
J
H
E
P
0
2
(
2
0
2
4
)
0
7
0

Published for SISSA by Springer

Received: August 28, 2023
Revised: November 5, 2023

Accepted: January 23, 2024
Published: February 13, 2024

Measurement of the Z boson production cross-section
in pp collisions at

√
s = 5.02 TeV

The LHCb collaboration
E-mail: yuhaow@cern.ch

Abstract: The first measurement of the Z boson production cross-section at centre-of-mass
energy

√
s = 5.02 TeV in the forward region is reported, using pp collision data collected by

the LHCb experiment in year 2017, corresponding to an integrated luminosity of 100± 2 pb−1.
The production cross-section is measured for final-state muons in the pseudorapidity range
2.0 < η < 4.5 with transverse momentum pT > 20 GeV/c. The integrated cross-section
is determined to be

σZ→µ+µ− = 39.6 ± 0.7(stat) ± 0.6(syst) ± 0.8(lumi) pb

for the di-muon invariant mass in the range 60 < Mµµ < 120 GeV/c2. This result and
the differential cross-section results are in good agreement with theoretical predictions at
next-to-next-to-leading order in the strong coupling constant.

Based on a previous LHCb measurement of the Z boson production cross-section in pPb
collisions at √

sNN = 5.02 TeV, the nuclear modification factor RpPb is measured for the first
time at this energy. The measured values are 1.2+0.5

−0.3(stat) ± 0.1(syst) in the forward region
(1.53 < y∗

µ < 4.03) and 3.6+1.6
−0.9(stat)±0.2(syst) in the backward region (−4.97 < y∗

µ < −2.47),
where y∗µ represents the muon rapidity in the centre-of-mass frame.

Keywords: Electroweak Interaction, Hadron-Hadron Scattering , QCD

ArXiv ePrint: 2308.12940

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)070



J
H
E
P
0
2
(
2
0
2
4
)
0
7
0

Contents

1 Introduction 1

2 Detector and simulation 2

3 Event selection and background estimation 3

4 Cross-section determination 5
4.1 Efficiency 6
4.2 Bin migration correction 7
4.3 Final state radiation correction 7

5 Systematic uncertainties 7

6 Results 10
6.1 Differential cross-section results 10
6.2 Correlation matrices 10
6.3 Integrated cross-section results 10
6.4 Nuclear modification factors 13

7 Conclusion 14

A Invariant mass fitting results for background 15

B Final state radiation corrections 15

C Efficiency 18

D Summary of systematic uncertainties 19

E Numerical results of single differential cross-sections 20

F Correlation matrices 22

The LHCb collaboration 31

1 Introduction

The pp → Z → µ+µ− process1 is highly interesting for probing the quantum chromodynamics
(QCD) and electroweak (EW) sectors. Particularly, precision measurements of the Z boson
production cross-section at various experiments offer valuable insights for testing Standard

1The production process should be interpreted as pp → Z/γ∗ → µ+µ− in the strict sense. In this article,
the label Z boson is defined to also include contributions from virtual photons and the interference between
the Z boson and the virtual photon.
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Model predictions [1–9], which are obtained from precision perturbative QCD calculations
up to the order of α3

s [8, 9].
High precision measurements of the Z boson production cross-sections at different

rapidities at LHCb have imposed important constraints on parton distribution functions
(PDFs). Results from deep inelastic scattering and hadronic collisions [10–25], parameterized
in terms of the Bjorken variable, x, indicating the fraction of the proton momentum carried
by a single parton, are used in the global fits of the PDFs. However, these measurements
provide limited information on the PDFs in the very large (x ∼ 0.8) or very small (x ∼ 10−4)
Bjorken-x regions. This leads to large uncertainties on the PDFs, and on the theoretical
predictions that make use of them. Forward acceptance of the LHCb detector covers a unique
region of phase space, allowing measurements of highly boosted Z boson candidates to be
made. Measurements within this region are sensitive to both large and small Bjorken-x values.
Previous measurements of single W and Z production by the LHCb collaboration [26–32] have
been included in PDF determinations [33–41] and significantly contributed to the precision
of the quark PDFs at large and small values of x.

In addition, the Z boson production cross-section is useful for constraining nuclear PDFs
(nPDFs), providing a clean probe of nuclear-matter effects in the initial state. These effects
are typically studied in terms of the nuclear modification factor, RpPb, defined as the ratio
of the yield observed in pPb collisions to that in pp collisions, scaled by the mean number
of nucleon-nucleon interactions. This quantity is used to study the modification of particle
production in heavy-ion collisions compared to pp collisions. The LHCb experiment published
the first inclusive Z production result in pPb collisions at a nucleon-nucleon centre-of-mass
energy of √sNN = 5.02 TeV [42]. However, no nuclear modification factor has been reported so
far for this collision energy due to the absence of a cross-section measurement in pp collisions.
With this new measurement of the Z boson production cross-section in pp collisions at√

s = 5.02 TeV, the nuclear modification factors in the forward region and backward regions
are reported here for the first time. The forward and backward regions, defined by the muon
rapidity y∗µ in the pPb centre-of-mass frame, are 1.53 < y∗

µ < 4.03 and −4.97 < y∗
µ < −2.47,

as the pPb collision system experiences an asymmetric distribution of beam energy.
In this article, the integrated and differential Z boson production cross-sections in different

kinematic bins are measured at the Born level in QED, using pp collision data collected
by the LHCb detector at a centre-of-mass energy of

√
s = 5.02 TeV in 2017, corresponding

to an integrated luminosity of 100 pb−1 [43]. The production cross-sections are measured
in a fiducial region that closely matches the acceptance of the LHCb detector, following
the analysis strategy developed in ref. [32]. The fiducial region is defined by requiring that
both muons have a pseudorapidity in the range of 2.0 < η < 4.5 and transverse momentum
pT > 20 GeV/c, and that the di-muon invariant mass is in the interval 60 < Mµµ < 120 GeV/c2.

