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Abstract—Image-to-image (121) translation models are widely
employed in several fields, e.g., computer vision, security or
medicine. Their goal is to map images from a source domain
to a target domain while preserving content information. Despite
their success, these models suffer from multiple weaknesses. For
example, many practical scenarios do not consent to collect a
sufficient amount of images, leading to imbalanced domains.
Furthermore, mode collapse and training instability require a
careful design and further discourage their deployment on  edge
devices. Finally, 121 models need an intensive computation to
learn conditional probability distributions and are difficult to
adapt to different contexts. These drawbacks mainly limit their
large scale applicability. In this work, we want to shed light on
the main solutions adopted to overcome the above issues and
their impact on the performance. We also investigate several
approaches to deploy these models on low-powered devices and
weight sharing techniques to reduce the number of parameters
and resources used.

Index Terms—Image-to-image translation, GAN, cyclic loss

I .  INTRODUCTION

Deep generative modeling [1] represents a fascinating re—
search area due to its numerous practical applications. In
this context, image synthesis aims at generating a new im-
age from another image (image-to-image) or a text (text-to-
image), for example. In our work, we want to shed light
on image-to-image (121) translation models, highlighting their
main characteristics and limitations for practical scenarios that
benefit from their application. There are numerous AI-based
services applying 121 techniques for image in-painting, super-
resolution, and scene synthesis. Nevertheless, in some contexts
(e.g., industrial [2] or medical [3]) privacy concerns and real-
time constraints need to prioritize the deployment of  in-loco
solutions since data manipulation cannot be delegated to exter-
nal services. Furthermore, neural networks trained on limited
sets of images typically lead to poor quality outputs, requiring
the use of  ad-hoc solutions for improving their results. In this
paper, we discuss several limitations that prevent 121 models
to be applied to practical scenarios, along with commonly
adopted solutions to overcome such limitations. The remainder
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Fig. 1: Image-to-image (121) translation tasks can be regarded
as an application of multiple filters to translate a source image
to a target image. For example, multiple filters can be adopted
for contours extraction, super-resolution or domain translation.

of this paper is organized as follows. Section 11 describes the
main characteristics of  121 models. Section III summarizes
common 12I models. Section IV presents the main drawbacks
and solutions adopted by major 121 methods. Section V illus-
trates several applications of 121 models to multiple scenarios
and propose some research directions. Finally, Section VI
concludes the paper.

II. 121 TRANSLATION

121 models transfer the content information from a source to
a target domain. This task can be supervised or unsupervised.
Supervised I21 can be formulated as learning the conditional
probability o f  samples drawn from a joint probability dis-
tribution. As shown in Fig. l ,  for each image of  the target
domain, there exists its counterpart in the target domain. For
example, for a satellite image, there is the corresponding map
representation, or, for a low-resolution image, i s  provided its
high-resolution version. In this case, the model can leverage
these paired images for learning a supervised translation.
Nevertheless, collecting paired datasets is a time-consuming
process and such data may only be used for specific contexts.
For unsupervised 121, conditional mappings must be learned
from samples drawn from marginal distributions. In this case,
images belong to two (or more) different domains that are
weakly related. For example, to learn a translation between two
seasons, images of  different landscapes can be collected during
winter and summer in order to learn specific elements of  each
context (e.g., snow covered mountains or green grasslands).
In this case, datasets can be easily collected yet several con-
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Fig. 2:  Commonly adopted objective functions used for 121
tasks. The cyclic loss uses the translated image mapped back
to the source domain as a form of content preservation while
the contrastive loss typically compares source and translated
patches.

straints must be adopted to solve this highly ill-posed problem.
For example, to restrict the mapping space to reasonable high-
quality images, several works employ cycle consistency or
symmetry losses, weight-sharing [4] or shared latent spaces [5]
(see Fig. 2). In this regard, an adversarial loss typically
enforces target appearance while cycle consistency enables
content preservation [6]. Contrastive learning is also widely
employed for unsupervised learning. Its aim is to maximize
the mutual information between source and translated images
instead of minimizing their point-wise absolute deviation [6]—
[8].

