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Nonequilibrium quantum probing through linear response
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The formalism of linear response theory can be extended to encompass physical situations where an open
quantum system evolves toward a nonequilibrium steady state. Here, we use the framework put forward by
Konopik and Lutz [Phys. Rev. Res. 1, 033156 (2019)] to go beyond unitary perturbations of the dynamics.
Considering an open system comprised of two coupled quantum harmonic oscillators, we study the system’s
response to unitary perturbations, affecting the Hamiltonian dynamics, as well as nonunitary perturbations,
affecting the properties of the environment, e.g., its temperature and squeezing. We show that linear response,
combined with a quantum probing approach, can effectively provide valuable quantitative information about the
perturbation and characteristics of the environment, even in cases of nonunitary dynamics.

DOLI: 10.1103/PhysRevResearch.6.013152

I. INTRODUCTION

The study of nonequilibrium scenarios is key for the
dynamics—and thermodynamics—of quantum systems [1,2].
Although an overarching framework to consistently interpret
the variety of nonequilibrium quantum phenomena is hitherto
missing, some light has been shed towards understanding sev-
eral aspects of this multifaceted problem. These theoretical
studies come together with a strong interest in applications
concerned with transport phenomena, e.g., in quantum tech-
nologies at the nanoscale [3].

Given a nonequilibrium setting, the standard approach fol-
lows classical statistical mechanics [4], where one applies
small perturbations to the system of interest to gather infor-
mation about the system itself: depending on the nature of the
perturbation, one would be able to deduce relevant physical
properties through, e.g., response and relaxation functions or
generalized susceptibilities [5]. This simple, yet insightful,
idea is the essence of linear response theory; this being usually
the first step in trying to harness the otherwise complex phe-
nomenology of nonequilibrium systems. However, it is worth
emphasizing that, when extended to quantum systems, Kubo’s
original formulation of linear response theory relies on two
assumptions [6,7]: the system is isolated so its dynamics are
unitary; furthermore, it relaxes towards a thermal equilibrium
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state. These conditions are not always met in practice. On one
hand, closed quantum systems are usually a crude approxima-
tion, as we should effectively include environmental effects in
the form of dissipation and/or decoherence [8,9]. On the other
hand, there are cases in which the system relaxes towards
a nonequilibrium steady state (NESS). This class of states
is obtained, for instance, when considering boundary-driven
systems, i.e., systems that are dissipatively driven by coupling
with two different baths at the two ends [10]. The physical
properties of the system and its bath (e.g., temperature or
chemical potential), as well the intrasystem and system-bath
coupling will ultimately influence the transport properties.

In this paper, we aim to probe the nonequilibrium dynamics
of a system through linear response theory. To this end, we
extend the customary domain of application of linear response
theory to include nonunitary perturbations to the system dy-
namics. Nonunitary perturbations have been considered in
Ref. [11], where a method was put forward for finding the
linear response of the covariance matrix (CM) to a pertur-
bation in the Gaussian channel describing its evolution. The
perturbation could be either unitary or nonunitary. Here we
proceed via a different method where we find the linear re-
sponse of an observable of the system to a perturbation in the
master equation describing its evolution. As a paradigmatic
setting of boundary-driven systems, we consider a simple yet
highly nontrivial example and address two coupled harmonic
oscillators locally interacting with their own bath. The nonva-
nishing interaction between the two parties eventually leads
the composite system to a NESS. Furthermore, we assume
that the dynamics of such a system are described by a local
master equation which does not include memory effects, i.e.,
we rely on a fully Markovian description of the evolution
[8]. This scenario has been analyzed in Ref. [12], where,
inspired by considerations coming from classical statistical
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mechanics [13-15], a framework for nonequilibrium quantum
linear response has been put forth. However, consistently with
the original spirit of the linear response approach, the interest
is usually limited to unitary perturbations [12,16]—e.g., to the
interaction Hamiltonian between the two subsystems [12].

Here we use one of the two oscillators to test the effects of
the perturbations to the bath that is locally coupled to the other
one. This configuration is fully in line with the quantum prob-
ing paradigm, where it is customary to use a small, simple,
and controllable system interacting with a more complex en-
vironment to infer accurate information about environmental
parameters (e.g., temperature or spectral properties) [17-20].
In turn, the problem that we address is closely connected with
quantum estimation theory [21-25], for which the ultimate
goal is to find the optimal measurement scheme to gain precise
information about a set of given parameters characterizing
the system and its dynamics [26-30]. Interestingly, within the
context of nonequilibrium open quantum systems described
by Markovian dynamical maps, a close relationship between
fluctuation-dissipation theorems [31] and quantum metrology
has been established [32], though limited to the static case:
such a connection allows for the description of the effect of a
perturbation within the linear response regime.

We first investigate the case where the probe itself is in
contact with a thermal bath; despite the thermal noise, we
are able to detect the changes to the environment interacting
with the main system, when a sudden quench is applied to
its temperature. In line with the general aim of quantitatively
assessing the effects of a sudden change of the macroscopic
parameters characterizing the dissipation, we also consider
the case where the system interacts with a thermal squeezed
bath, while we assume that the probe is perfectly isolated. We
show that linear response extended to the case of nonunitary
dynamics remains effective in providing key information on
the perturbation affecting the system and, when paired with a
quantum probing approach, offers a valuable quantitative tool
for the characterisation of the features of an environment.

