum instrument with maps Iψ,j as in
Eq.(24), where {Vψ,j}j=1,...N are indeed replaced by
{Rψ,k}k=1,...N , while the operator V∅,j corresponding
to the outcome ∅ and associated with the deterministic
evolution is now fixed by the effective Hamiltonian in
Eq.(8), compare with Eq.(23).

Before proving that the construction fixed by
Eqs.(27)-(31) provides us with a well-defined unraveling
of the master equation (1) whenever the rate operator
is positive, let us stress that it avoids the non-linear
correction in the non-Hermitian operator fixing the
deterministic evolution, still potentially allowing for
positive probabilities in the case of non-CP-divisible
evolutions; p′′ψ(t),k ≥ 0 is in fact equivalent to the
requirement that the map Jt is positive for all t ≥ 0,
which is significantly weaker than CP-divisibility as
we will see in Sec. 4. Moreover, the definition of the
rate operator Rψ(t) in Eq.(27) does depend on the
specific choice of the map Jt in the representation of
the generator Lt as in Eq.(1); as a consequence, Eqs.(9),
(28) and (30) define a whole family of unravelings,
corresponding to different choices of the operator C(t)
in Eqs.(3)-(5). We denote these unravelings with R-
ROQJ, specifying the explicit form of the rate operator
R when needed; furthermore, we will refer to the ROQJ
unraveling discussed in Sec. 2.2 as W-ROQJ.

Proof. Given the pure state |ψ(t)〉〈ψ(t)| at time t, the
deterministic evolution will occur with probability

p′′detψ(t) = 1−
N∑
k=1

p′′ψ(t),k = 1− Tr
{

Rψ(t)
}
dt, (32)

where in the last equality we used Eq.(31). But using
Eq.(27) along with

Γ(t) = J †t (1), (33)

we get

p′′detψ(t) = 1− Tr {Jt(|ψ(t)〉〈ψ(t)|)} dt
= 1− 〈ψ(t)|Γ(t)|ψ(t)〉dt, (34)

which highlights the role of the duality relation in
Eq.(33) to express the probability of the deterministic
evolution in terms of both the jump part of the
master equation Jt and the term Γ(t) entering into the
non-Hermitian operator in Eq.(8). The deterministic
evolution will map the pure state |ψ(t)〉〈ψ(t)| into the
pure state (see Eq.(9))

(1− iK(t)dt)|ψ(t)〉〈ψ(t)|(1 + iK†(t)dt)
‖(1− iK(t)dt)|ψ(t)〉‖2

= (1− iK(t)dt)|ψ(t)〉〈ψ(t)|(1 + iK†(t)dt)
p′′detψ(t)

, (35)

where we used Eqs.(8) and (34) in the denominator
(neglecting the terms of order dt2).
On the other hand, as said, given the state
|ψ(t)〉〈ψ(t)| at time t, we will have the jump described
by Rψ(t),k in Eq.(29), i.e. (compare with Eq.(28))

|ψ(t)〉〈ψ(t)| →
Rψ,k|ψ(t)〉〈ψ(t)|R†ψ,k
‖Rψ,k|ψ(t)〉‖2 = |φψ(t),k〉〈φψ(t),k|,

(36)
with probability as in Eq.(30).
All in all, if we average the state at time t + dt

over the trajectories where the state at time t is
|ψ(t)〉〈ψ(t)|, we get the mixture of the states obtained
via the deterministic evolution or one of the jumps,
each weighted with the corresponding probability: using
Eqs.(35), (36) and (30), such a (conditioned) average
corresponds to

p′′detψ(t)
(1− iK(t)dt)|ψ(t)〉〈ψ(t)|(1 + iK†(t)dt)

p′′detψ(t)

+
N∑
k=1

rψ(t),k|φψ(t),k〉〈φψ(t),k| dt

= |ψ(t)〉〈ψ(t)| − i [H, |ψ(t)〉〈ψ(t)|] dt

−1
2{Γ(t), |ψ(t)〉〈ψ(t)|}dt+ Jt(|ψ(t)〉〈ψ(t)|)dt, (37)

where the equality is due to Eqs.(8), (27) and (31), and
we neglected the terms of order dt2. Finally, we perform
a second average, this time with respect to the pure
states |ψ(t)〉〈ψ(t)| we fixed at time t, so that we get the
average over all the trajectories; the previous expression
then yields the first order expansion of the time-local
master equation dρ(t)/(dt) = Lt(ρ(t)) with Lt as in
Eq.(1), which concludes the proof.
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Indeed, the proof above does not depend on the
specific representation of the generator Lt and then
it holds for any choice of the operator C, as long
as the corresponding rate operator Rψ(t) is positive.
Going beyond the results in [35], we have thus defined
a new class of unravelings of the master equation
(1) for P-divisible dynamics, which are equipped with
an associated continuous-measurement scheme, see
the discussion after Eq.(31). Besides including the
simpler linear effective Hamiltonian that characterizes
the MCWF method and connecting the positivity of
the rate operator with a significant property of the
dynamics, as proved in Sec.4, the use of distinct
master-equation representations allows us to control the
deterministic and jump parts of the unraveling in a
versatile way, as we are now going to show.

3.2 R-ROQJ with fixed post-jump states
First of all, a proper choice of C can be used to simplify
to a significant extent the jumps in the unraveling.
An explicit condition for this can be derived for two-
dimensional open quantum systems, i.e., HS = C2.

Given any time-local generator Lt on the set of linear
operators B(C2) in the GKLS form as in Eq.(1), Jt can
be represented via the 16 parameters Jklij (t) defined by

Jklij (t) = 〈i| Jt[|k〉 〈l|] |j〉 i, j = 1, 2, (38)

with respect to any orthonormal basis {|1〉 , |2〉}; note
that the Hermiticity-preservation condition implies(
Jklij (t)

)∗ = J lkji (t). Now, if there is a basis such that

Jklij (t) = (Jklij (t))∗ ∀i, j, k, l = 1, 2, (39)

i.e., the Choi matrix associated with Jt is real, and
the deterministic evolution in-between the jumps does
not introduce a relative phase when acting on the basis
elements, it is possible to define a rate operator Rψ(t)
via Eqs.(3) and (27) whose eigenvectors are independent
from the pre-jump state |ψ(t)〉. This implies that the
post-jump states are always the same, so that the
trajectories are fixed by at most 3 deterministically-
evolving states, which results in a strong simplification
of both the numerical simulation and the experimental
implementation of the corresponding unraveling, as will
also be shown by means of an example in Sec.5. More
explicitely, we have in fact the following.

