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ABSTRACT: The singly hydrated hydroxide anion OH−(H2O) is of central
importance to a detailed molecular understanding of water; therefore, there is strong
motivation to develop a highly accurate potential to describe this anion. While this is
a small molecule, it is necessary to have an extensive data set of energies and, if
possible, forces to span several important stationary points. Here, we assess two
machine-learned potentials, one using the symmetric gradient domain machine
learning (sGDML) method and one based on permutationally invariant polynomials
(PIPs). These are successors to a PIP potential energy surface (PES) reported in
2004. We describe the details of both fitting methods and then compare the two PESs with respect to precision, properties, and
speed of evaluation. While the precision of the potentials is similar, the PIP PES is much faster to evaluate for energies and energies
plus gradient than the sGDML one. Diffusion Monte Carlo calculations of the ground vibrational state, using both potentials,
produce similar large anharmonic downshift of the zero-point energy compared to the harmonic approximation of the PIP and
sGDML potentials. The computational time for these calculations using the sGDML PES is roughly 300 times greater than using the
PIP one.

■ INTRODUCTION
The singly hydrated hydroxide anion OH−(H2O) has long
been of interest to theorists and experimentalists.1−12 The first
ab initio-based, full-dimensional, machine-learned potential
energy (MLP) was reported in 20043,5 using permutationally
invariant polynomials (PIPs) in terms of primary and
secondary PIPs.13 In brief, this potential energy surface
(PES) was a least-squares fit to almost 67,000 ab initio
energies3 (later updated to a fit to about 23,000 energies5),
obtained with the CCSD(T) method with an aug-cc-pVTZ
basis. The variables of the fit are the ten internuclear distances,
and the polynomial basis is constructed to be permutationally
invariant with respect to the permutation of like atoms. This
PIP PES was used in VSCF/VCI (reaction path) and fixed-
node diffusion Monte Carlo (DMC) calculations of the
vibrational energies. While this PES was successful in obtaining
these energies and making insightful comparisons with
experiments, it did not have extensive coverage of the high-
energy saddle point for the exchange of the shared H atom
with the terminal one, also referred to as the bifurcation saddle
point. The structure of this saddle point as well as the global
minimum and H atom transfer saddle point are shown in
Figure 1 below.
This lack of coverage was remedied very recently by two of

us (MA and SGR) who calculated 15,024 energies and

gradients at the CCSD(T)/aug-cc-pVTZ level of theory using
CFOUR.15 They trained a symmetric gradient domain
machine learning (sGDML)16−20 PES on a subset of 3000
energies and gradients, with validation (hyperparameter
adjustment) using another 3000 data points and then tested
it on the remaining data. The PES was then used in path
integral simulations of the temperature dependence of the
motion along the so-called bifurcation pathway, whose TS is
shown in Figure 1.
This data set and the sGDML PES provide an opportunity

to assess that PES and a PIP PES trained on this data set. We
do that here. In the next section, we provide details of the
sGDML and PIP approaches and the specifics for this
particular data set. The performance of the two fits is examined
in detail in the Results and Discussion Section. Results of
DMC calculations are also presented in that section. The final
section contains a summary and conclusions.
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■ FITTING METHODS
PIPs and MSA Software. MLPs using a basis of PIPs have

been reported for nearly 20 years, with the PES for H3O2− in
2004 being one of the first such MLPs. The expression for the
PIP potential is given by

=
=

V c py y( ) ( )
i

n

i i
1

p

(1)

where ci are linear coefficients, pi are PIPs, np is the total
number of polynomials (and linear coefficients ci) for a given
maximum polynomial order, and y are transformed inter-
nuclear distances. We have used the following 3 trans-
formations: yij = exp(−rij/a), yij = exp(−rij/a)/rij,

13 and yij =
1/rij.

