
spirometry results. We still have so much to learn, and our
understanding of respiratory epidemiology will continue to benefit
immensely from the upkeep of cohorts such as TAHS.�
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Alveolar Collapse as a Threat to Mechanically Ventilated Lungs

Alveolar collapse is a hallmark of acute respiratory distress syndrome
(ARDS), with multiple causative mechanisms (1). First, the initial
inflammation triggers extravasation of proteinaceous exudate and
recruitment of inflammatory cells with occupation of the alveolar
airspace; second, inflammatory edema increases lung weight, which
compresses the alveoli in the gravitationally dependent regions; third,

reabsorption atelectasis due to high inspired oxygen fraction develops
in hypo- or nonventilated lung regions (e.g., in the presence of
bronchial occlusion due to secretions or airway closure); and fourth,
reduced surfactant activity facilitates a loss of lung aeration (2).

From a clinical perspective, the extent of alveolar collapse has long
been recognized as a key feature of ARDS severity. Bilateral infiltrates
on chest X-ray have been included in the clinical definition of ARDS
since its very first version (3). The number of quadrants involved on
chest X-ray was part of the 1988 lung injury score (4), and its
prognostic value has recently been confirmed (5). Later, quantitative
analysis of chest computed tomography scan confirmed that higher
lung weight (and higher recruitability) is associated with worse
outcome (1).

Recently, high-quality experimental evidence shed clearer light
on the detrimental role played by alveolar collapse within
mechanically ventilated lungs. In a study reported in this issue of the
Journal (6), Sousa and colleagues (pp. 1441–1452) compared three
positive end-expiratory pressure (PEEP) strategies, all clinically
acceptable but associated with different extent of collapse, in a large
animal model of ARDS. Using electrical impedance tomography
(EIT) during a decremental PEEP trial, the authors measured the
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percentage of lung units collapsed or overdistended at each degree of
PEEP and randomized animals to minimal collapse (<3% of lung
units), minimal overdistension (<3% of lung units), and the best
compromise between the two (minimal difference between
percentage of collapse and overdistension: crossing-point PEEP).
Animals were then mechanically ventilated with the assigned PEEP
and protective values of VT for 12hours, and detailed physiological
measures were obtained at fixed time points. Animals ventilated with
the lowest PEEP, obtaining minimal overdistension but also maximal
collapse (about 25% of lung units) showed a surprisingly high
mortality of 50%, probably because of right heart failure and
cardiovascular collapse, compared with 100% survival in the other
two groups. Additional differences at 12 hours, confirming worse
lung protection in the group with low overdistension and high
collapse, were lower compliance of the respiratory system, higher
intrapulmonary shunt, lower PaO2

:FIO2
ratio, higher heterogeneity of

histological injury, andmore extravasation of proteins. Physiological
measures performed by the authors during the experiment revealed
mechanisms underlying worsening lung injury in the presence of
larger alveolar collapse. Airway and transpulmonary driving pressure
and end-inspiratory transpulmonary pressure were higher, suggesting
more lung stress; end-expiratory transpulmonary pressure and
compliance of the dependent lung region were lower, increasing the
risk for atelectrauma; pulmonary shunt was higher, leading to higher
risk of lung tissue hypoxia; and cardiac output, pulmonary arterial

pressure, right ventricular transmural pressure, and pulmonary
pressure gradient were higher, increasing right heart workload and
risk of dysfunction. The study by Sousa and colleagues surely has
several limitations (e.g., lack of a power analysis to compare mortality
among groups, novel unvalidated methods to select the different
degrees of PEEP, lack of direct quantification of key physiological
mechanisms such as atelectrauma) and conflicting results (e.g., no
difference in lung histology scores and wet-to-dry ratios; similar
concentrations of biomarkers despite extensive assessment in lung
tissue, BAL, and blood) but has the unique and fascinating feature of
classical experimental research of coupling solid midterm clinical
outcomes with longitudinal monitoring of relevant physiological
mechanisms (7).

This work adds to other recent experimental research suggesting
a detrimental role for alveolar collapse in mechanically ventilated
lungs (8, 9). Zeng and colleagues (8) collapsed the entire left lung in
healthy sheep using a bronchial blocker and unilateral thoracotomy,
while mechanically ventilating the right lung for 8 hours with and
without exposure to intravenous LPS, and assessed physiological
changes during the experiment and pulmonary transcriptomics at the
end of it. The authors described physiological changes induced by
alveolar collapse like those described by Sousa and colleagues (6):
lower compliance, worse oxygenation, and higher pulmonary arterial
pressure. At the end of the experiment, collapse induced
transcriptomic changes indicative of dysregulated pulmonary
immunity and alveolar–capillary barrier. Exposure to LPS
exacerbated lung injury in atelectatic tissue and enhanced the
immune response, particularly leukocyte-related processes, more in
the collapsed lung regions (8). We also performed a study in healthy
pigs excluding the left lung frommechanical ventilation for 24hours
to induce regional collapse, albeit without thoracotomy. The
collapsed lung showed worse lung histology score and higher
concentrations of inflammatory cytokines and biomarkers of
endothelial injury in the regional BAL fluid. We also confirmed
higher lung stress and worse pulmonary hemodynamics as
pathophysiological mechanisms, together with novel data on the
detrimental role of hypoperfusion of collapsed lung regions
(potentially inducing tissue ischemia and endothelial injury)
measured using EIT (9). Figure 1 schematizes all the relevant
pathophysiological alterations induced by alveolar collapse potentially
worsening lung injury and right heart dysfunction.

The key role of alveolar collapse for the progression of ARDS
and worse clinical outcomes has also been indirectly confirmed by
lower mortality associated with the use of higher PEEP (10) and
prone positioning (11) in patients with more severe hypoxemia (who
should have more collapse). However, a more recent study of PEEP
strategies aimed at maximizing the reaeration of collapsed alveoli
showed worse mortality compared with lower PEEP, likely because of
excessive risk of overdistension (12). Thus, a bedside method to
identify personalized PEEP balancing reversal of collapse with risk of
overdistension would be a welcome addition to treatment of patients
with ARDS. The last merit of the study of Sousa and colleagues (6) is
to underline the potential of EIT as a bedside, radiation-free,
repeatable method to assess overdistension and collapse (13, 14),
allowing the selection of personalized PEEP settings even in more
difficult conditions, such as during extracorporeal membrane
oxygenation (difficult to transport) (15) and in spontaneously
breathing patients (difficult to use traditional methods based on
mechanics) (16).

Figure 1. Physiological changes induced by alveolar collapse
increase the risk of lung injury and right heart dysfunction.
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Taken together, these data suggest that alveolar collapse is a
fundamental component of ARDS severity. In clinical practice, we
could aim at measuring the extent of collapse, monitoring its
detrimental pathophysiological consequences on the lungs and the
right heart, and performing early personalized interventions to
mitigate these consequences. We should also remember that in caring
for our patients, “better” does not always coincide with “more” but,
more frequently, with aiming at a thoughtful balance.�
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