2 Detector and simulation

The LHCb detector [44, 45] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of hadrons containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-
rounding the pp interaction region [46], a large-area silicon-strip detector (TT) [47], located
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upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes [48] placed downstream of the magnet. The track-
ing system provides a measurement of the momentum, p, of charged particles with a relative
resolution that varies from 0.5 % at low momentum to 1.0 % at 200 GeV/c. The minimum
distance of a track to a primary pp collision vertex, the impact parameter, is measured with
a resolution of (15 + 29/pT)µm, where pT is the component of the momentum transverse to
the beam, in GeV/c. Photons, electrons and hadrons are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers [49]. The online event selection is performed by a trigger [50],
which consists of a hardware stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full event reconstruction.

Simulation is used to model the effects of the detector acceptance and the imposed
selection requirements. In the simulation, pp collisions are generated using Pythia [51, 52]
with a specific LHCb configuration [53]. Final state radiation (FSR) is generated using
Photos [54]. The interactions of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [55] as described in ref. [56].

In this paper, three generators are used to calculate the theoretical predictions. The
ResBos [57] program performs resummation of large logarithms, achieving accuracy up to
the next-to-next-to-leading-logarithm level, within the Collins-Soper-Sterman resummation
formalism [58–60] and matches to next-to-leading-order (NLO) fixed order calculations. It also
provides theoretical predictions for processes involving FSR corrections and event generation.
The enhanced QCD prediction is obtained from the simulated Z→ µ+µ− sample, generated
with ResBos [57] using the CT18 PDFs [36] for all measurements. Powheg-BOX [61–64] is
an NLO generator, and can be interfaced with Pythia for QCD and EW showering. Although
Pythia is a leading-order (LO) generator, it approximates higher order effects in initial and
final states via a parton showering algorithm [65]. In this analysis, Powheg-BOX is used
to generate Z→ µ+µ− events, followed by hadronization using Pythia for all measurements.
The MCFM package [66], a fixed-order next-to-next-to-leading-order (NNLO) generator, is
used here to estimate the Z boson production cross-section as a function of yZ in the acceptance
of the LHCb detector. For these three generators, different PDFs sets NNPDF3.1 [37],
NNPDF4.0 [38], MSHT20 [39], and CT18 [36] are employed to provide theoretical predictions.

3 Event selection and background estimation

The muon triggers are responsible for the online event selection. At the hardware trigger
stage, a muon candidate with high pT is required. The muon candidate is required to have
pT > 6 GeV/c and p > 8 GeV/c, along with a good track fit quality in the first software trigger
stage. In the second software trigger stage, an additional requirement of pT > 12.5 GeV/c

is imposed on the muon candidate. For a Z→ µ+µ− candidate, it is necessary for at least
one of the muons to pass both the hardware and software trigger stages.

A high-purity Z→ µ+µ− sample is reconstructed from a pair of opposite-signed tracks
identified as muons. The invariant mass of the di-muon is required to be within the range
60 < Mµµ < 120 GeV/c2. For each muon track, the fiducial requirements are pT > 20 GeV/c
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Figure 1. Mass distribution of the Z→ µ+µ− signal candidates. The data are overlaid with model
of the signal and background models. The signal component is scaled such that the sum of the signal
and background matches the integral of the data.

and pseudorapidity in the range 2.0 < η < 4.5. The muons are required to have momentum
measurements with relative uncertainties below 10%. In total, 3265 Z→ µ+µ− candidates
meet these selection criteria, and the distribution of the di-muon invariant mass for the
selected candidates is shown in figure 1.

The background contribution from decays of heavy-flavour hadrons is estimated using
two control samples. These samples are used as two independent background determinations,
which allow for cross-checking with each other. Tracks from heavy-flavour decays degrade
the primary vertex (PV) fit quality when included in the PV fit, since heavy-flavour hadrons
travel a finite distance before decaying. Hence, the first control sample is obtained by
applying a requirement that the selected candidate have a PV with a low fit quality (χ2 > 95).
Additionally, muons produced from semileptonic decays of heavy flavour hadrons are less
isolated. The variable Iµ is defined as the ratio of the muon pT to the vector sum of the
pT of all charged particles in a cone of size R =

√
(∆η)2 + (∆ϕ)2 < 0.5 around the muon.

The second control sample is selected by requiring that the two muons are not spatially
isolated (Iµ < 0.91) from the rest of the event.

The yields of these two control samples are determined from a fit to the di-muon invariant
mass distributions, using an exponential function. From the fitting results in appendix A, it
can be observed that statistical uncertainty is the primary source of uncertainty in this estima-
tion. The heavy-flavour background is concentrated at low mass (50 < Mµµ < 70 GeV/c2), so
to obtain a larger sample and a more stable fit, the background yield is determined in the re-
gion 50 < Mµµ < 110 GeV/c2. The estimated background yield is corrected for the efficiency of
vertex and isolation selections, and extrapolated to the signal region (60 < Mµµ < 120 GeV/c2).
The efficiency of the muon isolation (vertex quality) selection is calculated separately by apply-
ing the muon isolation requirement (vertex quality requirement) to the first (second) control
sample. The background contributions estimated using these two independent samples are con-
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Background Estimation Events Fraction
Heavy flavour (bb, cc) data-driven 65 ± 51 2.0 × 10−2

Hadron misidentification data-driven 0.20 ± 0.10 6.0 × 10−5

Z→ τ+τ− Simulation 0.39 ± 0.12 1.2 × 10−4

WZ/ZZ Simulation 0.25 ± 0.04 7.7 × 10−5

WW Simulation 0.19 ± 0.02 5.8 × 10−5

tt Simulation 0.14 ± 0.10 4.4 × 10−5

Total 66 ± 51 2.0 × 10−2

Table 1. Summary of the background composition in the Z → µ+µ− data sample of candidates
satisfying the signal selection.

sistent, and the average value is taken as the background contribution from the heavy flavour
decay process, which is determined to be (2.0±1.6)×10−2 for the selected Z→ µ+µ− sample.