111. 121 APPROACHES

Pix2Pix [9] represents the first successful proposed condi-
tional image synthesis method employing a conditional GAN
(cGAN) for paired 121 translation mapping from input pixels
to output pixels. This method produces high-quality results,
combining an adversarial loss and an L1  loss for forcing low-
frequency correctness. A patch-based Markovian discriminator
(PatchGAN), instead, i s  used for high-frequencies evaluation.
Since paired data are difficult to collect, CycleGAN [10]
introduces a cycle consistency loss to limit the mapping space
and obtain an adversarial autoencoder. It also reduces mode
collapse, a typical phenomenon of adversarial training. As
Pix2Pix, CycleGAN ignores input noise, both in terms of
random vectors or dropout, resulting in lack of diversity.

The above architectures need to increase both the number
of parameters and mappings when multiple domains are con—
sidered. To overcome these issues, StarGAN [11] proposes
a conditional generator to the target domain, represented as
a vector, and uses  this label vector to perform a translation
to multiple domains. To enforce the output to be consistent
with the target domain, it employs a classification loss in
an adversarial fashion. Nevertheless, this multitask approach
does not present any stochastic variations. To include di-
versity, DRIT [4] disentangles domain content and domain
attribute spaces using weight sharing among the considered
domains. To enforce cyclic reconstruction, i t  proposes a cross-
cycle constraint using cross-translations between input images:
more simply, attribute representations are preserved for each
domain, while content representations are swapped and then
restored. This form of cyclic reconstruction appears more

robust than cyclic loss in CycleGAN [10], [12] and a proper
interpolation into the latent space allows the model to ex-
plore the target space. A different assumption is  proposed in
UNIT [13] for the unsupervised setting. This work proposes a
weight-sharing and a shared latent space constraint to perform
a uni-modal translation. CUT [6] operates at patch-level rather
than image-level, using contrastive learning to replace cycle-
consistency. This method increases efficiency providing a one-
sided translation and reduces the number of training samples
to be used for maximizing the mutual information between
source and translated patches. In this way, it  implicitly en-
forces a shared latent space for patches related to similar areas
and benefits from intra—relationships within the image.

Scalability still remains an important issue for 121 models
due to the inherent difficulty to fully capture variations among
multiple domains. StarGANV2 [14] disentangles image gener-
ation and style encoding to create a scalable approach able
to generate diverse images across multiple domains. Different
domains are considered with a multi-head mapping network
to transform a latent code into a domain-specific style code.
In this way, style reference is  better defined and injected into
the generator using adaptive instance normalization (AdaIN).
NEGCUT [8] uncovers an important limitation of contrastive
learning-based 121 methods, since their efficacy heavily relies
on negative examples able to efficiently push closer positive
to query patches. This method generates hard negative patches
through contrastive adversarial training. However, set-labels
may not be available to be associated to domains of interest.
This limitation is  addressed in TUNIT [15], which investigates
a truly unsupervised setting, where pseudo-domain labels are
obtained maximizing the mutual information between pairs
of samples while style features are defined by means of a
contrastive loss.

Previous methods consider source and target images as
a whole and tend to fail with images containing multiple
instances,  e .g . ,  different cars or objects, showing limited diver-
sity and generation capability to translate specific instances.
Multi—instance transfiguration problems, for example, deal
with performing this type of translation [16]—[18].

IV. LIMITATIONS AND SOLUTIONS

I21 models suffer from several drawbacks that could limit
their applicability only to specific contexts. In the following,
we list their main limitations and proposed solutions.

A. Mode collapse and training instability

Adversarial training is  commonly adopted to ensure high-
quality outputs yet suffers from instability due to the high-
dimensional non-convex space and may not converge limit-
ing the diversity requirement required by this task. In this
regard, LSGAN loss [19], or for non-overlapping distribu-
tions, Wasserstain distance metric [20], is  typically adopted.
MSGAN [21] proposes regularization terms to avoid mode
collapse. Jung e t  al .  [22] employ a decoupled contrastive
loss to avoid the vanishing gradient problem caused by easy
negative samples.



