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Abstract. We propose a near-optimum receiver for the discrimination of binary

phase-shift-keyed coherent states employing photon-number-resolving detectors. The

receiver exploits a discrimination strategy based on both the so-called homodyne-

like and the direct detection, thus resulting in a hybrid scheme. We analyse the

performance and the robustness of the proposed scheme under realistic conditions,

namely, in the presence of inefficient detection and dark counts. We show that the

present hybrid setup is near-optimum and beats both the standard-quantum-limit and

the performance of the Kennedy receiver.
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1. Introduction

The problem of discriminating quantum states is a challenging task in quantum

information theory, since quantum mechanics does not allow perfect discrimination

if the considered states are not orthogonal. In particular, the task of coherent state

discrimination is of great relevance for quantum communications, since these states are

the typical information carrier in optical channels, finding a large application both in

physics and telecommunication engineering [1]. The simplest scenario is the binary

phase shift keying (BPSK), where one has to discriminate between two coherent states

with the same energy but a π phase difference [1–3]. In this case the theory developed by

Helstrom [2, 3] identifies the minimum error probability, the so-called Helstrom bound,

rising the question concerning the possible implementation of an optimal receiver able

to achieve this bound.

Several proposals of feasible optimum or near-optimum receivers have been

advanced in literature, based on either single shot discrimination or feedback-based

strategies. As regards single-shot strategies, there are several options. Homodyne

receivers [1] are constructed as an extension of the classical systems for discrimination

of signals and are based on the measurement of the quadratures of the optical field.

The Kennedy receiver [4] is based on a nulling displacement operation followed by

photodetection and proves to be near-optimum, reaching in the high energy regime

twice the Helstrom bound. Recently such a scheme has also been improved by Takeoka

and Sasaki [5] by optimizing the displacement operation , obtaining a further advantage

in the range of small energies. Finally, Sasaki and Hirota [6] have proposed a scheme

which is able to reach the Helstrom bound based on the application of unitary operations

defined in the two-dimensional space spanned by the coherent states. However, the

realization of such unitary would require highly non-linear optical elements, making

this kind of receiver not realizable with the usual practical linear optics components.

Better results are obtained with feedback strategies. Dolinar [7] extended the

principle of the Kennedy receiver by designing a new receiver employing a time-varying

displacement operation conditioned on the outcome of continuous photodetection. The

Dolinar receiver is indeed optimum and reaches the Helstrom bound. More recently, the

Dolinar approach has been revised and less demanding strategies have been proposed

which employ feed-forward methods exploiting the slicing of the coherent state. In these

discrimination strategies, the incoming state is split into a finite number of copies with

smaller energies and each copy is measured conditioning a unitary operation on the

following one [8–10].

In this paper we address single-shot binary discrimination in realistic conditions. In

particular, we propose a hybrid scheme based on the combination of the homodyne-like

and direct detection and prove it to be robust against detector inefficiencies and phase

noise affecting the input signals. More in detail, we exploit a homodyne setup, that we

call homodyne-like, where the usual p-i-n photodiodes are replaced with photon-number-

resolving detectors (PNR) having a finite photon number resolution [11] and a low local
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oscillator is considered [12,13]. In our theoretical analysis, we also include the presence

of a quantum efficiency η < 1, of a non-zero dark count rate ν and a visibility reduction

ξ < 1.

The structure of the paper is the following. In Sec.s 2 and 3 we recall the basics

of binary discrimination theory and describe the features of homodyne-like detection,

respectively. Then, in Sec. 4 we present our proposal of a hybrid receiver employing

both homodyne-like and direct detection schemes and considering ideal PNRs. Finally,

in Sec 5 we show the robustness of the hybrid receiver against detection inefficiencies

(such as finite resolution of the PNRs, quantum efficiency, dark counts and interference

visibility).

2. Binary discrimination of coherent signals

The theory of quantum discrimination between non-orthogonal states has been

addressed by Helstrom [2]. In a general framework a sender encodes a classical symbol

“0” or “1” onto two quantum states |ψ0〉 and |ψ1〉 with a priori probabilities q0 and

q1, respectively. The states are sent through a communication channel and a receiver

performs a positive-operator-valued measure (POVM) to infer the encoded values “0”

or “1”. If p(j|k) (j, k ∈ {0, 1}) is the conditional probability of obtaining the outcome

j if k was sent, then the receiver discriminates the states with an error probability

Perr = q0p(1|0) + q1p(0|1). The task is to find an optimal POVM that minimizes Perr

and the corresponding receiver is referred to as optimum.

Here we address the discrimination of two pure coherent states of a single-mode

optical field, that is states of the form |ζ〉 = D(ζ)|0〉, ζ ∈ C, where D(ζ) = exp(ζa†−ζ∗a)

is the displacement operator, a being the field operator, [a, a†] = 1, and |0〉 is the vacuum

state. In particular, we consider a binary phase-shift-keying (BPSK) scheme, where the

two states to be discriminated are

|α0〉 = | − α〉 and |α1〉 = |α〉 , (1)

having the same energy |α|2 but opposite phases (a π phase shift). In the following

we focus on the case of equal a priori probabilities q0 = q1 = 1/2 and, without loss of

generality, we assume α ∈ R+.

