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Abstract: Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe
anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug
development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment
to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally
occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to
target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD).
Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-
free surface plasmon resonance assays (KD ranging from 2.31 µM to 2.78 µM for dimers and 8.56 µM
to 10.12 µM for monomers). Although the PMs were not able to fully protect cell cultures from
infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of
SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous
modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs
for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of
optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity
and anti-SARS-CoV-2 potential.

Keywords: cyclic peptides; protein–peptide interactions; antiviral agents; drug design; receptor-
binding domain (RBD); solid-phase peptide synthesis; polymyxin-like peptidomimetics

1. Introduction

Three years have passed since the beginning of the Corona Virus Disease COVID-19
pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
which left hundreds of millions of people infected, while claiming millions of victims and
causing heavy economic and social burdens worldwide [1–3]. Widespread vaccination
and current clinical management have strongly reduced both the mortality and severity
of the disease [1,2,4]; however, serious concerns remain, including the following: the
rise of viral resistance and reduced sensitivity to vaccines [5,6]; difficulties in effectively
protecting vulnerable segments of the population, including the elderly and patients with
multiple comorbidities [7–9]; and the unclear mechanisms of chronic-lasting effects of the
disease observed in a percentage of infected people (long-COVID effects) [10]. Thus, we are
still in need of effective and safe therapeutic drugs to accompany vaccines, together with
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molecular constructs, which are tailored precisely to target the key interactions between
viral and human proteins [11–13]. One such key protein–protein interaction (PPI) involves
the receptor-binding domain (RBD) of the viral trimeric glycoprotein spike (S) and the
cell surface-exposed human Angiotensin-Converting Enzyme 2 (hACE2) protein, which
triggers attachment and subsequent entry of the virus particle into the host cell [5,6,14,15].

Proteins involved in the attachment and entry of the virus have been successfully
explored as therapeutic targets for diverse viruses, including HIV-1 [16,17]; indeed, right
from the onset of COVID-19, targeting the surface-exposed, extracellular S-RBD:hACE2
interface emerged as one of the first therapeutic approaches to be pursued, because of
its potential in halting the SARS-CoV-2 viral infection at a very early stage [5,11]. In
addition, this timely recognition event is unique unlike other ensuing interactions, such as
the proteolytic cleavage of the spike protein by human proteases, either at the cell surface
(viral entry via direct plasma membrane fusion) and/or within endosomes (endocytic
pathway) [5,11]. Importantly, the RBD is the primary target of both disease-/vaccine-
elicited antibodies and therapeutic monoclonal antibodies, proving the notion that targeting
the viral entry can be effective for preventing or stopping virus infectivity [18,19].

The S-RBD consists of a core structure and a receptor-binding motif (Figure 1), the
latter being responsible for the direct interaction with hACE2. When the S trimer presents
its pre-fusion “down” conformation, the receptor-binding motif is nearly inaccessible to the
receptor hACE2, while the transition of the RBD from the “down” to the “up” conformation
reshapes it to a hACE2 recognizable state, with the “one-RBD-up” being a particularly
stable intermediate state that is critical for full engagement with the human receptor [5,14].

In order to target the somewhat extended S-RBD:hACE2 PPI surface, besides the de-
velopment of large-sized clinically approved neutralizing antibodies (≥140 kDa) [4,20,21],
other therapeutically promising protein-based molecules have been identified, including
nanobodies (i.e., single domain-antibodies, ca. 70 kDa) [5,22], recombinant human soluble
ACE2 (ca. 130 kDa) [13,23], and mini-proteins (56- to 160-mers, ca. 6–36 kDa) [24,25].

On the other hand, several short- or medium-sized peptides, ranging from linear
heptapeptides to stapled 30-mers, have been developed, based on the rational design of the
binding motifs of either hACE2 or S-RBD [26–35]. Though the structure of these peptides
is much simpler and shorter than that of the protein-based ligands, several showed a
binding affinity for S-RBD in the low micromolar or even nanomolar range, as well as a
low micromolar inhibitory activity toward pseudo-typed and/or authentic SARS-CoV-
2 in vitro. Admittedly, these peptides do not possess the binding affinity and antiviral
efficacy of either antibodies, nanobodies, or of mini-proteins; nevertheless, they are proof
of the potential that simplified and easy-to-make molecules have in attacking this crucial
virus–receptor interaction.

Thus, the use of designed medium-sized peptidomimetics (PMs) [36] in targeting the
S-RBD:hACE2 interaction is an appealing strategy, as these PMs should incorporate the
qualities of natural peptide-based structures displaying the characteristic weaknesses of
both antibodies and peptides/mini-proteins to a lesser degree. In other words, PMs should
display traits that are common to natural peptide-based structures such as high specificity
and binding affinity toward the biological target and consequently poor off-target effects;
reliable and modular preparation; and fairly predictable and tunable ADME behavior. PMs
should also, ideally, display the weaknesses of antibodies to a lesser degree, such as costly
and batch-dependent quality production, immunogenicity, large size, poor solubility, and
difficult adaptation to rapid antigenic viral mutations [20,21,37]. Furthermore, proteolytic
degradation and scarce bioavailability, which mar peptides/mini-proteins, should be
minimal in PMs [38–41].

In a recent study aimed at in silico drug repurposing for SARS-CoV-2 that employed X-
ray-derived structures of the S-RBD:hACE2 interface and computational alanine scanning,
we determined the key residues in the S-RBD that majorly contributed to the binding-free
energy of the protein interface: two clusters of hot spots were identified, binding site 1 (BS1)
and binding site 2 (BS2), which were localized in two distinct and relatively limited regions
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on the border rim of the targeted interface (Figure 1) [42]. In the same work, a virtual
screening (VS) campaign revealed polymyxin B (PMX, Figure 2), a naturally occurring
antibiotic, to be a potential binder for both BS1 and BS2 sub-regions.
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Figure 2. Molecular structure (top) and simplified cartoon (bottom) of natural polymyxin B (PMX). 
Filled circles denote amino acid residues; Dab = L-α,γ-diaminobutanoic acid; γDab = cyclized Dab 
involving the γ-amino function. 

Figure 1. X-ray structure (PDB code 6M0J) of the complex between the human ACE2 (light gray
ribbons, bottom) and SARS-CoV-2 S-RBD (dark gray ribbons, top). The S hot spot residues previously
identified by computational alanine scanning [42] are represented in green (binding site BS1) and
magenta (binding site BS2).
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involving the γ-amino function.

Based on these precedents, this work aimed to develop novel, medium-sized polymyxin-
inspired peptidomimetics that could simultaneously bind to the sub-regions BS1 and BS2 of
SARS-CoV-2 S and hinder the interaction with hACE2, thus possibly impeding the entry of
SARS-CoV-2 into human cells.
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Starting from the in silico design of polymyxin-based peptidomimetics, a collection
of six novel heterodimeric PMs, crafted from the covalent conjugation of ten BS1- and
BS2-targeted monomers, was identified and synthesized. The binding affinity of these com-
pounds toward the S-RBD of SARS-CoV-2 was determined by surface plasmon resonance
(SPR) experiments, and their ability to inhibit infection of authentic SARS-CoV-2 virus in
in vitro cellular assays was determined, as described in the next paragraphs.