The contribution from the combinatorial background including misidentified hadrons
and B-B̄ mixing is estimated using pairs of same-sign muons in the data. In the same-sign
events, a muon from heavy flavour decay combined with a misidentified hadron are expected
to make sizable contributions. After removing the contribution from heavy flavour processes,
the contribution from misidentified hadrons is determined to be (6.0 ± 3.0) × 10−5, which is
negligible. The electroweak background contributions from the tt, W +W−, W±Z, ZZ and
Z→ τ+τ− processes are estimated to be (4.4 ± 2.9)× 10−5, (5.8 ± 0.7)× 10−5, (1.8 ± 0.5)×
10−5, (5.9 ± 1.2) × 10−5 and (1.2 ± 0.4) × 10−4 from the simulation, with LO to NNLO
correction factors determined with the MCFM [66] package.

In summary, the total background contribution to the Z → µ+µ− sample in the mass
range 60 < Mµµ < 120 GeV/c2 is determined to be (2.0 ± 1.6) × 10−2 and the background
composition of the candidate sample is summarised in table 1.

4 Cross-section determination

Only single-differential cross-section measurements are performed due to the limited sample
yields. The differential cross-section is measured as a function of yZ , pZ

T and ϕ∗
η [67], which

is defined as

ϕ∗
η = tan

[
(π − ∆ϕℓℓ)/2

]
sin(θ∗η), (4.1)

where ∆ϕℓℓ represents the difference in the azimuthal angle between the two muons in the
laboratory frame. The variable θ∗η is defined by cos(θ∗η) = tanh[(η− − η+)/2], with η− and
η+ denoting the pseudorapidities of the negatively and positively charged muons in the
laboratory frame. The observable ϕ∗

η probes similar physics as the transverse momentum
pZ

T, but is measured with near-perfect resolution.
The integrated cross-section is obtained by integrating over all bins, which are chosen

based on the detector resolution and sample size. The differential cross section in a generic
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variable a is defined as

dσZ→µ+µ−

da
(i) = NZ(i) · fZ

F SR(i)
L · εZ(i) · ∆a(i) , (4.2)

where the generic variable a represents the observable yZ , pZ
T or ϕ∗

η, the index i indicates
the bin of the variable under study, NZ(i) is the signal yield in bin i after background
subtraction, fZ

F SR(i) is the FSR correction factor (as discussed in section 4.3), L is the
integrated luminosity, ∆a(i) is the bin width for the i-th bin (as presented in tables 3 to 5
in appendix B), and εZ(i) is the total efficiency in the i-th bin.

To account for detector misalignment effects, the Z mass peak position and resolution
in simulated events are corrected to be compatible with the data, using momentum scaling
and smearing factors [68]. The impact from this correction on the integrated cross-section
measurement is found to be negligible.

4.1 Efficiency

The selection efficiencies are determined for the muon tracking, identification and trigger
requirements. These are derived using the Z→ µ+µ− data and a tag-and-probe method [69].

In the determination of the tracking efficiency, a particle reconstructed in all the tracking
subdetectors, and fulfilling the muon trigger and muon identification requirements, is used
as the tag. An object reconstructed by combining hits in the muon stations and the TT
downstream tracking stations, denoted as a MuonTT track, then acts as the probe. As
described in ref. [69], the tracking efficiency is calculated as the fraction of probe candidates
matched with a reconstructed track. However, the precision of the measured tracking efficiency
is limited by the low number of Z boson candidates in the data sample. In this analysis, we
therefore use the tracking efficiency εMC,5.02

Tracking found from the 5.02 TeV Z→ µ+µ− simulation,
and apply a correction to this using a scale factor determined using the tag-and-probe method
in the 13 TeV analysis [32], as

εData,5.02
Tracking = εMC,5.02

Tracking ×
εData,13

Tracking

εMC,13
Tracking

. (4.3)

The muon identification efficiency determination is affected by statistical fluctuations
similarly to the tracking efficiency, and the same treatment is applied.

The efficiency of the muon trigger is determined with the tag-and-probe method, where
a tag particle is chosen from a particle reconstructed in all tracking subdetectors, which must
be identified and triggered as a muon. The probe particle must pass all selection requirements
used in the analysis apart from the trigger requirements. The invariant mass of tag and
probe particles is further required to be within the range [60,120] GeV/c2, and the azimuthal
separation, |∆ϕ|, greater than 2.7 radians. The efficiency is computed as the ratio of the
number of probes meeting the muon trigger criteria to the total number of probes.

After correcting the muon tracking efficiency using eq. (4.3) and applying this correction
method to the muon identification efficiency in a similar way, the determined muon tracking
reconstruction efficiency εµ±

Track, identification efficiency εµ±

ID and trigger efficiency εµ±

Trig vary

– 6 –
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between 94% and 98%, 90% and 97%, 62% and 85% respectively. The efficiencies measured
as a function of muon pseudorapidity are presented in appendix C.

This measurement follows the efficiency correction method employed in the 13 TeV
analysis [32], which involved a one-dimensional efficiency correction based solely on the
muon pseudorapidity. To investigate whether any additional dependencies of efficiencies were
overlooked or if the results could be entirely attributed to the 1-D correction, a so-called
closure test was performed: the number of reconstructed events in simulation is corrected
using the efficiencies determined in simulation, then compared to the true number of events
for each of the differential distributions. The differences between this correction method and
the true information from the simulation is considered as a source of systematic uncertainty
(as discussed in section 5).

The Z event selection efficiency is derived from the muon efficiencies εTrack, εID, εTrig
following

εZ = (εµ
Track · εµ

Track) · (εµ
ID · εµ

ID) ·
(
εµ

Trig + εµ
Trig − εµ

Trig · εµ
Trig

)
. (4.4)

4.2 Bin migration correction

The detector resolution causes migration between kinematic bins. Due to the good angular
resolution of the LHCb detector, negligible migration effects are observed among yZ and
ϕ∗

η bins. Hence, it is unnecessary to correct for migration effects on the number of events
in each bin of yZ and ϕ∗

η for the cross-section measurement.
To assess the necessity of correcting the pZ

T measurement for bin migrations at the
reconstruction level, the ratio of the pZ

T distribution before and after applying a Bayesian
unfolding procedure [70, 71] is calculated from data. This ratio is then compared to the ratio
of the reconstructed to the generated pZ

T distribution obtained from the simulated sample.
As noticeable migration is detected, corrections for migration effects on the pZ

T distribution
are implemented using the Bayesian unfolding approach mentioned earlier.