B. Imbalanced o r  limited data

Class-imbalance (e.g. ,  specific c lasses  contain a few sam-
ples) or unbalanced domains (e.g., one domain contains a
few samples) negatively impact on the learned representa-
tions. 121 methods, in fact, implicitly consider a symmetry
between translated domains from both styles and data quantity
perspectives. This assumption may not be  met in  practical
scenarios. To this end, Pizzati e t  a l .  [23] employ additional
web-crawled data sharing similar annotations to original data
to solve domain shift or weather condition translation. Never-
theless, these annotations may be  misleading and not properly
reflect image content and style being highly subjective. Convex
interpolation at features level is  proposed in ReMix [24] for
data augmentation. Similar to contrastive-based approaches,
this method involves a similarity measure between pairs of
features of real and interpolated images and does not require an
unsupervised reconstruction for unseen targets. IrwGAN [25]
proposes to reweigh aligned samples more than unaligned ones
through a neural network. In this way, the authors favor paired
data in large datasets with unpaired images. CACOLIT [26]
adopts a similar cyclic concept proposed in CycleGAN [10]
to perform a translation with data-poor domains. Specifically,
it employs a data—rich domain that a teacher model uses for
learning robust feature statistics; this knowledge is  co-learned
by two students with an additional constraint on instance-level
outputs. One main drawback of this method stands in  finding
an appropriate auxiliary domain with similar characteristics to
data—poor domains, limiting its practical applicability to indus—
trial scenarios. To cope with small domains, Wang e t  al .  [27]
propose a data-free knowledge distillation procedure which
takes advantage of a pre-trained 121 teacher to generate a large
amount of style-mixed triplets, then used for training a student
network via feature-based alignment. Data limitation problem
is also addressed by few-shot approaches which overcome
mapping ambiguities using attributes disentanglement [28],
additional inputs or multiscale processing [29]. ManiFest [30],
for example, proposes an additional set of images and enforces
features alignment while SEMIT [31] trains a pseudo-labeling
classifier to annotate train unlabeled data.

C. Large models

To devise 121 models to low-powered edge devices, several
techniques have been proposed. DMAD [32] conceives a
differentiable mask to approximate a step function, removes
unnecessary weights, and encourages sparsity in residual-
based networks. To construct a reliable high-dimensional map-
ping, a co-attention distillation scheme transfers intermediate
attention maps to a student network, improving both multiply-
accumulate operations (MACS) and FID metric. Some attempts
to propose a light-weighted 121 model is  presented in Grassucci
e t  a l .  [33] where correlations among RGB input channels are
preserved using quatemion- and hypercomplex—based genera—
tive models. Benefiting from shared weight sub-matrices, this
approach involves less parameters than traditional multi-modal
approaches.

Since discriminators typically learn more expressive fea-
tures than generators, CWT—GAN [34], for example, employs
a cross-model weights transfer technique for sharing weights
between discriminators and generators. Another approach con-
sists in using subnetworks for different tasks. Since input
encoding is  similarly performed for both the generation and
classification phase, NICE-GAN [35] proposes to reuse part
of the discriminator for the generation process. A decoupled
training strategy is devised for the adversarial loss and avoids
training conflicts.

To properly deploy models on edge devices, multiple factors
should be  taken into account, e .g . ,  memory, latency and
number o f  operations. As  compression method, Li e t  a l .  [36 ]
propose to unify both paired and unpaired translations and
distill knowledge to a student network. Subnetworks are then
extracted and trained using a once-for—all (OFA) approach.
This method drastically reduces the computation needed to
train multiple networks for different devices. SoloGAN [37]
also proposes weight sharing and cross distillation losses for
increasing memory efficiency.

D. Metrics

One main challenge of this task consists in using metrics
able to really capture the quality of synthesized images.
Frechet Inception Distance (FID) [38] for measuring fidelity
and Learned Perceptual Image Patch Similarity (LPIPS) [39]
for assessing diversity appear unable to fully capture effective
quality of synthesized samples, and it is  rather common
to complement quantitative analysis with studies involving
human subjects. Bashkirova e t  al .  [40] investigate this aspect,
evaluating the quality of the disentanglement of domain-
invariant and domain-specific attributes in labeled datasets.

E. Validation

Lack of validation studies, especially for industrial and
medical fields [3], mainly due to privacy concerns, shortages of
pre-trained architectures or difficulties in reproducing similar
operational settings, slow down the immediate applicability of
121 models.

As an example, we employ a common paired dataset used
for supervised translation in an unsupervised setting, and
compare two methods, Cycle—GAN [10 ]  and NEGCUT [8] ,  to
evaluate their ability to synthesize high-quality satellite images
from maps in both normal (1096 images) and limited (548
and 110 images) data training regimes. Table I report our
results, while Fig. 3 show the qualitative outputs. Both models
are trained for 200 epochs in default configurations. Our
results demonstrate that a cyclic loss compared to a contrastive
adversarial training appears better suited for generating aerial
images in case of scarcity of data, which has a detrimental
impact on the generated images. Our FID metrics also confirm
that Cycle-GAN is more robust to contexts with limited data.