Helstrom’s theory allows to compute the minimum error probability, the

corresponding Helstrom bound, that reads:

PHel =
1

2

[
1−

√
1− 4q0q1 |〈α0|α1〉|2

]
(2)

=
1

2

[
1−

√
1− e−4α2

]
. (3)

The optimal measurement strategy achieving such a minimum is the “cat state”

measurement, defined by the two-valued POVM {Π0,1− Π0}, Π0 = |ψcat〉〈ψcat|, where

|ψcat〉 = c0(α)|α0〉 + c1(α)|α1〉 is an optimized “cat state” [2]. However, a concrete

realization of such a POVM is not an easy task and therefore there exist many alternative
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feasible schemes. Here we introduce the Kennedy receiver, which will be taken as a

benchmark throughout the whole paper.

The Kennedy receiver [4], also known as displacement receiver, consists in the

application of a fixed displacement operation D(α) is applied to each of the two pulses

sent, with the effect of mapping

| − α〉 → |0〉 and |α〉 → |2α〉 . (4)

This can be seen as a “nulling operation” able to send to the vacuum one of the two

input signals. The displacement can be implemented by mixing the incoming signals

with a properly chosen local oscillator at a beam splitter with a suitable transmissivity.

Then, the discrimination problem is turned into vacuum discrimination, which can be

performed by employing a on-off detector, leading to the error probability:

PK =
|〈0|2α〉|2

2
=
e−4α2

2
. (5)

Although PK > PHel, such receiver is near-optimum, since in the regime α2 � 1 we

have PK ≈ 2PHel.

In the following we will consider a generalisation of the Kennedy receiver, to

which we will refer as displacement-PNR receiver (D-PNR), where the on-off detector is

replaced by a photon-number-resolving (PNR) detector. As will be discussed throughout

the paper, the photon number resolution of the detector will turn out to be useful to

improve the decision strategy in the presence of realistic inefficiencies of the receiver.

3. Homodyne-like measurement

With homodyne-like detection we refer to a homodyne setup which involves photon-

number-resolving (PNR) detectors rather than common photodiodes [12]. In this scheme

the input state described by the density operator ρ interferes at a balanced beam splitter

with a low-intensity local oscillator (LO), prepared in the coherent state |z〉, z ∈ R+.

Then, PNR detection is performed on the beams outgoing the beam splitter, having

access to the statistics of the photon numbers n and m, respectively. Finally we compute

the difference photocurrent ∆ = n−m, ∆ ∈ Z (see Fig. 1).

In the case of our interest, we consider a coherent input state ρ = |ζ〉〈ζ|, ζ ∈ C.

Then, the photocurrent ∆ is the difference of two Poisson random variables and,

therefore, follows a Skellam distribution [12] :

S(∆; ζ) = e−µc(ζ)−µd(ζ)

[
µc(ζ)

µd(ζ)

]∆/2

I∆

(
2
√
µc(ζ)µd(ζ)

)
, (6)

∆ ∈ Z, where

µc(ζ) =
|ζ + z|2

2
, and µd(ζ) =

|ζ − z|2

2
(7)

and I∆(x) is the modified Bessel function of the first kind. It is worth noting that, in

the regime z2 � |ζ|2,

S(∆; ζ)→ P(x = ∆/(
√

2z); ζ)√
2 z

, (8)
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Figure 1. (Top) Implementation of homodyne-like detection. The incoming signal

is mixed at a balanced beam splitter with a low local oscillator (LO) and then PNR

detection is performed on the two branches. (Bottom) Scheme of the hybrid receiver

discussed in the paper. The input coherent state is split at a beam splitter of variable

transmissivity τ . On the reflected beam we perform homodyne-like detection, whose

outcome ∆ conditions a displacement operation on the transmitted signal. After that,

we apply on-off measurement on it.

where:

P(x; ζ) =
exp

[
−
(
x−
√

2ζ
)2
]

√
π

(9)

is the homodyne probability distribution [14].

The scheme described above can be used to implement a homodyne-like receiver [13],

based on the measured outcome of the photon number difference: if ∆ < 0 we decide

“0”, if ∆ > 0 we decide “1” and if ∆ = 0 we perform a random choice. The resulting

error probability reads

PHL =
1

2

[∑
∆<0

S(∆;α) +
∑
∆>0

S(∆;−α)

]
+
S0

2
, (10)

with S0 = S(0;α) = S(0;−α). According to Eq. (8), in the limit z2 � |ζ|2 we regain

the traditional homodyne receiver whose corresponding error probability reads:

PH =
1

2

[∫ ∞
0

dxP(x;α0) +

∫ 0

−∞
dxP(x;α1)

]
(11)

=
1− erf

(√
2α
)

2
, (12)

known as standard-quantum-limit (SQL), where erf (x) is the error function.

In the next paragraph we will see how we can exploit both the direct detection

and the homodyne-like receiver to reduce the discrimination error probability. Since
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the receiver uses at the same time the two detection strategies, we refer to it as hybrid

receiver.