The remainder of the paper is organized as follows. In
Sec. II, we set out the theory of linear response of open
quantum systems to small perturbations. We try to keep our
formalism as general as possible, so both unitary and nonuni-
tary perturbations can be applied to the system dynamics.
In Sec. III, we describe our first system of interest: a pair
of coupled quantum harmonic oscillators, each interacting
with local thermal environments. Given the nature of the
systems and states that we consider, we can solve the dy-
namics analytically using the formalism of Gaussian quantum
mechanics without the need for numerical approximations.
In Sec. IIT A, we apply two simultaneous perturbations: one
unitary and one nonunitary. We then focus on the special
case of a perturbation of the bath temperature. In Sec. III B,
we show that the second oscillator can serve as a probe of the
response to a perturbation on the first oscillator. In Sec. 1V,
we detach one of the two subsystems (which becomes our
probe) from the corresponding local bath, while we let the
other subsystem interacts with a local squeezed thermal bath.
We then study the response of the probe to perturbations on
the parameter controlling the squeezing of the bath. In Sec. V,
we present our conclusions, along with an outlook for future
directions.

II. LINEAR RESPONSE IN OPEN QUANTUM SYSTEMS

In this section, we will review the formalism of linear
response for open quantum systems. In particular, we will
explicitly show that the linear response of a generic observable
to a perturbation can be written in terms of the steady state
of the system and the observable of interest, written in the
Heisenberg picture, where the time evolution is solely con-
trolled by the unperturbed dynamics [12]. Since our aim is to
investigate how the system responds whenever we perturb ei-
ther the unitary or the nonunitary part of the dynamics, we will
write the relevant equations in a general form. Thus we will
work at the level of superoperators, with the Liouvillian of the
dynamics expressed as the sum of a unitary part and a dissipa-
tor in the standard Lindbladian form [8,33—35]. The dynamics
of the system are described by the Markovian master equation

p(t) = Lp(1), (D
where the Liouvillian £ can be expanded (to first order) as
L =Ly+el)L) + O(?), 2)

where  Lop(t) = —i[Hy, p(t)] + Dp() with Hy the
unperturbed Hamiltonian and D the system’s dissipator.
Also, € = €(t) is the time-dependent parameter controlling
the perturbation. Following lines similar to those in Ref. [12],
we assume that, for a fixed value of €, the dynamics possess
a stationary state p, i.e., Lo, = 0, that can be expressed as

pe = po +€p1 + O(e?), A3)

where py is the steady state of the unperturbed dynamics [36],
and p; its linear (in €) correction due to the perturbation. It is
worth emphasizing that p. is not necessarily an equilibrium
state. When that is the case and the perturbation is unitary, we
recover the standard Kubo formalism of linear response [7].

Moreover, in general, the state at some time ¢ can be ex-
pressed as

o(t) = po + mi(t), 4

where 7 (¢) has to be traceless for p(¢) to be a physical state.
By substituting Eq. (4) into Eq. (1) and integrating over time,
we arrive at the final result,

() = / di €(1)e“ ) L po, )
0

to first order in € [12,37]. It follows that the linear response of
a generic observable A can be written as

AA<r>=<A>f—<A>o=/ dteORA( =), (6)
0

where (A)g is the unperturbed expectation value and R4 (¢) =
Tr[Ae“ £, po] is the linear response function. Note that this
response function can be expressed as

Ra(t) = Tr[e“V [A]L) po] = Tr[Au(t)L1pol, (7

where Lj is the dual of the generator £y of the unperturbed
dynamics and Ay (¢) evolves according to the adjoint master
equation [38]

Ap(t) = ilHy, Ap(1)] + D*[Ap(1)] )]
that encompasses the dual dissipator D*[-] [8].
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FIG. 1. Sketch of the system investigated in Sec. III. It consists
of two coupled quantum harmonic oscillators, interacting with their
local thermal baths at two different temperatures, 77 and 7;. We study
the response of one of the two subsystems when we apply a sudden
quench either to the coupling constant (i.e., A — A 4 €) or to the
number of excitations in the first bath (i.e., n; — n; + ¢).

III. SYSTEM IN CONTACT WITH LOCAL THERMAL
BATHS

First, let us consider a system of two coupled quantum
harmonic oscillators, each interacting with a local thermal
bath, as depicted in Fig. 1. The unperturbed Hamiltonian of
this system reads

Hy = a)laial + wza;az + )»(ala; + azai), ©)]

where ) is the frequency of the first harmonic oscillator and
w» is that of the second, which is detuned by a quantity §,
i.e., w» = w; + 4. The interaction between the two oscillators,
controlled by the coupling strength X, is modeled so as to
preserve the total number of excitations across the closed
system.