Proposition 1. Given the master equation (1) for
N = 2, if there is an orthonormal basis of C2, denoted
as {|ϕ1〉 , |ϕ2〉}, and a time-dependent linear operator
C(t) ∈ B(C2) with matrix representation in this basis

C(t) = (40)(
J11

22 (t)− J11
11 (t) + ix(t) y(t)

y(t) + 2(J12
11 (t)− J12

22 (t)) J22
11 (t)− J22

22 (t) + ix(t)

)

with x(t), y(t) two real functions, such that

• the jump operator J ′t fixed by Eq.(3) satisfies
Eq.(39);

• if the state |ψ(t)〉 at time t is in the form

|ψ(t)〉 = c(t) |ϕ1〉 ±
√

1− c(t)2 |ϕ2〉 (41)

for some −1 ≤ c(t) ≤ 1, the deterministic evolution
fixed by Eqs.(5), (8) (with H ′ instead of H and Γ′
instead of Γ) and (9) implies that the state at time
t+ dt is in the form

|ψ(t+ dt)〉 = a(t, dt) |ϕ1〉 ±
√

1− a(t, dt)2 |ϕ2〉
(42)

for some −1 ≤ a(t, dt) ≤ 1;

• the rate operator Rψ(t) = J ′t (|ψ(t)〉〈ψ(t)|) is
positive for any state |ψ(t)〉 as in Eq.(41);

and we restrict to

• initial states |ψ0〉 = |ψ(0)〉 in the form as in
Eq.(41),

then there exists a jump unraveling that involves only
the 3 families of states {|ψ0(t)〉 , |ϕ+(t, s)〉 , |ϕ−(t, s)〉},
which are deterministically evolved from{
|ψ0〉 , |ϕ±〉 = 1√

2 (|ϕ1〉 ± |ϕ2〉)
}

via

D(t, s) =T exp
(
−i
∫ t

s

dτ

(
H ′(τ)− i

2Γ′(τ)
))

. (43)

The conditions in Eqs.(41) and (42) mean that the
unraveling will involve exclusively pure states without
a relative phase in the basis {|ϕ1〉 , |ϕ2〉}, if this is
the case at the initial time; this is also why the
positivity requirement on the rate operator Rψ(t) can
be now restricted only to states of this form. In
practice, the deterministic evolution between two times
s and t will be given by the operator in Eq.(43),
which indeed corresponds to the effective non-Hermitian
Hamiltonian fixed by Eq.(5) for the operator C(t)
as in Eq.(40). The jumps at time t, given by the
eigenvectors of Rψ(t), will always end up in one of
the eigenvectors {|ϕ+〉 , |ϕ−〉}, and then all in all
the trajectories will consist of piecewise deterministic
evolutions among {|ψ0(t)〉 , |ϕ+(t, s)〉 , |ϕ−(t, s)〉}. Note
that the probabilities of having the jumps between time
t and t + dt are fixed by the eigenvalues of Rψ(t), so
that different matrices C(t) in Eq.(40) will generally
define distinct unravelings, with the same trajectories
but different associated probabilities.

In addition, the existence of a class of ROQJ can be
exploited to control to a large extent the deterministic
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evolution in-between the jumps. From Eqs.(4), (5) and
(8) we see how any effective non-Hermitian Hamiltonian
can be enforced by means of a proper choice of C, which
will also result in a modified set of jump states and
probabilities, according to Eq.(3), (27) and (30). As
will be shown by means of a significant example in Sec.5,
this choice can be made while keeping the positivity of
the rate operator and it is particularly convenient for
driven systems. We stress that the definition of different
partitions between the deterministic and the jump parts
of the unraveling, starting from distinct representations
of the same master equation (1) by virtue of Eqs.(3)-(6),
is not encompassed by the possibility to define different
unravelings that is routinely used in MCWF, which
relies on the invariance of the generator under unitary
transformations of the set of Lindblad operators [1]
and would not affect the partition of the generator as
dictated by Eq.(6) and (7); compare with the remark at
the end of Sec.2.1.

4 Positivity of the rate operators
We can now complete the definition of the R-ROQJ
by deriving general conditions ensuring that it is
associated with a positive rate operator. Besides
justifying the construction in Eqs.(28) and (30), this
also guarantees the existence of a fully consistent
continuous-measurement picture as discussed in Sec.2.3.

Clearly, if the evolution is CP-divisible, not only
both MCWF and W-ROQJ are well defined, but one
can always find a completely positive map Jt giving
rise to a positive R-ROQJ. Instead, any P-divisible
evolution does guarantee positivity of Wψ(t), but not
necessarily the positivity of Rψ(t). Still, we note that
P-divisibility constrains the number of possible negative
eigenvalues of the rate operator Rψ(t). We have in fact
the following:

Proposition 2. For any P-divisible evolution, Rψ(t)
can have at most one negative eigenvalue.

Proof. The proof easily follows from the min-max
principle for Hermitian matrices: let A be a Hermitian
n× n matrix, and let

λn ≥ λn−1 ≥ . . . ≥ λ1

be the real eigenvalues of A. Then

λk = max
Σ

min
x∈Σ
〈x|A|x〉 (44)

where x is normalized, and Σ is a (n−k+1)-dimensional
subspace of Cn.
Now, since Wψ = (1 − P )Rψ(1 − P ) ≥ 0, one has

for any x ∈ Σ = (1− P )Cn

〈x|Rψ|x〉 = 〈x|Wψ|x〉 ≥ 0.