4.3 Final state radiation correction

The measured cross-section is corrected to the Born level in QED, so that it can be directly com-
pared with theoretical predictions. The final-state radiation (FSR) correction is developed and
applied to the measurements, by comparing the ResBos [57] predictions with and without the
implementation of Photos [54], which corrects the quantities of muons after final state radia-
tion to the Born level. The FSR corrections in bins of yZ , pZ

T and ϕ∗
η are shown in figure 2. The

corrections for single-differential cross-section measurements are also presented in appendix B.

5 Systematic uncertainties

The systematic uncertainties considered in the present measurement include the background
estimation, the calibration of the momentum scale, the efficiency determination, the bin
migration correction, the results of efficiency closure tests, the FSR correction, and the
measurement of the integrated luminosity.

The determination of the heavy flavour background uses the averaged yield between
two methods as the background contribution. The associated uncertainty is calculated
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Figure 2. Final state radiation correction estimated for the (top-left) yZ , (top-right) pZ
T, and

(bottom) ϕ∗
η differential cross-section measurements. The error bars represent the total (statistical

and systematic) uncertainties.

as the discrepancy between the background yields obtained from the two control samples.
Additionally, a systematic uncertainty is introduced by varying the mass region and selection
requirements of the control samples. The hadron misidentification and other backgrounds are
estimated from the data and simulation, with the statistical uncertainties being treated as
systematic uncertainties that depend on the limited size of the same-sign data and simulation
samples. The systematic uncertainties on the tt, W +W−, W±Z, ZZ, and Z → τ+τ−

components derive from the statistical uncertainties and theoretical uncertainties on the LO
to NNLO correction factors. To estimate the uncertainty due to inadequate calibration of
the detector, the momentum scaling and smearing correction for the simulation are studied
in order to improve the modeling of the Z → µ+µ− data. Only a small fraction, less than
0.01% of events, exhibits changes when comparing the simulation before and after studying
the momentum scaling and smearing. This value is conservatively assigned as the systematic
uncertainty related to the detector alignment. The impact from momentum calibration
uncertainty on the integrated cross-section measurement is found to be negligible. However,
the alignment uncertainty is considered and added for the pZ

T distribution.

The track reconstruction and identification efficiencies for high pT muons are calculated
using simulation and data taking at

√
s = 13 TeV. The systematic uncertainties are determined

by the size of the 5.02 TeV simulation samples and the uncertainties are propagated from the
13 TeV results. For the trigger efficiency, which is directly measured using control samples in
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Source ∆σ [pb] ∆σ/σ [%]
Luminosity 0.79 2.00
Statistical 0.70 1.77
Tracking 0.40 1.01
Efficiency Closure 0.24 0.61
Trigger 0.21 0.54
Background 0.19 0.48
Identification 0.10 0.25
FSR 0.07 0.18
Calibration < 4.0 × 10−3 < 0.01
Total Systematic (excl. lumi.) 0.56 1.42

Table 2. The uncertainties for the integrated Z→ µ+µ− cross-section measurement.

the 5.02 TeV data, a systematic uncertainty is assigned for variations due to the limited size of
the samples studied. As studied in ref. [32], an additional systematic uncertainty is evaluated,
based on the method used to determine the tracking efficiency. This is evaluated to be 0.47%
which is already considered in the systematic uncertainty of the muon tracking efficiency.

To examine whether it is sufficient to perform efficiency corrections only as a function of
the muon pseudorapidity variable or if the efficiency also depends on other variables such
as muon pT, a closure test is performed. The reconstructed event yields in simulation are
adjusted using the efficiencies determined solely based on the muon pseudorapidity obtained
from the simulation samples and then compared with the generated yield. The differences,
which do not exhibit any systematic pattern across the differential cross-section measurement
regions, are attributed as an additional source of uncertainty.

To estimate the uncertainty attributed to the bin migration correction, the pZ
T distribution

is unfolded using the so-called Invert Approach [72], which employs a simple inversion of
the response matrix without regularisation. The deviation of the results from the Bayesian
Approach [70, 71] is taken as a systematic uncertainty on the pZ

T differential cross-section. The
systematic uncertainty arising from the FSR correction is evaluated by comparing the default
correction with one determined using the Powheg generator showered using Pythia. The
differences in FSR corrections between ResBos with Photos and Powheg with Pythia are
then taken into consideration as a systematic uncertainty. Regarding the data sample used, the
luminosity is determined with a precision of 2.0% [43], which is quoted separately to the other
sources of systematic uncertainty. The statistical and systematic uncertainties in the integrated
cross-section measurement are listed in table 2. The different sources of systematic uncertainty
for each bin of the differential cross-sections are summarised in tables 7 to 9 in appendix D.
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6 Results

6.1 Differential cross-section results

The single differential cross-sections in regions of yZ , pZ
T and ϕ∗

η are shown in figure 3, together
with the ratios of theoretical predictions to data. The numerical results of single differential
cross-section within each bin are summarised in tables 10–12 in appendix E.

Measurements are in reasonable agreement with the different theoretical predictions.
In both the lower and higher pZ

T and ϕ∗
η region, the measurements agree with predictions

from both ResBos and Powheg. For the measurement of yZ , the theoretical predictions
from the three generators are also compatible with the experimental results within the
uncertainty range.

6.2 Correlation matrices

The event migration between bins causes statistical correlations, which are determined using
simulation. Large correlations are found in the low-pZ

T region and small correlations in
the high-pZ

T region, while the statistical correlations are negligible for both the yZ and ϕ∗
η

distributions.
For the differential cross-section measurements, background, alignment, efficiency closure

test, and FSR uncertainties are assumed to be 50% correlated between different bins, while
the luminosity uncertainty is considered to be 100% correlated. The calculated correlation
matrices for the efficiencies are presented in appendix F. Large correlations between different
bins are present in the pZ

T differential cross-section measurement, but small correlations are
also present between most bins for the yZ and ϕ∗

η measurements.