The open dynamics of the unperturbed system are gov-
erned by the master equation

p = Lo(p) = —ilHo, pl + Y _ D;lpl, (10)
j=1.2

where each local dissipator reads (j = 1, 2):
il 1 T
Djlel =y (n; + D\ ajpa; — S{aja;. p}

1
—I—)/nj(a;paj— E{a_,-a;r.,p}). (11

Each Dj[p], defined in terms of the local creation and an-
nihilation operators a; and aj, is the sum of two terms: the
first describes the incoherent loss of excitations, while the
second describes incoherent pumping. Here, y is the damping
rate (assumed to be the same for both oscillators), while the
mean number of excitations for the jth thermal bath at inverse
temperature 8; = 1/T; is n; = [exp(Bjw;) — 1L

Given that the Liouvillian of the unperturbed dynamics is
quadratic in the creation and annihilation operators, we can
employ the methods of Gaussian quantum mechanics to solve
the dynamics exactly. This is a valid approach as far as we
restrict our considerations to Gaussian states and, as we will
do in the following, to perturbations that are also quadratic
forms of the operators of the oscillators. Hence we only
need to study the evolution of the first and second moments

of the dimensionless position and momentum operators x; =
(a; + af)/ﬁ and p; = (a; — a;)/(i\/ﬁ). Given the vector of
quadratures Y = (x1, p1, X2, p2), and starting from Eq. (10),
it is straightforward to check that the first moments ¥; = (¥;)
are damped to zero [39]. Therefore, if we assume—without
loss of generality—the first moments to be initially zero, the
system dynamics will be solely determined by the second
moments. This is a customary assumption, e.g., when one
considers optomechanical setups, where the Gaussian modes
always represent zero-mean fluctuations around some semi-
classical steady state [40,41].

The second moments are encoded in the CM o, whose
entries are defined as o;; = %({Y,-, Y;}) — (Y;)(Y;). The time
evolution is thus expressed in the Lyapunov form as ¢ =
a0 + oal + D, where & and D are the drift and diffusion
matrices, respectively. While the former bears dependence
upon both the unitary and the nonunitary (dissipative) part of
the dynamics, the latter only depends on the nonunitary part,
describing the effect of thermal noise due to the interaction
between the system and the environment. To obtain the linear
response of an observable A of the system as given in Eq. (6),
we need the steady state of Eq. (10) and the Heisenberg-
evolved observable Ay (f). The steady state pg is completely

characterized by the solution to «o + o’ = —D, which can
be found to read as (cf. Appendix A for the details of the
calculations)
E O
oy = - | 12
0 é‘ <®T :‘2) ( )

where ¢ = (y? +8%)/(4A\> + y? + 8°), E; = diag(B + n; +
1/2,B + n; + 1/2) and

-5 -y
o=c() ) (13)
with B =2A%(n; +m + 1)/(y>+6%), and C = Ar(n; —
ny)/(y?* + 8%). While, in general, the coupling between the
two oscillators results in a nonthermal steady state, in the limit
A — 0, we have B— 0,C — 0, and ¢ — 1, thus recovering
the case of two independent quantum harmonic oscillators,
each relaxing towards the corresponding thermal state.

We start by considering the observable A; = ﬂla)laIal.
The corresponding adjoint master equation [cf. Eq. (8)] leads
to a set of coupled differential equations, whose solution gives
us

(@la)(t) = f(ala, + j()aja
+ pt)aral + qt)alar +s@).  (14)

The explicit forms of the functions f(¢), j(¢), p(¢), q(¢), and
s(t) are given in Appendix B.

A. Two perturbations: Coupling strength and temperature

Given the unperturbed dynamics in Eq. (10), we investigate
the response to two perturbations, £{ and L(f’: the former is
a sudden quench in the coupling strength A between the two
harmonic oscillators, while the latter is a quench in the number
of excitations n; of the first bath. Note that the linear response
to a Hamiltonian perturbation of the coupling strength has
been thoroughly studied in Ref. [12]. The perturbed master
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equation reads

p = Lop + €L p+ 1)L p. (15)

We take L{p = —i[Hp, p], where Hp is a beamsplitter-like
Hamiltonian perturbation of the form [42]

e()Hp = € 0(t)(a1a} + ), (16)

where € > 0, and 6(¢) is the Heaviside step function.
We obtain the linear response of observable A; due to to
the Hamiltonian perturbation £ as

AAj(r):ie/ dt Te[[Hp, A (t — Dlpol. (17
0

Since A|(t —t) = ,Bla)l(alral)(r — 1), we can use Eq. (14)
and rewrite the expectation values in terms of entries of the
steady-state CM from Eq. (12). We get

2AnA ,31&)16
202+ Jo
where we have introduced the kernel function
G(t) = y[4r2 cos(zt) + 82] + (y2 + 8%)zsinzr),  (19)

with An = n, — ny and 22 = §2 + 422,

Consider now a quench in the temperature of the envi-
ronment of the first oscillator through a perturbation in n;
described by

AAS(T) = dtG(t —t)e 7D (18)

. 1 .
¢l p =y ¢>(z>[a1pai -~ E{alal, o}

1
+ajpar = Slaaj, p}], (20)

where ¢(t) = ¢ 0(t), with ¢ > 0. The corresponding linear
response is

AA‘{’(I):/Otdtqﬁ(t)Tr[Al(t—t)ﬁ‘l”po]. 1))

After some algebra, we find
AT (D) = Browy / di f(tr —1), (22)
0

with f(t) = e 7'[8% 4+ 242 + 242 cos(zt)]/z* (cf. Appendix
B). Finally, the linear response to a combination of perturba-
tions to both the coupling strength of the interaction and the
temperature of the first oscillator’s bath is obtained by simply
adding the two aforementioned contributions. Therefore, the
linear response (of the energy of the first oscillator) to both
perturbations is

AA(T) = ) AAk(D), (23)
k=¢,p

where AA{(t) and AA?(‘L’) are given by Eqgs. (18) and (22),
respectively.