4. Near-optimum hybrid receiver

The scheme of the hybrid receiver proposed in this paper is depicted in Fig. 1. The

idea is to exploit a displacement-PNR (D-PNR) setup where the nulling displacement

is not assigned a priori, but is conditioned on the outcome of a homodyne-like detection

performed on a fraction of the input signal. More in detail, we split the input coherent

state |α0/1〉 = |∓α〉 at a beam splitter of variable transmissivity τ (this can be obtained,

for instance, considering the polarization of the input states and by using a polarizing

beam splitter), such that:

| ∓ α〉 ⊗ |0〉 → | ∓
√
τα〉 ⊗ | ±

√
1− τα〉 . (13)

Then, we perform homodyne-like detection on the reflected branch

|α(r)
0/1〉 = | ±

√
1− τα〉 . (14)

After that, we apply a feed-forward nulling displacement operation on the transmitted

part of the signal conditioned on the outcome ∆ of the homodyne-like measurement:

∆ > 0→ apply D
(√

τα
)
, (15a)

∆ < 0→ apply D
(
−
√
τα
)
, (15b)

∆ = 0→ apply D
(√

τα
)
. (15c)

Finally, on the resulting displaced state we perform a PNR measurement in terms of

on-off detection: the photon number resolution of the detector will turn out to be useful

in the presence of dark counts and visibility reduction, as we will see in the following.

The intuitive motivation behind the feed-forward rule of Eqs. (15a), (15b) and (15c) is

the following. If we suppose that |α0〉 was sent, from the definition of the beam splitter

operation of Eq. (13) it is more likely to obtain ∆ > 0. As a consequence, we decide to

perform a positive displacement sending the transmitted signal into the vacuum such

that the PNR detector does not click and we refer to this event as “off”. Of course

there is still a non-zero probability to get ∆ < 0, and in that case we decide to apply a

negative displacement such that the on-off detector is more likely count some photon.

This event is called “on”. Finally, for the case ∆ = 0, the displacement amplitude is

chosen to be positive simply by convention. Analogous considerations may be obtained

by considering state |α1〉. Given this scenario, the decision rule at the end of the final

measurement is chosen according to Table 1.

Since:

p(∆ ≥ 0; on|0) = p(∆ < 0; off|1) = 0 , (16)

the error probability for the hybrid receiver is equal to:

P hyb(τ) =
1

2
[ p(∆ < 0; off|0) + p(∆ ≥ 0; off|1)]
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outcomes decision

∆ ≥ 0 off “0”

∆ < 0 on “0”

∆ < 0 off “1”

∆ ≥ 0 on “1”

Table 1. Decision strategy for the hybrid receiver depicted in Fig. 1.

=
1

2

[∑
∆<0

S(∆;α
(r)
0 )e−4τα2

+
∑
∆≥0

S(∆;α
(r)
1 )e−4τα2

]

=
e−4τα2

2

[∑
∆<0

S(∆;
√

1− τα) +
∑
∆≥0

S(∆;−
√

1− τα)

]
, (17)

where we used the Skellam distribution (6). For completeness, we note that performing

standard homodyne detection instead of homodyne-like, the error probability of the

previous equation becomes

P
(HD)
hyb (τ) =

e−4τα2

2

{
1− erf

[√
2(1− τ)α

]}
. (18)

Equation (17) depends on τ , therefore we can optimize it by finding the transmissivity

τopt, that in general is a function of α2, minimizing the value of P hyb(τ) for every α2.

Consequently, we obtain the optimized error probability of our receiver P hyb(τopt). To

better enlighten the advantages of the hybrid receiver, it is also relevant to introduce

the ratio with the standard Kennedy receiver (5),

Rh/K =
P hyb(τopt)

PK

. (19)

Plots of Rh/K and τopt are displayed in the top panel of Fig. 2, respectively. It

emerges that τopt = 0 up to a threshold energy Nth(z) which depends on the LO

amplitude z, while for α2 > Nth(z) it is an increasing function of the energy and reaches

asymptotically 1. Therefore, if α2 ≤ Nth(z) the optimized strategy is realized with

the sole homodyne-like setup, whereas for larger energies the more efficient scheme is

obtained by the appropriate interplay between the homodyne-like and the D-PNR parts

of our receiver. The choice of the optimal τ makes the receiver near-optimum (see the

bottom panel of Fig. 2) with a ratio Rh/K saturating to the value R∞ < 1 for every

value of the LO intensity.

As we noticed, if we increase the intensity of the local oscillator |z〉, the homodyne-

like detection approaches the standard homodyne one. In this case, the ratio in Eq. (19)

reads

R
(HD)
h/K =

P
(HD)
hyb

PK
=
e4(1−τ)α2

2

{
1− erf

[√
2(1− τ)α

]}
. (20)
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Figure 2. (Top) Plot of the ratio Rh/K as a function of the energy α2 of the encoded

pulses for several values of the LO intensity z2. In the inset, plot of the optimized

transmissivity τopt as a function of α2. For α2 > Nth(z) we have τopt = 1 − λ(z)/α2.

