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Abstract: In this paper we revisit the S1 reduction of 4d N = 1 gauge theories,

considering a double scaling on the radius of the circle and on the real masses arising

from the global symmetries in the compactification. We discuss the implication of

this double scaling for SQCD with gauge algebra of ABCD type. We then show how

our prescription translates in the reduction of the 4d superconformal index to the

3d squashed three sphere partition function. This allows us to derive the expected

integral identities for the 3d dualities directly from the four dimensional ones. This

is relevant for the study of orthogonal SQCD, where the derivation from the 4d index

is not possible in absence of the double scaling, because of a divergence due to a flat

direction in the Coulomb branch of the effective theory on the circle. Furthermore,

we obtain, for the even orthogonal case, a 3d duality with a quadratic fundamental

monopole superpotential already discussed in the literature, that receives in this way

an explanation from 4d.
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1 Introduction

4d N = 1 gauge theories on R1,3 give rise in general to 3d N = 2 gauge theories when

one dimension is compactified on a circle. Such compactification has to be taken with

some care if one has the goal to preserve an IR 4d duality, such as Seiberg duality [1]

or its generalizations. An efficient and general prescription has been described in full

generality in [2] (see also [3–6] for an earlier result in this direction) for models with

unitary and symplectic gauge groups, and in [7] for models with orthogonal gauge

groups. In the following we will refer to such prescription as the ARSW prescription.

The ARSW prescription is based on the observation that the 4d duality is preserved

if the finite size effects of the circle are taken into account in the compactification.

While only the massless KK spectrum on the circle is considered, the finite size effects

modify the Coulomb branch through a superpotential for the so called KK monopole.

In the case of SQCD it corresponds to add to the usual superpotential for the BPS

monopoles (expressed in terms of the roots of the associated Lie algebra) an extra

contribution coming from the affine root [8–10]. This last contribution, referred in

[2] as the KK monopole superpotential, is crucial to preserve the 4d duality. Indeed,

it prevents the generation of new symmetries either anomalous in 4d (e.g. axial

symmetries) or topological in 3d, that would potentially destroy the duality.

From the 3d perspective such dualities can be thought as new effective dualities

with a monopole superpotential turned on. The pure 3d limit is in general recovered
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by triggering a real mass flow1. Performing this flow leads to the ordinary 3d dualities

originally studied in [11, 12] and then generalized in various directions. Observe that

in some case one can engineer real mass flows that maintain a monopole superpo-

tential and in this last case new 3d effective dualities with monopole superpotentials

have been constructed [13]. In most of the cases these superpotential are linear, but

cases with quadratic deformations have been proposed as well (see also [14, 15]).

The ARSW prescription described so far has been translated into the language

of localization, by studying the reduction of the 4d superconformal index [16, 17] to

the 3d partition function on the (squashed) three sphere [18–21]. The problem in the

mathematical literature corresponds to the hyperbolic limit of the identities among

hypergeometric elliptic integrals [22]. In this formulation of the problem the one-

loop determinants that are obtained for the chiral and for the vector multiplets can

be expressed in terms of elliptic gamma functions. The KK reduction corresponds

to an identity between a single elliptic Gamma function and an infinite amount of

hyperbolic Gamma functions, i.e. the one-loop determinants of the 3d multiplets.

Such infinite products reconstruct the “KK tower”, where the 4d fugacities become

the 3d real masses. Considering only the massless mode one can construct the relation

between a single 4d one-loop determinant and a single 3d one-loop determinant. In

the limit of small radius there is also a divergent pre-factor, that corresponds to the

4d gravitational anomaly.

By applying such limit to the integral identity that realizes a 4d duality on S3×R,
an identity between 3d partition functions is obtained. The constraints imposed on

the 4d fugacities, due to anomaly cancellation, reflect into constraints imposed by the

KK monopole superpotential in the effective 3d picture. If the divergent pre-factors

cancel in the identity (as they should), one is left with a 3d integral identity. The

cases where this integral identity is well-defined are interpreted as the realization of

the effective duality from the localization perspective. Nevertheless, in general, the

integral identity obtained from the procedure summarized above is not guaranteed

to hold true, as it is the case of orthogonal SQCD, because of the presence of a flat

direction in the Coulomb branch, unlifted by the KK superpotential.