21 PIPs are polynomials that are invariant with respect to
permutations of like atoms.
Our current software to generate PIPs and perform least-

squares fitting22,23 is based on monomial symmetrization.13,24

The first part of MSA creates the PIP basis and writes it to a
text file named “basis.f90”, where the file has the suffix .f90 for
later use in Fortran. Analytical gradients are also provided in
this code. In a second step, fast gradient evaluation is available,
based on reverse differentiation algorithms and Mathematica
scripts. These are described in detail elsewhere23 and are used
here. The final code is written in Fortran 90.
To complete this short review, we note that the linear

coefficients ci are optimized to minimize the L2 loss, i.e., the
sum of the square of the differences between the data and fit
V(y; c), where we explicitly indicate the parametric depend-
ence on the coefficients c. The standard approach leads to the
matrix equation

=Ac d (2)

where the matrix A, elements of which are given by Ai,j = pj(yi),
is N × np, where N is the size of the data set of energies plus
gradients (if they are used), c is the column vector of length np
and d is the column vector length N and consists of these data.
In general, np ≪ N, and so this is an overdetermined set of
linear equations. The solution to this least-squares problem is
given formally by

=c A A A d( ) ( )T 1 T (3)

There are several ways to proceed; we use singular value
decomposition of the matrix A = UΣVT, where U and V are
orthogonal matrices of size N × N and np × np, respectively,
and Σ is a diagonal matrix of np singular values in descending
order with zeros below the diagonal element σndp

. U can be
partitioned into two blocks, U1 and U2, where U1 is N × np.
The final expression for the coefficients is

=c V U d( )1
1
T (4)

We use dgelss.f90 for this analysis.
In general, we fit an entire data set (including gradients if

available). This is because the linear regression method
depends on the size of the PIP basis and not the size of the
data set. So, bases with np of the order of thousands present no
difficulties for data sets that are an order of magnitude bigger.
Of course testing of the fit is done, generally on out-of-sample
data. This protocol is not the usual split-train-test protocol.
Methods based on Kernel Ridge Regression and Gaussian
Process Regression are “trained” directly on a data set and the
resulting linear algebra problem, i.e., a matrix inverse of the
kernel at the configurations of the data set, is limited to data
sets of the order of thousands, much smaller than the data sets
used in PIP Linear Regression.
The overall work flow of the MSA software to obtain a PIP

PES is given in Figure 2. In the present work, energies and
gradients are included in the data set. DMC calculations are
run to locate large negative regions of the fit, called “holes”. In
general, the holes occur at high energies, which (not
surprisingly) were not sampled in the data set. Additional
data are added at the hole configuration, and a new fit is done.
This is repeated until there are no holes or very few holes.
We provide specific details of this approach below where we

discuss the fit to the H3O2− data set.
sGDML. sGDML refers to a kernel ridge method that fits

the gradient of the potential while identifying and incorporat-
ing symmetries of the molecule.16−20 This approach has been
widely used for numerous applications and the Python code for
usage is available.25 Two of us (MA and SR), who developed
the sGDML PES for H3O2−, trained the model using the
Python code but wrote a Fortran 90 code to evaluate the
gradient and energy. The sGDML potential and Fortan code
are available on Github (https://github.com/arandharamrinal/
H3O2M).
We briefly describe how sGDML works. The input to

sGDML is a set of molecular geometries, their ab initio
energies, and atomic forces obtained from a high-level
quantum chemistry calculation. As per the choice of the
user, this data set is split into training, validation, and test
points. The points in each set are chosen so that the energy
distribution in each of the three data sets is consistent with the
distribution of the full data set. From (a subset of) the set of M
training points, sGDML identifies the molecular symmetries in
a data-driven manner,17,18 producing atomic permutation

Figure 1. Structures of three stationary points of H3O2−: (a) global
minimum, (b) H-transfer TS, and (c) bifurcation TS.
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matrices. In the case of H3O2−, all 12 = 2!3! permutations are
found. A set of descriptors comprising all n(n − 1)/2 inverse
pairwise interatomic distances, where n is the number of atoms,
are constructed for each training set geometry (10 in the
present case). Using this, a kernel matrix is constructed in
descriptor space where all identified permutational symmetries
are summed over. This is finally transformed back to Cartesian
space yielding a 3 nm × 3 nM matrix, K. Using the atomic
forces as a vector f of length 3 nM, the equation

+ =K I f( ) (5)

is solved, where λ is a regularization parameter and I is the
identity matrix.
The coefficient vector α is the main result of the training.

