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a b s t r a c t

Software product lines (SPL) describe highly-variable software systems as a family of similar products
that differ in terms of the features they provide. The promise of SPL engineering is to enable massive
software reuse by allowing software features to be reused across a variety of different products made
for several customers. However, there are some disadvantages in the extraction of SPLs from standard
applications. Most notably, approaches to the development of SPLs are not supported by the base
language and use a syntax and composition techniques that require a deep understanding of the tools
being used. Therefore, the same features cannot be used in a different application and developers
must face a steep learning curve when developing SPLs for the first time or when switching from one
approach to a different one. Ultimately, this problem is due to a lack of standards in the area of SPL
engineering and in the way SPLs are extracted from variability-unaware applications. In this work, we
present a framework based on LSP and dubbed SP LL SP that aims at standardizing such a process by
decoupling the refactoring operations made by the user from the effect they have on the source code.
This way, the server for a specific SPL development approach can be used across several development
environments that provide clients with customized refactoring options. Conversely, the developers
can use the same client to refactor SPLs made according to different approaches without needing
to learn the syntax of each approach. To showcase the applicability of the approach, we present an
evaluation performed by refactoring four SPLs according to two different approaches: the results show
that a minimal implementation of the SP LL SP client and server applications can be used to reduce the
effort of extracting an SPL up to the 93% and that it can greatly reduce or even completely hide the
implementation details from the developer, depending on the chosen approach.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Research context. Modern software systems must fulfill the needs
of a ever-growing customer base. Due to the diversity of human
needs, software should be customizable and reconfigurable. To
answer these needs, during the last decades researchers and
practitioners gained interest in software product lines (SPL) as an
engineering technique for the development of highly-variable
systems. SPLs can be implemented in many ways. Most ap-
proaches embrace either the compositional or the annotative de-
sign philosophies (Kästner and Apel, 2008). The annotative
approaches use macros such as the C #ifdef to highlight system
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portions intended to implement a software feature. The com-
positional approaches use variability-aware preprocessors called
composers to generate a program variant from a set of fea-
tures and a configuration. Base languages—i.e., languages with
their compilers, without any external tools—rarely provide native
support for either philosophy. For instance, C is one of a few
alternatives providing native support for annotative approaches
through its derivatives. However, compositional approaches are
not supported out-of-the-box. Java is very popular among SPL
researchers (Batory et al., 2004; Bergel et al., 2005; Koscielny
et al., 2014; Figueiredo et al., 2008) and can feed C macros
to the C preprocessor to implement variability, however this
solution is not very popular whereas developers usually prefer
an external composer to implement SPLs. State-of-the-art SPL
development environments such as FeatureIDE (Thüm et al.,
2014; Meinicke et al., 2017) can cope with all the aspects of SPL
development, including construction, software artifacts manage-
ment, configuration and product derivation, and yet developers
must struggle to keep such tools up to the evolution of the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ase language—for instance, Java has a 6-month release cycle
ince March 2021.1 This led the researchers to invent new tech-
iques that do not rely on external tools and instead exist within
he boundaries of the base language used by the application.
xamples of such techniques are the variability modules archi-
ectural pattern (Setyautami and Hähnle, 2021) and the devise
attern (Bertolotti et al., 2022).

roblem statement. Considering all these approaches, the vast-
ess and diversity of the research on SPLs is apparent. Even
hen considering only compositional approaches, developers
ust choose one of many composers to translate features into a
alid Java application: FeatureHouse (Thüm et al., 2014), AHEAD

(Batory et al., 2004), Antenna2 and AspectJ (Mezini and Oster-
ann, 2004) among many others. SPL developers must struggle

o learn the syntax and composition mechanisms of each tool
nd the acquired skills are hardly transferable to a different SPL
evelopment approach. In fact, there is no general consensus on
ow the composition mechanism should be performed, thus the
ource code of the core application and its features are structured
ifferently depending on the composer tool. The diversified range
f tools and methods is among the primary hindrances to the
roliferation of SPLs. Artifacts developed with one suite are not
ompatible nor reusable with other ones (Chimalakonda and
yung, 2016) except for case-by-case ad hoc solutions, such as
(work in progress) converter between AHEAD, and Feature-
ouse projects.3 Such a limitation causes a dissonance between
he promise of SPLs of enabling massive software reuse for an
ver-growing customer base and the actual inconsistency, in-
ompatibility and reusability issues of a diversified range of
ools for their development. In other words, SPL engineering
SPLE) fails to respond to the innate volatility of requirements
aused by factors such as customer needs, market change, global
ompetition, and government policies (Jayatilleke and Lai, 2018)
ue to its inability to change approach according to the new
equirements. This predicament ultimately motivates the need for
he research community to improve the standards in the area of
PLs (Chimalakonda and Hyung, 2016).

ontribution. This problem is similar to a problem recently tack-
ed by the language server protocol4 (LSP): the innate diversity
f programming languages makes it hard to allow programming
anguage support to be implemented and distributed indepen-
ently of any development environment, which the developers
ay be accustomed to. The LSP quickly became the de facto
tandard for the development of language support because it
akes easy to port existing language services to several different
evelopment environments and their users. Without the LSP,
ew programming languages may struggle to be adopted because
hey offer limited tooling support and users may be skeptical
bout abandoning the development environment of their choice.
imilarly, we want to facilitate the adoption of new SPL develop-
ent approaches by bringing them to the development environ-
ents the users are already accustomed to. This work proposes
framework—dubbed SP LL SP5—inspired by the LSP and is used

o refactor variable software systems into SPLs in a tool-agnostic
ay. Following this approach, the SPL refactoring process is stan-
ardized, so that the same client can be used with several servers
nd vice versa; by following a unique protocol, users can leverage

1 https://www.java.com/releases/fullmatrix/
2 http://antenna.sourceforge.net
3 https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.

eatureide.core.conversion.ahead-featurehouse
4 https://microsoft.github.io/language-server-protocol/
5 SP LL SP is read SPLPS.
2

the acquired expertise across several SPL development tools and
approaches.

Evaluation case study. To support this contribution, we present
a proof-of-concept plugin that helps the developers performing a
refactoring according to the SP LL SP framework. Then, we evaluate
the associated development effort. This research is validated by
answering the following research questions.

RQ1 How effective is SP LL SP at reducing the effort of refactoring
standard applications into SPLs?

RQ2 How effective is SP LL SP at abstracting the SPL development
tools/approaches to developers?

Structure. The remainder of this paper is structured as follows.
In Section 2 we contextualize our work with regards to any
background information it is based on. In Section 3 we discuss the
SP LL SP framework, its notation, capabilities and applicability. In
Section 4 we introduce the case studies on which we performed
a refactoring based on SP LL SP and discuss the experiment per-
formed to evaluate SP LL SP. In Section 5 we provide an overview
of related works in this research area. Finally, in Section 6, we
draw our conclusions and outline some future directions of this
research.

2. Background

This section introduces the research context and any terminol-
ogy required to understand the contribution of this work. First,
we discuss the topic of SPLE. Then, we overview the two SPL
development approaches that will be part of our evaluation case
study. Finally, we briefly discuss the LSP as the technology that
inspired this contribution.

2.1. Software product line engineering

Variability-rich production is a kind of industrial production
that has been dealt with in classical engineering through the
creation of product lines. SPLE follows the same idea to handle
the complexity of variability-rich software systems and to allow
for massive software reuse. This goal is achieved by capturing
the similarities among software systems pertaining the same
application domain and modeling them as part of a software
family. Two members of the same family are distinguished by
the features they are comprised of—i.e, the collection of charac-
teristics and end-user-visible behaviors of the products. Features
and their relations can be expressed in a variety of ways; in this
work we will focus on feature diagrams based on the feature
model (FM) formalism. Since their introduction as part of the
FODA method (Kang et al., 1990), FMs have become the de facto
standard for variability modeling (Czarnecki et al., 2012).

Given a FM, a product can be derived from a valid product
configuration (or just configuration). A configuration is considered
valid when it conforms to the constraints expressed by the FM.
Constraints can be directly expressed by the feature diagram—
such as, the parent–child relationship, mandatory features, op-
tional features, or groups and alternative groups. Alternatively,
dependencies are declared through by defining cross-tree con-
straints—i.e., logical formulas based on the most common Boolean
operators whose terms are the activation statuses of each fea-
ture of the FM. Feature dependencies may cause anomalies that
degrade the quality of the FM, such as atomic-sets and dead
features. Research towards the detection and refactoring of such
anomalies is active and includes structural (Benavides et al., 2010)
and behavioral (ter Beek et al., 2021) detection strategies.

SPL development can be faced in three ways, regardless of the
tools and approaches chosen for their creation (Krueger, 2001;
Kühn and Cazzola, 2016):

https://www.java.com/releases/fullmatrix/
http://antenna.sourceforge.net
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.core.conversion.ahead-featurehouse
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.core.conversion.ahead-featurehouse
https://microsoft.github.io/language-server-protocol/
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– proactive or top-down—the SPL is created from scratch;
– extractive or bottom-up—an existing code base is converted

into an SPL;
– reactive—the development starts from an initial set of core

features and then the SPL is developed incrementally by
adding more features to the initial set.

he two SPL development approaches discussed in this paper
AspectJ and the devise pattern) can be used to implement SPLs
n either a proactive, extractive or reactive manner. However, our
ontribution focuses on the extractive approach, for which we
ropose a standard refactoring process.