This problem has been noticed in [7], where a possible solution was suggested in

terms of a double scaling limit on the radius and on the real masses. Such possibility

would require to consider a vacuum state with some gauge holonomies and flavor

fugacities on S1 far away from the origin. This vacuum forces a gauge and a flavor

symmetry breaking and the 4d duality would be preserved as an effective duality if

the magnetic gauge theory is considered in the corresponding dual vacuum (when it

exists). The superpotential involving the monopoles in such case should be affected,

and the gauge symmetry breaking should imply the existence of a superpotential

1Such real mass flow can be accompanied by a Higgs flow that triggers a gauge symmetry
breaking as well.
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among the fundamental monopoles of the broken gauge sectors, hopefully lifting the

flat direction in the Coulomb branch. When such a scenario is realized, the procedure

applied to the reduction of the SCI should give a finite and trustable result, that

should allow to recover the pure 3d duality.

In this paper we give an explicit realization of a double scaling realizing the

scenario discussed above. We focus on the case where a 4d N = 1 theory with a

gauge group G and a flavor symmetry F , with algebra of ABCD-type, is placed on

R1,2 × S1 and both the gauge and the flavor symmetries are broken, respectively,

into G1 ×G2 ⊂ G and F1 × F2 ⊂ F . Such symmetry breaking pattern is realized by

the compact scalar σ, corresponding to the fourth component of the field Aµ in four

dimensions and by the scalars σF associated to the weakly coupled flavor symmetry

(i.e. the real masses). By parametrizing σ in the Cartan of the gauge symmetry

U(1)rkG, we consider a case where the vacuum corresponds to take σ1,...,rkG1 = 0 and

σrkG1+1,...,rkG = 1
2r1

(where 1/r1 is the periodicity of the compact scalar σ on the

circle). Due to the symmetry of the point 1/2r1 on the circle we will often refer to

this special locus as the mirror point, borrowing the nomenclature of [23].

Considering ℓ real scalars at a generic point on the circle σ1 = · · · = σℓ ̸= 0, 1
2r1

the gauge symmetry is generically broken to U(ℓ); on the other hand the mirror

point is special, indeed, by placing the holonomies there, the gauge symmetries of

BCD-type algebra give rise to DCD-type algebras respectively. We further consider

a partial flavor symmetry breaking pattern, triggered by the real masses associated

to the fundamental fields. This step is the crucial novelty of our approach. Indeed,

in absence of such a flavor symmetry breaking pattern, the choice of the gauge con-

figuration with the real scalars σi at the origin is often the only possible one [24, 25].

Breaking the flavor symmetry allows other stable configurations where a gauge sym-

metry breaking pattern can be consistently realized on the circle. We interpret the

model obtained in this reduction as a 3d effective theory with superpotential interac-

tions turned on between the monopoles of the G1 and G2 sectors. The 4d duality on

R1,3 is then translated into a duality on R1,2×S1 if the dual gauge symmetry break-

ing pattern is consistently chosen, giving rise to a model with two sectors with gauge

group G̃1 and G̃2 respectively, interacting through their fundamental monopoles.