Hence, from (44) one finds λ2 ≥ 0 (since in (44) one
maximizes over all Σs), and hence only λ1 may be
negative.

We stress that the proof does not depend on the specific
Jt used to represent the generator Lt and hence applies
to any R-ROQJ.

Now, since Rψ(t) does depend upon the specific Jt,
see Eq.(27), a natural strategy to ensure the positivity
of Rψ(t) arises: is it possible to use the freedom
introduced by (3) so that the rate operator defined
in terms of J ′t is positive? Interestingly, in all the
examples we analyzed this is the case; however, we can
give a positive answer in generality only for a class of P-
divisible evolutions that enjoys an additional property.
In the Heisenberg picture P-divisibility means that the
propagators V †t,s are positive and unital. It is well
known [60, 61] that this implies the Kadison-Schwarz
inequality

V †t,s(X†X) ≥ V †t,s(X†)V
†
t,s(X), (45)

for all Hermitian operators X = X† ∈ B(HS). A
more restricted class of evolutions is thus defined by
propagators that satisfy (45) for all X, not necessarily
Hermitian. This leads us to the identification of the
condition ensuring the positivity of the R-ROQJ:

Proposition 3. If the propagators of the dynamics
satisfy (45) for all X ∈ B(HS), there exists a
representation of the master equation (1) with a positive
map Jt, which we denote as Jt.

The proof, which is reported in Appendix B, is
based on some techniques introduced by Lindblad in his
seminal paper [48], based on the fact that the Kadison-
Schwarz inequality may be rephrased by the following
condition for the time-local generator (in the Heisenberg
picture):

L†t(X†X) ≥ L†t(X†)X +X†L†t(X), (46)

again for all X ∈ B(HS) and t ≥ 0. The generators
satisfying Eq.(46) are called dissipative [48]. All in
all, the dissipativity condition is equivalent to P-
divisibility if one restricts to Hermitian operators X;
however, assuming that the condition (46) holds for
all X ∈ B(HS) the corresponding evolution is not
only P-divisible but in addition the propagator Vt,s
satisfies (45).

From the physical point of view, the dissipativity
condition can be understood with the following
remark: let %(t) be an instantaneous invariant state,
i.e. Lt(%(t)) = 0. One has Tr(%(t)L†t(X†X)) =
Tr(Lt(%(t))(X†X)) = 0, and hence introducing the
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following inner product in the space of Hermitian
operators

(X,Y )% = Tr(%X†Y )

the formula (46) implies [25]

Re (X,L†t(X))%(t) ≤ 0, (47)

for any operator X ∈ B(HS). In particular, if |i(t)〉
defines an eigenbasis of %(t), then takingX = |i(t)〉〈j(t)|
the condition (47) clearly shows that P-divisibility
provides constraints for populations (i = j), whereas
dissipativity is more restrictive, providing constraints
also for coherences (i 6= j).

Summarizing, the condition in Eq.(45), or
equivalently Eq.(46), for all X ∈ B(HS) allows
for a representation of (1) with a positive map Jt.
In other terms, dissipativity guarantees the existence
of a rate operator Rψ(t), defined from Jt by Eq.(27),
such that the unraveling given by Eqs.(9), (28) and
(30) is well-defined, as Rψ(t) ≥ 0 for any ψ(t). As
follows from the discussion in Sec.2.3 and 3.1, this
also means that dissipativity ensures the possibility
to obtain the dynamics as the result of a continuous
non-selective measurement on the system at hand.
It should be stressed that the representation with a
positive map Jt is not unique, corresponding to a
non-unique continuous-measurement scheme, as we
will see explicitly in the examples in the next section.
The use of the R-ROQJ allows thus for a versatile
definition of the deterministic and jump parts of the
unraveling that, along with the dissipativity of the
dynamics, result in distinct experimental procedures
leading to the detection of trajectories associated with
different unraveling of the same master equation.

5 Eternally non-Markovian qubit master
equation
To explore in an explicit case study the different possible
R-ROQJ unravelings and compare them among each
other, as well as with the W-ROQJ, we consider
the two-level system dynamics fixed by the following
generator

Lt(ρ) = i
b(t)
2 [σz, ρ] + 1

2

3∑
k=1

γk(t)(σkρσk − ρ), (48)

where σk are the Pauli spin operators. Such a master
equation has been studied extensively in the literature
[55–57], since, despite its simplicity, it possesses several
interesting features. The open-system evolution fixed
by Eq.(48) can arise as due to an average over randomly
distributed unitary evolutions [56] or as the classical

mixture of Markovian dephasing dynamics in three
different directions [57]. In particular, for some choices
of the rates γk(t) the resulting dynamics is P-divisible,
while CP-divisibility is broken for any t > 0. This
kind of dynamics is usually referred to as eternally non-
Markovian, indicating that the backflow of information
to the open system witnessed by the negativity of the
decay rate continues for the whole evolution; hence, any
Markovian limit, even in the asymptotic time scale, is
precluded. Most importantly for our purpose, eternally
non-Markovian dynamics cannot be treated by means
of the MCWF at any time of the evolution. Even
more, also a powerful non-Markovian generalization of
MCWF, named non-Markovian quantum jumps [30,31],
cannot be applied in this case since CP-divisibility is
violated from the very beginning of the dynamics. The
general ingredients for the implementation of the jump
methods, including the relevant numerical aspects, can
be found from references [10,11,62].

It is important to stress that the smaller the effective
ensemble size Neff the more efficiently the simulations
can be implemented and optimized. This is because
it is enough to generate Neff state vector evolutions
and decide N times at each time step whether the
jump happened or not; here, N is the size of the
total ensemble. This allows us to track how many
members of the total ensemble are in each of the Neff
different members of the effective ensemble, avoiding
repetitions of identical evolutions in a given interval
of time. As we are going to show explicitly for the
dynamics at hand, we can control Neff by choosing
different ROs, which opens considerable prospects for
an efficient implementation of the simulations also when
dealing with more complicated dynamics.