In Fig. 2, we show this response as a function of time for
a certain choice of the parameters of the system (see caption)
and with perturbation strengths € = 0.1w; and ¢ = 0.1. We
can also compare the linear response result with the exact
dynamics of the perturbed system. To do so, we consider the
steady state p, reached asymptotically by the system when

AA(T) x 107

T
— Steady-state response .-.-. Equilibrium response - - - - Unitary response
..... Perturbed value (coupled) — - Perturbed value (uncoupled)

FIG. 2. Plot of the dimensionless energy response of the first
oscillator (with A; = ﬁlwlafal) to a step perturbation to both the
coupling strength A and the number n; of excitations of the first
bath. The dynamics are simulated for the following values of the
parameters: § = 10w;, A = S5w;, ¥y = 0.5w;, € =0.1w;, ¢ =0.1,
Biw; = 0.1, and Brw; = 0.001. The steady-state response converges
to the perturbed value. The equilibrium response shows what hap-
pens in the limit of decoupled oscillators (A — 0), while the unitary
response (y — 0) reflects the case where the system is closed.

setting the coupling strength to A 4 € and the average number
of excitations in the bath of the first oscillator to n; + ¢,
i.e., taking the perturbations into account. The difference
between this new steady state and the original unperturbed
steady state shall be referred to as the perturbed value of
the energy response of the oscillator. We first calculate the
expectation value of A; over the steady state p;, i.e., (Al);‘; =

lin?,_>oo ﬂl'a')]Tr[aIal('t)p(’)]., as we are looking for asymp-
totic conditions. The invariance of the steady state under the
dynamics allows us to remove the time dependence, thus
leaving

i w I !
(A1>;z = ,BlwlTr[aIalp()] = %[(0’11)0 + (022)0 — 1],

(24)

where (O’i/j )o are the elements of the CM associated with py).
From this, we need to subtract the expectation value calculated
over the unperturbed steady state, for which € = ¢ =0, i.e.,
(A1) = %[(011)0 + (022)0 — 1]. Using the CM given in
Eq. (12), we can find the explicit form of the perturbed value
of the energy response of the first oscillator and compare it
with the long time limit of Eq. (23). It is straightforward to
show that the two expressions coincide to first order in € and
¢, consistent with the linear response theory approximation.
In Fig. 2, we clearly see that the perturbations cause oscil-
lations in the steady-state response. The amplitude of such
oscillations is damped over time until the linear response
converges to the perturbed value as t — oo.

We also consider the case of A — 0 where the oscillators
are uncoupled and only interact with their own local bath. As
each oscillator is in its own equilibrium state just before they
are perturbed, we refer to this as the equilibrium response.
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FIG. 3. Plot of the linear response of the dimensionless energy of
the first oscillator (withA; = 8 lwlaTal) for the case of a step pertur-
bation to the number of excitations n; of the bath locally interacting
with it. The plots are obtained with the following choice of the var-
ious parameters: 6 = 10w, A = 5w, y = 0.5w;, ¢ = 0.1, Biw,
0.1, and Brw; = 0.001. The steady-state response approaches the
coupled perturbed value (A # 0), while the equilibrium response
(A — 0) approaches its own perturbed value for the case where the
oscillators are not coupled.

Additionally, the case in which the system evolves unitarily
can be recovered from Eq. (23) by taking y — 0. As expected,
in this limit, we obtain reversible dynamics, so the linear
response displays recurrences over time, which essentially
follow the energy flowing back and forth from one oscillator
to the other.

We now analyze a special case of the previous scenario,
where we perturb only the temperature of the first bath while
keeping the coupling strength constant. Hence, the response
is given by Eq. (22) or, equivalently, by setting ¢ =0 in
Eq. (23). The results are plotted in Fig. 3. In this case,
where the perturbation affects only temperature, the linear
response fully captures the exact dynamic response, which
is calculated in Appendix D. The equilibrium response here
is identical to the equilibrium response in the case of two
perturbations, consistent with the fact Eq. (18) vanishes for
A — 0, reducing the case of two perturbations to just the
response to the quench in temperature. In the equilibrium
scenario, we have f(r) = e~7', thus Eq. (22) yields AA?(‘L’) =
Birwi¢p(1 — e7 "), which, as T — o0, converges to the asymp-
totic value AA?(oo) = Biw;¢. This is the maximum response
possible, and it occurs when A — 0, i.e., when the oscilla-
tors are uncoupled. By contrast, whenever we switch on the
coupling between the two oscillators, i.e., A # 0, the response
of the first oscillator is comparatively smaller, as—through
the interaction with the second oscillator—the first oscillator
additionally experiences the effects of the second bath.

B. Second oscillator as a probe of a perturbation

Let us now consider the effect of a perturbation to the tem-
perature of the first bath on the energy of the second oscillator.
To do so, we apply a quench to the number of excitations in

10

2 4 6 8

T

—— Steady-state response .-.-. Equilibrium response - Perturbed value

FIG. 4. Plot of the response of A; = ﬂ2a)2a;a2 to a step per-
turbation to n;. The plots are obtained with the following choices:
= 10(1)1, A= 5(01, Yy = O.Swl, ¢ = 01, /31(01 = 01, and /32(01 =
0.001. The steady-state response approaches the perturbed value,
while, as expected, in the limit of decoupled oscillators (i.e., A — 0),
we obtain a vanishing equilibrium response.

the first bath and investigate the possibility of gaining infor-
mation about this perturbation through the second oscillator,
thus probing the environment of one subsystem through the
response of the other. The linear response is once more given
by Eq. (21) with A, = ,Bzwzazaz replacing A;.