.2. Aspect-oriented programming with AspectJ

SPLE is concerned with organizing code into features. Aspect-
riented programming (AOP) is a technique that builds on top
f existing technologies to complement the inability of object-
riented systems to properly modularize the crosscutting con-
erns of complex systems. AOP is a viable SPL development tech-
ique, by optionally weaving aspects into an application based
n the activation status of features in the configuration. As-
ectJ (Kiczales et al., 2001) is a popular implementation of AOP
nd arguably its most mature implementation to date; it strives
o achieve four design goals (Kiczales et al., 2001):

– upward compatibility—all valid Java programs are also valid
AspectJ programs;

– platform compatibility—all legal AspectJ programs must run
on standard Java virtual machines;

– tool compatibility—it must be possible to extend existing
tools and libraries running on Java;

– programmer compatibility—programming with AspectJ
must feel like a natural extension of programming with Java.

he AspectJ development process is based on the join point and
dvice concepts. Join points are well-defined points in the pro-
ram’s data flow, such as method calls and field accesses; each
an be considered as a node in a call graph. AspectJ provides
he pointcut construct to capture several join points based on
ildcards and combination operators (&&, ||, !). Advices are a
ethod-like mechanism that declares the code that should be
xecuted before, after or instead of each of the join points in a
ointcut. This process is called weaving: AspectJ can be used to
mplement variability in SPLs by weaving different advices onto
he same join point, depending on the product configuration.
lthough pointcuts are not always granular enough (Cazzola and
acchi, 2014, 2013) to capture the variability points in the code of
n SPL, it is always possible to extend the base application with
ook methods—i.e., empty methods placed in the code for later
xtensions—for the aspect to be woven (Kästner et al., 2007).

.3. Devise pattern

The devise pattern (Bertolotti et al., 2022) is a design pat-
ern (Gamma et al., 1995) for the development of SPLs based on
rehofer’s definition of features (Prehofer, 1997, 2001). According
o Prehofer, features are similar to mixins (Bracha and Cook,
990) and provide services while avoiding a rigid class structure,
s objects with individual services can be composed from a set
f features instead of using inheritance and method overwrites.
s the core functionality is separated from interaction handling,
t provides more structure and clarifies dependencies between
eatures. The devise pattern follows the same philosophy but adds
n additional layer of abstraction to standardize the way features
re declared and composed, without relying on external tools
nd preprocessors. Instead, the devise pattern exists within the
 s

3

oundaries of the base language. To achieve this result, the devise
attern splits the code into two hierarchies: the class hierarchy—

i.e., all the inheritors of the Object super-class—and the features
hierarchy—i.e., all the inheritors of the Feature super-class. The
class hierarchy is the traditional object-oriented hierarchy: ob-
jects are instances of a class and contain both code and data
in a format that is conform to their class. The feature hierarchy
represents instead any domain modeling code: each feature is a
(usually empty) class that declares an element of the FM, whereas
instances of these classes are called feature actions and are used
to declare the services composed with the base application. The
services implemented within a feature action are declared using a
syntax that is similar to #ifdef macros; their execution is initially
delayed by leveraging a functional interface or anonymous sub-
classes. Then, each feature action can either be performed or
preempted, based on the activation status of the feature according
to a configuration and on the validity of the configuration. Please
refer to Bertolotti et al. (2022) for a complete overview of the
devise pattern and to Section 3.6 for concrete examples on how
to implement SPLs using the devise pattern.

2.4. Language server protocol

The relationship between language providers and tooling
providers traditionally works in a one-to-many fashion, in which
language features such as diagnostics, auto-completions, and
code navigation for a given programming language are imple-
mented once for each environment they are destined to. This is
due to the fact that each language has its own API and the lan-
guage features must be implemented in such a way that matches
the API provided by the tools they aim to use. The same process
must be repeated for each tool and for each language, leading
to considerable effort. In order to avoid this problem, Microsoft
introduced the language server protocol (LSP) to standardize the
communication between tools and languages. In the LSP, the lan-
guage runs a standalone server process and the development tool
communicates with the server over JSON-RPC. The LSP provides
messages to perform several actions over the documents being
edited: change updates, go to requests, hover actions, semantic
tokens and several others.6 For instance, refactoring is supported
by code action requests,7 that can be adapted to the refactoring
operations presented in this work.

3. SP LL SP overview

This section describes a framework for refactoring object-
oriented systems into variability-aware SPLs. This framework,
dubbed SP LL SP, is not based on any specific approach or tool for
PL development, neither annotative nor compositional. Instead,
t sets the properties of the resulting SPL and a common frame-
ork for its development, regardless of the approach. Moreover,
P LL SP must support a minimal set of refactoring operations.

Minimality is intended in the sense that the supported operations
are expressive enough to implement variability awareness while
excluding features supported only by a few specific approaches.
Such a limitation may neglect the peculiarities of most complex
compositional approaches, but it is necessary to overcome their
relative inconsistency and reusability issues. For instance, Fea-
tureHouse features allow to wrap the code of other features using
the original() primitive. Instead, SP LL SP supports the addition of

6 https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/
pecification/#languageFeatures
7 https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/

pecification/#textDocument_codeAction

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#languageFeatures
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#languageFeatures
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_codeAction
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_codeAction
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Figure 1. Overview of the SP LL SP protocol.

ode before or after other features’ code; these operations are
nough to simulate wrappers without loss of generality. First,
e overview the general idea behind the approach, then we list
he supported capabilities and the refactoring process. Finally,
e exemplify the implementation of the SP LL SP framework in

AspectJ and using the devise pattern.

3.1. How it works

SP LL SP aims to standardize the protocol that must be followed
to refactor code into an SPL, so that the same implementations
can be reused to extract SPLs from variability-unaware applica-
tions. Fig. 1 shows the similarity between SP LL SP and the LSP:
n both cases the client application is the plugin for a devel-
pment environment and the server is an application providing
ervices that are specific to a tool. The main difference is that
n the LSP the tool is a programming language implementation
hereas in SP LL SP the tool is an SPL development framework.

n the example shown in Fig. 1, the client application is the VS
ode8 plugin highlighted in blue. The user can interact with
he development environment to explicitly request refactoring
perations, that the client translates into messages sent to the
erver; each refactoring request is used by the server to extract
n SPL from a variability-unaware application, according to the
apabilities offered by SP LL SP. As we will discuss in Sections 3.2
and 3.4 in detail, the available refactoring operations are feature
declarations, insertion point declarations, modify operations and
add operations.

Each time the user interacts with the development environ-
ment to request a refactoring operation, the client (VS Code in
this example) translates it into a JSON-RPC request. While the
choice of the client and server applications, as well as their imple-
mentation and offered capabilities, is left to the developers, the
protocol relies on JSON-RPC to represent the messages to ensure
all servers can communicate with all clients and vice versa. The
same choice is made by the LSP to implement its capabilities.
Each refactoring request is sent to one or more server applications
capable of handling SP LL SP JSON-RPC requests. Fig. 1 depicts the
rotocol in general. In the current prototype only two servers are
rovided: the AspectJ and devise pattern SP LL SP servers.
The server translates the refactoring request into an action

erformed over the workspace—i.e., on either the project files or
heir content. The result is an updated version of the original code

8 https://code.visualstudio.com/
4

according to the chosen SPL development tool or approach. For
instance, the AspectJ SP LL SP server may prepare a refactoring in
which the refactored code is moved to an aspect and the original
code is substituted by a hook method. Finally, the updated version
of the workspace is fed back to the client that can either accept
or refuse the changes.

The basic idea behind the SP LL SP protocol is straightforward:
introducing an indirection layer between the two versions of the
application in form of the JSON-RPC requests and responses al-
lows for the client application to be reused across several project
migration scenarios. The user does not need to learn the syntax
of new SPL development because the interactions with the de-
velopment environment performed to refactor the original code
are the same regardless of the chosen SPL development approach.
Moreover, the server application can also be re-used to refactor
object-oriented applications into SPLs across any development
environment for which a SP LL SP client is available, while provid-
ing an abstraction to hide the details of the SPL approach to the
developers.

While the LSP and SP LL SP share similar architecture, techno-
logical space, and benefits, the main contribution of this work
is the difference in their objectives. The LSP is not concerned
with how the programming languages are used by the developers
and focuses on the tooling perspective, aiming for the same
development environments to be used with several language
services and vice versa. Instead, SP LL SP shares similar advantages,
but focuses on the methodology perspective, by standardizing
the way developers face the problem of extracting SPLs from
variability-unaware applications.

3.2. Notation & capabilities

To move towards the adoption of a standard in the definition
of tools and methods for SPL implementation, the SPL community
should define the minimum set of capabilities that are considered
valuable for the creation of SPLs, as well as the properties of
software by means of SPLE. Our proposal in this regard is based
on the additive universe conjecture (Batory, 2021):

«Every FM that uses subtractive features can be transformed
to a new FM that uses only additive features; the two FMs
share the same set of products.»