5.1 Undriven master equation
We set at first b(t) = 0 and study the case where
we have a P-divisible evolution even if one of the
rates is temporally negative, i.e., CP-divisibility is
broken; we suppose in particular that γ3(t) < 0 for
any t > 0. Then Λt is P-divisible provided that
γ1(t), γ2(t) ≥ |γ3(t)|. Dissipativity requires the stronger
condition [63] that γ1(t), γ2(t) ≥ 2|γ3(t)|. Interestingly,
it turns out that whenever γ3(t) < 0 the map Jt(ρ) =∑3
k=1 γk(t)σkρσk/2 is not positive. However, if the

generator (48) gives rise to a P-divisible evolution,
one can define different positive R-ROQJ by means of
different operators C(t) in Eqs.(3)-(5).

Unraveling with R1

The first choice we make is to use

C(t) = γ(t)
2 1l (49)
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Figure 1: Simulation results using rate operator R1 [(a), (b)]
and R2 [(c), (d)] for model (48) without driving. Example
trajectories are displayed in (a) and (c). Final steady state
distributions for Bloch vector X and Z components are shown
in (b) and (d). The insets in (b) and (d) demonstrate
the agreement between the analytical results (solid line) and
simulation results (dots) with 104 trajectories. The error bars
are similar to the size of the dots.

with
γ(t) =

∑
k

γk(t),

as the corresponding map

Jt(ρ) = Jt(ρ) + γ(t)
2 ρ (50)

is positive, as shown in Appendix C. In particular for the
eternally non-Markovian evolution [55, 57] defined by
γ1 = γ2 = 1, and γ3(t) = −tanh t, one has a P-divisible
evolution, but the corresponding generator L†t = Lt is
not dissipative. Nevertheless, the map Jt is positive
and one can define the positive rate operator R1ψ(t) =
Jt(|ψ(t)〉〈ψ(t)|) ≥ 0. The deterministic evolution is
fixed by K1(t) = i

2γ(t)1. Figure 1 (a) shows 7 example
pure-state trajectories, with initial state |ψ(0)〉 =√

0.1|1〉 +
√

0.9|2〉, and the probability ρ11 of the state
|1〉. Figure 1 (b) displays the final distribution of the
Bloch vector X and Z components over the trajectories
while the inset shows the agreement between the
analytical results and simulations for the coherence ρ12.

Unraveling with R2

The second choice we make takes advantage of the
general result for qubits dynamics in Proposition 1.
In fact, as we show explicitly in Appendix D,
the eternal non-Markovian evolution satisfies the
assumptions of the mentioned proposition, meaning
that it is possible to define a R-ROQJ with a
fixed set of (deterministically evolving) states after

the jumps. Actually, in Appendix D we define a
continuous family of rate operators with fixed post-
jump states for the eternal non-Markovian dynamics,
also ensuring their positivity. Quite interestingly,
this means that there exists a continuous family of
continuous measurement schemes for the same open-
system dynamics originating from the non-unique
decomposition (6) of the generator. We stress that this
freedom is inherently different from the well-known [1]
unitary freedom in defining the operators that appear
in the master equation (1). Moreover, the instruments
defining the different measurement schemes, as well as
the associated probabilities, will generally be different,
while the post-measurement states will be the same.

A special instance of the R-ROQJs with fixed post-
jump states is given by

R2ψ(t) = R1ψ(t) − γ3(t) |ψ(t)〉 〈ψ(t)| (51)

associated with the deterministic evolution K2(t) =
i
2 [γ1(t) + γ2(t)]1. The corresponding simulation results
are shown in Fig. 1 (c) and (d). The example
trajectories in Fig. 1 (c) illustrate that the ensemble
consists now a discrete set of pure states. In the
final distribution of states, see Fig. 1 (d), we have
only two states |±〉 = 1√

2 (|1〉 ± |2〉). As a matter of
fact, during the whole simulation, only three states
appear: the initial state and |±〉; in other terms, in
this case the 3 states fixing the unraveling according to
Proposition 1 are even time independent. Remarkably,
R2ψ(t) explicitly demonstrates that the measurement
basis can be fixed once and for all, without any state
and time dependence.

Unraveling with R3 and W

Finally, we consider the rate operator

R3ψ = 1
2

3∑
k=1

γk(t)σk|ψ(t)〉〈ψ(t)|σk−
1
2γ3(t)|ψ(t)〉〈ψ(t)|,

(52)
which is positive as shown in Appendix C. The
corresponding deterministic evolution is fixed by the
linear operator K3(t) = i

4 [γ1(t) + γ2(t)]1. We show the
simulation results in Fig. 2 (a) and (b). The example
realizations in Fig. 2 (a) demonstrate that, similarly
to R1 (cf. Fig. 1), the jumps continue even though
the steady state has been reached. However, contrary
to R1, now it holds all the time that ρ11 6 0.1 or
ρ11 > 0.9. This can be seen more clearly in Fig. 2
(b). While the distribution of trajectories in the steady
state for R1 contained arcs on the western and eastern
sides of the XZ-plane of the Bloch sphere, now with
R3 the distribution covers arcs on the northern and
southern sides of the circle. As before, there is excellent
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Figure 2: Simulation results using rate operator R3 [(a), (b)]
and W [(c), (d)]. Seven example pure state trajectories are
displayed in (a) and (c) by plotting the probability of state
|1〉. Final steady state distributions for Bloch vector X and Z
components, with 500 trajectories, are shown in (b) and (d).
Here, each dot corresponds to a single trajectory. In (d), all the
500 dots have the value Z = 0 and X = −1/2 or X = +1/2,
i.e., we have only two distinctively visible dots. The insets in
(b) and (d) demonstrate the agreement between the analytical
and simulation results by using the coherence ρ12 and having
104 trajectories. In the insets, the solid line is the analytical
result and the dots are the simulation results. The error bars
are similar to the size of the dots. In all the panels, the initial
state is |ψ(0)〉 =

√
0.1|1〉 +

√
0.9|2〉 and the used time step

size is dt = 0.002.

agreement between the analytical and simulation results
[see the inset of Fig. 2 (b).]