The response shown in Fig. 4 is qualitatively similar to
that in Fig. 3 but the magnitude is smaller due to the fact that
Brwy < Biwi. Furthermore, the perturbation is now mediated
by the first harmonic oscillator, which is the one whose bath
is perturbed. As can be deduced from Fig. 4, whenever the
coupling between the two oscillators is nonzero, the perturba-
tion applied to the first oscillator affects the second one. As
a result, the value of the coupling strength A determines the
response of the second oscillator. We provide evidence of this
by exploring the limit A — 0, which corresponds to the equi-
librium response. As we discussed in Sec. III, the equilibrium
response of the first oscillator, shown in Fig. 3, approaches
the maximum value AA%(c0) = B¢, while the equilibrium
response of the second oscillator is zero (cf. Fig. 4). For a
finite value of the coupling constant A, i.e., when we look at
the steady-state response, the perturbation nontrivially affects
the system response.

The difference between the perturbed value for coupled
and uncoupled oscillators in Fig. 3 is related to the perturbed
value of the second oscillator in Fig. 4 as

AAY(00) — AA}(00) = Broi(fawy) ™' AAj(00),  (25)

where AA}\»(OO) is the perturbed value of the energy of the jth

oscillator (j = 1, 2) for a coupling strength 1. As AA%(c0) =
Biw1¢, we find
¢ =Y (Bjw) " AAl(o0). (26)

j=12

This expression allows us to calculate the perturbed value
of one of the oscillators if we know that of the other. This
means that we can use the second oscillator as a probe to gain
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FIG. 5. Plots of dimensionless energy response to a step pertur-
bation in the number of excitations n, in the first bath, also showing
the response for . — oo (infinite coupling response), and the limit of
this behavior as t — 0o . The plots are obtained for § = 10w;, A =
Swi, y = 05w, ¢ = 0.1, Byw; = 0.1, and Brw; = 0.001. (a) shows
the response of the first oscillator (A; = ﬂla)la':'al), while (b) refers
to the second oscillator (4, = ,Bza)za;az).

information about the response to a perturbation to the bath
of the first. The degree to which the second oscillator mimics
the first is determined by the coupling strength A. We can add
an additional line to the plots in Figs. 3 and 4 to show the be-
havior as A — o0, illustrated in Fig. 5. Comparing Figs. 5(a)
and 5(b), we see that when L — oo, the energy response of
the first oscillator approaches a value of 8;w;¢/2, while—in
the same limit—the response of the second oscillator tends
towards Brwy¢/2. This shows that in the limit of infinite
coupling strength, the energy of both oscillators increases by
a factor proportional to ¢/2. This can be interpreted as an
instance of equipartition of energy between the two parties
of the composite system.

IV. SYSTEM INTERACTING WITH A SINGLE SQUEEZED
THERMAL BATH

We now investigate a system comprised of two coupled
quantum harmonic oscillators, one of which is connected to
a squeezed thermal bath, as shown in Fig. 6. The environment

FIG. 6. Sketch of the second scenario: Two coupled quantum
harmonic oscillators, one of which is interacting with a squeezed
thermal bath characterized by temperature 7' and squeezing s. We
investigate the response of the system directly interacting with the
bath through the second system, which serves as a probe, when
applying a sudden quench to parameter M, i.e., M — M + n.

is characterized by two parameters, i.e., its temperature 7" and
the squeezing parameter s, which can be written in polar form
as s = re'. The unitary dynamics of this system are described
by the Hamiltonian Hj given by Eq. (9). In this scenario, the
unperturbed dynamics are governed by the following master
equation [43]:

p = Lop = —ilHo, p] + Y _ Dilp], 27
i=1,2

where the dissipator—acting only on the first system—
comprises the superoperators

1.
Dilpl =y (N + 1)<a1paT — Slaar, p})
+ Lo s
+yN(qmn—EWpr0, 28)

1 2
Dilp]l = yM<aIpaI - E{aI ,,0}) +Hec., (29

with N = n(cosh® r + sinh? r) + sinh? r, M = — cosh r sinh
re?2n+ 1), and n = [exp(Bw;) — 117! is the average num-
ber excitations in the bath at inverse temperature g = 7.
The parameters M and N are not mutually independent as
the condition [M|*> < N(N + 1) must be enforced to ensure
positivity of the density matrix [8].

As in the case discussed in Sec. III, we need to find the
steady state pg or, equivalently, the corresponding CM. To do
so, we follow a slightly different approach compared to that
discussed in Sec. III. The core idea is to remap—resorting
to a standard set of correspondence rules [44]—the master
equation from Eq. (27) into a Fokker-Planck equation for the
characteristic function of our two-mode system, defined as

x(ar, az,t) = Tr{D1(a1) ® Da(az)p}, (30)

where D;(a;) = exp(a,aj — afa;) is the displacement oper-
ator associated to the ith mode [43,45]. The steady-state
characteristic function xo(c1, @) is then found by imposing
the condition y = 0. By inspection, from xo(c, o) one can
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construct the steady-state CM, i.e., X, written in terms of the
annihilation and creation operators. In general, the entries of
Y are defined as

Zij = 3 (X XD = (X)), 31)

with X = (ay, a}L, a, ag). Note that ¥ and o are related by
the transformation 0 = AXAT, where A is defined as A =

®i=1,2 A,’ with

1 /1 1
A,-=ﬁ<_l. i). (32)