The main appeal behind the additive universe conjecture is the
intuition that monotonic reasoning is easier than non-monotonic
reasoning (Batory, 2021)—i.e., reasoning is harder if conclusions
can be invalidated by adding more facts. There are a few moti-
vations that support sticking only to increasing monotonic SPLs
and removing subtractive features altogether. Due to their sim-
pler structure, monotonic SPLs are easier to understand and to
analyze and it is usually simpler to implement additive features
compared to subtractive features (Schulze et al., 2013). For in-
stance, as we will show in Section 3.5, it is relatively simple to
add fields and methods to a Java class using AspectJ. Instead,
t is impossible to weave an aspect that removes access to a
ield unless limiting field access to the usage of getters and set-
ers and then implementing a subtractive feature as a decorator
hat raises an exception when getter and setter methods are
sed (Chimalakonda and Hyung, 2016).
Sticking to increasing monotonic SPLs, let us introduce any

oncept that is relevant to the SP LL SP framework. Gold boxes
represent the capabilities provided by SP LL SP, whereas blue boxes
contain any notation that is required to express these capabilities.
This notation is partially based on existing literature on the
topic, mainly that regarding delta-oriented programming (DOP)

https://code.visualstudio.com/
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Schaefer et al., 2010) and aspect-oriented programming (AOP)
Kiczales et al., 1997). First, increasing monotonic are made of a
ollection base and extension feature; their definition is inspired
y the DOP paradigm and its core modules and delta modules
espectively (Schaefer et al., 2010).

Notation 1 (base feature). The base feature is all the code
of an SPL that is shared among all products of the SPL and
that can never be removed.

Notation 2 (extension features). An extension feature is
code that implements a functionality of one or more con-
crete products of the SPLs, by extending either the base
feature or another extension feature in an additive manner.

Henceforth, when we refer to features without specifying whether
they are the base feature or extension features, we imply that
either are acceptable in the given context for brevity. SP LL SP sup-
orts base features and extended features through the following
apability.

Notation 3 (feature declaration). Feature declaration is a
capability that can be used to declare a feature and add
it to the FM. Performing a feature declaration requires the
following information:

– name
– parent feature
– feature modifiers (or group, alternative group, manda-

tory, abstract)

Extension features can extend the base feature with new code
y performing two kinds of operations: add and modify opera-
ions. In this context, both the code of the base feature and the
ode of the extension feature can be considered as generic text
trings, as long as the final product of their composition—i.e.,
he text obtained by combining the two original strings, can be
ompiled and executed.

Notation 4 (add operations). Add operations denote the
effect of an extension feature of causing the addition of
brand new classes, interfaces, fields and methods to the code
of a feature.

Notation 5 (modify operations). Modify operations denote
the effect of an extension feature of causing the modification
of already existing code (such as, the body of a method) of
another feature.

The definitions of add operations and modify operations are
ased on themodifies and adds clauses in a delta module (Schaefer

et al., 2010). However, our definition differs from the original,
because in this context the distinction is tied to the level of
granularity at which an operation performs: a modifies clause
from DOP may be considered as an add operation in SP LL SP
5

if the modification causes the creation of brand new fields or
methods. In other words, in SP LL SP add operations equate to a
delta module adding brand new classes or interfaces or modifying
existing ones by adding new fields and methods, whereas modify
operations equate to a delta module modifying the body of an
existing a method. In the SP LL SP protocol, all modify operations
are exclusively additive. A modify operation can extend the code
by adding new code, but it cannot replace nor remove existing
code. Otherwise, the SPL would not be increasing monotonic and
would not fit this standard. Finally, let us introduce the following
notations.

Notation 6 (feature action). The new code added to a
feature by an extension feature through the effect of an add
operation or a modify operation is called feature action.

Notation 7 (insertion point). An insertion point is a point
in the code of a feature that can be extended with a feature
action by effect of a modify operation.

Feature actions and insertion points are a generalization of the
join points and advices used in AOP (Kiczales et al., 1997). In
particular, an insertion point generalizes a join point because it
can be placed at any point of any method instead of being tied
to data flow of the program—e.g., its method invocations. Each
extension feature can perform several add operations and modify
operations and therefore its code can be made of several feature
actions, possibly scattered across the code of other features.

SP LL SP supports insertion points, modify operations and add
operations through the following capabilities.

Notation 8 (insertion point declaration). Insertion point
declaration is a capability that can be used to declare a
variability point within the code of a feature. Performing a
feature declaration requires the following information:

– file
– row and column of the insertion point

Notation 9 (feature actions declaration). Feature action
declaration is the capability of performing add operations
and modify operations over features. Performing a feature
action declaration requires the following information:

– feature
– insertion point (optional for add operations)
– source code of the feature action

Notice that for add operations, specifying the insertion point is
optional because in most object-oriented programming languages
the position in which new classes, interfaces, fields and methods
are added is not semantically relevant.

3.3. Messages

As discussed in the previous section, SP LL SP standardizes the
development of increasing monotonic SPLs through the following
capabilities:
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– feature declaration;
– insertion point declaration;
– feature actions declaration.

P LL SP uses a JSON-RPC message to express each of these three
apabilities. The messages contain a header part and a content
art. The header part consists of the content length and the
ontent type, whereas the content part uses JSON-RPC to describe
equests and responses, as shown in the message below, used to
end a feature declaration request to the server.

{

"jsonrpc": "2.0",

"id": 1,

"method": "workspace/declareFeature",

"params": {

"name": "Theme",

"parent": "Base",

"modifiers": ["mandatory", "alternative"]

}

}

The structure of each message varies depending on the ca-
ability it supports: each capability has a different method and
ifferent parameters. Instead, response messages sent from the
erver to the client are instructions needed to translate a re-
uested operation into a workspace edit, in compliance to the
PL development approach implemented by the server. We do
ot discuss this kind of messages in detail because SP LL SP re-

sponses leverage the workspace editing capabilities provided by
the standard LSP protocol.

Feature declaration. The feature declaration request is sent from
the client to the server when the user interacts with the devel-
opment environment to create a new feature of the FM. Feature
declaration messages are identified by:

1. the "workspace/declareFeature" method;
2. parameters defined according to the following class.

class DeclareFeatureParams {

String name;

String parent;

String[] modifiers;

}

Insertion point declaration. The insertion point declaration re-
quest is sent from the client to the server when the user interacts
with the development environment to set an insertion point
within the code of the application. Insertion point declaration
messages are identified by:

1. the "textDocument/declareInsertionPoint" method;
2. parameters defined according to the following class.

class DeclareInsertionPointParams {

URI file;

Position position;

}

According to the LSP, the Position class is comprised of two inte-
ers representing a line and a character within the text document.

eature action declaration. The feature action declaration request
s sent from the client to the server when the user flags a portion
f code as part of a feature action. Feature action declaration
essages are identified by:

1. the "workspace/declareFeatureAction" method;
6

2. parameters defined according to the following class.

class DeclareFeatureActionParams {

String featureName;

DeclareInsertionPointParams insertionPoint;

Location location;

}

The Location class is comprised of an URI object to identify the
text document within the workspace and a Range object. The Range

object contains two Position objects: one for the initial character
and one for the final character in the range. Overall, the Location

object uniquely identifies the portion of code that is part of the
feature action within the code of the workspace.

3.4. Extraction process

Let us explain the refactoring process with the help of the
example shown in Fig. 2. The actors involved in the refactor-
ing process are: the developer, the workspace (or application),
the SP LL SP client (or development environment) and the SP LL SP
server. The example shown in Fig. 2 summarizes the process of
a feature declaration refactoring operation, but the process is
essentially the same for all refactoring operations, albeit with
different messages sent between the client and the server and
with a different result.

First, the developer interacts with the development environ-
ment by providing any information that the server needs to per-
form the refactoring. The pieces of information that the developer
must provide depend on the implementation of the SP LL SP client,
but must be at least those reported in the gold boxes in Sec-
tion 3.2, according to the refactoring capability to be performed.
For instance, in Fig. 2 the developer provides a representation
of the FM in JSON format which is the format accepted by the
VS Code client. However, a different client may be based on a
different representation—such as the model.xml created by Fea-
tureIDE. When the developer confirms the refactoring request,
the SP LL SP client translates the provided information into mes-
sages according to the requested capability—i.e., either feature,
nsertion point or feature action declarations. In Fig. 2, the FM
ritten in JSON triggers several feature declaration messages, one

or each feature (e.g., declare feature: Base, declare feature:
heme, . . . ). According to the message type definitions presented
n Section 3.3, each feature declaration message contains the
ollowing parameters: the name of the feature, its parent and any
odifiers. In a different refactoring scenario, different messages
ay be triggered and the message structure would be changed
ccordingly. The SP LL SP server receives the requests and trans-

lates any message into an internal representation that depends on
the server implementation. For instance, the server may keep an
internal representation of the entire FM (as in the third column
of Fig. 2) to keep track of any constraints among features. This
step can be entirely skipped if the SPL development approach
implemented by the server does not need an internal representa-
tion to perform its refactoring. Finally, the internal representation
is used by the server to plan a sequence of workspace edits.
Each workspace edit is fed back to the client using standard LSP
messages. Upon receiving the workspace edit messages, the client
application applies any suggested changes to the workspace. For
instance, the AspectJ SP LL SP server used in this example responds
with workspace edit messages that trigger the creation of a hier-
archy of the directories mirroring the FM structure. Each directory
will contain all aspects relevant to the feature actions performed
by that feature. At this stage, the directories are empty because
no feature action has been yet declared. Each directory will be
populated at a later stage, when the developer will interact with
the client to declare feature actions for that feature. A different
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Figure 2. Feature declaration refactoring process in SP LL SP.
1 class Foo {

2 public void bar() {

3 /* ... */

4 Foo.__insertion_point__1();

5 /* ... */

6 }

7 public static Optional<?> __insertion_point__1() {

8 return Optional.empty();

9 }

10 }

(a) Insertion point declaration by adding hook methods.