The last operator we consider is W, see Eq. (12). We
display the simulation results in Fig. 2 (c) and (d). With
the example realizations in Fig. 2 (c), one can clearly
see that now also the deterministic evolution changes
the states. Moreover, the jumps happen between a pair
of states only and terminate when the steady state is
reached. Fig. 2 (d) shows that similarly to R2 [cf. Fig. 1
(d)], all the trajectories eventually end up being on
one of two states on the equator of the Bloch sphere.
However, how they reach these points is totally different
with respect to R2. In terms of the measurement
scheme, there is another crucial difference between W
and R2. With W the post-measurement states are time
dependent, while with R2 they are time independent.

Table 1 collects and compares the properties of all
the used four operators in terms of (i) whether the
quantum jumps continue also in the asymptotic regime
or terminate when the steady state is reached, (ii)
whether the deterministic evolution changes the state
of the trajectories, (iii) whether the post-measurement
states are time dependent or time independent, and (iv)
what is the effective ensemble size in the simulation
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Figure 3: Simulation results using rate operator R1 [(a), (b)]
and R1′ [(c), (d)] for the model (48) with time dependent
driving. Example trajectories are displayed in (a) and (c). Final
steady state distributions for Bloch vector X and Y components
are shown in (b) and (d). The insets in (b) and (d) demonstrate
the agreement between the analytical results (solid line) and
simulation results (dots), with 104 trajectories.

(how many different kinds of state vectors the ensemble
consists of point-wise in time). Overall, the rate
operator R2 has the most appealing properties from
simulation and fundamental interpretation points of
views.

5.2 Driven master equation
As a second example, we add a time-dependent driving
b(t) to the evolution (48) and consider the decay rates
γ1 = γ2 = 1 and γ3(t) = − 1

2 tanh t. For the driving, we
choose

b(t) = C +
t∫

0

dsΩ(s;µ, σ) (53)

including an integral over the Gaussian function

Ω(s;µ, σ) = 1√
2πσ

e−(s−µ)2/(2σ2)

and a constant

C =
∫ 0

−∞
dsΩ(s;µ, σ).

At time t = 0, b(0) = C and b(t)→ 1 when t� (µ+σ);
the amplitude of the drive is ramped up from the initial
value C to the asymptotic value 1 over a time-scale fixed
by σ, essentially modeling a finite time quench of the
Hamiltonian for the open system. The driving does not
affect the positivity of the rate operators R1 and R2.
However, we use the decomposition (3) and define a new
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Rate Asymptotic Deterministic Time-independent Effective ensemble
operator jumps? changes? post-measurement states? size

R1 yes no no ∞
R2 no no yes 3
R3 yes no no ∞
W no yes no 2

Table 1: The basic characterization of the four used rate operators for stochastic simulations. Quantum jumps can either continue
or terminate when steady state is reached. Depending on the form of the effective Hamiltonian giving the deterministic evolution,
the state of the trajectory can either change or remain unchanged after renormalization. The states after the measurements in the
continuous-measurement scheme can be either time dependent or time independent. The effective ensemble size describes how
many different kinds of state vectors the ensemble consists of point-wise in time.

rate operator

R1′ψ(t) = R1ψ(t) + i
b(t)
2 [σz, |ψ(t)〉〈ψ(t)|], (54)

which fully takes into account the driving, so that
the deterministic evolution between the jumps will not
depend on it. In other terms, as announced earlier,
we can implement the simulation of time-dependent
coherent driving with pure jump dynamics (provided
that the rate operator R1′ is positive).

In Fig. 3 we plot the dynamics for µ = 1, σ = 1/4
and for an initial state |ψ0〉 = cos π8 |1〉 + sin π

8 |2〉.
In panel (a) the coherent driving is clearly visible in
the deterministic evolution between the jumps when
using the rate operator R1. In contrast, in panel (c)
the sample trajectories do not have any deterministic
evolution between the jumps since the driving is
absorbed by the rate operator R1′. In the insets of
panels (b) and (d), we verify that we indeed unravel
the dynamics of Eq. (48). The distribution of the states
in the long time limit can be understood by looking at
ϕ(t) = arctan y(t)

x(t) , i.e., the angle between the x- and y-
axis of the Bloch sphere, measured from the positive
x-axis. In the long time limit, when b(t) ≈ 1 and
all of the trajectories have almost reached the equator
of the Bloch sphere, each jump just shifts the phase
ϕ(t+) = ϕ(t−) ± π

4 , where times t± are just after and
before the jump, respectively. The initial transient
period randomizes the phases and the resulting smeared
distribution for the phase, as seen in panel (d) of Fig. 3,
occurs.

For further confirmation, we plot in Figure 4 ϕ(t) for
a single trajectory. We clearly see that after a transient
period the phase changes during the jumps in steps π

4 ,
which can be understood as follows. Let z2 = cos2 θ
be the squared z-component of a unit Bloch vector in
spherical coordinates. The rate operators R1 and R1′
both induce a map z2 7→ α2z2

(2−α)2 when t → ∞. Hence,
the jumps push the dynamics on the equatorial plane of
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Figure 4: The phase evolution (upper panel) and phase
jumps (lower panel) for a single trajectory with time dependent
driving. We can see that initially there is a transient where
the phase jumps are not multiples of π/4. This leads to the
smearing of the ensemble in the long time limit observed in
Fig. 3
.

the Bloch sphere. Since the coherent driving preserves
the z-component, the pure states of the ensemble will
be distributed along the equator of the Bloch sphere
in the long time limit. Any such pure state can be
written as |ψ〉 = 1√

2 (|1〉+eiϕ|2〉). The eigenstates of the
rate operator R1′ψ in the long time limit are |φψ,±〉 =
1
2 (|1〉±e−iϕξ|2〉), where ξ = 1+ib√

1+b2 . Importantly, |ξ| = 1
and the relative phase of the eigenstates is eiϕξ. In
the long time limit, the effect of the quantum jumps
corresponds to phase jumps eiφ 7→ ±eiφξ. In the long
time limit b(t) = 1. Interestingly, the phase jumps for
the rate operator R1′ in the special case b = 1 are
rational multiples of π in the long time limit. Namely,
ξ = eiπ/4 which is the 8th root of unity.