2. Results

As stated in the introduction, the design of our dimeric PM ligands was founded
on a previously carried out VS of FDA-approved drugs for the spike RBD [42]. To be
specific, starting from the crystal structure of the SARS-CoV-2 S-RBD bound to human
ACE2 (PDB code 6M0J), two potential binding regions (BS1 and BS2) were identified
by computational alanine scanning (Figure 1). The vVS identified several cyclopeptides
as potential binders of either BS1 or BS2, amongst which polymyxin B (PMX, Figure 2)
represented the best-ranked hit for both BS1 and BS2 and thus, it was selected for further
evaluation. PMX is a naturally occurring amphiphilic lipopeptide produced by fungi
(although first isolated by Bacillus polymyxa) as a secondary metabolite and it is currently
used as a last-resort antibiotic drug for the treatment of Gram-negative multidrug-resistant
bacteria, or in topical antibiotic applications [43–45]. Its structure features an N-terminating
methyloctanoyl linear tripeptide anchored to a cycloheptapeptide ring; the presence of
this cyclic restraint together with non-canonical amino acid residues, including six L-α,γ-
diaminobutanoic acid residues (Dab) and one D-series residue (D-Phe), qualify it as a
natural peptidomimetic [40].

Preliminary SPR assays, conducted on commercially available PMX and using immo-
bilized RBD of the Wuhan-Hu-1 SARS-CoV-2 S protein, detected a minimum of specific
binding (Figure S1 in the Supplementary Materials), supporting previous work on molec-
ular modeling [42], and indicating PMX to be an interesting molecular starting platform
for the rational design and construction of improved specific cyclic PMs. We hypothesized
that the limited performance of natural PMX in recognizing the S-RBD was possibly due
to both the high flexibility and lipophilicity of the 6-methyloctanoyl chain, and the highly
charged nature of its cycloheptapeptide ring at physiological levels of pH. Moreover, we
also hypothesized that a single monomeric ligand, in only partially targeting the S-RBD,
might not be sufficient enough to cover the crucial broad spike:hACE2 interface. Based on
this assumption, we sought to design more extended ligands capable of covering both BS1
and BS2.

2.1. In Silico Design of Polymyxin B-Based Peptidomimetics

The PMX structure was initially modified in silico by replacing the 6-methyloctanoyl
chain with an acetyl (AcPMX) (Figure 3A). AcPMX was then subjected to a conformational
search, leading to 19 conformations within a range of about 7 kcal/mol. To maximize
the docking sampling ability, each conformation was independently docked to the S-RBD
model by focusing on both BS1 and BS2. The results were sorted and the top-ranked poses,
within 1 kcal/mol range, were evaluated. One pose for BS1 and one pose for BS2 were
selected, with the intent of linking the two monomers into a dimeric structure, without
altering the optimal ligand–receptor interactions predicted by docking (Figure 3B).

We envisaged the possibility of replacing Thr10 of AcPMX docked to BS2 with the
non-natural amino acid Trz, namely, (S)-2-amino-3-[4-(carboxymethyl)-1H-1,2,3-triazol-1-
yl]propanoic acid (Figure 3C). Trz was designed with a proper length and functionalization
to be used as a linker. Moreover, the triazole ring is frequently used as an amide bond
bioisostere due to its stability, low flexibility, and synthetic feasibility by click-reaction [46].
Subsequently, the linkage between the two monomers was obtained by an amide bond
between the side chain carboxylate of Trz and the α-NH2 group of Dab3′ in BS1-bound
AcPMX, following the removal of Dab1′ and Thr2′, to obtain the starting dimer0. After a
geometry minimization of the complex, all the ligand–receptor interactions predicted by
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docking remained unaltered. The Residue Scan (RS) tool implemented in the MOE (Molec-
ular Operating Environment) was then used for optimizing the sequence of the dimer0.
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Figure 3. Computational workflow for the design of PMX-based ligands at S-RBD. Unless differently
stated, nitrogens, carbons and oxygens are colored in blue, gray and red, respectively. (A) Depiction
of the chemical structure of the starting dimer0, as derived by ligation of BS1/BS2-monomers0.
(B) Selected AcPMX poses from docking focused on BS1 (carbons in green) and BS2 (carbons in ma-
genta). (C) Preliminary dimer0 structure designed by connecting BS1-monomer0 and BS2-monomer0.
BS2-monomer0 obtained by replacing Thr10 of AcPMX with Trz; BS1-monomer0 obtained from
AcPMX by deletion of acetyl-Dab1′-Thr2′ residues. (D) Planned Residue Scan mutations. Amino
acids involved in the RS calculations have orange-colored carbons. (E) Dimeric ligands selected after
RS calculations followed by MD simulations. Amino acids that have been mutated with respect to
dimer0 have orange-colored carbons.

RS computes the free energy difference upon the mutation of selected residues with
any other natural or non-natural amino acid included in the MOE libraries. Mutations can
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be single (one residue is mutated at a time) or multiple (up to five residues are mutated
at a time). After the mutation, the complex was subjected to short restrained molecular
dynamics (MDs) to include the effect of side chain flexibility in the estimation of the
change in affinity (∆Affinity) and in the overall complex stability (∆Stability). Since one
of our objectives was to reduce the global positive charge of the ligand, we focused our
attention on the Dab residues that were not involved in optimal interactions with the
receptor. The apolar Leu7 and Leu7′ residues were also included in the scan to improve
the ∆Affinity and ∆Stability by maximizing the polar or apolar interactions. The full list of
mutations evaluated by RS is given in Figure 3D. Two RS cycles were carried out, the first
requesting single point mutations only. The second cycle evaluated multiple mutations,
but only of those amino acids that provided improvements in ∆Affinity and ∆Stability
in the first RS run. More than 200 mutants were obtained, exhibiting negative values
for both ∆Affinity and ∆Stability. Due to the time constraints, after visual inspection,
we selected 10 high-ranked peptides that had ∆Affinity comprised between −16.7 and
−12.7 kcal/mol and ∆Stability in the range of −3.8 and −0.8 kcal/mol, compared to
dimer0 (Table S1 in Supplementary Materials). The corresponding complexes were then
subjected to a 200 ns MD simulation to evaluate the dynamic stability of the complex
(Figures S2–S7 in Supplementary Materials). Three heterodimers maintained interactions
with both the BSs for the whole simulation, namely peptidomimetics 3, 7, and 10 (Figure 3E
and Supplementary Materials Figures S5–S7), and these were the first set of compounds
selected for the chemical synthesis and biochemical evaluation.

2.2. Chemical Synthesis of Polymyxin-Based Peptidomimetics

In keeping with the topic of this work, we sought to create new BS1/BS2-targeting pep-
tidomimetic heterodimeric molecules by covalently connecting PMX-based monomers. The
designed linker contained quite a short and robust triazolyl-amide moiety, which suggested
possible disconnections either along the triazole ring via Huisgen [3+2] cycloaddition of
azide- and alkynoyl-ending monomers [47], or along the amide bond between carboxyl-
and amine-terminating monomers.

Although the triazole-forming cycloaddition usually proved to be an appealing strat-
egy [47], in the specific case of “short” linkers, such as those of designed target compounds
3, 7, and 10 (Figure 4), it was not applicable because the required 3-butinoyl terminus of
the BS1-monomer portion would not have survived the standard solid- and/or in-solution
peptide synthesis conditions. As consequence, the synthesis was conducted as shown
in Schemes 1 and 2. It is known, in fact, that homopropargyl amides may easily furnish
allenamides even under mild coupling conditions, which, in turn, are optimal Michael
acceptors with nucleophiles such as thiols and others (see Scheme 2, dashed squared formu-
las) [48]. For this reason, the disconnection of compound 3 (7 or 10) called for the late-stage
amide coupling between the appropriate, protected triazolyl carboxylic acid 2 (6 or 9) and
the protected amine monomer 1 (5 or 8), as illustrated in Figure 4.