(Bottom) Logarithmic plot of the error probabilities as a function of α2 of the proposed

hybrid scheme P hyb(τopt) compared to the Kennedy receiver (5), the homodyne-like

receiver (10) and the Helstrom bound (2). Here we fix the LO intensity for the

homodyne-like receiver and the hybrid receiver to the value z2 = 5.

The saturation of Rh/K for large α2 suggests the following ansatz on the expression

of the optimized τopt, namely:

τopt = 1− λ(z)

α2
for α2 > Nth(z) , (21)

where λ(z) ∈ R+ and depends on the LO amplitude z. As an example, for the

homodyne limit z2 → ∞, by computing the derivative of Eq. (20) with respect to τ

and inserting the expression in Eq. (21) we get the following relation that must be

satisfied by λ ≡ λ(z =∞) :√
2

πλ
− 4e2λ

[
1− erf (

√
2λ)
]

= 0 , (22)
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Figure 3. Plot of the ratio Rh/K(M) as a function of α2 for several values of the PNR

resolution M . With the notation PNR(∞) we refer to the case of ideal PNR. We fix

a LO intensity equal to z2 = 3.

that leads to the numerical solution

λ ≈ 0.094 .

Then, the threshold N
(HD)
th ≡ Nth(z =∞) can obtained by setting τopt = 0, bringing to

N
(HD)
th = λ and the saturation ratio reads:

R(HD)
∞ = e4λ

[
1− erf (

√
2λ)
]
≈ 0.786 . (23)

An identical analysis can be performed for the homodyne-like case, where we may expect

λ(z) < λ.

5. Robustness against detector inefficiencies

To investigate the robustness of our scheme, now we consider a more realistic scheme of

the hybrid receiver where we assume to have PNR detectors with a non unit quantum

efficiency, dark counts and finite resolution, namely, the detector can resolve up to

a given number of photons. Moreover, since the displacement operation is achieved

by means of the interference at a beam splitter between the signal and a suitable

coherent state, as mentioned above, we also address how a non-unit visibility affects

the performance of the receiver.

5.1. Finite resolution of PNR detectors

Realistic PNR detectors have a finite photon number resolution, that is they can resolve

any number of photons n up to M : to highlight this features, we write PNR(M).

For instance, PNR(3) refers to a detectors that has only four possible outcomes

n ∈ {0, 1, 2,≥ 3}, where “≥ 3” means 3 or more photons. Clearly, PNR(1) is a on-

off photodetector.
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PNR(M) detection may be described through the finite-valued POVM {Πn}n,

n = 0, ...,M , where:

Πn = |n〉〈n| for n = 0, ...,M − 1 , (24)

ΠM = 1−
M−1∑
n=0

Πn . (25)

As a consequence, if we are performing a PNR(M) measurement on a generic coherent

state |ζ〉 (ζ ∈ C), the probability of detecting the outcome n reads:

p(M)(n;N) = 〈ζ|Πn|ζ〉 =


e−N

Nn

n!
n < M ,

1− e−N
M−1∑
j=0

N j

j!
n = M ,

(26)

with a mean photon number N = |ζ|2.

For the receiver proposed in this paper the exploitation of a PNR(M) affects the

homodyne-like detector. In fact, given Eq. (26) the probability of getting the photon-

number difference ∆ after the measurement on the reflected signal 14 reads

S(∆;α
(r)
0/1) =

M∑
n=0

M∑
m=0

δn−m,∆ p
(M)
(
n;µc(α

(r)
0/1)
)
p(M)

(
m;µd(α

(r)
0/1)
)
, (27)

∆ = −M, ...,M , with the µc/d given in Eq. (7) and δk,j is the Kronecker delta. In the

limit M � 1, S(∆;α
(r)
0/1) approaches the Skellam distribution (6).

The error probability for the hybrid receiver in presence of PNR(M) is then equal

to

P
(M)
hyb (τ) =

e−4τα2

2

[
−1∑

∆=−M

S(∆;α
(r)
0 ) +

M∑
∆=0

S(∆;α
(r)
1 )

]
, (28)

which can be optimized to find the transmissivity τopt(M), which shows a behaviour

qualitatively equivalent to that depicted in Fig. (2). The ratio

Rh/K(M) =
P

(M)
hyb

(
τopt(M)

)
PK

(29)

is depicted in Fig. 3. The effect of the finite resolution is to decrease the saturation

ratio R∞(M), which in any case is still less than 1, maintaining the advantages of our

receiver with respect to the Kennedy.

5.2. Quantum efficiency η

Concerning the inefficient photodetection, the introduction of a quantum efficiency η

has the effect of re-scaling all the coherent amplitudes of the measured pulses by a factor
√
η, since it corresponds to a photon loss.
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Figure 4. (Top) Logarithmic plot of the error probability of the hybrid receiver

employing PNR(M) detectors and the Kennedy receiver as a function of α2 for several

values of η. Here M = 3. (Bottom) Plot of the saturation ratio R∞(M ; η) as a function

of the quantum efficiency η for several PNR(M). The LO intensity for both the plots

is z2 = 5.