In Fig. 5 we plot the dynamics for time-independent
driving b(t) = 1 and especially in panel d) we can
see how in this case the definite phase relations are
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0.0 2.5 5.0 7.5 10.0
time

0.5

0.0

0.5
Re

(
12

)
(a)

1.0 0.5 0.0 0.5 1.0
X

1.0

0.5

0.0

0.5

1.0

Y

(b)

0 10time
0.0
0.5

Re( 12)

0.0 2.5 5.0 7.5 10.0
time

0.5

0.0

0.5

Re
(

12
)

(c)

1.0 0.5 0.0 0.5 1.0
X

1.0

0.5

0.0

0.5

1.0

Y

(d)

0 10time
0.0
0.5

Re( 12)

Figure 5: Time independent driving for b(t) = 1. In panel a)
we plot the dynamics using rate operator R1 and the driving
term is clearly visible in the real part of the coherences. In
panel b) we verify in the inset the validity with the simulations
and plot the distribution of Bloch vectors in the ensemble at
at the final time. In paneld c) we use the rate operator R1′

and the trajectories contain only jumps. In panel d) we plot
the Bloch vectors of the ensemble at the final time. Clearly,
the phase is rational multiple of π/4 for every member of the
ensemble.

preserved. The phase ϕ(t) aquires values which are
rational multiples of π/4 for every trajectory of the
ensemble.

6 Conclusions
We introduced a class of quantum-jump unravelings
(denoted as R-ROQJ) that interpolates between
MCWF for CP-divisible dynamics and the rate-operator
unraveling for P-divisible evolutions [35, 51]. R-ROQJ
guarantees a well-defined continuous-measurement
scheme for the class of quantum evolutions defined
by the dissipativity condition (46), which is strictly
stronger than P-divisibility. Furthermore, R-ROQJ
takes full advantage of the freedom one has in dividing
the master equation into a determinisitic and a jump
part, by setting a desired time-independent linear non-
Hermitian Hamiltonian, even in the case of an external
driving, or selecting a fixed post-jump basis.

The approach put forward here will likely be useful
also to deal with more general classes of non-Markovian
dynamics, by including reversed jumps in the unraveling
[30,31]. In [35], reversed jumps for the standard ROQJ
were defined, thus showing that they can be integrated
effectively with ROQJ. Even more, the combination
of reversed jumps and R-ROQJ will allow us to fully
exploit the freedom in manipulating the deterministic
and jump parts of the unraveling, without having to

restrict to rate operators with positive eigenvalues.
Taking into account more complex, higher

dimensional open-system dynamics, it will be possible
to perform a detailed comparison of the efficiency
of our method with respect not only to different
jump-based unravelings, but also to other techniques
to solve general master equations. In addition, the
definition of different unravelings based on distinct
master-equation representations associated with the
very same dynamics might lead to novel insights into
the study of the connection between the jumpless
part of the evolution of an open quantum system and
effective non-Hermitian Hamiltonians [64–67]. Finally,
in future work we will consider the diffusive limit
of R-ROQJ unravelings; with a similar approach as
in Ref. [17], we could interpolate between piecewise
deterministic and continuous quantum trajectories for
the R-ROQJ, and also between the ROQJ quantum
trajectory descriptions presented in [35,51]
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A Proof of Proposition 1
Consider HS = C2 and a master equation as in Eq.(1); moreover assume that there is a basis {|ϕ1〉 , |ϕ2〉} and a
linear operator C(t) on C2 such that Eqs.(39) and (42) hold. First note that Eq.(39), along with the Hermiticity
preservation condition, imply (we neglect from now on the time dependence) Jklij = J lkji . Using the latter, it is
readily shown that the action of J ′t in Eq.(3) with C defined as in Eq.(40) can be written as

J ′t (ρ) = Jt(ρ) + 1
2
(
Cρ+ ρC†

)
=
(
α β

β α

) 
α = (2J12

11 + y)ρ12 + J22
11ρ22 + J11

22ρ11

β = (J11
12 + y

2 + J12
11 + J12

22 )ρ11 + (J22
12 + y

2 )ρ22

+ 1
2 (2J12

12 + 2J21
12 + J11

22 − J11
11 + J22

11 − J22
22 )ρ12

(A.1)

for any state ρ such that
ρ12 = ρ21, (A.2)

where indeed ρij = 〈ϕi| ρ |ϕj〉 (i.e., there are no phases with respect to the selected basis).
Now, the crucial observation is that the matrix in Eq.(A.1) has fixed eigenvectors: for any values of α and β,

they are in fact given by

|ϕ±〉 = 1√
2

(|ϕ1〉 ± |ϕ2〉) , (A.3)

which directly implies the statement to be proven, whenever the rate operator is positive if referred to pure states
satisfying Eq.(A.2):

• as said, we choose an initial state |ψ0〉 that satisfies Eq.(41);

• but then, due to Eq.(42), the state |ψ0(t1)〉 before the first jump at time t1 (recall that D(t, s) is defined in
Eq.(43))

D(t1, 0) |ψ0〉
‖D(t1, 0) |ψ0〉‖

will be such that Eq.(A.2) holds, so that the jump operator Rψ0(t1) = J ′t (|ψ0(t1)〉 〈ψ0(t1)|) fixed by Eq.(3)
with C(t) as in Eq.(40) has the two eigenvectors |ϕ±〉 in Eq.(A.3);
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• thus, after the jump (that is well defined due to the positivity of the rate operator) the system will be either
in |ϕ+〉 or in |ϕ−〉;

• since also the latter are in the form as in Eq.(41) the state before the second jump,

D(t2, t1) |ϕ±〉
‖D(t2, t1) |ϕ±〉‖

,

will still satisfy Eq.(A.2), so that the state after the second jump will be either |ϕ+〉 or |ϕ−〉, and so on.