1 class Foo implements InsertionPoint {

2 public void bar() {

3 /* ... */

4 this.__insertion_point__1();

5 /* ... */

6 }}

7 public interface InsertionPoint {

8 default Optional<?> __insertion_point__1() {

9 return Optional.empty();

10 }}

(b) Insertion point declaration by adding external interfaces.

Listing 1 Insertion point declaration in AspectJ. The code added by the refactoring operation is highlighted in green.
d

i
m
a
t

server may suggest a different refactoring of the workspace upon
receiving the same messages, depending on the SPL approach
it supports: in the devise pattern, each feature corresponds to
exactly one Java class, therefore the devise pattern SP LL SP server
uggests the creation of a new class when it receives a feature
eclaration message.
This process is repeated each time the developers performs

refactoring. For example, if the developer moves a portion of
ode from the base feature into an extension feature, the request
s translated into two messages: the declaration of an insertion
oint and the declaration of a feature action. In the case of the
spectJ SP LL SP server, the insertion point declaration substitutes

the original code with a call to a hook method and the feature
action declaration creates a new aspect that weaves the original
code into the base feature in correspondence to the hook method
call.

Once the developer can no longer identify any variability point
ithin the original application, the process is considered done
nd the application has been successfully refactored into an SPL.

.5. Refactoring Operations in AspectJ

The first SP LL SP server exemplified in this paper is used to
create SPLs based on AspectJ. In this section, we overview how
AspectJ capabilities are mapped to SP LL SP capabilities to support
he extraction of SPLs from Java applications. With regards to
he feature action declaration capability, the discussion will be
plit in two paragraphs for better readability: the first concerns
eature actions created through a modify operation whereas the
econd concerns feature actions that are created through an add
peration. At server side, the effect a performing add operations
nd modify operations over the original Java application involves

oving a piece of code from a Java class into an AspectJ advice. m

7

Features declaration. AspectJ and AOP in general do not include
the feature concept nor it is necessary a good solution to map
each aspect into a single feature. Instead, a feature can be made
of several aspects (Kästner et al., 2007), each changing the code of
the base feature according to the insertion of one or a few feature
actions through pointcuts and advices. Therefore, as shown in
Fig. 2, the AspectJ server implemented in this work simply uses
the concept of feature as a logical information to organize code:
the AspectJ SP LL SP server generates a directory structure that
mirrors the FM provided by the user; each directory will contain
all the aspects that pertain the corresponding feature. This direc-
tory structure is useful upon the generation of a concrete product
according to the chosen configuration: upon compiling the sys-
tem with the AspectJ compiler, the activation of a feature within
the product is performed by weaving all the aspects contained in
the directory corresponding to that feature.

Insertion points declaration. Although pointcuts allow for fine-
grained selection of insertion points within the base feature by
using class and method wildcards within their definition, it is
not possible to create a pointcut that can cut at any point of
the execution in the general sense. However, there is a refac-
toring that can be performed on any Java class to support the
eclaration of insertion points in SP LL SP: the creation of hook

methods. Hook methods are usually empty methods that provide
additional nodes within the data flow graph that can be captured
by pointcuts. An example of the declaration of an insertion point
using hook methods is shown in Listing 1(a): in this case, the
hook method returns an Optional to be as generic as possible, but
t could also be a void method. Creating hook methods arguably
akes the code of the base application more cluttered. However,
more sophisticated server could use interfaces to avoid clut-

ering the body of the base application with several additional

ethods. Such an example is shown in Listing 1(b), in which the
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ook method is isolated within the InsertionPoint interface,
hereas the Foo class only has to implement that interface and
as not cluttered by new methods. Since hook methods do not

mplement any behavior when used alone, it should be noted that
he insertion point declaration capability is usually used jointly
ith the feature action declaration capability. In this case, a block
f code is removed from the base feature and moved into an
spectJ advice. The original code in the base feature is replaced
y a call to a hook method. More on this in the paragraph about
he modify operation.

odify operation feature actions. Modifying the body of meth-
ds using AspectJ can be performed by weaving advices around
alls to hook methods that were previously declared as inser-
ion points. This refactoring technique is exemplified in Listing
through the ModifyOperations aspect.9 The feature action

ighlighted in green in Listing 2(b) is obtained from code that
as originally part of the base feature—as shown by the red
ox in Listing 2(a). Performing the exemplified modify operation
oves the highlighted code to the around advice shown at line 6 of
isting 2(b). In a product configuration in which the feature that
ontains the ModifyOperations feature action is active, the gen-
rated advice is woven to the Foo class; AspectJ can identify the
orrect insertion point through the pointcut highlighted in blue
n Listing 2(b), that matches all calls to the __insertion_point__1

ethod. Notice that the insertion point on line 5 is not part
f this refactoring and was instead created through a distinct
nsertion point declaration. As previously mentioned, it may be
eneficial to declare an insertion point and a feature action that
dds a block of code jointly instead. This can be achieved if the
lient allows the user to select code and refactor it into a feature
ction at the same time. The client can then trigger two messages:
he first for an insertion point declaration and the second for a
eature action declaration hooked to the newly created insertion
oint. The server refactoring capabilities when declaring an add
lock feature action can be arbitrarily complex: for instance,
he feature action may require additional information depending
n the original code. In that case, the user can edit the code
anually to provide the necessary information to the insertion
oint. We will discuss an example in which such an edit is needed
n Listing 7 (page 11, marked with a ✽). Otherwise the server
an perform a complex refactoring in a similar fashion, so that
ariables declared outside of the feature action are passed as an
rgument to the advice.

dd operation feature actions. Defining feature actions related
o add operations is straightforward using inter-type declara-
ions. According to the AspectJ programmer guide,10 inter-type
eclarations are ‘‘declarations that cut across classes and their
ierarchies’’. Inter-type declarations can be used to declare mem-
ers or change the inheritance relationship between classes. Such
n example is shown in Listing 3. The aspect in this example adds
hree elements to the Foo class: respectively, the code highlighted
n red adds an interface, the code highlighted in blue adds a new
ield and the code highlighted in green adds a new method. The
orresponding add operation feature action is performed if and
nly if the AddOperations advice is woven to the Foo class—i.e., if

a feature that contains the AddOperations feature action is active
in the product configuration.

9 The name chosen for the aspect is not relevant as long as the aspect is
onnected to the feature model. In this and all the following examples we chose
ames with the goal of highlighting the type of operation that each feature
ction is performing.
10 https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.
tml#inter-type-declarations
8

1 class Foo {

2 public void exitFrame() {

3 if (Configuration.getInstance()

4 .is("clear.clipboard.on.exit.enabled", false)) {

5 Foo.__insertion_point__1();

6 EntryHelper.copyEntryField(this, null);

7 }

8 /* ... */

9 }

10 }

(a) Code highlighted by user before performing a modify operation.

1 public aspect ModifyOperations {

2 pointcut InsertionPoint() :

3 call(public static Optional<?>

4 Foo.__insertion_point__1(..));

5 Optional<Object> around() : InsertionPoint() {

6 EntryHelper.copyEntryField(this, null);

7 return Optional.empty();

8 }

9 }

(b) Feature action created by effect of a modify operation.

Listing 2 Code needed to perform a modify operation in AspectJ.
The code that has been moved from the base feature to the
ModifyOperations feature is highlighted in red in Listing 2(a).
In Listing 2(b), the pointcut highlighted in blue captures the call
to the insertion point. The new feature action obtained from the
code of the base feature is highlighted in green.

1 public aspect AddOperations {

2 declare parents: Foo implements NewInterface;

4 private NewField Foo.field = new NewField();

6 public NewField Foo.getField(){

7 return this.field;

8 }

9 }

Listing 3 Code needed to perform add operations in AspectJ. The
code highlighted in red adds an interface to the class declaration.
The code highlighted in red blue adds a new field. The code
highlighted in green adds a new method.

3.6. Refactoring operations in the devise pattern

The second SP LL SP server exemplified in this paper is used
to create SPLs based on the devise pattern. In this section, we
overview how the devise pattern capabilities are mapped to the
corresponding SP LL SP capabilities to support the SPL extraction
from Java applications. With regards to the feature action decla-
ration capability, the discussion will be split in two paragraphs
for a better readability: the first concerns feature actions created
through a modify operation whereas the second concerns feature
actions created through an add operation. At server side, the
effect of performing add operations and modify operations over
the original Java application involves moving a piece of code from
a Java class into a feature action class.