For the Kennedy receiver employing inefficient on-off detection, the error probability

is changed into:

PK(η) =
e−4ηα2

2
. (30)

Instead, for the hybrid receiver the efficiency affects both the homodyne-like and the

PNR measurement schemes. For the homodyne-like detection we have µc → ηµc and

µd → ηµd, respectively, obtaining

Sη(∆;α
(r)
0/1) =

M∑
m=0

δn−m,∆ p
(M)
(
n; ηµc(α

(r)
0/1)
)
p(M)

(
m; ηµd(α

(r)
0/1)
)
. (31)

On the other hand, an inefficient on-off detection by the PNR implies the substitution

exp(−4τα2) → exp(−4ητα2). By performing these substitutions into Eq. (28) we get
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the corresponding error probability:

P
(M)
hyb (τ ; η) =

e−4ητα2

2

[
−1∑

∆=−M

Sη(∆;α
(r)
0 ) +

M∑
∆=0

Sη(∆;α
(r)
1 )

]
, (32)

and the optimization procedure leads to a different optimized transmissivity τopt(M, η),

which shows the same qualitative behaviour depicted in Fig. 2. The optimized

P
(M)
hyb (τopt(M, η); η) is depicted in the top panel of Fig. 4. For a given value of η,

exploiting the hybrid receiver is still preferable than the Kennedy and the ratio

Rh/K(M, η) =
P

(M)
hyb

(
τopt(M, η); η

)
PK(η)

(33)

still saturates to a value R∞(M, η) which depends on η. The plot of the saturation

R∞(M, η) as a function of η is depicted in the bottom plot of Fig. 4. With a resolution

M < ∞ the function is not monotonic. Indeed, decreasing the value of η re-scales the

counting rates and reduces the negative consequences induced by the truncation of the

Poisson distribution up to M . Therefore, if η is larger than a given threshold value the

ratio R∞(M, η) increases with the efficiency, whereas for smaller η the efficiency is too

low and R∞(M, η) behaves as a decreasing function.

5.3. Dark count rate ν

Dark counts are random clicks of the PNR due to environmental noise and so not

directly correlated to the properties of the coherent measured pulse. Dark counts can

be described in terms of Poisson counting [15], occurring at rate ν which in many

realistic conditions takes values ν . 10−3 [16–20]. Generally speaking, the outcome n

of an ideal PNR measurement on a generic coherent state |ζ〉 in the presence of dark

counts turns out to be the sum of two Poisson variables and, therefore, still follows a

Poisson distribution with rate equal to |ζ|2 +ν ‡. In the presence of a PNR(M) we have

a probability p(M)(n;N) as in Eq. (26) but with rate N = |ζ|2 + ν.

The presence of dark counts has a significant effect on the performances of quantum

receivers. In particular, we will now consider as a benchmark the displacement-PNR(M)

receiver (D-PNRM) rather than the Kennedy receiver, and exploit the photon number

resolution to choose the decision rule for discrimination in a more accurate way. Clearly,

the D-PNRM reicever with M = 1 performs as the Kennedy. Thus, the analysis will

proceed in two steps, discussing firstly the cases of D-PNRM and then approaching the

hybrid receiver proposed. Without loss of generality in the following we will assume

η = 1.

‡ The sum of two Poisson independent random variables is still a Poisson random variable. If x ∼ P(µ)

and y ∼ P(λ) are two Poisson independent random variables with rates µ and λ respectively, the

probability that x + y gets the value k reads p(x + y = k) =
∑k
l=0 p(x = l)p(y = k − l) =

e−µ−λ
∑k
l=0 µ

lλk−l/(l!(k − l)!) = e−µ−λ(µ+ λ)k/k! ∼ P(µ+ λ).
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Figure 5. (Top) Logarithmic plot of the error probability for the hybrid receiver

employing PNR(M) detectors and the displacement-PNR(M) receiver as a function of

α2 for several values of M . In the inset, plot of the ratio Rh/D(M,ν) as a function of

α2. (Bottom) Plot of the optimized τopt(M,ν) as a function of α2 for several M . Here,

the dark count rate is set to the value ν = 10−3 and the LO for the homodyne-like

detector is z2 = 5.

outcomes decision

∆ ≥ 0 n < nth(ν) “0”

∆ < 0 n ≥ nth(ν) “0”

∆ < 0 n < nth(ν) “1”

∆ ≥ 0 n ≥ nth(ν) “1”

Table 2. Decision rule for the hybrid receiver in presence of dark counts.

D-PNRM receiver. In the presence of dark counts, employing a PNR(M) detector after

the displacement operation rather than a on-off detector brings to some advantages.