All in all, we have the 3 possible families of states {|ψ0(t)〉 , |ϕ+(t, s)〉 , |ϕ−(t, s)〉} that are obtained from
{|ψ0〉 , |ϕ+〉 , |ϕ−)〉} via the deterministic evolution in Eq.(43); the instants of occurrence of the jumps will determine
which parts of the deterministic evolution will be actually involved in each trajectory.

B Proof of Proposition 3
Defining

K(t) =
∫
U(N)

L†t(U†)UdU, (B.1)

one finds for an arbitrary V ∈ U(N)∫
U(N)

L†t(V U†)UdU =
∫
U(N)

L†t(U ′
†)U ′V dU ′ = K(t)V, (B.2)

with U ′ = UV †. Hence for an arbitrary system operator X one has∫
U(N)

L†t(XU†)UdU = K(t)X. (B.3)

Now we use the dissipativity condition, Eq.(46),

L†t(Y †Y ) ≥ L†t(Y †)Y + Y †L†t(Y ), (B.4)

for Y = UX, with U ∈ U(N). It leads to

L†t(Y †Y ) ≥ L†t(X†U†)UX +X†U†L†t(UX) = L†t(X†U†)UX +X†[L†t(X†U†)U ]†. (B.5)

Averaging over U(N) yields

∫
U(N)

L†t(Y †Y )dU ≥
∫
U(N)

L†t(X†U†)UdU X + +X†
(∫

U(N)
L†t(X†U†)UDU

)†
= K(t)X†X +X†XK†(t),(B.6)

and hence defining a linear map as

J†t(X) = L†t(X)− (K(t)X +XK†(t)), (B.7)

we have shown that

J†t(X†X) ≥ 0, (B.8)

which proves that the map Jt is positive.
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C Positivity of the rate operators R1ψ(t), R2ψ(t) and R3ψ(t)

Here, we prove the positivity of R1ψ(t), R2ψ(t), and R3ψ(t) defined in Sec.5, fixed by Eqs.(50), (51) and (52),
assuming only that the γk(t) satisfy P-divisibility condition, that is, γi(t) + γj(t) ≥ 0 for i 6= j = 1, 2, 3 and that
γ3(t) < 0, so that P-divisibility means that

γk(t) + γ3(t) ≥ 0 , k = 1, 2.

Note that the eternal non-Markovian dynamics considered in the main text is a special case of this class of dynamics.
First, we note that the qubit generator

Lt(ρ) = 1
2

3∑
k=1

γk(t)(σkρσk − ρ), (C.1)

may be rewritten as

Lt(ρ) =
3∑
k=1

γk(t)(Jk(ρ)− ρ), (C.2)

where
Jk(ρ) = 1

2(σkρσk + ρ), (C.3)

are CPTP for k = 1, 2, 3. We then have the following result.

Proposition 4. The map (cf. Eq. (50))

Jt(ρ) =
3∑
k=1

γk(t)Jk(ρ) = Jt(ρ) + γ(t)
2 ρ (C.4)

is positive.

The proof is based on the following observation: for a qubit system a linear map Φ : M2(C)→M2(C) is positive
if and only the corresponding Choi matrix CΦ

CΦ :=
2∑

i,j=1
|i〉〈j| ⊗ Φ(|i〉〈j|)

satisfies
CΦ = A+ (1⊗ T )B,

where A and B are positive 4× 4 matrices, and ‘1⊗T ’ denotes partial transposition. The Choi matrix for the map
Jt reads

CJt
=


γ1 + γ2 + 2γ3 0 0 γ1 + γ2

0 γ1 + γ2 γ1 − γ2 0
0 γ1 − γ2 γ1 + γ2 0

γ1 + γ2 0 0 γ1 + γ2 + 2γ3

 , (C.5)

where we skipped the time dependence. Note, that CJt = A+ (1⊗ T )B, where

A =


γ1 + γ2 + 2γ3 0 0 γ1 + γ2 + 2γ3

0 γ1 + γ2 + 2γ3 γ1 − γ2 0
0 γ1 − γ2 γ1 + γ2 + 2γ3 0

γ1 + γ2 + 2γ3 0 0 γ1 + γ2 + 2γ3

 , (C.6)

and
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B = −2γ3


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 . (C.7)

Since γ3(t) < 0 one has B ≥ 0. Now, A ≥ 0 if and only if

γ1 + γ2 + 2γ3 ≥ |γ1 − γ2|. (C.8)

Let us consider two scenario:

1. if γ1 ≥ γ2, then (C.8) is equivalent to γ2 + γ3 ≥ 0,

2. conversely, if γ2 ≥ γ1, then (C.8) is equivalent to γ1 + γ3 ≥ 0,

which ends the proof of positivity of A. Now, since A and B are positive, the map Jt is positive and hence R1ψ(t) ≥ 0.

Positivity of R2ψ(t) is evident due to the relation

R2ψ(t) = R1ψ(t) − γ3(t)|ψ(t)〉〈ψ(t)|, (C.9)

and γ3(t) < 0. Finally, the operator R3ψ(t) corresponds to the map 1
2 (
∑
k γkσkρσk − γ3ρ). Its Choi matrix reads

C =


0 0 0 −2γ3

0 γ1 + γ2 γ1 − γ2 0
0 γ1 − γ2 γ1 + γ2 0
−2γ3 0 0 0

 = A′ + (1⊗ T )B′, (C.10)

where

A′ =


0 0 0 0
0 γ1 + γ2 + 2γ3 γ1 − γ2 0
0 γ1 − γ2 γ1 + γ2 + 2γ3 0
0 0 0 0

 , (C.11)

and B′ = B defined by (C.7). The proof of positivity of A′ is very similar to that of A.