The values of the coefficients depend on a hyperparameter σ
that is used in the Mateŕn kernel. In order to choose the
optimal σ, the error is evaluated using the validation data set
(rather than the training set) and σ is changed on a grid (e.g.,
in units of 1), and eq 5 is solved again with each new σ until
the error is the least. The optimal σ and α are then used for
testing and for prediction.
At a new geometry x, the 3n forces f(̂x) at a new

configuration are evaluated using

=f x K x x( ) ( , )
i

i i
(6)

where the summation runs over all the training points and their
replicas through permutations. The fitting coefficients are also
suitably permuted; they carry the same symmetry as the data

points. A technical aspect is that for the prediction stage, the α
are saved in descriptor space, and the kernel matrix between
the query and training points is also prepared in this space.
Hence, the forces are first obtained in the descriptors (inverse
distances) and then transformed by the chain rule to Cartesian
space. Equation 6 is used to both obtain force and energy
errors in the test data set as well as predict them at a queried
geometry. The energies are obtained as an integral over the
forces.
We note in passing that a possible alternative to the inverse

distance descriptors is the use of PIPs in sGDML, which builds
in the symmetry aspect of the ML potential. This approach has
been used with great success for Neural Network poten-
tials26,27 and also for Gaussian Approximation potentials.28

■ RESULTS AND DISCUSSION
H3O2

− Data Set. A detailed description of the data set of
15,024 CCSD(T) energies and gradients has been reported,14

so we just briefly summarize it here. The energies extend to
54,000 cm−1 with a concentration of energies at roughly
10,000 cm−1. The distribution of the energies is shown in
Figure 3. As seen, most of the energies are below 20,000 cm−1

with a small number extending to 50,000 cm−1, beyond the
range of the abscissa.
The complete data set of energies and gradients is not

practical for training and prediction with the sGDML method.
Thus, 3000 configurations and 45,000 gradients were selected
for training, with another 3000 points used for validation
through which the hyperparameter is adjusted. Testing was

Figure 2. Flowchart of the PES fitting procedures. The procedures in the red rectangle are now integrated in one single Python script.
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performed using the remaining 9024 points. Further details of
the sGDML fit have been given previously14 and so we do not
repeat those here. For the PIP fit, the total data set was used
with no weighting of the data. Another fit was done using 6000
configurations, so a total data size of 96,000. These are the
same points used in the sGDML training and validation steps.
Precision and Performance of the Fits. The new PIP

PESs use full permutational symmetry, i.e., 3!2! = 12 and a
maximum polynomial order of seven. This results in a basis
size of 2022 PIPs. The generation of this basis and the fitting
are both fast (about 5 min of wall-clock time) using MSA
software.22 The energies and gradients are not weighted, as
noted already, and the Morse range parameter, a, equals 3
bohr. A short video showing the interactive steps to do this on
a Linux workstation in command line mode can be found here
(https://scholarblogs.emory.edu/bowman/msa/).
To begin the assessment of the new PIP PES, we show in

Figure 4 the correlation plot of the PIP fit and the eRMSE vs
energy for all 15,024 energies. Also shown is the eRMSE for
the PIP PES trained on 6000 configurations, denoted PIPb, and
the sGDML PES. As seen, the PIP PES eRMSEs are about half
those of sGDML. Very high precision is seen for energies up to
20,000 cm−1, which is sufficient even for quantum studies of
the dynamics of this complex.
The energy and force RMSEs, denoted eRMSE and fRMSE,

respectively, for the PIP and sGDML PESs are given in Table
1. The RMSEs for the PIP fits using the full and a subset of the
data are almost the same and are smaller than the

corresponding ones already reported for sGDML.14 It is
perhaps noteworthy that the PIP PES fRMSE is lower than the
sGDML one.
Next, we consider some properties of the various PESs.