6.3 Integrated cross-section results

Using the LHCb 2017 pp collision data at
√

s = 5.02 TeV, the integrated Born-level Z boson
production cross-section, with two muons in the final state and within the LHCb acceptance is

σZ→µ+µ− = 39.6 ± 0.7 (stat) ± 0.6 (syst) ± 0.8 (lumi) pb (6.1)

where the uncertainties are due to statistical effects, systematic effects, and the luminosity
measurement, respectively.

In this article, the Z boson is defined to also include contributions from virtual photons,
and the interference between them since they cannot be distinguished experimentally. The
measured results obtained for the total cross-section of the pp → Z → µ+µ− process at
5.02 TeV in the fiducial region of the LHCb detector have been compared to the predictions
obtained using MCFM with CT18NNLO and other theoretical models, including Powheg-
Box with NNPDF3.1, NNPDF4.0, MSHT20, CT18, and ResBos with CT18, all of which
account for both statistical and PDF uncertainties. These theoretical predictions are compared
to the results in figure 4, which demonstrate a reasonable agreement.

By comparing the theoretical predictions at different center-of-mass energies provided by
MCFM, with the experimental measurements previously obtained by LHCb at

√
s = 7, 8

and 13 TeV, as illustrated in figure 5, a good level of consistency can be observed overall.
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Figure 3. (Left) Measured single differential cross-section as a function of yZ , pZ
T and ϕ∗

η compared
with different theoretical predictions. (Right) Ratio of theoretical predictions to measured values,
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shows the uncertainty of the measurement.
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6.4 Nuclear modification factors

The nuclear modification factors are determined based on the present measurements and
those in ref. [42]. Here, the statistical and systematic uncertainties (including uncertainties
due to integrated luminosity) of the cross-sections measured between pp and pPb collisions are
assumed to be fully uncorrelated when being propagated to the nuclear modification factors.
Efficiency and background modeling uncertainties are also treated as fully uncorrelated, owing
to the very different running conditions between pp and pPb collisions such as the heavier
detector contamination from the higher charged hadron multiplicities in case of pPb. All
other sources of systematic uncertainty are considered to be uncorrelated, an assumption
that has negligible effect to the reported results.

The unique forward geometry coverage allows the LHCb detector to probe nPDFs at
very small Bjorken-x (10−4 < x < 10−3). The nuclear modification factors can be calculated
using the pp cross-section measured here together with the Z boson production cross-section
in pPb collisions measured in ref. [42]. The nuclear modification factors are defined as the
ratio of the Z boson production cross-sections between pPb and pp collisions under the same
muon rapidity acceptance. Due to the asymmetric beam energy in the pPb centre-of-mass
frame, the muon rapidity acceptance (2.0 < η < 4.5) becomes 1.53 < y∗µ < 4.03 in case of
the forward collisions, and −4.97 < y∗

µ < −2.47 in case of backward collisions, where y∗µ
represents the muon rapidity in the centre-of-mass frame. The two rapidity quantities are
identical in pp collisions, ηµ ≡ y∗µ, due to the symmetric beam energy. Forward collisions refer
to the proton beam entering the LHCb detector along the positive direction of the z axis,
while backward collisions correspond to the proton beam going in the opposite direction.

The cross-sections of the pPb collisions measured under different rapidity acceptances
need to be corrected before being used to calculate the nuclear modification factors. The
kpPb factor corrects for the different η acceptance between pPb and pp collisions and can
be calculated using Powheg with the proton PDF set CTEQ6.1 [73],

kF
pPb =

σ(pp, 2.0<η<4.5)
σ(pp, 1.53<η<4.03)

= 0.706 ± 0.002, (6.2)

and
kB

pPb =
σ(pp, 2.0<η<4.5)

σ(pp, −4.97<η<−2.47)
= 1.518 ± 0.003, (6.3)

for forward and backward collisions, respectively. The integrated nuclear modification factors
can then be defined as follows

RF
pPb = kF

pPb ·
σ(pPb, 1.53<y∗

µ<4.03)

208 · σ(pp, 2.0<η<4.5)
, (6.4)

and
RB

pPb = kB
pPb ·

σ(pPb, −4.97<y∗
µ<−2.47)

208 · σ(pp, 2.0<η<4.5)
, (6.5)

for forward and backwards pPb collisions, respectively, with 208 being the number of binary
nucleon-nucleon collisions in pPb collisions. The quantity σ(pPb, 1.53<y∗

µ<4.03) is measured to
be 13.5+5.4

−4.0 (stat)±1.2 (syst) nb, and σ(pPb, −4.97<y∗
µ<−2.47) is measured to be 10.7+8.4

−5.1 (stat)±
1.0 (syst) nb [42].
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The nuclear modification factors are calculated to be

RF
pP b = 1.2+0.5

−0.3 (stat) ± 0.1 (syst)

for the forward collisions, and

RB
pP b = 3.6+1.6

−0.9 (stat) ± 0.2 (syst)

for the backward collisions. The large statistical uncertainties are due to the small size
of the pPb data sample.

Based on the theoretical prediction of the cross-sections from ref. [42] derived using
FEWZ [74] at NNLO with EPS09 nPDFs [40] and MSTW08 PDFs [41], the predicted RpPb
can be derived as RF, theo.

pPb = 0.906+0.002
−0.007 and RB, theo.

pP b = 0.929+0.011
−0.028 for the forward and

backward collisions, respectively. The measurement and theoretical prediction agree within
the uncertainties in the forward region, whereas a 2.86 σ tension between the measured result
and the prediction is seen in the backward region. However, due to the limited size of the
pPb sample, the tension could be caused by a statistical fluctuation.