To access the monomeric constituents, we opted to apply uniformed, mixed solid-
and in-solution phase procedures that could be directly applied to obtain all the first-
generation and subsequent-generation products required [49]. As shown in Scheme 1
for the prototypic BS2-targeted protected monomer prot-2, the synthesis started with
commercially available γ-Boc-protected (S)-α,γ-diaminobutanoic acid supported on 2-
chlorotrityl-functionalized polystyrene resin (compound I), constituting the Dab9 residue
of the original PMX structure. Standard Fmoc-based SPPS (solid-phase peptide synthesis)
followed to afford the fully protected linear peptide II, which incorporated six out of seven
residues of the cycloheptapeptide core, as well as the tripeptide sequence of the lateral
chain. During SPPS, the deprotecting reagent for the Fmoc group was 20% piperidine in
DMF, and the coupling conditions entailed the use of HATU and collidine in DMF in the
presence of HOAt. Importantly, Dde (N-1-(4,4-dimethyl-2,6-dioxocyclohexyliden)ethyl)
was used as the orthogonal protecting group of the γ-amine side chain of Dab4 due to its
stability in Fmoc-SPPS [49,50].
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fied by the synthesis of protected monomer prot-2. Magenta color used to indicate BS2-recognizing
monomer, in line with Figure 3; black circles are amino acid residues modified with respect to the orig-
inal PMX sequence. Reagents and conditions: (a): (i) Fmoc-AA-OH, HATU, HOAt, collidine, DMF,
2 h; (ii) 20% piperidine, DMF, 15 min; (b): (i) Ac2O, DIPEA, DMF, 30 min; (ii) 4% NH2NH2/DMF,
2.5 h; (iii) Fmoc-azido-Ala-OH (Fmoc-Azal), HATU, HOAt, collidine, DMF, 2 h; (iv) 20% piperidine,
DMF, 15 min; (v) 3:1:1 DCM:AcOH:TFE, 15 min; (c): (i) HATU, HOAt, collidine, 14:1 DCM:DMF
(0.7 mM), rt, 5 h; (ii) 3-butynoic acid, Cu(OAc)2, sodium ascorbate, 2.4:1 DMF:H2O, rt, 6 h.
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Scheme 2. Mixed on-resin and in-solution synthesis of protected BS1-targeted monomers, as exem-
plified by the synthesis of protected monomer prot-1. Green color used to indicate BS1-recognizing 
monomer, in line with Figure 3; black circles are amino acid residues modified with respect to the 
original PMX sequence. Dashed box represents possible side reactions of homopropargyl-terminat-
ing peptide VII under peptide coupling conditions furnishing undesired alkyne-derived allenamide 
VIII and products IX. Reagents and conditions: (a) (i) Fmoc-AA-OH, HATU, HOAt, collidine, DMF, 
2 h; (ii) 20% piperidine, DMF, 15 min; (b) (i) NH2OH(HCl), imidazole, 5:1 NMP:DMF, 3 h; (ii) 3:1:1 
DCM:AcOH:TFE, 15 min; (c) (i) HATU, HOAt, collidine, 14:1 DCM:DMF, (0.7 mM), rt, 5 h; (ii) 5% 
piperidine, ACN, rt, 2 h. 

After capping the free amine terminus within II via acetylation, the Dde of Dab4 was 
selectively removed by 4% NH2NH2 in DMF. Subsequently, Fmoc-azidoAla-OH (Fmoc-
Azal) was coupled under usual solid-phase conditions, followed by Fmoc removal. The 
linear peptide was released from the resin with the cleavage cocktail DCM:AcOH:TFE 
(3:1:1), furnishing linear peptide III in a 76% yield from I. This linear peptide was sub-
jected to in-solution cyclization under HATU/HOAt/collidine in DCM/DMF at 0.7 mM 
concentration. A cyclic azido-terminating compound was obtained in a 74% yield, which 
was finally “clicked” with 3-butynoic acid under copper(I)-catalyzed [3+2] cycloaddition 
conditions. After purification by reverse phase chromatography, the protected monomer 
prot-2 was isolated as a colorless glassy solid in a 57% yield. 

For BS1-targeted monomer prot-1, we again started from the solid-phase construc-
tion of the linear peptide sequence, comprising residues of the heptapeptide ring as well 
as the sole 3′ residue of the lateral chain (Scheme 2). Thus, commercial resin-supported 
protected threonine IV, representing the Thr10′ residue of PMX-like prot-1, was the start-
ing residue for Fmoc-based SPPS, which gave linear peptide V via the above mentioned 
Fmoc-deprotection/coupling reagents. However, to preserve the orthogonal Fmoc protec-
tion at Dab3′, milder conditions than those adopted for the synthesis of prot-2 were re-
quired to remove the Dde protection at the γ-amino function of Dab4′ (NH2OH·HCl, 

Scheme 2. Mixed on-resin and in-solution synthesis of protected BS1-targeted monomers, as exem-
plified by the synthesis of protected monomer prot-1. Green color used to indicate BS1-recognizing
monomer, in line with Figure 3; black circles are amino acid residues modified with respect to the
original PMX sequence. Dashed box represents possible side reactions of homopropargyl-terminating
peptide VII under peptide coupling conditions furnishing undesired alkyne-derived allenamide
VIII and products IX. Reagents and conditions: (a) (i) Fmoc-AA-OH, HATU, HOAt, collidine, DMF,
2 h; (ii) 20% piperidine, DMF, 15 min; (b) (i) NH2OH(HCl), imidazole, 5:1 NMP:DMF, 3 h; (ii) 3:1:1
DCM:AcOH:TFE, 15 min; (c) (i) HATU, HOAt, collidine, 14:1 DCM:DMF, (0.7 mM), rt, 5 h; (ii) 5%
piperidine, ACN, rt, 2 h.

After capping the free amine terminus within II via acetylation, the Dde of Dab4 was
selectively removed by 4% NH2NH2 in DMF. Subsequently, Fmoc-azidoAla-OH (Fmoc-
Azal) was coupled under usual solid-phase conditions, followed by Fmoc removal. The
linear peptide was released from the resin with the cleavage cocktail DCM:AcOH:TFE
(3:1:1), furnishing linear peptide III in a 76% yield from I. This linear peptide was sub-
jected to in-solution cyclization under HATU/HOAt/collidine in DCM/DMF at 0.7 mM
concentration. A cyclic azido-terminating compound was obtained in a 74% yield, which
was finally “clicked” with 3-butynoic acid under copper(I)-catalyzed [3+2] cycloaddition
conditions. After purification by reverse phase chromatography, the protected monomer
prot-2 was isolated as a colorless glassy solid in a 57% yield.

For BS1-targeted monomer prot-1, we again started from the solid-phase construction
of the linear peptide sequence, comprising residues of the heptapeptide ring as well
as the sole 3′ residue of the lateral chain (Scheme 2). Thus, commercial resin-supported
protected threonine IV, representing the Thr10′ residue of PMX-like prot-1, was the starting
residue for Fmoc-based SPPS, which gave linear peptide V via the above mentioned Fmoc-
deprotection/coupling reagents. However, to preserve the orthogonal Fmoc protection
at Dab3′, milder conditions than those adopted for the synthesis of prot-2 were required
to remove the Dde protection at the γ-amino function of Dab4′ (NH2OH·HCl, instead of
NH2NH2). The linear peptide VI was then detached from resin (overall 70% yield for
the SPPS from IV) and subjected to in-solution cyclization (87% yield) to consign, after
Fmoc-deprotection, the required amine prot-1 in a 79% yield (corresponding to 48% global
yield for the overall sequence from IV).
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The final amide coupling between carboxylic acid prot-2 and amine prot-1 proceeded
using the usual HATU/HOAt reagent coupling to furnish, after global acidic deprotec-
tion, heterodimer 3 (Scheme 3). After purification by reverse-phase chromatography,
heterodimer 3 was obtained in a 25% yield as a glassy solid. Compound 3 exhibited m/z
(M+4H)4+ 568.3075, which was consistent with the calculated exact mass m/z (M+4H)4+

568.3067 and corresponded to 2269.3 Da molecular weight (Table 1). Heterodimers 7 and 10
were obtained in an analogous manner by starting from monomers prot-6/prot-5 and prot-
9/prot-8, respectively (Figure 4, Table 1, and synthetic procedures in the Supplementary
Material).
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respectively (Figure 4, Table 1, and synthetic procedures in the Supplementary Material). 