Features declaration. According to the devise pattern, any Java
class that inherits (directly or indirectly) from the Feature super-
class is considered a feature. Therefore, the devise pattern SP LL P
server responds to a feature declaration request by creating an
initially empty class that inherits from Feature. The class can
optionally be abstract and annotated with annotations such as
@OrGroup, @AlternativeGroup and @Mandatory according to the type of
feature being declared, as described in Section 2.1. In other words,
the devise pattern SP LL SP server populates the workspace with
a hierarchy of classes that mirrors the FM declared by the user.
The general project structure of an SPL is exemplified in Fig. 3
that represents the class diagram of the Feature hierarchy, the

https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html#inter-type-declarations
https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html#inter-type-declarations
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Figure 3. Class diagram of an exemplary FM using the devise pattern.

1 class Foo {

2 //class Bar extends Feature

3 private Bar barAction = new BarAction();

5 public void bar() {

6 /* ... */

7 barAction.doit();

8 /* ... */

9 }

10 }

Listing 4 Insertion point declaration using the devise pattern. The
code added by the refactoring operation is highlighted in green.

1 public class Subtractive {

2 public void bar() {

3 /* ... */

4 new Bar()

5 .does(() ->

6 EntryHelper.copyEntryField(this, null)

7 )

8 .doit();

9 /* ... */

10 }

11 }

Listing 5 Subtractive features using the devise pattern. The code
in green is removed when the Bar feature is inactive. This behav-
ior is not compliant with SP LL SP.

available modifiers and the application programming interface for
the Feature and the Configuration classes.

nsertion points declaration. In the devise pattern, modify fea-
ure actions are declared through the Java functional interface.
9

1 public class Bar extends Feature {}

2 @Action

3 public class BarAction extends Bar {

4 public BarAction() { this

5 .does(() ->

6 EntryHelper.copyEntryField(this, null)

7 );

8 }

9 }

10 public class Additive {

11 public void bar() {

12 /* ... */

13 new BarAction().doit();

14 /* ... */

15 }

16 }

Listing 6 Additive features using the devise pattern. The code in
green is added to the insertion point highlighted in red when the
Bar feature is active. This behavior is compliant with SP LL SP.

1 public class Foo {

2 private AddOperations added = new AddOperations();

3 public void bar() {

4 /* ... */

5 new LogField(added).doit(); N
6 /* ... */

7 }

8 }

9 public class Bar extends Feature {}

10 @Action

11 public class AddOperations extends Bar

12 implements NewInterface {

14 public NewField field = new NewField();

16 public NewField getField(){

17 return this.field;

18 }

19 }

20 @Action

21 public class LogField extends Bar {

22 public LogField(AddOperations added) { N
23 this.does(() ->

24 System.out.println(added.getField())

25 );

26 }

27 }

Listing 7 Code needed to perform add operations using the devise
pattern. The code highlighted in red adds an interface to the class
declaration. The code highlighted in red blue adds a new field. The
code highlighted in green adds a new method.

Therefore, the insertion points are the points of the application
in which the feature action is actually executed. In terms of the
devise pattern, this corresponds to calling the doit method on a
instance of a class inheriting from Feature. This is exemplified in
Listing 4. In this example, the Foo class holds a reference to all
feature actions that must be inserted within its code. The code
of the barAction feature action is inserted on line 7 when the
doit method is called, but only if the Bar feature is active in the
current product configuration.

Modify operations feature actions. Modify operations over the
body of methods using the devise pattern is done by devising
feature actions, while delaying their execution until the activation
status of the feature and its validity can be determined based
on a configuration. Feature actions can be devised by passing
a function to the does method of an object that inherits from
the Feature class. The does method could be invoked at any
point of the execution, however this would not be compliant with
the monotonic reasoning requirement of SP LL SP because feature
actions devised inside the base feature represent subtractive
features when the corresponding feature is inactive, as shown in
Listing 5. Therefore, the SP LL SP server for the devise pattern does
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ot perform refactoring operations such as in Listing 5. Instead,
he SP LL SP server implements feature actions in external classes
nnotated with the @Action annotation, as shown in Listing 6.
n this example, the insertion point at line 13 is devised with
he semantics from the BarAction class, lines 5–7. This modify
operation is strictly additive since activating the Bar feature only
adds code to the base feature whereas no code is added when the
Bar feature is inactive.

Add operations feature actions. Since the devise pattern is de-
signed to work on vanilla Java without support of any external
tools, it is impossible to add fields, methods and interfaces to
an existing class in the traditional sense. Therefore, the devise
pattern performs add operations by moving fields, methods and
interfaces from the code of the base feature into the code of
feature action classes. Such an example is shown in Listing 7. The
feature action class in this example (AddOperations, on lines 11–
19) adds three elements to the Foo class: the code highlighted
in red adds an interface, the code highlighted in blue adds a
new field and the code highlighted in green adds a new method,
respectively. Then, the added elements are accessed by passing
an instance of the AddOperations class to any relevant feature
action, as done when passing added on line 5 of Listing 7. Notice
how this usage of the devise pattern, marked with ✽, matches
the previously mentioned manual refactoring in which additional
information is passed to a feature action by the user. In this case,
the LogField feature action needs pieces of information stored
within an AddOperations object, that must therefore be passed
as an argument when invoking the feature action.

3.7. Generalization

The refactoring approach presented in this section can be
generalized beyond the two examples we provided as long as
the chosen SPL development tool can support the SP LL SP capa-
ilities. In summary, the contribution of this section is a general
ramework for the standardization of the refactoring process of
pplications into SPLs. To implement this framework, developers
ust implement a server that accepts the following types of

equests:

– feature declaration;
– insertion point declaration;
– feature actions resulting from modify operations;
– feature actions resulting from add operations.

ach of these requests must be translated into a refactoring op-
ration over the workspace, by mapping them to the capabilities
f the chosen SPL development tool.

.8. Limitations

When performing the refactoring of a variability unaware ap-
lication into a SPL according to SP LL SP, the result is an increasing

monotonic SPL—i.e, an SPL that contains only additive features.
This limitation allows the framework to be less restrictive with
regards to the capabilities of the SPL development tool, since no
complex capabilities are needed to be compliant with SP LL SP. This
limitation to the refactoring operations causes no loss of gener-
ality according to the additive universe conjecture. Therefore it
should be possible to implement any SPL while being limited to
the basic capabilities offered by SP LL SP. However, transforming
non-monotonic SPL into an increasing monotonic SPL may not
e trivial or convenient, depending on the application. Such a
ransformation may also reduce the comprehensibility of the SPL,
espite monotonic reasoning being arguably easier in general (Ba-
ory, 2021). Therefore, the SP LL SP framework may be extended in
10
a future work by including remove operations among the feature
action capabilities, as well as deletion points—i.e., portions of the
code of a feature that can be removed by effect of a remove
operation. Similarly, existing modify operations could also be
extended to support both insertions and deletions at the same
time, by effect of a unique feature action in correspondence of
modification points. This change would negate the applicability
of SP LL SP to some specific SPL development approaches in favor
of the creation of more comprehensible SPLs.

4. Evaluation

In this section, we assess the ability of SP LL SP of abstracting
the implementation details of SPL approaches to the developer
when refactoring variability-unaware projects into SPLs according
to the proposed protocol. As a result of this abstraction, SP LL SP
should achieve the following goals:

1. developers should write less lines of code, as most of the
boilerplate code is generated and handled by the server;

2. developers require less familiarity with the SPL approach,
as most of their complexity is handled by the server.

This evaluation aims to answer the research questions introduced
in Section 1, to determine whether these hypotheses are correct.
To answer RQ1, we will measure the effectiveness of the SP LL SP
by comparing the amount of code written manually by developers
against the amount of code written automatically by SP LL SP. To
answer RQ2 we will measure the amount of code that is written
manually by the developers and that is specific to the chosen
SPL approach, such as any call to the devise pattern API or the
creation of any pointcuts and advices when using AspectJ. Take
Listings 3(a), 3(b) and 3(c) as an example. Listing 3(a) represents
the code before any refactoring is performed. Listing 3(b) is the
result of the SP LL SP performing four insertion points declarations
and four feature action declarations, one for each case of the
switch statement. Upon receiving each request, the server auto-
matically generates the code of each feature action; for instance
lines 11–18 show a feature action for the DarkTheme feature. At
the same time, the code of the original application is replaced
by a call to the feature action. These changes are the result of
SP LL SP performing an insertion point declaration and a feature
action declaration. So far, the code was written automatically by
SP LL SP: the developer only selected the portions of code to be
refactored and the destination feature for each action. Instead,
Listing 3(c) shows the same application after the user performed
additional refactoring over Listing 3(b). In this case the refactoring
opportunity was spotted and then manually performed by the
user, to leverage the peculiarities of the devise pattern. Given this
example, we measure the code written by the SP LL SP server as the
difference between Listing 3(a) and 3(b) and we measure the code
written by the developer as the difference between Listing 3(b)
and 3(c). These changes count towards measuring the results for
answering RQ1. Additionally, any code written manually by the
user that requires a knowledge of the devise pattern API (such
as, the call to the xor() method) counts towards measuring the
results for answering RQ2.