Hereafter, we consider only the PIP PES fit to all of the data.
First, we show the internal coordinates of the global minimum
in Table 2. As can be seen, both PESs are in good agreement

with the direct ab initio values. This is gratifying since the ab
initio minimum configuration is not included in the training
data set.
Next consider harmonic frequencies at the global minimum;

these are given in Table 3. Here again, the two PESs perform
almost equally, with the exception of lowest frequency mode,
where the PIP PES is more precise.
Next, we considered the various saddle points. A comparison

of ab initio normal-mode frequencies of H3O2− with those
from both PESs at the various stationary points, along with
their energies, is presented in the Tables 4 and 5. Note that the
energies are relative to the global minimum energy. The
Cartesian coordinates of these saddle points along with the

Figure 3. Histogram of the ab initio energies in the full data set. See
ref 14 for the construction of the data set.

Figure 4. (a) Correlation between the PIP PES fit to all data and CCSD(T)/aVTZ energies. (b) eRMSE for PIPa, fit to the full data set, PIPb, fit to
data at 6000 configurations, and sGDML PES as a function of the ab initio energy.

Table 1. RMS Errors in Fitted Energies and Forces
Computed Using All the CCSD(T)/aug-cc-pVTZ Energies
(E) and Forces (F)

error units sGDML PIPa PIPb

eRMSE cm−1 78.8 42.4 42.2
fRMSE cm−1 Å−1 dof−1 194.1 141.4 131.5

aFit using all data. bFit using data at 6000 configurations.

Table 2. Optimized Structure of H3O2
− Global Minimuma

ab initio sGDML PIP

R(O1O2) 2.4887 2.4836 2.4840
R(O1H3) 1.0904 1.0844 1.0842
R(O1H4) 0.9614 0.9588 0.9588
R(O2H5) 0.9641 0.9612 0.9611
θ(H3O1O2) 1.48 1.50 1.47
θ(H4O1O2) 100.44 100.46 100.41
θ(H5O2O1) 105.72 105.83 105.81
ϕ(H3O1O2H5) −61.66 −62.18 −62.83
ϕ(H4O1O2H5) 102.26 101.37 100.85

aAll bond lengths are in Å, while the bond angles θ and dihedral
angles ϕ are in degrees.
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global minimum, obtained from the PIP PES optimizations, are
given in the Supporting Information.
Timing Comparisons. Having established that the

sGDML and PIP PES provide precise fits to the CCSD(T)
data set, we consider the speed of evaluation of the PESs. The
timing was done on the same workstation and, in both cases,
using Fortran 90 software. Results for 100,000 evaluations of
energy and energy plus gradient are given in Table 6, relative
to the PIP time for energy only. First, note that sGDML is

trained only for gradients, and since the energy is obtained
from gradients, we leave the entry blank for the sGDML
energy. The timing for the energy plus gradient is 13× the time
for energy only for the PIP PES. This is as expected for a
standard analytical (forward) gradient evaluation as is done in
MSA. Note that this time is much faster (a factor of 15.5) than
the time for the sGDML PES. As described in detail
elsewhere,23,29 fast reverse differentiation has been imple-
mented in the Fortran software via a Mathematica script. As
seen, there is a substantial speedup in the gradient evaluation
(roughly a factor of 4). Thus, the final ratio between the
sGDML:PIP timing for the energy plus gradient is 69. For
energy evaluation only relevant to quantum calculations,
including the DMC ones reported below, the factor is 206.
We discuss this large difference in speed (in line with a similar
factor for ethanol29) below, where we summarize the
assessments of the two fitting methods as applied here. Before
doing that, we present some results from a DMC calculation of
the ground state wave function.
DMC Calculations of the Zero Point Wave Function.