Table 1. Amino acid sequence of PMX and heterodimeric compounds in this work (a). 

Compd Sequence 
m/z (b) 
Found 
(calcd) 

MW 
(Da) 

PMX 
 

nd 1203.5 

3 
 

568.3075 
(568.3067) 
[M+4H]4+ 

2269.3 

4 
 

571.5606 
(571.5607) 
[M+4H]4+ 

2283.7 

7 
 

572.2990 
(572.2964) 
[M+4H]4+ 

2285.6 

10 
 

578.0528 
(578.0504) 
[M+4H]4+ 

2308.6 

14 
 

758.0576 
(758.0570) 
[M+3H]3+ 

2272.6 

16 
 

1137.0737 
(1137.0737) 
[M+2H]2+ 

2273.6 

(a) Abbreviations: Trz = (S)-2-amino-3-[4-(carboxymethyl)-1H-1,2,3-triazol-1-yl]propanoic acid; Trz* 
= (S)-2-amino-3-[4-(carboxyethyl)-1H-1,2,3-triazol-1-yl]propanoic acid; Dab = L-α,γ-diaminobuta-
noic acid; γDab = cyclized Dab involving the γ-amino function; Hse = homoserine. (b) HRMS (ES+). 

1137.0737
(1137.0737)
[M+2H]2+

2273.6

(a) Abbreviations: Trz = (S)-2-amino-3-[4-(carboxymethyl)-1H-1,2,3-triazol-1-yl]propanoic acid; Trz* = (S)-2-amino-
3-[4-(carboxyethyl)-1H-1,2,3-triazol-1-yl]propanoic acid; Dab = L-α,γ-diaminobutanoic acid; γDab = cyclized Dab
involving the γ-amino function; Hse = homoserine. (b) HRMS (ES+).
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To explore even further the chemical space covered by PMs, we next synthesized three
additional heterodimers, namely, compounds 4, 14, and 16 (Figure 5). Compound 4 differs
from dimer 3 just in its spacer length, as it possesses one more methylene unit separating
the triazole ring from the carboxyl moiety. From the previous in silico studies (vide supra),
it emerged that the two PMX-ring moieties targeting the BS1/BS2 regions were spatially
very close, and they tolerated little variation, if any, in the spacer length between them. An
evaluation of “elongated” dimer 4 was expected to shed light on this matter.
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Figure 5. Representation of the structure of the second set of heterodimeric compounds 4, 14,
and 16 of this work as obtained via amide ligation from the respective monomeric constituents
1/2′, 12/13, and 15/13. Filled circles and numbering denote amino acid residues as in the PMX
structure in Figure 2. Magenta and green colors used to indicate BS2- and BS1-recognizing monomers,
respectively, in line with Figure 3; black circles are amino acid residues modified with respect to the
original PMX sequence. Trz* = (S)-2-amino-3-[4-(carboxyethyl)-1H-1,2,3-triazol-1-yl]propanoic acid;
Hse = homoserine.

Another issue of interest concerned the number of basic and, at physiological pH,
protonated Dab residues and how this relative proportion influenced the ability of the PMs
to recognize the spike protein. For this reason, compounds 14 and 16 featured fewer basic
isosteres of Dab, namely, homoserine residues (Hse), instead of certain Dab moieties. In
particular, these two compounds share the common BS2-targeted monomer 13 with two
Hse residues instead of the original Dab residues (Hse8 and Hse9); however, they differ in
the number of Hse moieties in the corresponding BS1-components (one Hse3′ in monomer
12 and two Hse3′/Hse9′ in monomer 15).

The chemical synthesis of products 4, 14, and 16 followed the same path as above,
and arose from the ligation of the respective monomers prot-1/prot-2′, prot-12/prot-13,
and prot-15/prot-13 (Figure 5; for details on the synthesis and characterization of these
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products, see Table 1 and the Supporting Information). It must be pointed out that Hse-
containing heterodimers 14 and 16 exhibited a highly lipophilic character, with consequent
issues in solubility and problems encountered in both the HPLC purification step and
during the biological assays (vide infra). Nonetheless, our uniformed, modular synthetic
strategy proved reliable, and this supported our claim that it can be applied to numerous
structural variants.

2.3. Binding Affinity of Polymyxin-Based Peptidomimetics to Spike RBD by SPR Analysis

To evaluate the biological activity of the synthesized peptidomimetics, we first ad-
dressed the binding potential of both heterodimeric and monomeric compounds to the
spike protein. More specifically, SPR was used to measure the interaction of compounds
(analytes) with immobilized RBD of the Wuhan-Hu-1 SARS-CoV-2 spike protein, as pre-
viously reported [51]. This method is useful for measuring the kinetic parameters ka
(association rate constant) and kd (dissociation rate constant), as well as the binding affinity
KD (dissociation equilibrium constant). The RBD was immobilized on a sensor chip using
standard amine coupling. Different concentrations of peptidomimetic compounds (in a 1:2
serial dilution range) were, in turn, passed over the chip surface, and the respective signal
changes for each compound were recorded (in Resonance Units (RU)). The resulting data
were seen to fit a 1:1 binding model, and the binding affinity and kinetic parameters were
determined, as detailed in Figure 6, Table 2, and Supplementary Material Figure S8.
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Figure 6. Representative surface plasmon resonance (SPR) sensorgrams showing the binding kinetics
for the PMs and immobilized RBD of the Wuhan-Hu-1 spike protein (1:2 dilutions of peptidomimetics,
starting from 50 or 25 µM, as indicated). Data are shown as black lines, and the best fit of the data
to a 1:1 binding model is shown in red. One representative sensorgram from two independent
experiments is shown for each compound. See Table 2 for kinetics values.
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Table 2. Surface plasmon resonance (SPR) analysis of PMX-based peptidomimetics (a).

Ligand/Analyte ka
(×103 M−1 s−1)

kd
(×10−3 s−1)

KD
(µM)

RBD/dimer 7 3.09 ± 0.59 6.83 ± 1.58 2.31 ± 0.95
RBD/monomer 5 n.a. n.a. n.a.
RBD/monomer 6 n.a. n.a. n.a.

RBD/dimer 10 2.65 ± 0.67 7.00 ± 1.10 2.78 ± 1.12
RBD/monomer 8 1.20 ± 0.41 9.43 ± 1.52 8.56 ± 4.16
RBD/monomer 9 n.a. n.a. n.a.

RBD/dimer 3 n.a. n.a. n.a.
RBD/dimer 4 n.a. n.a. n.a.