The details of the derivation of the steady-state CM are given
in the Appendix C, whereas here we state the final result, i.e.,

N+3; D 0 E*

| p* N+ O E 0

=1 E* N+3 F [ (33)
E 0 F* N+3

where the explicit form of the coefficients D, E, and F is
provided in Appendix C. These coefficients ultimately depend
on the physical parameters characterizing the dynamics of the
system. In particular, in the limit A — 0, both E and F' vanish,
as one can immediately check through Egs. (C6) and (C7).
In other terms, when the two oscillators are uncoupled, the
steady state is given by a block-diagonal CM in the form

Tl =32 e3P, (34)

where the steady-state CM associated with the first mode, i.e.,
o (N+3 D

z _<D* N+3) (35)

is nondiagonal due to the squeezing of the associated bath,
whereas the second mode converges to the diagonal CM XP =
diag(N + 1/2, N + 1/2). Furthermore, in the limit M — 0,
we have that the coefficient D vanishes and the system relaxes
towards a global thermal state.

Perturbation to bath squeezing

Given this system, we apply the linear response formalism
outlined in Sec. II to study the effect of a perturbation to the
squeezing of the first bath. More concretely, the perturbation
is described by the superoperator

Llp=y n(t)(afpa? - %{afz, p}) +He. (36)

We restrict our attention to the case of a sudden perturbation,
which we model through the steplike function n(t) = n6(t)
(n € C). The link between M and N entails that a step-like
perturbation on the former will in turn cause a similar pertur-
bation on the latter of the same form as Lf from Eq. (20). The
values of 1 and ¢ are related as

2e" ¢ cosh r sinh r

cosh? r + sinh2 r ’

(37

under the assumption that the squeezing parameter s = re® is
not directly affected by the perturbation. The linear response is
obtained by accounting for both the perturbations in Egs. (20)

— Steady-state response .-.-. Equilibrium response Perturbed value

FIG. 7. Plot of the dimensionless energy response of the second
oscillator to a step perturbation in the squeezing (M) of the bath
attached to the first oscillator. Curves are obtained for the following
choice of the physical parameters: § = 10w, A = Sw;, y = 0.5w,
¢ = 0.1, Bw; = 0.1. The steady-state response converges to the per-
turbed value. The equilibrium response shows that the energy of the
second oscillator is unchanged when the oscillators are not coupled
(i.e., when A — 0).

and (36), i.e.,
AAz(t)zf dtTr[Az(z—t)(ﬁ‘{’Jrﬁ?)po]. (38)
0

As we aim to use the second oscillator as a probe, we choose
the observable A,(t) = (a;az)(t) to determine the linear re-
sponse in dimensionless units. The calculation of the time
evolution of A,(¢) for this situation follows lines analogous
to those previously illustrated, leading to

(abax)(®) =f(Dajar + [§)ajaz + Hee] + j(O)ajar + (1),
(39

where f(1), 3(t), j(t), and [(¢) are defined in Appendix B.

Plugging Eq. (39) into Eq. (38), we find that the contribu-
tion coming from L7 is zero, hence the linear response reduces
to

AAy(T) = / dt Tr[ Ay (T — t)ﬁ‘f,oo 1, (40)
0

which is of the same form as that used in Sec. III, provided
that the time evolution of A;(t — t) is obtained from Eq. (39),
and the steady state py is deduced from the CM in Eq. (33).
The linear response is finally given by

AAy(T) = yfo dt ) f(x —1), (41)

which is plotted in Fig. 7.

The perturbed value of the energy of the second oscillator
is given by ¢ = AN, where the change in N is caused by the
perturbation of the parameter M. At long times, the measure-
ment of the change in the energy of the second oscillator gives
a value for ¢. Hence we can deduce the change in squeezing,
n = AM, of the bath attached to the first oscillator from
Eq. (37). This shows that we can use the second oscillator
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as a probe of the perturbation to the squeezing of the bath
interacting with the first oscillator.

V. CONCLUSIONS AND OUTLOOK

We have used the formalism of linear response theory to
investigate both unitary and nonunitary perturbations around
NESSs of an open quantum system consisting of two coupled
harmonic oscillators. We have calculated the response to si-
multaneous perturbations to the coupling strength between the
two oscillators (i.e., a unitary perturbation) and to the temper-
ature of the thermal bath (i.e., a nonunitary perturbation). We
also looked at the effect solely determined by the temperature
perturbation, investigating the response of both the oscillators
to this. We found that such an approach is effective in probing
perturbations to the dynamics of the system, including in
situations where the latter is affected with a nonequilibrium
bath.

The approach presented in this paper shows how to extend
the theory of quantum linear response to nonunitary pertur-
bations affecting the dynamics of open systems. Our study
calls for a mathematically consistent formalism able to micro-
scopically account for such perturbations. This would allow
quantitative analysis of more general scenarios where the
dynamical equations go beyond the usual Markovian approx-
imation, encompassing, e.g., strong-coupling and memory
effects.
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APPENDIX A: STEADY-STATE COVARIANCE MATRIX
FOR THE FIRST CASE

For the system described in Sec. III, we find the steady
state using the method set out in Appendix C of Ref. [11] to
transform some classes of Lindbladian master equations into
dynamical equations for the first and second moments. Let us
consider a Lindbladian master equation in the form

N |
b= —ilto, p1+ Y (Lka,L - 5L, p}>, (A1)
k

where the Hamiltonian Hj is quadratic in the quadrature oper-
ators, i.e., it can be written in the following matrix form:
Hy=1YGY",

=1 (A2)
where Y is the vector of quadratures, while the Lindbla-
dian operators are linear, i.e., Ly = c,{YT. It is immediate to

see that the master equation given by Eq. (10) fulfils these

requirements, provided that we rewrite the relevant quantities

in terms of the quadratures x; and p;, which are related to

the set of creation and annihilation operators, a:f and a;, by

a linear transformation, as outlined in Sec. III. Therefore, the

free Hamiltonian of Eq. (9) reads

w w;+ 6
Hy = =-(x} + i) + —5— (3 + 72) + A(x102 + p1p2).