7 Conclusion

This paper reports the first measurement of Z boson production cross-section at the centre-
of-mass energy

√
s = 5.02 TeV, using the LHCb pp collision dataset collected in 2017. The

techniques employed in this analysis closely follow those established in a previous LHCb
Run 2 analysis [32]. The results show reasonable agreement with various predictions in the
Standard Model. Combining this measurement with the previous inclusive Z production
result in pPb collisions at √

sNN = 5.02 TeV [42] the nuclear modification factors in the
forward and backward regions are obtained for the first time.
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Figure 6. Invariant mass distributions of heavy-flavour samples with (left) PV fit quality χ2 > 95
and (right) Iµ < 91% applied to both muons. Only statistical uncertainties are shown.
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A Invariant mass fitting results for background

To estimate the signal yield for heavy-flavour background-dominated samples, an exponential
function is used to fit the dimuon invariant mass distributions in the region of 50−110 GeV/c2,
using a binned likelihood method. The distribution of selected candidates and fitted results
are shown in figure 6. The fit result is then extrapolated to determine the background
contribution in the mass region of 60 − 120 GeV/c2.

B Final state radiation corrections

Tabulated results of final state radiation corrections used in the single differential cross-
section measurements are presented in tables 3 to 5.
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yZ Correction
[ 2.000, 2.125 ] 1.018 ± 0.004 ± 0.092
[ 2.125, 2.250 ] 1.018 ± 0.002 ± 0.000
[ 2.250, 2.375 ] 1.019 ± 0.002 ± 0.006
[ 2.375, 2.500 ] 1.021 ± 0.002 ± 0.057
[ 2.500, 2.625 ] 1.021 ± 0.001 ± 0.046
[ 2.625, 2.750 ] 1.022 ± 0.001 ± 0.122
[ 2.750, 2.875 ] 1.024 ± 0.002 ± 0.009
[ 2.875, 3.000 ] 1.026 ± 0.002 ± 0.162
[ 3.000, 3.125 ] 1.026 ± 0.002 ± 0.070
[ 3.125, 3.250 ] 1.027 ± 0.002 ± 0.128
[ 3.250, 3.375 ] 1.027 ± 0.002 ± 0.011
[ 3.375, 3.625 ] 1.025 ± 0.002 ± 0.023
[ 3.625, 4.000 ] 1.020 ± 0.004 ± 0.001

Table 3. Final state radiation correction used in the yZ cross-section measurement. The first
uncertainty is statistical and the second is systematic.

pZ
T [ GeV/c ] Correction
[ 0.0, 2.2 ] 1.092 ± 0.002 ± 0.020
[ 2.2, 3.4 ] 1.080 ± 0.002 ± 0.018
[ 3.4, 4.6 ] 1.063 ± 0.002 ± 0.003
[ 4.6, 5.8 ] 1.044 ± 0.002 ± 0.015
[ 5.8, 7.2 ] 1.027 ± 0.002 ± 0.029
[ 7.2, 8.7 ] 1.012 ± 0.002 ± 0.025
[ 8.7, 10.5 ] 1.001 ± 0.002 ± 0.003
[ 10.5, 12.8 ] 0.987 ± 0.002 ± 0.006
[ 12.8, 15.4 ] 0.977 ± 0.002 ± 0.010
[ 15.4, 19.0 ] 0.968 ± 0.002 ± 0.005
[ 19.0, 34.0 ] 0.985 ± 0.001 ± 0.000
[ 34.0, 120.0 ] 1.038 ± 0.002 ± 0.000

Table 4. Final state radiation correction used in the pZ
T cross-section measurement. The first

uncertainty is statistical and the second is systematic.
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ϕ∗
η Correction

[ 0.00, 0.01 ] 1.035 ± 0.002 ± 3.802
[ 0.01, 0.02 ] 1.034 ± 0.002 ± 0.919
[ 0.02, 0.03 ] 1.032 ± 0.002 ± 1.384
[ 0.03, 0.05 ] 1.027 ± 0.001 ± 0.878
[ 0.05, 0.07 ] 1.021 ± 0.002 ± 1.060
[ 0.07, 0.10 ] 1.017 ± 0.002 ± 0.378
[ 0.10, 0.15 ] 1.013 ± 0.002 ± 0.220
[ 0.15, 0.20 ] 1.011 ± 0.002 ± 0.288
[ 0.20, 0.30 ] 1.010 ± 0.002 ± 0.236
[ 0.30, 0.60 ] 1.011 ± 0.002 ± 0.039
[ 0.60, 1.20 ] 1.017 ± 0.006 ± 0.001

Table 5. Final state radiation correction used in the ϕ∗
η cross-section measurement. The first

uncertainty is statistical and the second is systematic.
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Figure 7. Muon tracking, identification and trigger efficiency as a function of pseudorapidity,
estimated from the data and simulation at 5.02 TeV and 13 TeV.

η εµ
Track [%] εµ

ID [%] εµ
Trig [%]

[ 2.00, 2.25 ] 93.77 96.26 84.23
[ 2.25, 2.50 ] 96.82 96.30 83.95
[ 2.50, 2.75 ] 97.51 95.85 85.20
[ 2.75, 3.00 ] 95.14 96.55 80.08
[ 3.00, 3.25 ] 96.26 96.73 79.41
[ 3.25, 3.50 ] 98.32 96.92 81.50
[ 3.50, 3.75 ] 97.64 95.02 75.90
[ 3.75, 4.00 ] 96.00 97.08 69.23
[ 4.00, 4.25 ] 96.41 97.28 69.29
[ 4.25, 4.50 ] 93.86 90.10 61.54

Table 6. The muon tracking, muon identification and trigger efficiency in each pseudorapidity bin.

C Efficiency

Results of muon efficiencies used in the total Z boson efficiency calculation are presented
in figure 7 and table 6.