Indeed, in such a situation the PNR may click even if the vacuum is measured, vanishing

the principle behind the nulling technique. As a consequence, the decision rule should be
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changed according to the maximum a posteriori probability criterion (MAP), discussed

in ??. If |α0〉 is sent the probability of detecting n photons is p(M)(n; ν), whereas if

|α1〉 is sent the probability is p(M)(n; 4α2 + ν). The error probability for the D-PNRM

receiver is then obtained as:

PD(M, ν) = 1− 1

2

M∑
n=0

max
[
p(M)(n; ν), p(M)(n; 4α2 + ν)

]
. (34)

The procedure of maximizing the a posteriori probability is equivalent to defining a

discrimination threshold nth(ν) such that all measurement outcomes n ≥ nth(ν) are

assigned to state “1” and all n < nth(ν) are assigned to state “0”. The threshold

number is obtained requiring p(M)(nth; ν) = p(M)(nth; 4α2 + ν) and reads

nth(ν) = min




4α2

ln

(
1 +

4α2

ν

)
 ,M

 , (35)

where d·e is the ceiling function. We note that the threshold is a function of α2. For

the case of PNR(1) we have nth(ν) = 1, retrieving the on-off discrimination of the

standard Kennedy receiver. Plots of the error probabilities for different PNR(M) are

depicted in Fig. 5 (top panel), where it emerges that dark counts have a drastic effect

for large energies, making the error probability saturating. The origin of such effect

may be addressed to the finite resolution M of the PNR. Indeed, if α2 is large enough,

according to (35) the discrimination threshold will be chosen as nth(ν) = M , thus the

sole outcome M will infer state “1” and all other outcomes smaller than M will infer

state “0”. In such a situation the receiver makes the wrong decision only if a M outcome

were actually induced by the state |α0〉. Then, the error probability for large α2 should

be:

PD(M, ν) ≈ p(M)(M ; ν)

2
=

1

2

[
1− e−ν

M−1∑
j=0

νj

j!

]
, (36)

which is independent on the energy of the pulses α2.

Hybrid receiver. When considering the hybrid receiver, the presence of dark counts

afflicts also homodyne-like detection. Indeed, the probability of obtaining the

photocurrent difference ∆ = −M, ...,M reads

Sν(∆;α
(r)
0/1) =

M∑
n=0

M∑
m=0

δn−m,∆ p
(M)
(
n;µc(α

(r)
0/1) + ν

)
p(M)

(
m;µd(α

(r)
0/1) + ν

)
. (37)

Given all the previous considerations, the decision rule for the hybrid receiver in presence

of dark counts should be modified into that of Table 2. The error probability then reads:

P
(M)
hyb (τ ; ν) = q0

[
p(∆ < 0, n < nth(ν)|0) + p(∆ ≥ 0, n ≥ nth(ν)|0)

]
+q1

[
p(∆ < 0, n ≥ nth(ν)|1) + p(∆ ≥ 0, n < nth(ν)|1)

]
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P
(M)
hyb (τ ; ν) =

1

2

nth(ν)−1∑
n=0

p(M)(n; 4τα2 + ν)

[
−1∑

∆=−M

Sν(∆;α
(r)
0 ) +

M∑
∆=0

Sν(∆;α
(r)
1 )

]

+
1

2

M∑
n=nth(ν)

p(M)(n; ν)

[
−1∑

∆=−M

Sν(∆;α
(r)
1 ) +

M∑
∆=0

Sν(∆;α
(r)
0 )

]
. (38)

The optimized error probability P
(M)
hyb (τopt(M, ν); ν) is depicted in Fig. 5 (top panel),

whereas the optimized transmissivity τopt(M, ν) is depicted in the bottom panel. For

a better visualization of the advantages brought by the hybrid receiver with respect to

the D-PNRM, in the inset of Fig. 5 (top panel) we plot also the ratio

Rh/D(M, ν) =
P

(M)
hyb

(
τopt(M, ν); ν

)
PD(M, ν)

. (39)

The behaviour is different from that of Sec. 4: at first the value of τopt(M, ν) increases

with α2 until to reach exactly the value 1, i.e. performing as a D-PNRM. Accordingly,

the ratioRh/D(M, ν) does not saturate but shows a plateau after which increases towards

1. For larger energies, according to the resolution M , there appears M − 1 “sawteeth”,

that is other M − 1 regions in which τopt(M, ν) (and Rh/D(M, ν) together with it)

decreases to a < 1 value and increases further to reach again 1. Finally, given the

results of the previous subsection we note that if a quantum efficiency η < 1 were also

present its only effect would be the modification of the plateau value of Rh/D(M, ν),

preserving the same qualitative behaviour.

5.4. Visibility ξ

Finally, we address the effects of the interference visibility ξ ≤ 1 of the displacement

operations employed in the realisation of the receiver. This effect is consequence of

the mode mismatch at the beam splitter which implements practically a displacement.

The value ξ < 1 quantifies the overlap between the spatial areas of the signal and the

auxiliary field mixed at the beam splitter. As discussed in [11, 21], a reduction of the

visibility affects crucially the performances of quantum receivers.

Generally speaking, we consider a coherent state |ζ〉 which we want to displace by

a quantity β into the state |ζ + β〉. For the sake of simplicity, we assume ζ, β ∈ R.

Then we can describe the effect induced by imperfect mode matching by stating that

the outcome n of the subsequent PNR measurement follows a Poisson distribution with

rate N = ζ2 + β2 + 2ξζβ 6= (ζ + β)2. As in the previous subsection, we first analyse

the cases of D-PNRM receiver and then address the hybrid receiver. As before, we fix

η = 1.