(A3)

The latter can be brought in the form of Eq. (A2) by taking
Y = (x1, p1, x2, p2) as a vector of the quadratures, and

w 0 A 0
0 w 0 A

G=1, 0 wts 0 (A4)
0 % 0 w+s

Comparing the unperturbed master equation in Eq. (11) with
the general form in terms of the jump operators, i.e., Eq. (A1),
we can identify the jump operators as

Li=ay/y(m+1), Ly=al/yn.
Ly=a)/y(n+1), Ly=d/ym.

Following Ref. [11], we seek the vectors ¢; such that L; =

¢/ Y7, they are given by
o = [ -i.0.0).

I
o = 1D 0.0,
2
1
ol = /—’”(”2;r 0,010, o = _”;2(0,0,1,—1').

(A5)

(A6)
The vectors ¢; allow us to construct the matrix
CC' = Z cka
k
y(21121 +1) _ % 0 0
i Qn+1)
7}’ it 5 0 0
= - (A7)
2m+1) i
N
i @m+1)
0 0 y o yOmtD
The drift matrix « is obtained via [11]
a = —i®(G — Im(CC)), (A8)

where Im(M) denotes the imaginary part of a matrix M, and
2 is the symplectic matrix given by & = £; @ 2,, where

52j=i<_01 (1)) j=12. (A9)
Substituting Eqs. (A4) and (A7) into Eq. (A8) yields
-5 o 0 A
@©= _ow _,\% :% a):)-(S (A10)
-2 0 —(0+98 -t
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The matrix D is given by [11] where Re(M) denotes the real part of a matrix M. Substituting
D—9 Re(CCT) Q. (Al1) Eq. (A7) into Eq. (A11), the matrix D turns out to be
|
2n; 41 0 0 0
D=7 o 2n20—|— Lo (A12)
0 0 0 2ny + 1

Once the matrices & and D have been obtained, we can determine the steady-state CM, o, by solving ao + oca’ +D =0,
which gives

B+n +1 0 —5C —yC
B 0 B+n+3 yC ~8C
=4 s yC  B4m+i o | (A13)
1
—yC —C 0 B+n+ 3
[

y? 4 82 222+ + 1) baths. As shown in Ref. [12], starting from the adjoint master
where ¢ = B2t 2462 = V282 ;and € = equation in Eq. (8), we obtain a set of ten coupled differential
Ay — o) equations, which can be recast in matrix form as
—5 - This matrix can be easily brought in the more )

y:+39 vit)=M-v()+w, (B1)
compact form of Eq. (12).
where

2
v(t) = (ajai (), ai(0), a) (1), ayax (1), a3(1),
APPENDIX B: TIME-EVOLUTION OF OBSERVABLES 2 + ¥ ¥t T
X a, (t)a alaz(t)valaz(t)v ala2(t)v alaz(t)) ’
By following the derivation performed in Ref. [12], in this (B2)
Appendix we will explicitly show how to derive the time _ T
evolution of the observable a;a; in the Heisenberg picture W= (my,0,0,my,0,0,0,0,0,0), (B3)
under the dynamics of the first system with local thermal and M is the 10 x 10 matrix

J

—y 0 0 0 0 0 0 ir —i) 0
0 —2iw; —y 0 0 0 0 —2i) 0 0 0
0 0 2iw; — Yy 0 0 0 0 0 0 20
0 0 0 —y 0 0 0 —iA ir 0
M — 0 0 0 0 —2iwy, — y 0 —2i\ 0 0 0
-1 0 0 0 0 0 2iw, — Yy 0 0 0 20 ’
0 —iA 0 0 —i) 0 —iwyp —y 0 0 0
ir 0 0 —iA 0 0 0 —iAw—y 0 0
—ik 0 0 iA 0 0 0 0 iAw—y 0
0 0 A 0 0 i 0 0 0 iwyp —y
(B4)
with w1, = w; + w; and Aw = w| — w,. For time-independent w, integration yields
v(t) = eMv(0) — (1 — MM w. (B5)
Taking the first entry of the vector v gives the time evolution of a'l'al as
ala)t) = f(t)alar + j(t)alar + [p(t)aral +H.c.] + s(2), (B6)

where the functions in Eq. (B6) are defined as
f(t) = e 7 (8* + 247 4+ 227 cos zt) /7%,
j(t) =222 (1 — coszt) /2%,

p(t) = re V(=8 + izsinzt + S coszt) /2%,
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it
s(t) = 5

2y +7%)
2yt 2, <2 2
—z7e" (ni(y” +87) + 207 (n; + m))]

{[(y? + 2281 + 223 (01 + mp))

+ 29223 (n; — my)(y coszt — zsinzt)}, B7)
with 72 = §2 + 422

We use a very similar method to find the time evolution of the observable azaz for the second system, interacting with a
squeezed bath, as detailed in Sec. IV. We find that