Furthermore, we observe that these “new” dualities can be explained in terms of the

“pure” 3d Aharony(-like) dualities: indeed one can locally dualize 2 G̃1 and G̃2 and

obtain the dual electric model with G1 and G2. This last observation is crucial to

recover the canonical duality involving only the gauge group G1 in the double scaling

limit. This consists of first dualizing only G̃2 and then to decouple the two sectors

(in both the electric and the dualized magnetic description) at the mirror point,

both now with gauge group G2, by sending the radius of the circle to zero. When

eliminating these sectors the only leftover are some singlets tfhat originates from the

2See [2, 26] for similar applications of local dualities in this context.
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3d duality on G̃2. These singlets correspond to the monopole operators of the model

with gauge group G1 and they set to zero, in the chiral ring, the monopole operators

of G̃1 through a superpotential interaction. In this way one arrives to the expected

pure 3d limit and the final 3d duality is an Aharony(-like) duality as expected. While

this procedure does not lead in principle to any new result from the field theory side

for the ordinary3 3d dualities, it becomes appealing when it is translated into the

language of localization. Indeed, the procedure discussed above lifts some of the flat

directions in the Coulomb branch in the case of orthogonal SQCD, and it allows

to derive the integral identity for 3d Aharony duality with orthogonal gauge group

directly, without the aim of the standard trick discussed in 3d in [27] (and in 4d in

[28, 29]).

As a bonus we consider the “extremal” case of our prescription, i.e. the case

where the gauge symmetry is fully reconstructed at the mirror point, σ1,...,rkG = 1
2r1

.

This case does not give new insights for the ACD algebras, because the affine root,

corresponding to the KK monopole superpotential, is exchanged with one ordinary

roots, i.e. one of the BPS monopoles. On the other hand such exchange does not

take place in the case with algebra of type B. Indeed, in this case the algebra at the

special point is of type D and the effective KK monopole corresponds to YSpin or Y 2

depending on the global properties of the gauge group. In this way we arrive to a

duality proposed in [14] that receives then a 4d explanation.

2 4d/3d reduction: the ARSW prescription

It this review section we discuss the main aspects of the ARSW prescription de-

signed to derive 3d dualities starting from 4d parents. The keypoint observation is

that when considering the 4d dynamics with one compact circular direction there are

new effects that arise at finite size and that vanish in the strict zero radius limit. Such

effects modify the compact Coulomb branch on the circle, through a superpotential,

referred to as KK monopole superpotential. If the zero modes in the KK monopole

background arise only from the vector multiplet, the KK monopole superpotential

is generated and it constrains the symmetries of the effective 3d theory, namely by

breaking the ones that are anomalous in 4d and in general the new global symme-

tries that are generically generated in 3d. A 4d duality is then preserved at finite

size if such effects are included. The pure 3d limit is obtained by a real mass flow,

that removes the effect of the KK monopole, giving rise to an ordinary 3d duality.

Actually this last step is not necessary in the prescription if the KK monopole super-

potential does not completely lift the Coulomb branch. This is for example the case

of orthogonal SQCD with vectors. In this last case the pure 3d limit is obtained by

mapping the unlifted Coulomb branch coordinates between the dual phases on the

3Actuallly it explains the 4d origin of 3d dualities with more exotic monopole superpotential, as
we will see in the following.

– 4 –



circle. Focusing on one region close to the origin of the Coulomb branch in one phase

requires focusing on a gauge symmetry breaking region in the dual phase. Removing

the KK monopole superpotential in this case can be done without further real mass

flows, and one ends up with the expected pure 3d duality at zero size.

More concretely let us consider a 4d N = 1 pure gauge theory on a circle with a

vector multiplet V . The fourth component of the gauge field A4 becomes a compact

real scalar σ. In this way one reconstructs a 3d N = 2 vector multiplet with a

compact Coulomb branch. At a generic point of the Coulomb branch the non-abelian

gauge group G is broken to U(1)rkG and the scalars σi=1,...,rkG refer to the Cartan

subgroup of G. The Coulomb branch is usually parametrized by the coordinates

Yi = eΣi = e
4πσi
g23

+iφi

(2.1)

where the compact scalar φi represent the dual photons at a generic point of the

Coulomb branch. The 3d gauge coupling g3 is obtained from the 4d one through the

relation g24 = r1g
2
3 where g4 is obtained from the 4d holomorphic scale Λb

holo ≃ e
− 1

g24 .