4.1. Case studies

The systems under testing will be two variability-unaware
open source projects from GitHub which we refactored into SPLs
using SP LL SP: Pixelitor.11 and JPass12 Both projects are written
entirely in Java by developers unrelated to the authors of this

11 https://github.com/lbalazscs/Pixelitor
12 https://github.com/gaborbata/jpass

https://github.com/lbalazscs/Pixelitor
https://github.com/gaborbata/jpass
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1 switch (theme) {

2 case "Dark":

3 UIManager.setLookAndFeel(

4 "com.formdev.flatlaf.FlatDarculaLaf");

5 break;

6 case "Light":

7 UIManager.setLookAndFeel(

8 "com.formdev.flatlaf.FlatIntelliJLaf");

9 break;

10 case "Nibus":

11 UIManager.setLookAndFeel(

12 "javax.swing.plaf.nimbus.NimbusLookAndFeel");

13 break;

14 case "System":

15 default:

16 UIManager.setLookAndFeel(

17 UIManager.getSystemLookAndFeelClassName());

18 break;

19 }

(a) Original application.

1 switch theme {

2 case "Dark": new DarkTheme.Action1().doit(); break;

3 case "Light": new Lightheme.Action1().doit(); break;

4 case "Nimbus": new NimbusTheme.Action1().doit(); break;

5 case "System":

6 default: new SystemTheme.Action1().doit(); break;

7 }

9 public class DarkTheme<T> extends Theme<T> {

10 @Action

11 public static class Action1<T> extends DarkTheme {

12 public Action1() {

13 this.does(() -> {

14 UIManager.setLookAndFeel(

15 "com.formdev.flatlaf.FlatDarculaLaf");

16 });

17 }

18 }

19 }

20 /* Code of the other feature actions... */

(b) Refactoring of application 3(a) by the devise pattern SP LL SP server.

1 new DarkTheme.Action1().xor(

2 new NimbusTheme.Action1(),

3 new LightTheme.Action1(),

4 new SystemTheme.Action1()

5 ).doit();

7 public class DarkTheme<T> extends Theme<T> {

8 @Action

9 public static class Action1<T> extends DarkTheme {

10 public Action1() {

11 this.does(() -> {

12 UIManager.setLookAndFeel(

13 "com.formdev.flatlaf.FlatDarculaLaf");

14 });

15 }

16 }

17 }

18 /* Code of the other feature actions... */

(c) Further refactoring of application 3(b) by the developer.
Listing 3 Refactoring phases of the theme selection feature.

ork and offer several variability points that could be turned
nto features. Moreover, we chose projects with a graphical user
nterface so that any changes to the product configuration are
mmediately apparent during testing. In order to refactor the ap-
lication into an SPL, we firstly identified the variability points of
he applications. Then, we identified the feature that are available
or each variability point and organized them into a FM. Finally,
e converted the FM into a JSON ready to be fed to the SP LL SP

client.

Pixelitor. Pixelitor is an open source graphic image editor that
presents image editing functionalities similar to those offered by
11
Figure 4. FM of the Pixelitor software family.

other commercial tools such as Adobe Photoshop. We identified
6 variability points in Pixelitor: the available tools, the language,
the application font, the optional presence of the ‘‘tip of the day’’
on startup and the usage of any ‘‘experimental’’ features. The
domain analysis phase resulted in the FM displayed in Fig. 4.
Overall, the Pixelitor software family FM contains 35 features,
including 30 concrete features and 5 abstract features. All abstract
features are mandatory and are used for structural purposes:
Font, Theme and Language represent alternative groups, since
only one option can be chosen in each configuration; Tools is an
optional group instead, therefore any configuration containing at
least one tool is valid.

Jpass. JPass is an open source password manager that can be
used to organize usernames, passwords, URLs and notes about
logins in a safe way. We identified 5 variability points in JPass:
the graphical theme of the user interface, the random num-
ber generation algorithm, password length, date formatting, and
whether the clipboard should be cleared upon exiting the pro-
gram. The domain analysis phase resulted in the FM displayed
in Fig. 5. Overall, the JPass software family FM contains 18 fea-

tures, including 13 concrete features and 5 abstract features. All
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Figure 5. FM of the JPass software family (legend is shared with Fig. 4).

abstract features are mandatory and are used for structural pur-
poses: Length, DateFormatting and Theme represent alternative
roups, since only one option can be chosen in each configura-
ion; Algorithm is an or group instead, therefore the application
an use either one of the algorithms to encrypt passwords or both.

.2. Implementation

For the purpose of this experiment, we implemented the
P LL SP specification using the two SPL approaches presented in
ection 3. The servers for both approaches are implemented using
he LSP4J13 LSP framework for Java. Both servers communicate
ith a Visual Studio Code14 (VS Code) SP LL SP client written

n Typescript. In particular, the VS Code editor is extended to
support the following capabilities:

1. the ability to reify a JSON FM into code and/or project
structure;

2. the ability to refactor code from the original application
into feature actions pertaining a specific feature from the
FM—i.e. to request insertion point declarations and mod-
ify operations to the server. This refactoring process is
initiated within the client by selecting the code portion
to be refactored (e.g., with the mouse), performing the
refactoring operation from the menu and then choosing the
target feature.

Please consider that we did not include any additional capabili-
ties, nor used other refactoring capabilities offered by VS Code to
void affecting the results of this evaluation. Therefore, the same
efactoring performed in a more sophisticated development en-
ironment with more complex capabilities could further reduce
he development effort. Next, we discuss how each of the two
vailable servers implements the capabilities offered by the client.

spectj SP LL SP server. The reification process of the FM starts
hen the developer selects the feature declaration refactoring
peration from the command menu and provides a JSON repre-

sentation of the FM to the VS Code client. The VS Code client
translates the JSON representation of the FM into feature decla-
ration requests sent to the server. Upon receiving these requests,
the AspectJ SP LL SP server creates a directory for each feature
f the FM unless it already exists. Additionally, the directories

13 https://projects.eclipse.org/projects/technology.lsp4j
14 https://code.visualstudio.com/
12
are organized following the same tree structure of the FM. An
example of such reification process was discussed in Section 3.4
and exemplified in Fig. 2 (‘‘Refactored Application’’ column).

Modify operations are performed as follows:
At client side:

– The developer selects a code snippet that must be refactored
into a feature action.

– The developer requests from the list of available commands
a refactoring to the client application.

– The command opens a drop-down menu from which the
developer can select the target feature for the new feature
action.

– The client translates the refactoring requests into messages
to be sent to the SP LL SP server—i.e., an insertion point dec-
laration and a modify operation messages.

At server side:

– The SP LL SP server receives the two messages.
– The SP LL SP server adds a method (that will be used as

a hook) to the current class; by default, hook methods
are created with the signature public static Optional<?>
__pointcut__n(), where n is the number of hook methods in
the class, starting from 0. The default return value of the
hook methods is an Optional.empty() value. Both can later
be changed by the developer if needed.

– The SP LL SP server replaces the selected code with a call to
the hook method (insertion point declaration);

– The SP LL SP server generates a file for a new aspect; by
default the aspect is called Aspectn, where n is the number
of feature actions in that feature—i.e., the number of files in
that directory—starting from 0. It can later be changed by
the developer if needed.

– The SP LL SP server generates an around advice within the
new aspect and moves the selected code into this advice
(modify operation, as in Listing 2).

– The SP LL SP server adds a pointcut to the new aspect that
selects the join point represented by the call to the hook
method. By default, the pointcut is called Action and takes
no arguments. This can later be changed by the developer if
needed.

hese actions are repeated for each feature action that the devel-
per spots within the source code of the original application, each
ime refining the feature actions that pertain a variability point.
nce the refactoring process is complete—i.e., when the devel-
per does not find any more variability point within the original
pplication—products are derived from the list of active features
y weaving the respective aspects into the Java code using the
jc compiler. This implementation has some limitations: con-
traints are not enforced, therefore invalid configurations could
e compiled and potentially executed. These problems can be
olved through additional tooling support, such as by using the
onfiguration editor provided by FeatureIDE (Pereira et al., 2016)
o derive a valid configuration. In fact, notice that product validity
s not a code-related problem, but rather a property that must
e enforced by the model. Such a support could be added, for
nstance, by developing a SP LL SP client for FeatureIDE or another
variability management tool.

Devise pattern SP LL SP server. The reification process of the FM
starts when the developer selects the feature declaration refac-
toring operation from the command menu and provides a JSON
representation of the FM to the VS Code client. The VS Code
client translates the JSON representation of the FM into feature
declaration requests to be sent to the server. Upon receiving
these requests, the devise pattern SP LL SP server creates as many

https://projects.eclipse.org/projects/technology.lsp4j
https://code.visualstudio.com/
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ava files as the number of features contained in the FM, unless
hey already exist. In this case, the server does not create a
omplex directory structure mirroring the FM tree structure to
void having to deal with several different imports; instead, all
eatures are generated within the feature package and all classes
hat need to declare a variability point and to perform a feature
ction will just import features.*. The SP LL SP server does not
upport automatic imports. Instead, this capability is provided by
ost commonly-used development environments by default.
Modify operations are performed as follows:
At client side:

– The developer selects a code snippet that must be refactored
into a feature action.