D-PNRM receiver. In the presence of a visibility reduction the approach is quite similar

to Sec. 5.3. If |α0〉 is sent the probability of detecting outcome n is p(M)(n; 2α2(1− ξ)),
whereas for |α1〉 the probability is p(M)(n; 2α2(1 + ξ)). By following the MAP criterion,
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Figure 6. (Top) Logarithmic plot of the error probability for the hybrid receiver

employing PNR(M) detectors and the displacement-PNR(M) receiver as a function of

α2 for several values of M . (Bottom) Plot of the optimized τopt(M, ξ) as a function of

α2 for several M . Here, the visibility is set to the value ξ = 0.998 and the LO for the

homodyne-like detector is z2 = 5.

outcomes decision

∆ ≥ 0 n < nth(ξ) “0”

∆ < 0 n ≥ nth(ξ) “0”

∆ < 0 n < nth(ξ) “1”

∆ ≥ 0 n ≥ nth(ξ) “1”

Table 3. Decision rule for the hybrid receiver in presence of a visibility reduction.

the error probability then reads

PD(M, ξ) = 1− 1

2

M∑
n=0

max
[
p(M)(n; g−), p(M)(n; g+)

]
, (40)

where

g± = 2α2(1± ξ) , (41)
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associated to the threshold outcome nth(ξ):

nth(ξ) = min

[⌈
4ξα2

ln (1 + ξ)− ln (1− ξ)

⌉
,M

]
. (42)

We recall that the case of PNR(1) is equivalent to the on-off Kennedy receiver. The

consequences of a < 1 visibility on the error probabilities is shown in Fig. 6. As for

dark counts, the visibility reduction makes the error probability non monotonic, and

in particular increasing for large α2. As before, this is a consequence of the finite

resolution M . In the regime of large α2 the threshold outcome becomes nth(ξ) = M ,

thus the error probability is due to outcomes M induced by the state |α0〉 which is not

perfectly “nulled” due to the imperfect displacement operation. Therefore we have:

PD(M, ξ) ≈ p(M)(M ; g−)

2

=
1

2

[
1− e−2α2(1−ξ)

M−1∑
j=0

(2α2(1− ξ))j

j!

]
, (43)

which is an increasing function of α2.

Hybrid receiver. For the hybrid receiver, we should also include a visibility reduction

in the balanced beam splitter inside the homodyne-like detector. As a consequence, the

probability of measuring the photocurrent ∆ = −M, ...,M is changed into:

Sξ(∆;α
(r)
0/1) =

M∑
n=0

M∑
m=0

δn−m,∆ p
(M)
(
n; µ̃c(α

(r)
0/1; ξ)

)
p(M)

(
m; µ̃d(α

(r)
0/1; ξ)

)
, (44)

where

µ̃c(α
(r)
0/1; ξ) =

(α
(r)
0/1)2 + z2 + 2ξ zα

(r)
0/1

2
, (45a)

µ̃d(α
(r)
0/1; ξ) =

(α
(r)
0/1)2 + z2 − 2ξ zα

(r)
0/1

2
, (45b)

where p(M)(n;N) is the same of Eq. (26).

The decision rule for the hybrid receiver, displayed in Table 3, is identical to the

case of dark counts. The error probability then reads:

P
(M)
hyb (τ ; ξ) = q0

[
p(∆ < 0, n < nth(ξ)|0) + p(∆ ≥ 0, n ≥ nth(ξ)|0)

]
+q1

[
p(∆ < 0, n ≥ nth(ξ)|1) + p(∆ ≥ 0, n < nth(ξ)|1)

]
P

(M)
hyb (τ ; ξ) =

1

2

nth(ξ)−1∑
n=0

p(M)(n; τg+)

[
−1∑

∆=−M

Sξ(∆;α
(r)
0 ) +

M∑
∆=0

Sξ(∆;α
(r)
1 )

]

+
1

2

M∑
n=nth(ξ)

p(M)(n; τg−)

[
−1∑

∆=−M

Sξ(∆;α
(r)
1 ) +

M∑
∆=0

Sξ(∆;α
(r)
0 )

]
. (46)

Figure 6 shows the optimized τopt(M, ξ) and the optimized probability P
(M)
hyb (τopt(M, ξ); ξ).

If α2 is small we have a behaviour similar to the dark count case, but for large α2 the
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transmissivity changes discontinuously and the resulting P
(M)
hyb (τopt(M, ξ); ξ) keeps al-

ways below PD(M, ξ). This shows that by choosing appropriately the energy of the

signals undergoing the homodyne-like and the D-PNR measurements it is possible to

regain part of the information lost by to the finite resolution of the detectors. As a

result, the interplay between the two schemes allows to mitigate the negative effects

introduced by the visibility reduction.

6. Conclusions

In this paper we have advanced the proposal of a new hybrid receiver for binary coherent

discrimination, based on the combination of a homodyne-like and Kennedy setups. The

incoming signal is split at a beam splitter of variable transmissivity τ , the reflected

beam undergoes homodyne-like detection, whose outcome determines a conditioned

displacement operation on the transmitted beam, followed by on-off measurement. We

have shown that the possibility of adjusting the value of τ for every value of the energy

(for example by exploiting a polarizing beam splitter) makes such receiver near-optimum

and capable of beating both the SQL and the Kennedy limit.