Microscopically (some of) the Coulomb branch variables are related to monopole

operators [30–32]. The insertion of a monopole operator at a point removes a ball

around the point and puts one unit of flux through its surface. This has the same

effect as the insertion of Σ in the functional integral4.

These monopoles act as instantons in 3d generating an effective superpotential

on the Coulomb branch. For a pure gauge theory on the circle the superpotential

has the form [8–10]

Wmon = WBPS +WKK (2.2)

where

WBPS =
rkG∑
j=1

2

α2
j

eα
∗
j ·Σ (2.3)

and

WKK =
2η

α2
0

eα
∗
0·Σ (2.4)

In these formulas αi are the simple roots of G and α∗
i are the co-roots of G. Further-

more, α0 is the affine root of G and α∗
0 is the affine co-root of G. The contribution

(2.3) survives in the 3d limit, where the circle has zero size, while the superpotential

(2.4) vanishes as r1 → 0 because η ≡ e4π/(r1g
2
3). Physically the superpotential (2.2)

reproduces the vacua of the 4d parent theory while in the 3d limit the vacua are sent

to infinity.

At this point of the discussion one needs to include the effect of matter fields.

Depending on their representation some of the matter fields induce new fermionic

4The insertion of a monopole at a point x0 generates a magnetic flux on the sphere surrounding
x0 and by considering σ pointing in the direction of the flux one has limx→x0

σ(x) → ∞.
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zero modes that can prevent the generation of the monopole superpotential. Focusing

on cases whereWBPS = 0 whileWKK ̸= 0 one can construct new effective dualities on

R1,2×S1 starting from 4d dual pairs. Such dualities have the same structure of the 4d

parents except the fact that they are equipped by a WKK monopole superpotential

in the electric and in the magnetic phase. The presence of such a superpotential

prevents the generations in 3d of symmetries that would spoil the 4d duality on S1.

The pure 3d limit consists of removing the contribution of the WKK superpotential

consistently in the electric and in the magnetic phase.

This step requires some care, because depending on the dual pair different pre-

scriptions are necessary. For example in some case it may be necessary to study

a real mass flow, while in other cases a further Higgs flow (triggered by the real

scalar in the vector multiplet) must be considered. On the other hand if there are

flat directions, in the Coulomb branches of the effective dual pairs, at finite size it

is still possible to obtain the 3d limit without any real mass or Higgs flow but by

focusing on the correct dual regions in the moduli space and then sending the radius

of S1 to zero. This last possibility has been explicitly studied in [7] for orthogonal

SQCD with vectors. While the final result provides the expected 3d dualities the

prescription cannot be translated immediately in the language of localization, i.e. in

reduction of the 4d identity between the SCI of the dual sides of the duality to the

expected identity between the 3d partition functions. This is the main motivation

behind our analysis: we aim to modify the prescription of ARSW in order to follow

the various steps of the reduction from the perspective of localization as well.

Before doing that let us review in more details the case of so(N) SQCD with Nf

vectors. In this case a Z2 subgroup of the center is left unbroken by the matter fields

and the global properties are relevant. In 4d there are three possible dualities, one

between SO(N)+ gauge groups and the other two involving a Spin(N) gauge group

on one side and a SO(N)− gauge group on the other.

In the Spin(N) case all the monopoles carry charges corresponding to the co-

roots of the gauge group. The minimal monopole is YSpin related to the Coulomb

branch variables by

YSpin ∝ e
2

(
4πσ1
g23

+iφ

)
(2.5)

The KK monopole is

Z = e
4π

g23
(σ1+σ2)+i(φ1+φ2)

(2.6)

When the group is SO(N)± there are also monopoles that do not correspond to co-

roots. The minimal monopole is Y , defined such that Y 2 = YSpin. The monopole

superpotential is written in terms of the Coulomb branch coordinates

Yi = e
4π(σi−σi+1)

g23
+i(φi−φi+1)