– The developer requests from the list of available commands
a refactoring to the client application.

– The command opens a drop-down menu from which the
developer can select the target feature for the new feature
action.

– The client translates the refactoring requests into messages
to be sent to the SP LL SP server—i.e., an insertion point dec-
laration and a modify operation messages.

At server side:

– the SP LL SP server receives the two messages
– the SP LL SP server adds a new feature action to the fea-

ture class specified in the modify operation request (modify
operation);

– the SP LL SP server replaces the selected code with a call to
the doit() method of the new feature action (insertion point
declaration).

otice how the client side operations are the same for both the
mplementations of SP LL SP servers. These actions are repeated for
ach feature action that the developer spots within the source
ode of the original application, each time refining the feature
ctions that pertain a variability point. Once the refactoring pro-
ess is complete—i.e., when the developer does not find any
ore variability points within the original application—products
re derived from the list of active features by creating a Java
lass that extends the Configuration abstract class from the
evise pattern, as shown in Fig. 3. Compared to AspectJ, the
evise pattern can express and enforce constraints from the FM
irectly at source level to prevent invalid configurations to ever
e executed without the need of any external tools. However, we
id not implement a SP LL SP server that automatically enforces

the constraints during the translation to keep the two server
implementations aligned in terms of capabilities; this should
provide a fair comparison between the two approaches.

4.3. Evaluation process

For each of the two case study projects, we used the SP LL SP
VS Code client and the two SP LL SP server implementations to
eify the JSON representations of the FM into code. Then, we
dentified the variability points of each application and performed
he required refactoring requests to declare insertion points and
eature actions. Variability points were spotted manually by the
eveloper, but with some tooling support. For instance, we pri-
ritized the inspection of portions of code that used switch and
f statements to determine if the condition was the result of
static configuration (and therefore suitable to be refactored

nto a variability point) or resolved at runtime (and therefore
ot applicable). Similarly, we refactored any code using textual
onfiguration files (such as, application preferences) so that the
onfiguration is determined by the FM. Finally, we adapted the
ode generated by the SP LL SP server to best fit the situation—such
13
Table 1
JPass and Pixelitor changes made by the server and by the user.

Project Refactoring Metric Server User Both

file changed 17 16 33
line inserted 283 38 321
line deleted 86 46 132
char inserted 5292 973 6265

JPass AspectJ

char deleted 847 943 1790
file changed 26 20 46
line inserted 344 61 405
line deleted 0 48 48
char inserted 7171 1850 9021

JPass devise

char deleted 0 1358 1358
file changed 41 37 78
line inserted 684 79 763
line deleted 60 107 167
char inserted 13025 1218 14243

Pixelitor AspectJ

char deleted 883 1628 2511
file changed 49 24 73
line inserted 764 57 821
line deleted 5 75 80
char inserted 17121 1706 18827

Pixelitor devise

char deleted 0 1471 1471

as, adding any call to the devise pattern API to express cross-tree
constraints.

This process was undergone for both SP LL SP server implemen-
tations and for refactoring both case studies into SPLs. Overall,
this resulted in a total four experiments:

1. the Pixelitor SPL using AspectJ;
2. the Pixelitor SPL using the devise pattern;
3. the JPass SPL using AspectJ;
4. the JPass SPL using the devise pattern.

Upon completion of the four applications, we measured the
amount of code written in each case by the SP LL SP server and
by the developer respectively. We also measured the amount of
code that must be written by the developer and that requires
knowledge of the underlying SPL development approach to be
written—such as, using the API that are specific to one of the
approaches. Finally, we collected the results.15

4.4. Evaluation results

The results of this evaluation are summarized in Table 1.
The amount of code written by the server and by the user is
measured in terms of files changed, lines inserted and deleted
and characters inserted an deleted. Lines are very commonly used
by version control systems to measure the difference between
subsequent revisions of the same software. However, lines of code
are affected by several factors such as code formatting, possibly
unrelated to the actual complexity of the changes. To compensate,
notice that in Table 1 newline characters do not count towards
the amount of inserted and deleted characters. Most notably,
most of the code is automatically generated in all four experi-
ments whereas only a small portion is written by the developer.
In particular, we refrained from automatically generating any
code that can be generated by other refactoring capabilities of-
fered by the LSP and by development environments in general,
such as any automatic import. In any scenario in which a feature
action requires parameters passed by the caller (as in Listing 6,
line 22), the server does not add them automatically, because
such parameters can easily be added as method arguments using
other refactoring capabilities of the development environment.

15 The source code used in this evaluation is publicly available at https:
//zenodo.org/record/7677061.

https://zenodo.org/record/7677061
https://zenodo.org/record/7677061


F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 205 (2023) 111809

S
S
u

a
u

t
t
i
t
a
i
w

r
o
o
u

t
c
d
s
w
A

i
c
i
S

e
S
r
h
n
J
l
c
t
m

S

imilarly, as mentioned in the previous section, the devise pattern
P LL SP server does not automatically enforce feature constraints
sing and(), or(), not(), xor() and implies() method calls, which

are instead added manually by the user if needed. This choice
was made to avoid tampering the results by counting the code
generated by third party plugins towards the results obtained
by SP LL SP. As a result, our evaluation is pessimistic: our results
are the lower bound obtained when SP LL SP is used without any
dditional tooling support, but can easily be improved upon by
sing more sophisticated development environments.
For example, using AspectJ the SP LL SP server writes 88% of the

otal lines of code needed to refactor JPass into an SPL based on
he messages received by the SP LL SP client, with no additional
nput provided by the user. Going into more detail, 84% of the
otal characters are written by the server. Instead, many deletions
re performed manually by the user (35%), since developers can
dentify optimizations to save on the amount of boilerplate code
ritten by the SP LL SP server. The results are similar when using

the devise pattern SP LL SP server: performing the same refactoring
on JPass saves 85% of all the lines of code and 79% of the written
characters. Table 1 shows that the results are mostly consistent
across all four experiments, with some outliers such as the devise
pattern SP LL SP server barely perform any deletions (5 lines in
total) on any of the two case studies.

It should be noted that, using the devise pattern, it generally
equires more effort with regards to the AspectJ versions in terms
f lines of code being written by the user. This is reflected by an
verall increase of the amount of code needed to express SPLs
sing the devise pattern: on average, the SP LL SP server for the

devise pattern writes 16% more lines of code compared to the
SP LL SP server for AspectJ; also, on average the developers using
he SP LL SP server for the devise pattern write 16% more lines of
ode compared to the SP LL SP server for AspectJ. This is due to the
evise pattern accounting for the expression of cross-tree con-
traints and feature dependencies directly at source code level,
hich usually requires more boilerplate code. Conversely, the
spectJ does not account for the FM structure nor its constraints

which saves the amount of code being written but may allow the
execution of invalid configurations.

With regards to the scale of the two projects, as already shown
n Figs. 4 and 5, the FM for Pixelitor contains 94% more features
ompared to the FM for JPass. This of course leads to an increase
n the amount of code needed to refactor the application into an
PL.
Table 1 does not report the amount of code needed to perform

ach refactoring and that requires a specific knowledge of the
PL development approach being used for brevity. Instead, the
esults are directly listed here. Using the devise pattern, the user
as to write a total of 10 lines of code (or 117 characters) that
eed a specific knowledge of the devise pattern API to refactor
Pass into an SPL. For Pixelitor, the same refactoring requires 21
ines (or 433 characters) that use the devise pattern API. In both
ases, this code is always associated to a call to the API needed
o express cross-tree constraints, such as the xor() method. A
ore complex SP LL SP server could inspect the feature model to

automatically generate these calls, but we refrained from doing
so in this work to keep aligned the capabilities provided by the
two SP LL SP servers. In fact, interestingly, refactoring a project into
an SPL using AspectJ never required the user to write code using
the AspectJ syntax in any of our experiments. Instead, the SP LL SP
server could generate all the AspectJ code automatically whereas
the user only made changes to the Java code.
14
4.5. Discussion

RQ1 How effective is SP LL SP at reducing the effort of refactoring
standard applications into SPLs? For all four case studies analyzed
in this work, we noticed a substantial save in the amount of code
needed to be written by the developers to refactor a Java project
into an SPL using SP LL SP. More precisely, we achieve the following
results:

– AspectJ-JPass—88% of the lines of code;
– AspectJ-Pixelitor—90% of the lines of code;
– devise pattern-JPass—85% of the lines of code;
– devise pattern-Pixelitor—93% of the lines of code.

Given these results, we conclude that an approach based on the
LSP such as SP LL SP is effective at reducing the refactoring effort
needed to convert Java applications into SPLs.

RQ2 How effective is SP LL SP at abstracting the spl development
tools/approaches to developers? For all four case studies analyzed
in this work, we noticed a substantial save in the amount of code
that requires approach-specific knowledge needed to be written
by the developers, such as code using the AspectJ syntax or
the devise pattern API. More precisely, we achieve the following
results:

– AspectJ-JPass—0% of the lines of code;
– AspectJ-Pixelitor—0% of the lines of code;
– devise pattern-JPass—16% of the lines of code;
– devise pattern-Pixelitor—37% of the lines of code.