Next, we present the results obtained through the DMC
calculations30−32 using our in-house software, as described in
our recent paper on using DMC to locate “holes” in a PES.33

For each PES, we performed five DMC calculations initiated at
the global minimum, with 20,000 random walkers and an
imaginary time step of Δτ = 5 au for 30,000 time steps. Upon
completion of the unconstrained DMC, both PIP and sGDML
PESs are identified as “hole-free” surfaces, signifying the
absence of any configuration with unphysical negative energies.
However, the PIP PES exhibits a speed advantage in this
computation, performing 360 times faster than the sGDML
PES. The average ZPE values obtained from five independent
DMC simulations for PIP and sGDML PES are 6641 ± 2 and
6612 ± 4 cm−1, respectively, the uncertainties given are the
statistical ones from the DMC calculations. These ZPEs are
substantially lower than the harmonic ZPEs of 6965 and 6983
cm−1, respectively, for the PIP and sGDML PESs.
We now present several plots of 1d wave functions from the

DMC wave function obtained with the PIP PES. These 1d
wave functions are obtained from histograms of walkers for
selected variables at the last time step of the DMC trajectory.
Of major interest is the wave function of the shared H atom,
H3 in Figure 1. This is shown using the difference variable
R RO H O H2 3 1 3

in Figure 5, panel (a). As seen, the peak is at
zero and this signifies an equal sharing of the hydrogen atom
between the two oxygen atoms, and consequently corresponds
to the H-transfer TS. This is in agreement with earlier DMC
studies of the ground state wave function using an earlier PIP
PES.5 As noted, this symmetric delocalization of the shared H
atom is due to the low potential energy (ca. 80 cm−1) of the H-
transfer TS. This delocalization was noted in prior path
integral,1,7,9,14,34 DMC,5 and MCTDH8 studies.
Next, we investigate a 1d wave function that provides

information about the bifurcation TS. This is shown in Figure
5b in the difference variable R RO H O H2 4 2 3

. This variable is
zero at the bifurcation TS. As seen, unlike the result in panel

Table 3. Comparison of Harmonic Frequencies (in cm−1) at
the Optimized Global Minimum Geometry from Ab Initio
Calculations at CCSD(T)/aug-cc-pVTZ Level of Theory
Using CFOUR 2.1,15 the sGDML and PIP PESs

mode ab initio sGDML PIP

HOOH dih 203.0 158.4 193.0
O−O str 326.1 316.5 322.3
OH− bend 470.4 467.6 482.3
H2O rock 585.9 583.6 590.9
OHin oop bend 1354.9 1353.9 1366.3
OHin str 1605.1 1627.4 1598.8
OHin i.p. bend 1739.2 1756.7 1734.9
OH− str 3815.0 3804.4 3814.6
OHout str 3866.3 3863.1 3866.3

Table 4. Comparison of Normal Mode Frequencies and
Energies, E, (in cm−1) of H3O2

− at the Bifurcation TS and
the Shared Proton Transfer TS, from Ab Initio Calculations
at the CCSD(T)/aug-cc-pVTZ Level Using CFOUR 2.1,
sGDML PES and PIP PES

mode TS bifurcation TS H-transfer

ab initio sGDML PIP ab initio sGDML PIP

Q1 443.7i 509.5i 471.9i 667.8i 705.1i 642.6i
Q2 259.6 156.9 171.5 210.6 171.8 202.3
Q3 287.9 275.4 289.1 568.5 566.0 576.43
Q4 390.7 295.8 346.5 577.4 575.7 579.41
Q5 880.2 853.4 850.9 632.2 630.4 636.6
Q6 1658.8 1651.6 1659.1 1528.1 1524.2 1532.7
Q7 3613.1 3653.2 3685.1 1626.6 1643.4 1630.4
Q8 3676.4 3749.8 3736.4 3840.0 3842.4 3840.6
Q9 3757.9 3810.1 3799.8 3840.6 3847.3 3840.9
E 2521.1 2552.9 2478.4 81.0 85.3 74.8

Table 5. Comparison of Normal Mode Frequencies and
Energies, E, (in cm−1) of H3O2