Despite several datasets for 121 translations are available,
they find limited applicability to real-world scenarios and new
approaches should focus on  reusing pre-trained architectures



Fig. 3:  Qualitative comparison of two 121 translation models
for Maps —> Aerial  photos transformation. (a) Input, (b)
Ground-truth, (c) Cycle-GAN (100%), (d) Cycle-GAN (50%),
(e) Cycle-GAN (10%), (f) NEGCUT (100%), (g) NEGCUT
(50%) and (h) NEGCUT (10%).

or distillation techniques, especially on edge devices, which
should be  also able to learn to transfer low-level features more
easily adaptable to different contexts.

TABLE I: Comparison between Cycle-GAN [10] and NEG-
CUT [8] models for Maps —> Aerial  photos translation. 3
data training regimes are considered.

Model mining regime FID metric

Cycle-GAN [10 ]  69.48
NEGCUT [8] 100% 0.00

Cycle—GAN [10] 66 .67
NEGCUT [8] 50% 0.00

Cycle—GAN [10 ]  10‘? 99.51
NEGCUT [8] ° 166.35

V. 121 APPLICATIONS

121 models are widely used in several real-world appli-
cations. In the following, we describe some adaptations of
previous presented I21 models for industrial, remote sensing
and medical scenarios.

a) Industrial scenarios: Liu e t  al .  [41] propose a cGAN—
based multi-discriminator framework to perform collocating
clothes. This task consists in matching pairs of lower and upper
clothes in a generative fashion. Co-supervised by attributes and
categories, their models improve visual quality using multiple
multitasks discriminators.

Increasing scene perception at night represents another
important goal for many industrial scenarios. Contours and
textures are, in fact, lost by infra-red (IR) cameras and require
multiple steps for being reliable processed. Liu e t  a l .  [42]
propose to translate thermal IR images into RGB images using
two steps:  a Texture-Net architecture, which adds textures and
focuses on  details with a ROI pooling layer, and an image
colorization network for translating processed images into
colored ones.

Defect generation is an important I2I task involving defect-
free and defective images. Niu e t  a l .  [43] focus on  boundary

defect samples, i .e. ,  defects that involve small regions or
do not manifest relevant features. Since an inverse mapping
is redundant, and normal samples can be  easily collected,
this method proposes an encoder-decoder network in whose
latent space a detection hyper—surface divides normal and
defective samples. An interpolation in the latent space creates
defects with different strengths representing different stages
of a production line, while an input segmentation mask can
control both size and location of the defects. Differently from
the previous method, Defect—GAN [2] controls both location
and type of the defect using an additional map introduced
Via SPADE normalization [44] .  This method allows output
images to separate the background from the foreground and
generate realistic samples. To constrain the feature space,
this method uses a reconstruction loss for spatial distribution
maps generated during the forward (normal —> defect) and
backward (defect —> normal) steps. Likewise, Wang e t  al .  [45]
build upon StarGANV2 [14] a model to separate background
and foreground elements, and generate multiple defects by
capturing both style and content information.

Supervised approaches typically show superior performance
than unsupervised ones. To overcome the lack of paired data,
Wang e t  a l .  [46] define a pair of generation methods based on
radiometry for fabric smoothness assessment of decolorized
fabrics. This approach provides a good approximation of
Winkle patterns for creating a paired dataset.

b) Remote sensing scenarios: Images from satellites,
drones or thermal sensors are also widely employed for 121
tasks since they are well-suited for measuring the effects of
climate change, monitoring the state of lands or oceans, track-
ing geomorphological features or for short-term forecasting.
For example, Vandal e t  al .  [47] propose to consider a shared
spectral reconstruction loss to preserve spectral information
and generate unobserved spectral bands from multiple satel-
lites. Other approaches [48], [49] combine generation and
segmentation methods for synthesizing high-quality digital
maps or devising panoptic-aware strategies to reduce the
content loss during translation.

0) Medical scenarios: 121 models are also successfully
applied to several medical domains [3], [50]. In this case,
images typically regard computed tomography (CT), magnetic
resonance imaging (MRI), x-ray or ultrasound. Main appli-
cations include denoising, segmentation and cross—modality
translation.

VI .  CONCLUSION

Image-to—image (121) translation models represent a valuable
aid for solving industrial, medical and optical tasks,  but
several obstacles still limit their large scale diffusion. In this
paper, we illustrated the problem and provided an analysis
of some solutions to overcome the main drawbacks of 121
methods. Our analysis shows the need of publicly available
data and models for applications external to academia for
independent validation, and proposes new research directions
to be  investigated.
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