RBD/monomer 1 0.61 ± 0.05 6.12 ± 0.79 10.12 ± 2.09
RBD/monomer 2 0.46 ± 0.02 4.39 ± 0.39 9.62 ± 1.25

(a) Kinetic parameters from different repeat SPR experiments performed in this study. Given are the association
rate constant (ka), the dissociation rate constant (kd), and the dissociation equilibrium constant (KD). Values are
mean ± SD, n = 2. n.a.: not applicable due to non-quantifiable kinetic parameters. Ligand: immobilized RBD of
the Wuhan-Hu-1 SARS-CoV-2 spike protein; analyte: peptidomimetics of this work.

For several compounds, we clearly measured binding to the RBD, albeit with a rather
fast release (off rate). In particular, heterodimers 7 and 10 exhibited interesting KD values
in the low µMolar range (7, 2.31 µM; 10, 2.78 µM), which proved superior, in terms of
binding affinity, to those observed for their respective monomers. In fact, monomers 5
and 6—constituents of 7—showed a detectable yet returning binding (Figure 6, Table 2),
whereas monomers 8 and 9—constituents of 10—behaved differently, with 8 displaying an
interesting 8.56 µM binding affinity and 9 being devoid of any meaningful RBD binding.

An SPR evaluation of dimers 3 and 4, on the other hand, did not produce reliable
data because of the aspecific interaction with the matrix of the chip, despite the good
affinity displayed by their monomeric components (1, 10.12 µM; 2, 9.62 µM) (Figure S8,
Supplementary Material).

Moreover, homoserine-containing compounds 12–16, chosen for their lower number
of basic Dab residues, did not prove to be good RBD binders either. Among them, dimer
14 exhibited a jagged signal, possibly due to scarce solubility and its tendency to give
aggregates in the medium used.

2.4. Antiviral Effect of PMX-Inspired Peptidomimetics against SARS-CoV-2

To further explore the therapeutic potential of the PMs, we next evaluated the dimeric
and monomeric compounds in our antiviral assays for SARS-CoV-2. First, the highly
permissive glioblastoma cell line U87.ACE2+ (that stably expresses the ACE2 receptor) was
used for the infection with live SARS-CoV-2 (strain 20A.EU2), as previously reported [52].
As summarized in Table S2 (Supplementary Materials), the compounds did not exert cyto-
toxic effects up to 50 µM when tested in the U87.ACE2+ cells without virus (CC50 > 50 µM),
nor could they fully protect the cells from being infected with SARS-CoV-2 (IC50 > 50 µM).
However, dimer 10 had some minor antiviral effects at the highest concentration (50 µM)
tested (11% and 2% inhibition of viral cytopathic effect in two independent experiments).
Secondly, we investigated the antiviral effect of our compounds in lung epithelial A549 cells
stably expressing ACE2 and TMPRSS2, accommodating a plasma membrane entry route of
the virus. Similarly, treatment of the A549.ACE2+.TMPRSS2+ cells with the compounds did
not fully prevent the cells from being infected with a Delta strain of SARS-CoV-2 (Table S2
of Supplementary Materials). Interestingly, for compounds 7 and 8, a hint of antiviral effect
was measured at 50 µM concentration, whereas for dimer 10, some detectable inhibition
was recorded at 20 and 50 µM treatment (Figure 7).
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Figure 7. Antiviral effect of peptidomimetics in A549.ACE2.TMPRSS2 cells infected with live Delta
SARS-CoV-2. A549.ACE2+.TMPRSS2+ cells were infected with SARS-CoV-2 (strain Delta) in absence
or presence of compounds 1, 7, 8, and 10, incubated for 5 days, and analyzed by MTS-PES. OD values
were used to calculate the % inhibition of viral replication (n = 1).

3. Discussion

The present work was founded on a previous in silico study [42], which suggested
that the naturally occurring antibiotic polymyxin B (PMX) was a prime fit for two discrete
and non-overlapping regions of the S-RBD:ACE interface, namely, BS1 and BS2. The PMX
structure was adopted as an ideal peptidomimetic (PM) starting platform, upon which new
PM molecules could be built up for exploring the chemical space around the targeted PPI.
Interestingly, PMX and analogues have long been the focus of intense research into the
creation of new antibiotics that are effective at overcoming antimicrobial resistance [44,45];
however, to the best of our knowledge, this is the first example where PMX is used as
a starting scaffold to construct PMs (resembling yet structurally different from PMX) to
combat SARS-CoV-2.

In silico design entailed three levels of intervention to the original PMX structure at
the (i) marked shortening of the lipidic side chain into an acetyl moiety to diminish the
overall lipophilic character and reduce conformational freedom; (ii) the optimization of
the calculated affinity and stability of the complex with the RBD via systematic mutation
of non-crucial amino acid residues; and, importantly, (iii) the “heterodimerization” of the
PMX structure by connecting two diverse PMX-based cores via a robust linker, with the
clear intent of homing in on the two BS1 and BS2 subregions simultaneously [53].

Use of the so-called “discontinued peptides” which span non-contiguous yet spatially
close hACE2 fragments, is a good tactic for identifying inhibitors of the SARS-CoV-2
S:hACE2 interface [30,32,54]; this offers small- or medium-sized molecular constructs
the opportunity to effectively increase their coverage of the spatially extended targeted
interface.

The designed PMs were chemically synthesized via mixed solid-phase and in-solution
synthesis, which led to an unprecedented collection of PMX-based heterodimers and
monomers with molecular weights ranging from 1 KDa to 2 KDa. Within this collection, two
heterodimers, namely, compounds 7 and 10, exhibited the best binding affinity determined
by SPR experiments toward S-RBD, respectively, 2.31 µM and 2.78 µM, which also proved
at least three times greater than that of their constituting monomers. This result validated
the overall design and molecular modeling studies and corroborated the hypothesis that
the simultaneous coverage of the BS1 and BS2 S-RBD subregions by heterodimerization was
beneficial for the binding interaction. None of the synthesized peptidomimetics were able to
completely inhibit infection of authentic SARS-CoV-2 (strains 20A.EU2 and Delta) in human
glioblastoma U87.ACE+ cells or in human lung epithelial A549.ACE2.TMPRSS2+ cells up to
50 µM concentrations. However, a detailed analysis of the antiviral effect of the compounds
revealed some minor protection of the dimers at the highest tested concentration. Especially
for dimer 10, this limited antiviral effect was consistently detectable in both antiviral assays
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(in which a different combination of virus and cell line was used). This biological effect
seems to correlate well with the binding potential determined by our SPR analysis. It
seems plausible that, within the quite dynamic and complex cellular environment, the
low micromolar binding affinity of our best candidates toward monomeric S-RBD is not
enough to warrant efficient competitive neutralization of the trimeric spike in authentic
virus particles. Of note, none of the synthesized PMs exerted cytotoxicity up to 50 µM
when tested in the non-infected U87 and A549 cell lines (Supplementary Table S2).

In conclusion, heterodimeric compounds 7 and 10 provide a first map of the chemical
space around a simplified PMX-resembling core needed to address the S-RBD:hACE2
interaction and they may serve as a useful guide in the search for structurally optimized
molecules with an improved S-RBD affinity and anti-SARS-CoV-2 potential. Thus, the ratio-
nal variation of the constituting amino acid residues, as well as turning the heterodimeric
core into a multivalent entity (e.g., trimerization), could be promising options. Finally,
such optimized S-RBD binders could serve as directing units within designed covalent
conjugates for the targeted delivery of drugs or visualizing tools in the environment of
SARS-CoV2-infected cells.