– 18 –



J
H
E
P
0
2
(
2
0
2
4
)
0
7
0

yZ Efficiency Background FSR Closure
[ 2.000, 2.125 ] 1.42 0.04 2.10 0.45
[ 2.125, 2.250 ] 1.37 0.77 0.00 0.31
[ 2.250, 2.375 ] 1.32 0.62 0.02 0.34
[ 2.375, 2.500 ] 1.31 1.47 0.21 0.67
[ 2.500, 2.625 ] 1.32 1.42 0.13 1.17
[ 2.625, 2.750 ] 1.33 0.28 0.30 0.92
[ 2.750, 2.875 ] 1.36 0.52 0.02 0.89
[ 2.875, 3.000 ] 1.40 0.39 0.42 1.13
[ 3.000, 3.125 ] 1.46 0.51 0.23 0.68
[ 3.125, 3.250 ] 1.56 0.00 0.50 0.58
[ 3.250, 3.375 ] 1.63 0.00 0.07 1.01
[ 3.375, 3.625 ] 1.85 1.14 0.34 0.85
[ 3.625, 4.000 ] 2.23 0.00 0.21 0.80

Table 7. Systematic uncertainties on the single differential cross-sections in bins of yZ , presented in
percentage.

pZ
T [ GeV/c ] Efficiency Background FSR Closure Calibration Migration
[ 0.0, 2.2 ] 1.42 0.56 1.15 0.43 0.13 0.54
[ 2.2, 3.4 ] 1.41 0.50 0.64 0.37 0.40 1.73
[ 3.4, 4.6 ] 1.43 0.09 0.09 0.50 0.28 1.66
[ 4.6, 5.8 ] 1.40 0.04 0.55 0.05 0.74 1.18
[ 5.8, 7.2 ] 1.43 0.25 1.27 0.12 0.91 0.36
[ 7.2, 8.7 ] 1.38 0.60 1.19 2.11 0.59 0.02
[ 8.7, 10.5 ] 1.44 0.20 0.14 0.50 0.54 0.04
[ 10.5, 12.8 ] 1.39 1.34 0.48 0.97 0.31 0.03
[ 12.8, 15.4 ] 1.39 2.00 1.11 0.18 0.36 0.01
[ 15.4, 19.0 ] 1.39 1.10 0.71 1.16 0.17 0.00
[ 19.0, 34.0 ] 1.37 1.09 0.09 1.97 0.10 0.00
[ 34.0, 120.0 ] 1.36 1.03 0.31 2.18 0.16 0.00

Table 8. Systematic uncertainties on the single differential cross-sections in bins of pZ
T, presented in

percentage.

D Summary of systematic uncertainties

The summarised systematic uncertainties for single differential cross-sections are shown in
tables 7 to 9.
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ϕ∗
η Efficiency Background FSR Closure

[ 0.00, 0.01 ] 1.41 1.10 0.81 0.01
[ 0.01, 0.02 ] 1.42 0.43 0.21 0.00
[ 0.02, 0.03 ] 1.41 0.14 0.36 0.12
[ 0.03, 0.05 ] 1.42 0.52 0.28 0.45
[ 0.05, 0.07 ] 1.41 0.01 0.50 0.44
[ 0.07, 0.10 ] 1.39 0.29 0.24 2.22
[ 0.10, 0.15 ] 1.39 1.45 0.25 0.81
[ 0.15, 0.20 ] 1.39 0.82 0.63 1.35
[ 0.20, 0.30 ] 1.38 0.77 0.97 1.00
[ 0.30, 0.60 ] 1.37 1.45 0.61 2.72
[ 0.60, 1.20 ] 1.38 0.09 0.13 2.13

Table 9. Systematic uncertainties on the single differential cross-sections in bins of ϕ∗
η, presented in

percentage.

yZ dσ(Z→ µ+µ−)/dyZ [ pb]
[ 2.000, 2.125 ] 4.4 ± 0.7 ± 0.1 ± 0.1
[ 2.125, 2.250 ] 14.6 ± 1.2 ± 0.2 ± 0.3
[ 2.250, 2.375 ] 24.3 ± 1.5 ± 0.4 ± 0.5
[ 2.375, 2.500 ] 27.5 ± 1.6 ± 0.6 ± 0.6
[ 2.500, 2.625 ] 36.1 ± 1.8 ± 0.8 ± 0.7
[ 2.625, 2.750 ] 39.9 ± 2.0 ± 0.7 ± 0.8
[ 2.750, 2.875 ] 42.6 ± 2.0 ± 0.7 ± 0.9
[ 2.875, 3.000 ] 38.8 ± 1.9 ± 0.7 ± 0.8
[ 3.000, 3.125 ] 30.8 ± 1.7 ± 0.5 ± 0.6
[ 3.125, 3.250 ] 25.5 ± 1.6 ± 0.4 ± 0.5
[ 3.250, 3.375 ] 16.0 ± 1.3 ± 0.3 ± 0.3
[ 3.375, 3.625 ] 6.8 ± 0.6 ± 0.2 ± 0.1
[ 3.625, 4.000 ] 0.7 ± 0.2 ± 0.0 ± 0.0

Table 10. Measured single differential cross-sections in bins of yZ . The first uncertainty is statistical,
the second systematic, and the third is from the uncertainty on the integrated luminosity.

E Numerical results of single differential cross-sections

The measured single differential cross-sections in bins of yZ , pZ
T and ϕ∗

η are presented in
tables 10 to 12.
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pZ
T [ GeV/c ] dσ(Z→ µ+µ−)/dpZ

T [ pb/( GeV/c)]
[ 0.0, 2.2 ] 1.769 ± 0.105 ± 0.036 ± 0.035
[ 2.2, 3.4 ] 2.77 ± 0.17 ± 0.07 ± 0.06
[ 3.4, 4.6 ] 3.23 ± 0.19 ± 0.07 ± 0.06
[ 4.6, 5.8 ] 2.71 ± 0.17 ± 0.06 ± 0.05
[ 5.8, 7.2 ] 2.27 ± 0.14 ± 0.05 ± 0.05
[ 7.2, 8.7 ] 2.09 ± 0.13 ± 0.06 ± 0.04
[ 8.7, 10.5 ] 1.806 ± 0.110 ± 0.030 ± 0.036
[ 10.5, 12.8 ] 1.234 ± 0.076 ± 0.028 ± 0.025
[ 12.8, 15.4 ] 0.911 ± 0.063 ± 0.025 ± 0.018
[ 15.4, 19.0 ] 0.759 ± 0.050 ± 0.017 ± 0.015
[ 19.0, 34.0 ] 0.328 ± 0.016 ± 0.009 ± 0.007
[ 34.0, 120.0 ] 0.0325 ± 0.0021 ± 0.0009 ± 0.0007

Table 11. Measured single differential cross-sections in bins of pZ
T. The first uncertainty is statistical,

the second systematic, and the third is due to the luminosity.