(@ar)(t) = f(t)alay + [8(t)alar +Hed + j(t)ajar + (1), (B8)

where the functions £(¢), g(t), j(¢), and [(¢) are defined as

2 _
f(t) = S%e*%' |:cosh (% §2;_5)—cosh (% ;22 E>:|,

A oI5+
gt) = —i
V2¢

1617 + & — (y — 2i8)(y — 2i8 — /2(¢2 — E)))
= e

e 15—14/2@2 -5
+ 1602 +& — (y —2i8)(y —2i8 + /2(¢2 — ¢ )
el (v -2+ V267 =5)

e 5 i3/20 460
+im— [ — 162>+ £+ (y — 2i8)(y — 2i5 + 2(§2+$)))
- ‘

oL+ 20246
- ( 16A2+§+(V—2i5)()/—2i5—\/2(§2+§))):|,

re ~(3+iv207¢ )
i(t)—gfg[ - (2y3—y2 2<42—5)—2y(32ﬁ+s—4z2)+¢2<;2—e)(16ﬁ+§—4z2>)

26(_%%\/@)1 3 2 2 2 2 2
+ T 2y — Y V22— £) + 2y (3202 + £ — 42%) + V2(¢2 — £)(164° + £ — 42%)
o (V2 O)
LY/ (64%2 +2(V2(82 +8) = 2p)(y* — 1637 + £ +4z2)>
S EHV2AETO)
+ a: ( —64y27 +2(y2(02 + £) +27)(y* — 160% + & + 4z2)>:|,
2 _
(6)=n+ ——ne 2" [ﬁ(,/;Z —Esinh (t gﬁ é)(yz(—yz 16432 +£) — 162° + 422 (6 — 2y2))

2
2+ & sinh (t ;¢;§> (y2(y2 — 6427 +£) + 162% + 4722y + 5)))

— 2y cosh (
— 2y cosh (

with 2 = y? — 422, §2 = (42> + y?)? — 64717 and 27 = 8 + 41°.

)( — 6402 — &) + 167* — 47%(E — 2y2))

)( 202 — 6422+ £) + 16z4+4z2(2y2+$))], (BY)
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APPENDIX C: STEADY-STATE COVARIANCE MATRIX FOR THE SECOND CASE

The dynamical system discussed in Sec. IV is governed by a master equation that does not resemble the general form given in
Eq. (A1). Therefore, we use a different method for finding the steady-state CM. As described in Ref. [43], the master equation can
be recast in the form of a Fokker-Planck equation for the two-mode characteristic function x (¢, a2, t) [cf. Eq. (30)] through the
use of standard quantum optics correspondence relations. This allows us to write Eq. (27) as

Ko, = > Fi|x(a,a,0), (@)

k=U,D,,D,
with
Fu = i(ajw) + Aotp)dy, + i[(w1 + §)az + Aer1]10q, + Hec.,
Fp, = —%[(2N + Dot 2 + @1, + o8],
Fo, = —(0°03 + Mas?). ©)

We consider the following ansatz for the form of the steady-state characteristic function:

I 1
xo(ay, o) = s, exp <zuTXO - 5u*20u>, (C3)

where we have introduced u = (a1, of, a2, o7 )T, the vector Xo = (X)o of first momenta of the steady state, and the steady-state
covariance matrix Xy. By solving the algebraic equations stemming from enforcing the steady-state condition x (o, oz, 1) = 0,
we find

N+3 D 0 E*

_| p N+1 E 0
=1 E* N+i F | (€4

E 0 F*  N+3
where
B My {=2ir* + (w1 + )y + 2iQw; + 8)]} ©5)
T[=2i02 4 (¥ + 2w (w1 + 8y + 2iQw; + )]
2iM*y B
E=— iMyMan +9) , (C6)
[2iA? 4 (y — 2iw; ) (@1 + &)1y — 2iQw; + 8)]
2iMy A2

(C7)

F = .
[—2iA2 + (y + 2iw) ) (@1 + O]y + 2iQw; + §)]

APPENDIX D: EXACT DYNAMIC RESPONSE

In the case of applying one perturbation to temperature or squeezing, the linear response, AA(7), is identical to the exact
dynamic response, which we shall denote AAg (7). We calculate the exact dynamic response in a similar way to the calculation
for the perturbed value [cf. Eq. (24], but this time looking for the change in energy as a function of time rather than at the
steady-state. For instance, to find the exact dynamic response of the energy of the first oscillator to a perturbation in temperature,
we choose A = ﬂla)laia] and calculate

AAg(7) = proi((dlay (T, ny + $)) — (ajai (z, n)))). (D)
In the expansion of a’;al (t) given in Eq. (B6), s(¢) is the only term that depends on n,. Hence, Eq. (D1) simplifies to

AAg(t) = roils(t, n + ¢) — s(t, n1)], (D2)

which exactly matches the linear response plotted in Fig. 3.

Similarly, for the perturbation in squeezing, note that /(¢) is the only term that depends on the perturbed parameter, i.e., n, in
the expansion of our observed quantity [cf. Eq. (B8)], whichis A = a;ag in this case. Therefore, the exact dynamic response of
the second oscillator to a perturbation in the squeezing of the first bath is given by AAz(t) = I(t, n + ¢) — I(t, n). Again, the
linear response perfectly reproduces this exact dynamic response.
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