Given these results, we conclude that SP LL SP is effective at avoid-
ing the need for the developers to know AspectJ. Moreover,
knowledge of the devise pattern API is limited to the methods
used to express cross-tree constraints. In both cases, an approach
based on the LSP was capable of abstracting the majority of the
implementation details of the underlying SPL approach.

For both RQ1 and RQ2, we measured the results using only the
P LL SP client–server implementations, without any external tools.

Additional tooling support could further improve the results by
addressing other insertions and deletions, such as imports and
method call parameters.

4.6. Threats to validity

The validity of this evaluation could be affected by internal
and external threats (Wohlin et al., 2003) that could affect the
validity of this evaluation. With regards to internal validity, one
of the two approaches used as a case study for this evaluation,
share the authors with this work. This may affect the validity
of the results due to the expertise that we gained with the tool.
However, this issue is limited by the fact that the devise pattern
was designed earlier and was unrelated to SP LL SP. To further stem
this validity issue we did not leverage any peculiarities of the
devise pattern in the development of the SP LL SP server: in fact,
between the two approaches, the AspectJ implementation shows
better results overall. Similarly, the evaluation may be affected by
the fact that the refactoring was performed by one of the authors
of this work. To avoid this threat, the development concerns were
separated so that the refactoring capabilities offered by SP LL SP
and the SPLs were developed by different authors; moreover, we
ensured that the framework was as general as possible and was
not changed or adapted to ease the refactoring process of these
specific SPLs and/or SPL development approaches. One additional
issue is that development environment may affect the refactor-
ing process and thus the results: for example, the environment
used could support automatic imports for only one of the two
approaches, thus affecting the number of lines written by the
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ser. To avoid this issue we used a plain installation of VS Code
unning on Docker,16 without any plugin other than the SP LL SP
client installed.

With regards to external validity, despite the SP LL SP being
general, our evaluation focuses solely on two specific approaches,
therefore its applicability may be limited when considering dif-
ferent approaches. To avoid this issue we kept the SP LL SP spec-
ification as general and as limited as possible with regards to
expressive power so that a larger variety of SPL development
approaches can meet its requirements. Moreover, the chosen
approaches for the evaluation are very different, one being an-
notative and running on stock Java (devise) and the other being
compositional and using an external tool (AspectJ).

The evaluation and the SP LL SP framework in general are based
n increasing monotonic SPLs, thus the results do not apply to
on-monotonic and decreasing monotonic SPLs. However, it is
idely accepted that any non-monotonic SPL can be converted

nto a monotonic SPL (either increasing or decreasing) that has
he same products thanks to the additive universe conjecture (Ba-
ory, 2021; Damiani and Lienhardt, 2016).

. Related work

The LSP is an increasingly popular protocol to face the chal-
enging task of developing modern IDEs. The LSP has mainly
een used to implement portable IDE support for over 121 pro-
ramming languages (Barros et al., 2022), quickly becoming the
e facto standard to realize editing support for languages. Re-
earchers investigated ways to use the LSP to ease the develop-
ent activity. For instance, Bünder and Kuchen (2019) discuss
ow textual domain-specific languages can benefit from the LSP
y providing different views over the same program to different
evelopers, depending on their level of expertise. Such an ap-
roach differs from Jetbrain’s Meta-Programming System (Völter
nd Pech, 2012), in which several editors can be used to edit
he same program, by being able to be used across different
evelopment environments, possibly implemented as web appli-
ations. The LSP was also used as an infrastructure to simplify the
evelopment of graphical modeling tools (Rodriguez-Echeverría
t al., 2018) and to migrate Eclipse-based graphical modeling
ditors to the web (Rani et al., 2020).
In this work, we exemplified the relation between SP LL SP

and two approaches for the development of SPLs, namely As-
ectJ and the devise pattern. However, a variety of approaches
o support the definition of SPLs have been proposed by re-
earchers. Most are based on preprocessors and composers that
ork outside of the capabilities of the base language, such as
HEAD (Batory et al., 2004), FeatureHouse (Apel et al., 2009) and

FeatureC++ (Apel et al., 2005), each bringing forth their own
flavor of feature composition. On the other hand, approaches that
exist within the boundaries of the base language are more scarce.
The variability modules in Java architectural pattern (Setyautami
and Hähnle, 2021) is based on variability modules and delta-
oriented programming (Schaefer et al., 2010): each feature is
implemented using the Java modules and decorators (Gamma
t al., 1995) applied over the base feature. Seidl et al. (Seidl
t al., 2017) presented a generative SPL development method us-
ng variability-aware versions of the observer, strategy, template
ethod and composite (Gamma et al., 1995) patterns and intro-
uced the Family Role Model as a notation to capture constraints
n the variable application. In Apel et al.’s book «Feature-Oriented
oftware Product Lines» (Apel et al., 2013) an entire chapter is
edicated to «Classic, Language-Based Variability Mechanisms»,
anging from traditional if statements to more sophisticated and

16 https://www.docker.com/
15
flexible programming patterns to support variability. Compared
to the variability modules in Java and the devise pattern, the
solutions are proposed in a less standardized manner and must
be tailored to fit specific problems.

The need for standardization in SPL development is still an
open problem that we tried to face in this work. The problem is
partially addressed by tools and environments, in which the def-
inition and handling of FMs is standardized by means of the tool-
ing support built on top of them. Among most well-known con-
tributions in this direction some examples are FeatureIDE (Thüm
et al., 2014; Meinicke et al., 2016), SPLOT (Mendonca et al., 2009),
FAMA (Benavides et al., 2013) and pure::variants (Beuche, 2016).
FeatureIDE is an SPL development environment that supports the
FM construction, the management of software artifacts, the con-
figuration and product derivation. Moreover, it supports several
different composers within the same environment. SPLOT is a
web-based collection of tools to reason about FMs and for the in-
teractive configuration of product variants. FAMA is an extensible
framework for the automated analysis of FMs. pure::variants is
a tool for variability management that supports the entire lifecy-
cle of product lines by connecting the various SPL development
activities through proper tooling.

However, all these tools share the same limitations. First,
they standardize the interaction with the FMs and their config-
uration, but the developers still have to face a steep barrier to
entry to interact with actual software artifacts and when using
different composers. Second, these tools exist within a specific
development environment whereas an approach based on the
LSP should be easier to port to a different context (by devel-
oping the client application for a new IDE). In fact, Shatnawi
and Cunningham (Shatnawi and Cunningham, 2021) mentioned
the difficulty of specifying and maintaining FMs due to the SPL
development tools requiring specific knowledge and skills. Their
contribution shares with ours the need for these tools to be easily
accessible to any developer with limited training, possibly by
using mainstream technologies. On a similar note, Chimalakonda
and Lee (Chimalakonda and Hyung, 2016) discussed the incon-
sistency and incompatibility of tools and methods in SPLs and
the need for the introduction of standards in their development.
They argue that the diversified range of tools and methods is
one of the primary hindrances to the adoption of SPLs in the
industry. They call for an improvement of the standards in the
area of software and systems product lines and invite the SPL
community to propose frameworks, processes and activities that
could potentially become standard practices in the development
of SPLs.

6. Conclusions & future works

SPLs are a powerful engineering approach towards expressing
and implementing highly-variable software systems by allow-
ing for massive reuse of already implemented software features
across several software variants. However, it is often hard to
reuse existing features in a different SPL because each approach
to the development of SPLs follows a different refactoring pro-
cess and tools with a different syntax. For the same reasons,
developers cannot use the knowledge they acquired using an
SPL development tool in a different context. In this work we
presented SP LL SP as a framework that aims at standardizing the
refactoring process of variability-unaware applications into SPLs
by expressing the refactoring operations as messages sent across
a client–server process, effectively decoupling the refactoring
made by the developer from the actual implementation details.
Our evaluation showed that this decoupling can greatly reduce
the amount of code that developers need to write in order to
extract an SPL; moreover, the developers mostly interact with

https://www.docker.com/
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n identical client application, thus the implementation details of
he chosen SPL approach are abstracted: if the SPL development
pproach is changed by the stakeholders, the developers can still
erform the refactoring with the same IDE and following the
ame process, with limited training with regards to the new tools
nd composition techniques.
However, a similar approach could also be used in the fu-

ure to support the SPL migration from one approach to the
thers, to increase the reusability of the same features across
ifferent SPL approaches and tools. For instance, the LSP could
e used to provide different views of the same SPL to several
evelopers working concurrently. The protocol would keep an
nternal representation of the SPL and its features, provide each
eveloper with the chosen view and translate any changes made
o a view into the underlying intermediate representation. In such
n approach, support for an additional SPL development approach
ould be achieved simply by implementing a client and a server
or that approach instead of needing an ad hoc translation for
ach pair of approaches. Moreover, future works will investigate
he applicability of a variant of the SP LL SP framework that also
supports remove operations and deletion points, as well as more
complex modify operations and modification points.
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