4. Materials and Methods
4.1. Molecular Modeling

The model of the spike receptor-binding domain (RBD) was prepared as previously
described [42]. An initial ligand was designed in MOE [55] based on the structure of
polymyxin B where the 6-methyloctanoyl group was replaced by acetyl (AcPMX). AcPMX
was subjected to a low-mode conformational search [56] using the Amber10EHT force
field and the Born solvation model for water, as implemented in MOE. A total of 19
unique conformations were obtained within an energy range of 6.9 kcal/mol. AcPMX
was then docked to the RBD. Two separate runs were carried out, which directed the
docking onto each of the two potential binding sites, BS1 and BS2, previously identified
by computational alanine scanning [42]. The docking was performed with MOE, using
the Triangle Matcher algorithm and the London dG scoring, followed by Rigid Receptor
refinement of the top 1000 poses generated in the previous step and rescoring with the
GBVI/WSA function [57]. To maximize the sampling, the docking was repeated with each
of the previously obtained 19 conformations of AcPMX. The lowest energy poses for both
BS1 and BS2 were used to design the dimeric ligand. The two monomers were modified for
conjugation within the receptor, keeping all the ligand–receptor interactions generated by
docking unaltered. With its optimal side chain length, flexibility and functionalization, and
synthetic feasibility, the (S)-2-amino-3-[4-(carboxymethyl)-1H-1,2,3-triazol-1-yl]propanoic
acid (Trz) amino acid was designed to be the linker. Thus, the BS2 monomer was designed
from AcPMX by mutating the cyclic Thr to Trz (AcPMX-Trz). The BS1 monomer was
obtained by removing the first diaminobutyric acid (Dab) and Thr from the linear peptide
chain, thus leaving the α-amino group of the remaining Dab (Dab3) as the anchoring
point (Dab-PMX). The starting dimer (dimer0) was then obtained by linking AcPMX-Trz
and Dab-PMX through an amide bond between the Trz sidechain carboxylate and the
Dab α-NH2. The dimer0 sequence was Ac-Dab1-Thr2-Dab3-γDab4‡-Dab5-(D)-Phe6-Leu7-
Dab8-Dab9-Trz‡-Dab3′-γDab4′#-Dab5′-(D)-Phe6′-Leu7′-Dab8′-Dab9′-Thr10′#, where the ‡
and # symbols identify residues involved in cyclization. Dimer0 was then processed by
multiple sequence–optimization cycles using the Residue Scan (RS) tool, implemented in
MOE. The following were initially evaluated as single point mutations (only one mutation
is evaluated at a time): Dab1[A;N;D;Q;E;I;L;S;T;W;Y;V], Dab5[A;N;D;Q;E;I;L;S;T;W;Y;V],
Leu7[A;N;D;Q;E;I;S;T;W;Y;V], Dab3′[A;N;D;Q;E;I;L;S;T;W;Y;V], Dab5′[A;N;D;Q;E;I;L;S;T;
W;Y;V], Leu7′[A;N;D;Q;E;I;S;T;W;Y;V], Dab8′[A;N;D;Q;E;H;I;L;S;T;W;Y;V], Dab9′[A;N;D;Q;
E;I;L;S;T;W;Y;V]. Thr2, Dab3, (D)-Phe6, Dab8, Dab9, D-Phe6′ and Thr10′ were excluded in
this first round, as they were found to be involved in ligand–receptor interactions, whereas
all those mutations that provided a favorable change in both ∆Affinity and ∆Stability
were reconsidered for a second RS run, where up to five positions were mutated at a time.
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The following mutations were requested: Dab1[E;D;L;I], Dab5[Y;V;I;L], Leu7Y, Dab3′L,
Dab5′[W;Y;L;I], Dab8′W, Dab9′[W;Y;L]. More than 200 mutants were obtained having
negative ∆Affinity and ∆Stability. The 10 best-ranked mutants for both ∆Affinity and
∆Stability were selected for further evaluation by molecular dynamics (MD). Restricted
electrostatic potential (RESP) charges were computed for non-natural amino acids (Trz,
linear Dab, and cyclic γDab) using the R.E.D. tool [58] by following a well-established
protocol [59–61]. Each complex was solvated by an octahedral TIP3P water box [62],
extending up to 10 Å from the protein, and chlorine ions were added to neutralize the total
charge. The ff14SB force field [63] was used for the simulations, and missing parameters
for Trz were taken from gaff2 force field [64]. Multiple equilibration steps at constant
volume and temperature (NVT) and constant pressure and temperature (NPT) ensembles,
were carried out at a final temperature of 300 K, as detailed in previous works [65–67]. A
production run of 200 ns was then performed, and trajectories were analyzed by computing
the root mean squared deviation vs. time. MD simulations and trajectory analyses were
performed with the Amber20 and AmberTools21 packages [68]. Three peptides remained
stable within the receptor-binding site, namely compounds 3, 7, and 10, which were selected
as the first set for synthesis and biochemical evaluation. Variants of these peptides were
later designed by following the same strategy as above.

4.2. Chemistry
4.2.1. General Procedure A to BS1-Targeted Monomers as Exemplified by the Synthesis of
Monomer 1

Solid-Phase Synthesis. The synthesis of linear peptide VI (Scheme 2) was per-
formed using the preloaded 2-chlorotrityl-Thr(tBu)-H resin IV (loading 0.75 mmol/g).
Resin swelling: the resin (54.6 mg, 0.041 mmol, and 1.0 eq) was swollen in a solid-phase
reaction vessel with dry DMF (5 mL) under mechanical stirring; after 40 min the solvent
was drained, and the resin was washed with DMF (3×). Peptide coupling: A preformed
solution of Fmoc-Dab(Boc)-OH (26.9 mg, 0.061 mmol, and 1.5 eq) in dry DMF (2 mL) was
treated with HATU (30.8 mg, 0.081 mmol, and 2.0 eq), HOAt (11.0 mg, 0.081 mmol, and
2.0 eq) and 2,4,6-collidine (13.3 µL, 0.081 mmol, and 2.0 eq), and stirred for 5 min before
being added to the resin. The mixture was shaken at room temperature for 2 h. Completion
of the reaction was checked by the Kaiser test. The solution was drained and the resin was
washed with DMF (2×) and DCM (2×). The couplings of Fmoc-Trp(Boc)-OH (32.1 mg,
0.061 mmol, and 1.5 eq), Fmoc-Leu-OH (21.6 mg, 0.061 mmol, and 1.5 eq), Fmoc-D-Phe-
OH (23.6 mg, 0.061, and 1.5 eq), Fmoc-Tyr(tBu)-OH (28.0 mg, 0.061 mmol, and 1.5 eq),
Fmoc-Dab(Dde)-OH (29.9 mg, 0.061 mmol, and 1.5 eq), and Fmoc-Dab(Boc)-OH (26.9 mg,
0.061 mmol, and 1.5 eq) were carried out under the same conditions. Fmoc cleavage: The
solution was drained and the resin was washed with DMF (2×) and DCM (2×). The resin
was washed again with DMF and treated with 20% v/v piperidine in DMF (2 mL) and
the mixture was stirred for 15 min. The resin was then washed with DMF (2×), DCM
(2×), and DMF (1×). Dde selective cleavage: The solution was drained and the resin was
washed with DMF (2×) and DCM (2×). The resin was washed again with DMF and treated
with imidazole (0.92 g for 1 g of resin), Hydroxylamine hydrochloride (1.26 g for 1 g of
resin), NMP (5 mL for 1 g of resin), and DMF (1 mL for 1 g of resin) for 3 h. The resin
was then washed with DMF (2×), DCM (2×), and DMF (1×). Resin cleavage: The resin
was treated with 3 mL of the cleavage mixture DCM:TFE:glacial AcOH (3:1:1) and kept
under mechanical stirring for 15 min at room temperature. The solution was recovered and
the resin was carefully washed with DCM (2×). This protocol was repeated twice. The
combined solution was evaporated under reduced pressure affording the linear peptide VI
(50.0 mg, AcOH salt, 70% yield) as a colorless glassy solid, which was used in the following
step without further purification. MS (ES+) m/z 1664.4 [M+H]+.