− at the Cis and Trans HO−
OH Torsion Barriers, from Ab Initio Calculations at the
CCSD(T)/aug-cc-pVTZ Level Using CFOUR 2.1, sGDML
PES and PIP PES

mode TS cis TS trans

ab initio sGDML PIP ab initio sGDML PIP

Q1 229.2i 205.9i 224.3i 182.4i 122.2i 161.2i
Q2 322.5 326.0 321.4 312.1 311.2 311.9
Q3 437.8 461.2 454.3 413.7 417.5 425.2
Q4 676.2 691.0 690.4 690.7 695.3 700.8
Q5 1178.7 1179.7 1182.1 1181.5 1180.0 1193.6
Q6 1713.1 1729.0 1725.5 1696.9 1726.5 1688.4
Q7 1838.1 1838.2 1842.2 1817.1 1834.5 1808.3
Q8 3809.5 3805.9 3810.8 3819.0 3799.8 3820.0
Q9 3868.2 3860.9 3874.0 3867.8 3867.3 3869.9
E 373.6 309.0 357.1 165.4 75.2 130.2

Table 6. Time Per 100,000 Calls

time taken (s) sGDML PIP

energy 1
energy + gradient 206 13
energy + fast reverse derivative 3
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(a), the histogram peaks at 1.58 Å. This difference indicates
that one hydrogen atom of the water molecule occupies the
space between two oxygen atoms, while the other hydrogen
atom remains farther from the oxygen atom of OH−. Note that
the difference of the bond lengths between O2H4 and O2H3 for
the global minimum and the H-transfer TS are 1.42 and 1.59
Å, respectively. On this plot, the wave function is essentially
zero at the bifurcation TS. This is not surprising given that the
potential energy of this TS is roughly 2500 cm−1. Finally, we
show 1d wave functions for the indicated bond lengths in
Figure 6. Panel (a) shows the expected Gaussian shape for the
O−O bond length extended over a range of 0.6 Å. Panel (b)

shows the large range of the shared H atom motion with
respect to the O atom. The wave functions in panels (c) and
(d) for the O1H4 and O2H5, respectively, are virtually identical,
as expected from the structure in panel (c) of Figure 1.

■ SUMMARY AND CONCLUSIONS
We presented assessments of two PESs of H3O2−. One is a
sGDML PES, and the other is a new PIP one. These are
successors to the earlier PIP PES reported in 2004. We
described the details of both fitting methods and then
compared the two PESs with respect to the precision,
properties, and speed of evaluation. The two methods

Figure 5. Histogram of cuts of the ground state DMC wave function vs the difference of the bond lengths of (a) RO H2 3
and RO H1 3

and (b) RO H2 4

and RO H2 3
(in Å).

Figure 6. Histogram of cuts of the ground state DMC wave function vs the bond lengths of H3O2− system (in Å): (a) RO O1 2
, (b) RO H1 3

, (c) RO H1 4
,

and (d) RO H2 5
,.
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approach training differently. sGDML uses a subset of the data,
which are exclusively 45,000 gradients. While this conforms to
the usual training-test protocol, it is numerically necessary for
sGDML and all kernel methods, which scale steeply in cost
with the training data size. PIPs use all the data, consisting of
15,024 energies and gradients, for a total data size of 240,384.
This data size is easily managed in the least-squares fitting
performed in the PIPs approach.
The two PESs are similarly precise; however, the PIP PES is

much faster to evaluate for energies and energies plus gradient
than the sGDML one, with factors of 200 and 70, respectively.
This factor of roughly 2 orders of magnitude is consistent with
a similar factor found in a previous assessment for ethanol29

and a very new one for 21-atom aspirin.35 DMC calculations of
the ground vibrational state wave function were done using
both PESs. Since these require just energies, the calculation
using the PIP PES took roughly 300 times less CPU time than
the sGDML one. Analysis of the DMC wave function from the
PIP PES calculation indicates that the shared proton is
symmetrically located between OH groups but has near zero
amplitude at the bifurcation saddle point. As noted previously3

and also recently,14 the bifurcation TS energy is much higher
than the H atom transfer one. Here, we see that this results in
delocalization of the shared H atom between two OH groups
but significant localization of the H atom with respect to the
bifurcation pathway. This is consistent with results using
PIMD simulations using the sGDML PES at low temper-
atures.14 It would be interesting to investigate tunneling
splittings, where the delocalized shared H atom is replaced by a
different H atom via the bifurcation pathway. The present fast
PIP PES should enable future studies.
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