Moreover, we have showed that the receiver proves to be robust against the

presence of inefficiencies of the experimental setup implementing the receiver, making

it a valuable options for realistic experimental implementations of binary receivers. In

particular, we have showed that in the presence of a finite resolution M of the PNR

detector, an appropriate choice of the transmissivity τ makes the hybrid receiver beat

the performances of the sole displacement-PNR(M) receiver. Indeed, the possibility of

splitting the energy of the coherent seed into two branches allows to regain part of the

information lost because of the finite resolution of the detector.

Further advantages in the regime of small energies may be obtained by following

the philosophy of the improved Kennedy receiver [5], that is by optimizing also the

amplitude of the displacement operation conditioned on the homodyne-like outcome

∆. By considering an optimized displacement D(±βopt), we expect to maintain the

quasi-optimality of the receiver and also to reduce the error probabilities for energies

α2 < 1.
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Appendix A. The maximum a posteriori probability (MAP) criterion

We consider a generic displacement-photon counting discrimination scheme to

discriminate between the coherent states |−α〉 and |α〉 (α ∈ R+) generated with equal a
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priori probabilities p(±α) = 1/2. We apply a fixed displacement of β onto the incoming

signal, mapping the states into

| ± α〉 → | ± α + β〉 . (A.1)

Then we perform a PNR measurement on the displaced state. The maximum a posteriori

probability (MAP) criterion states that, given the outcome n, we infer the state with

the highest a posteriori probability:

p(±α|n) =
p(n| ± α) p(±α)

p(n)
, (A.2)

where

p(n| ± α) = e−|±α+β|2 | ± α + β|2n

n!
(A.3)

is the probability of getting n photons given ±α and

p(n) = p(α)p(n|α) + p(−α)p(n| − α) =
p(n|α) + p(n| − α)

2

is the global probability of detecting n photons. For example, we infer | − α〉 if

p(−α|n) > p(α|n), which is equivalent to condition p(n| − α) > p(n|α) since we have

p(±α) = 1/2.

The correct decision probability is then equal to

Pc = p(−α)
∞∑
n=0

p(n| − α)χ−α + p(α)
∞∑
n=0

p(n|α)χα (A.4)

=
1

2

∞∑
n=0

max[p(n| − α), p(n|α)] . (A.5)

where χ−α = 1 if p(n| − α) > p(n|α) and 0 otherwise and χα = 1 if p(n|α) > p(n| − α)

and 0 otherwise. The error probability is obtained immediately as Perr = 1− Pc.
The decision rule p(n| − α) ≶ p(n|α) is equivalent to the definition of a threshold

outcome nth such that all measurement outcomes n ≥ nth are assigned to state α and

all n < nth are assigned to state −α. The threshold number is obtained by equating

p(nth| − α) = p(nth|α) and reads

nth =

⌈
|α + β|2 − |α− β|2

ln(|α + β|2)− ln(|α− β|2)

⌉
, (A.6)

where dxe is the ceiling function, returning the smallest integer greater than x.

Finally, we note that for the standard Kennedy receiver the displacement amplitude

is β = α, such that p(n|−α) = δn,0, therefore the correct probability of Eq. (A.5) reduces

to Pc = 1− exp(−4α2)/2.

References

[1] Cariolaro G 2015 Quantum Communications (Springer Publishing Company, Incorporated)

[2] Helstrom C W 1976 Quantum Detection and Estimation Theory Mathematics in Science and

Engineering 123 (Elsevier, Academic Press)



Hybrid near-optimum binary receiver with realistic. . . 20

[3] Bergou J A 2010 J. Mod. Opt. 57 160–180

[4] Kennedy R S 1973 Quarterly Progress Report 108 219–225

[5] Takeoka M and Sasaki M 2008 Phys. Rev. A 78 022320

[6] Sasaki M and Hirota O 1996 Phys. Rev. A 54 2728–2736

[7] Dolinar S J 1973 An optimum receiver for the binary coherent state quantum channel,

Massachusetts Institute of Technology, Cambridge, Technical Report

[8] Takeoka M, Sasaki M and Lütkenhaus N 2006 Phys. Rev. Lett. 97 040502

[9] Assalini A, Dalla Pozza N and Pierobon G 2011 Phys. Rev. A 84 022342

[10] Sych D and Leuchs G 2016 Phys. Rev. Lett. 117 200501

[11] DiMario M T and Becerra F E 2018 Phys. Rev. Lett. 121 023603

[12] Allevi A, Bina M, Olivares S and Bondani M 2017 Int. J. Quantum Inf. 15 1740016

[13] Bina M, Allevi A, Bondani M and Olivares S 2017 Opt. Express 25 10685–10692

[14] Olivares S 2021 Phys. Lett. A 418 127720

[15] Humer G, Peev M, Schaeff C, Ramelow S, Stipčević M and Ursin R 2015 Journal of Lightwave
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