In-solution cyclization. To a solution of linear peptide VI (50.0 mg, 0.029 mmol,
and 1 eq) in dry DCM (8.3 mL), 2,4,6-collidine (14.2 µL, 0.087 mmol, and 3.0 eq) was
added. The mixture was stirred under argon at room temperature for 10 min, and then
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it was added dropwise to a solution of HATU (33.0 mg, 0.087 mmol, amd 3.0 eq) and
HOAt (11.8 mg, 0.087 mmol, and 3.0 eq) in dry DMF (2.7 mL) and dry DCM (30 mL).
The reaction mixture was degassed by argon/vacuum cycles (3×) and left to stir under
argon at room temperature for 5 h. After completion, the solution was concentrated under
vacuum. The crude product was purified by reverse phase chromatography (eluent: from
90:10 H2O + 0.1% TFA:ACN to 100% ACN) affording the corresponding fully protected
cyclopeptide as a colorless glassy solid (41.8 mg, 87% yield). MS (ES+) m/z 1646.5 [M+H]+.
1H NMR (600 MHz), CD3OD: δ 7.71 (m, 2H), 7.54 (m, 3H), 7.34–7.03 (m, 16H), 6.87 (m,
1H), 4.95 (m, 1H), 4.74 (m, 1H), 4.47 (m, 1H), 4.31 (m, 1H), 4.23–4.05 (m, 5H), 3.98 (m, 1H),
3.27–3.00 (m, 7H), 2.89–2.74 (m, 3H), 2.55 (m, 1H), 2.15 (m, 1H), 1.98 (m, 1H), 1.87 (m, 1H),
1.3 (m, 2H), 1.62 (m, 9H), 1.45–1.33 (m, 18H), 1.26 (m, 9H), 1.16 (m, 9H), 0.94 (m, 9H), 0.62
(m, 3H), and 0.51 (m, 3H).

Fmoc deprotection. A solution of 5% piperidine in ACN (2.5 mL) was added to the
previous fully protected cyclopeptide and the mixture was left to stir at room temperature
for 2 h. Subsequently, the solvent was removed under reduced pressure and the crude
product was purified by reverse phase chromatography (eluent: from 90:10 H2O + 0.1%
TFA:ACN to 100% ACN) affording the cyclopeptide prot-1 as a colorless glassy solid
(28.2 mg, TFA salt, and 79% yield). MS (ES+) m/z 1424.2 [M+H]+.

Global deprotection. Compound prot-1 (4.8 mg, 0.0029 mmol, and 1 eq) was treated
with a solution of TFA/TIS/H2O 95:2.5:2.5 (180 µL). After 1 h, the solvent was removed
under reduced pressure and the residue was washed with Et2O (3×). The resulting crude
was then purified by reverse phase chromatography (eluent: from 90:10 H2O + 0.1%
TFA:ACN to 100% ACN) affording cyclopeptide BS1-monomer 1 as a colorless glassy
solid (3.3 mg, 70%). HRMS (ES+) m/z calcd for C51H72N12O10

2+ 506.2669 [M+2H]2+, found
506.2762. 1H NMR (600 MHz), CD3OD: δ 7.56 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H),
7.24–7.07 (m, 7H), 7.04–6.98 (m, 3H), 6.62 (d, J = 8.0 Hz, 1H), 4.60 (m, 1H), 4.38 (m, 1H), 4.25
(m, 1H), 4.11–3.99 (m, 3H), 3.44 (m, 1H), 3.19 (m, 1H), 3.12–2.96 (m, 6H), 2.91 (m, 2H), 2.81 (t,
J = 11.3 Hz, 1H), 2.27–2.10 (m, 4H), 2.05–1.93 (m, 2H), 1.36–1.24 (m, 6H), 1.20 (d, J = 5.3 Hz,
3H), 0.98 (m, 1H), 0.87 (m, 1H), 0.56 (d, J = 6.6 Hz, 3H), and 0.53 (d, J = 6.4 Hz, 3H).

4.2.2. General Procedure B to BS2-Targeted Monomers as Exemplified by the Synthesis of
Monomer 2

Solid-Phase Synthesis. The synthesis of linear peptide III (Scheme 1) was performed
following the procedure described for VI, starting from the preloaded 2-chlorotrityl-Fmoc-
Dab(Boc)-H resin (215.0 mg, resin loading: 0.277 mmol/g, and 1 eq). Peptide couplings were
performed using Fmoc-Dab(Boc)-OH (39.2 mg, 0.089 mmol, and 1.5 eq), Fmoc-Tyr(tBu)-OH
(40.9 mg, 0.089 mmol, and 1.5 eq), Fmoc-D-Phe-OH (34.5 mg, 0.089 mmol, and 1.5 eq),
Fmoc-Ile-OH (31.4 mg, 0.089, and 1.5 eq), Fmoc-Dab(Dde)-OH (43.7 mg, 0.089 mmol, and
1.5 eq), Fmoc-Dab(Boc)-OH (39.2 mg, 0.089 mmol, and 1.5 eq), Fmoc-Thr(tBu)-OH (35.4,
0.089 mmol, and 1.5 eq), Fmoc-Leu-OH (31.5 mg, 0.089 mmol, and 1.5 eq), and Fmoc-β-
azido-Ala-OH (31.3 mg, 0.089 mmol, and 1.5 eq). Capping procedure: The capping reaction
was performed using 50 eq of acetic anhydride, 50 eq of DIPEA in DMF (1–2 mL). The
mixture was left to stir for 30 min and completion of reaction was checked by Kaiser test.
Dde cleavage: Cleavage of the Dde protecting group was performed using a 4% solution of
monohydrated hydrazine in DMF (1–2 mL). The reaction was left to stir for 2.5 h. The linear
peptide was cleaved from the resin as described for compound VI, affording the linear
peptide III (75.5 mg, AcOH salt, 76% yield) as a colorless glassy solid, which was used as
such in the subsequent step without further purification. MS (ES+) m/z 1624.3 [M+H]+.

In-solution cyclization. The cyclization was performed as described for compound
prot-1, starting from linear peptide III (75.5 mg, 0.049 mmol, and 1 eq). After completion,
the solution was concentrated under vacuum. The crude product was purified by reverse
phase chromatography (eluent: from 90:10 H2O + 0.1% TFA:ACN to 100% ACN) affording
the corresponding cyclopeptide as a colorless glassy solid (53.6 mg, 74% yield). MS (ES+)
m/z 1605.2 [M+H]+. 1H NMR (600 MHz), CD3OD: δ 7.25–7.03 (m, 7H), 6.87 (m, 2H, ArH),



Int. J. Mol. Sci. 2023, 24, 8765 17 of 21

4.65–4.27 (m, 8H), 4.11 (m, 1H), 4.01 (m, 1H), 3.84–3.67 (m, 2H), 3.25–2.83 (m, 14H), 2.09–1.79
(m, 8H), 1.71–1.56 (m, 4H), 1.41 (m, 27H), 1.28 (m, 9H), 1.18 (m, 9H), 1.09 (m, 3H), 0.93 (m,
3H), 0.89 (m, 3H), 0.75 (m, 3H), and 0.58 (m, 3H).