ϕ∗
η dσ(Z→ µ+µ−)/dϕ∗

η [ pb]
[ 0.00, 0.01 ] 468.5 ± 23.8 ± 9.2 ± 9.4
[ 0.01, 0.02 ] 442.4 ± 23.4 ± 6.6 ± 8.8
[ 0.02, 0.03 ] 384.6 ± 21.9 ± 5.6 ± 7.7
[ 0.03, 0.05 ] 311.6 ± 13.8 ± 5.0 ± 6.2
[ 0.05, 0.07 ] 212.1 ± 11.5 ± 3.3 ± 4.2
[ 0.07, 0.10 ] 160.4 ± 8.0 ± 4.2 ± 3.2
[ 0.10, 0.15 ] 87.63 ± 4.51 ± 1.91 ± 1.75
[ 0.15, 0.20 ] 45.59 ± 3.31 ± 1.00 ± 0.91
[ 0.20, 0.30 ] 24.21 ± 1.70 ± 0.51 ± 0.48
[ 0.30, 0.60 ] 6.30 ± 0.49 ± 0.22 ± 0.13
[ 0.60, 1.20 ] 0.571 ± 0.108 ± 0.015 ± 0.011

Table 12. Measured single differential cross-sections in bins of ϕ∗
η. The first uncertainty is statistical,

the second systematic, and the third is due to the luminosity.

– 21 –



J
H
E
P
0
2
(
2
0
2
4
)
0
7
0

0 5 10

 bin numberZy

0

2

4

6

8

10

12

 b
in

 n
u
m

b
e
r

Z
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

 bin numberZ

T
p

0

2

4

6

8

10

12

 b
in

 n
u
m

b
e
r

Z T
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

 bin number
*

η
φ

0

2

4

6

8

10

 b
in

 n
u
m

b
e
r

* η
φ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. Statistical correlation matrices for the differential cross-section measurements as functions
of (top-left) yZ , (top-right) pZ

T and (bottom) ϕ∗
η.

F Correlation matrices

The calculated statistical correlation matrices are shown in figure 8 and presented in tables 13
to 15. The correlation matrices for the efficiency uncertainty are shown in figure 9 for single
differential cross-section measurements, and presented in tables 16 to 18.
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Bin 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1.00
2 0.00 1.00
3 0.00 0.00 1.00
4 0.00 0.00 0.00 1.00
5 0.00 0.00 0.00 0.01 1.00
6 0.00 0.00 0.00 0.00 0.01 1.00
7 0.00 0.00 0.00 0.00 0.00 0.01 1.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 13. Statistical correlation matrix for the one-dimensional yZ measurement.

Bin 1 2 3 4 5 6 7 8 9 10 11 12
1 1.00
2 0.16 1.00
3 0.00 0.18 1.00
4 0.00 0.01 0.18 1.00
5 0.00 0.00 0.01 0.18 1.00
6 0.00 0.00 0.00 0.01 0.14 1.00
7 0.00 0.00 0.00 0.00 0.01 0.12 1.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.00
12 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 1.00

Table 14. Statistical correlation matrix for the one-dimensional pZ
T measurement.
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Bin 1 2 3 4 5 6 7 8 9 10 11
1 1.00
2 0.01 1.00
3 0.00 0.01 1.00
4 0.00 0.00 0.01 1.00
5 0.00 0.00 0.00 0.01 1.00
6 0.00 0.00 0.00 0.00 0.00 1.00
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 15. Statistical correlation matrix for the one-dimensional ϕ∗
η measurement.

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1.00
2 0.92 1.00
3 0.68 0.89 1.00
4 0.56 0.74 0.93 1.00
5 0.49 0.62 0.77 0.92 1.00
6 0.34 0.47 0.65 0.81 0.95 1.00
7 0.31 0.41 0.54 0.67 0.82 0.94 1.00
8 0.19 0.28 0.40 0.53 0.69 0.81 0.93 1.00
9 0.14 0.21 0.29 0.38 0.51 0.63 0.78 0.94 1.00
10 0.13 0.19 0.27 0.35 0.44 0.54 0.69 0.87 0.99 1.00
11 0.13 0.18 0.25 0.33 0.42 0.52 0.68 0.87 0.98 1.00 1.00
12 0.16 0.22 0.29 0.37 0.46 0.57 0.72 0.89 0.99 1.00 1.00 1.00
13 0.16 0.21 0.27 0.34 0.42 0.52 0.68 0.87 0.98 1.00 1.00 1.00 1.00

Table 16. Correlation matrix for the efficiency uncertainty of the one-dimensional yZ measurement.
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Bin 1 2 3 4 5 6 7 8 9 10 11 12
1 1.00
2 1.00 1.00
3 1.00 0.99 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 0.99 0.98 0.99 0.99 0.98 1.00
7 1.00 1.00 1.00 1.00 1.00 0.98 1.00
8 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00
9 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.99 1.00
10 0.98 0.98 0.98 0.99 0.98 0.99 0.97 0.99 0.98 1.00
11 0.96 0.94 0.95 0.96 0.95 0.97 0.93 0.97 0.97 0.98 1.00
12 0.94 0.93 0.93 0.95 0.93 0.96 0.92 0.97 0.97 0.98 0.99 1.00

Table 17. Correlation matrix for the efficiency uncertainty of the one-dimensional pZ
T measurement.

Bin 1 2 3 4 5 6 7 8 9 10 11
1 1.00
2 0.99 1.00
3 0.99 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 0.99 0.99 1.00 1.00
6 0.99 0.98 0.99 0.99 0.99 1.00
7 0.99 0.98 0.99 0.99 0.99 0.99 1.00
8 0.99 0.98 0.98 0.99 0.99 1.00 0.98 1.00
9 0.97 0.96 0.97 0.97 0.98 0.99 0.98 0.98 1.00
10 0.96 0.95 0.96 0.96 0.97 0.99 0.98 0.98 0.99 1.00
11 0.94 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.95 0.97 1.00

Table 18. Correlation matrix for the efficiency uncertainty of the one-dimensional ϕ∗
η measurement.
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