D Fixed post-jump states for the eternal non-Markovian dynamics

Here, we first show explicitly that the dynamics defined by the master equation (48) is actually a special case of the
two-level system dynamics identified by Prop.1, so that we can define a R-ROQJ unraveling with fixed post-jump
states via Eq.(40). We will then discuss the positivity of such an unraveling.
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Consider the basis {|1〉 , |0〉} of eigenvectors of σz; in such a basis the coefficients of Jt according to Eq.(38) read

J11
11 (t) γ3(t)/2
J11

10 (t) 0
J11

01 (t) 0
J11

00 (t) (γ1(t) + γ2(t))/2
J10

11 (t) 0
J10

10 (t) −γ3(t)/2
J10

01 (t) (γ1(t)− γ2(t))/2
J10

00 (t) 0
J01

11 (t) 0
J01

10 (t) (γ1(t)− γ2(t))/2
J01

01 (t) −γ3(t)/2
J01

00 (t) 0
J00

11 (t) (γ1(t) + γ2(t))/2
J00

10 (t) 0
J00

01 (t) 0
J00

00 (t) γ3(t)/2



(D.1)

and hence (setting x = 0) the operator C(t) as in Eq.(40) is

C(t) =
(

γ1(t)+γ2(t)−γ3(t)
2 y(t)
y(t) γ1(t)+γ2(t)−γ3(t)

2

)
= γ1(t) + γ2(t)− γ3(t)

2 1+ y(t)σx; (D.2)

while the operator fixing the deterministic evolution according to Eq.(43) is

D(t, s) = exp
(
−1

2

∫ t

s

dτ(γ1(τ) + γ2(τ))1+ y(τ)σx
)

; (D.3)

note that for y(t) = 0 we recover the rate operator R2ψ(t) defined by Eq.(51). It is easy to see that the assumptions
of Prop.1 in Eq.(39) and (42) hold, so that, starting from an initial state as in Eq.(41), the R-ROQJ fixed by
C(t) as in Eq.(D.2) consists of jumps among 3 deterministically evolving states, whenever the positivity of the rate
operator is ensured. In particular, for a continuous family of R-ROQJ this is the case whenever the dynamics is
P-divisible, as shown below.

First, recall that the P-divisibility condition for the eternal non-Markovian dynamics is γ1(t), γ2(t) ≥ |γ3(t)| for
all t ≥ 0. Moreover, going back to the proof of Prop. 1 in Sec.B, the positivity of the rate operator is fixed by the
eigenvalues

α(t)± β(t)

of J ′t (|ψ(t)〉 〈ψ(t)|), see the first equality in Eq.(A.1). Actually, rather than studying the eigenvalues, it is convenient
to look at the trace and determinant of the corresponding 2 × 2 matrix: for any pure state of the form |ψ〉 =
c |ϕ1〉 ±

√
1− c2 |ϕ2〉 (i.e., as in Eq.(41)) we then have the two conditions

α(t) = γ1(t) + γ2(t)
2 ± c

√
1− c2y(t) ≥ 0

α2(t)− β2(t) =
(
γ1(t) + γ2(t)

2 ± c
√

1− c2y(t)
)2
−
(
y(t)

2 ± c
√

1− c2(γ1(t)− γ3(t))
)2
≥ 0. (D.4)

Both inequalities hold for any −1 ≤ c ≤ 1 if 0 ≤ y(t) ≤ γ1(t) + 1
2γ2(t) − 1

2γ3(t) for all t ≥ 0. The validity of the
first inequality directly follows from the fact that γ1(t), γ2(t) ≥ 0 and γ1(t) + 1

2γ2(t) − 1
2γ3(t) ≤ γ1(t) + γ2(t) due

to P-divisibility and that the maximum value of |c|
√

1− c2 for −1 ≤ c ≤ 1 is 1/2. For the second inequality, let us
consider first the case where the term ±c appearing in it is positive, so that the inequality becomes

γ1(t) + γ2(t)− y(t) ≥ 2|c|
√

1− c2 (γ1(t)− γ3(t)− y(t))
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as γ1(t) − γ3(t) ≥ 0 due to P-divisibility and we used that α(t) ≥ 0, as well as y(t) ≥ 0; but the maximum value
with respect to c of the term at the r.h.s. is max {0, γ1(t)− γ3(t)− y(t)}, so that the inequality holds for any
y(t) ≤ γ1(t) + γ2(t) (γ2(t) ≥ −γ3(t) due to P-divisibility). Instead, if ±c is negative the second inequality in (D.4)
becomes

γ1(t) + γ2(t)
2 − |c|

√
1− c2y(t) ≥

∣∣∣∣y(t)
2 − |c|

√
1− c2(γ1(t)− γ3(t))

∣∣∣∣ .
If y(t) ≥ 2|c|

√
1− c2(γ1(t) − γ3(t)), we have γ1(t) + γ2(t) − y(t) ≥ 2|c|

√
1− c2(y(t) − (γ1(t) − γ3(t))), whose

r.h.s. maximum value with respect to c is max {0, y(t)− (γ1(t)− γ3(t))} so that the inequality holds for any
−1 ≤ c ≤ 1 if y(t) ≤ γ1(t) + 1

2γ2(t) − 1
2γ3(t). If y(t) < 2|c|

√
1− c2(γ1(t) − γ3(t)), we have γ1(t) + γ2(t) + y(t) ≥

2|c|
√

1− c2(y(t) + (γ1(t)− γ3(t))), whose r.h.s. maximum is max {0, y(t) + (γ1(t)− γ3(t))} so that the inequality is
ensured by γ2(t) ≥ −γ3(t), as well as γ1(t), γ2(t), y(t) ≥ 0.

In total, for any y(t) such that 0 ≤ y(t) ≤ γ1(t) + 1
2γ2(t)− 1

2γ3(t) for all t ≥ 0 the rate operator Rψ = J ′t (|ψ〉 〈ψ|)
is positive for any |ψ〉 = c |ϕ1〉 ±

√
1− c2 |ϕ2〉 with −1 ≤ c ≤ 1 and then if the initial state satisfies the latter

condition (which is preserved by the deterministic evolution in Eq.(D.3)), we will have a positive rate-operator
unravelling with the states {|ψ0(t)〉 , |ϕ+(t, s)〉 , |ϕ−(t, s)〉}.
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