Click reaction. To a solution of the previous compound (20.5 mg, 0.013 mmol, and
1 eq) and 3-butynoic acid (3.2 mg, 0.038 mmol, and 3 eq) in DMF (2.4 mL), a solution of
Cu(OAc)2 (0.75 mg, 0.004 mmol, and 0.3 eq) and sodium ascorbate (1.5 mg, 0.008 mmol,
and 0.6 eq) in water (1 mL) was added. The reaction was left under stirring under argon
atmosphere after 3 cycles of argon/vacuum. After 6 h, the solvent was removed under
reduced pressure and the residue was washed with water (3×) and diethyl ether (3×). The
crude product was purified by reverse phase chromatography (eluent: from 90:10 H2O +
0.1% TFA:ACN to 100% ACN) affording the cyclopeptide prot-2 as a colorless glassy solid
(12.3 mg, 57% yield). MS (ES+) m/z 1690.2 [M+H]+. 1H NMR (400 MHz), CD3OD: δ 7.90
(bs, 1H), 7.28–7.06 (m, 7H), 6.87 (m, 2H), 4.95 (m, 2H), 4.71 (m, 1H), 4.58 (m, 1H), 4.48–4.27
(m, 5H), 4.17 (m, 1H), 3.97 (m, 1H), 3.77 (m, 2H), 3.28–2.87 (m, 12H), 2.09–1.79 (m, 10H),
1.73–1.56 (m, 4H), 1.44 (m, 27H), 1.32 (m, 9H), 1.22 (m, 9H), 1.13 (m, 3H), 1.01–0.93 (m, 6H),
0.79 (m, 3H), and 0.60 (m, 3H).

Global deprotection. Compound prot-2 (5.7 mg, 0.0034 mmol, and 1 eq) was treated
with a solution of TFA/TIS/H2O 95:2.5:2.5 (190 µL). After 1 h, the solvent was removed
under reduced pressure and the residue was washed with Et2O (3×). The resulting crude
was then purified by reverse phase chromatography (eluent: from 90:10 H2O + 0.1%
TFA:ACN to 100% ACN) affording the protected cyclopeptide BS2-monomer 2 as a colorless
glassy solid (2.5 mg, 45%). HRMS (ES+) m/z calcd for C59H72N17O15

3+ 426.2241 [M+3H]3+,
found 426.2333. 1H NMR (600 MHz), CD3OD: δ 7.89 (bs, 1H), 7.26–7.13 (m, 5H), 7.00 (m,
2H), 6.68 (m, 2H), 4.93 (m, 1H), 4.45–4.17 (m, 8H), 3.74 (m, 2H), 3.13–2.90 (m, 11H), 2.39–2.14
(m, 3H), 2.14–1.87 (m, 8H), 1.72–1.57 (m, 5H), 1.39–1.24 (m, 6H), 1.18 (m, 3H), 0.94 (m, 3H),
0.89 (m, 3H), 0.73 (m, 3H), and 0.62 (m, 3H).

4.2.3. General Procedure C to BS1/BS2-Targeted Heterodimers as Exemplified by the
Synthesis of Dimer 3 (Scheme 3)

To a solution of compound prot-2 (6.4 mg, 0.004 mmol, and 1 eq), HATU (2.9 mg,
0.008 mmol, and 2 eq), HOAt (1.0 mg, 0.008 mmol, and 1 eq), and 2,4,6-collidine (1.8 µL,
0.011 mmol, and 3 eq) in DMF (0.4 mL), a solution of prot-1 (7.4 mg, 0.005 mmol, and
1.2 eq) in DMF (0.1 mL) was added. The reaction was left to stir at room temperature
under nitrogen atmosphere for 6 h. Subsequently, the solvent was removed under reduced
pressure and the crude was washed with water (5×). The resulting crude was then treated
with a solution of TFA/TIS/H2O (95:2.5:2.5) (209 µL). After 1 h, the solvent was removed
under reduced pressure and the solid residue was washed with Et2O (3×). The resulting
crude was purified by reverse phase chromatography (eluent: from 90:10 H2O + 0.1%
TFA:ACN to 100% ACN) affording the cyclopeptide BS1/BS2-dimer 3 as a colorless glassy
solid (2.8 mg, 25% yield for 2 steps). HRMS (ES+) m/z calcd for C110H161N29O24

4+ 568.3067
[M+4H]4+ found 568.3075.

4.3. Biology
4.3.1. Surface Plasmon Resonance

SPR technology (Biacore T200, Cytiva, Marlborough, MA, USA) was used to determine
the binding kinetics and affinity of the peptidomimetics to the RBD of the wild-type Wuhan-
Hu-1 SARS-CoV-2 spike protein (2019-nCoV spike RBD, cat n◦ 40592-VNAH, SinoBiological,
Beijing, China). The RBD was immobilized on a CM5 sensor chip using standard amine
coupling in 10 mM HEPES (pH 7.0) at a level between 5000 and 7000 RU. Interaction
studies between peptidomimetics and the RBD were performed at 25 ◦C in HBS-P+ (10 mM
HEPES, 150 mM NaCl, and 0.05% surfactant P20; pH 7.4). Two-fold serial dilutions of
peptidomimetics were injected at 30 µL/min using multiple cycle kinetics. Totals of 10 mM
NaOH and 10 mM Glycine-HCl (pH 1.7) were used to regenerate the RBD and antibody
surface, respectively. Several buffer blanks were included for double referencing. Apparent
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binding kinetics (KD, ka, and kd) were derived after fitting the experimental data to the 1:1
Langmuir binding model using the Biacore T200 Evaluation Software 3.1. The experiments
were performed at least in duplicate.

Viruses. All virus-related work was conducted in the high-containment biosafety
level 3 facilities of the Rega Institute at the Katholieke Universiteit (KU) Leuven (Leu-
ven, Belgium), in accordance with institutional guidelines. Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) isolates were recovered from nasopharyngeal swabs
of RT-qPCR-confirmed human cases obtained from the University Hospital (Leuven, Bel-
gium). SARS-CoV-2 viral stocks were prepared by inoculation of confluent Vero E6 cells or
A549.ACE2+.TMPRSS2+, as described in detail [69] Titers were determined by tissue culture
infectious dose 50 (TCID50) method of Reed and Muench on A549.ACE2+.TMPRSS2+ and
U87.ACE2+ cells. Viral genome sequence was verified, and all infections were performed
with passage 2 to 5 virus.

4.3.2. Wild-Type Virus Infection and Antiviral Assays

One day prior to the experiment, A549.ACE2+.TMPRSS2+ (Invivogen, San Diego, CA,
USA) or U87.ACE2+ cells [52] were seeded in 96-well microtiter plates. The following
day, 2.5- or 5-fold serial dilutions of the test compounds were prepared in virus infection
media (similar to cell culture medium, but with reduced FBS content), overlaid on cells,
and virus was added to each well. Cells were incubated at 37 ◦C under 5% CO2 for the
duration of the experiment. At endpoints (4 or 5 days p.i.), the virus-induced cytopathic
effect (CPE) was microscopically evaluated. Inhibition was calculated by comparison to
virus control wells with no inhibitor added. IC50 values were determined by interpolation.
Four (U87.ACE2+ cells) or five (A549.ACE2+.TMPRSS2+cells) days after infection, the
cell viability of mock- and virus-infected cells was assessed spectrophotometrically via
the in situ reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium inner salt, using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega, Madison, WI, USA). The optical density (OD) of the samples
was compared to appropriate cell control replicates (cells without virus and drugs) and
virus control wells (cells with virus but without drugs). The concentration that inhibited
SARS-CoV-2-induced cell death by 50% (IC50) was calculated from interpolation.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24108765/s1.
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