(2.7)
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holding for both the BN and DN case with i = 1, . . . , N − 1 and

YN = e
4π(σN−1+σN )

g23
+i(φN−1+φN )

(2.8)

or

YN = e
8πσN
g23

+i2φN
(2.9)

for DN and BN respectively. In presence of massless vectors the fermionic zero-mode

counting lifts the BPS monopole superpotential and one is left with the contribu-

tion of the KK monopole. However, a one dimensional Coulomb branch is leftover,

parametrized by YSpin or Y . This flat direction is non trivially mapped across the

dual phases and by carefully considering this relation the pure 3d limit can be recov-

ered. In general one can reduce the SO(N)+ case, finding an SO(N)+ duality on S1

and then reduce to a pure 3d SO(N) duality. From this duality one can construct

various 3d dualities with different global structures (involving O(N)±, Spin(N) or

Pin(N)5) by discrete gaugings of the Z2 charge conjugation symmetry ZC
2 and the

magnetic ZM
2 symmetry that comes from the non-trivial center of the gauge group

and that charges the sign of the fundamental monopole.

3 A different prescription: double scaling limit

Despite the fact that the ordinary O(N)+ duality [27, 34] is recovered by the ARSW

prescription, here we are interested to modify the prescription in order to lift the flat

direction in the Coulomb branch on S1. Such a lift is necessary from the viewpoint

of localization in order to mimic the prescription when reducing the 4d index to the

3d partition function. As suggested in [7] it should be possible to remove the flat

direction by considering a double scaling limit, when the small radius limit is taken

while scaling some scalars in the background vector multiplets (i.e. 3d real masses)

to be large.

This possibility may require also to scale some of the gauge holonomies, i.e. a

partial Higgsing of the gauge group on S1. In other words, we look for a vacuum

for the gauge holonomies consistent with the background that has been modified by

the non-trivial choice of the flavor holonomies. For simplicity, we focus on the case

of two packages of holonomies, one at the origin of the circle and one at the mirror

point. In this way one arrives to a product group gauge theory G1 ×G2 with a split

flavor symmetry F1 × F2. Preserving the duality on the circle requires to correctly

identify the dual split of the gauge symmetry G̃→ G̃1 × G̃2. The pure 3d limit then

requires to decouple the sectors at 1/2r1 preserving the duality. In the examples

considered below we observe that this last step can be done in each case by a local

3d duality on the sector identified by G̃2. This indeed allows to decouple in the

5More precisely Pin(N)± see [33].
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r1 → 0 limit the sectors at 1/2r1 and one is left with the expected pure 3d duality.

While the procedure is motivated by the analysis of orthogonal gauge theories we

can observe that it can be used for more general gauge theories and indeed we will

study in the explicit examples below also the cases of ordinary U(N) and USp(2N)

SQCD dualities.

We conclude this section by studying the split of G into G1 and G2 on the

Coulomb branch. Let us split SO(2N + 1) by choosing N − ℓ gauge holonomies at

zero and ℓ at 1
2r1

. Defining

χi ≡ σℓ+i i = 1, . . . , N − ℓ (3.1)

ρi ≡ −σℓ−i+1 +
1

2r1
i = 1, . . . , ℓ (3.2)

(3.3)

the coordinates Yi become

Yi → Ỹ
(D)
ℓ−i i = 1. . . . , ℓ− 1 (3.4)

Z → η−1/Ỹ
(D)
ℓ (3.5)

Yℓ →
(

1

ηỸ (D)Ỹ (B)

) 1
2

(3.6)

Yℓ+i → Ỹ
(B)
i i = 1, . . . , N − ℓ (3.7)

The monopole superpotential becomes

W2N+1 =
N−ℓ−1∑
i=1

1

Ỹ
(B)
i

+
2

Ỹ
(B)
N−ℓ

+
ℓ−1∑
i=1

1

Ỹ
(D)
i

+
1

Ỹ
(D)
ℓ

+
√
η Ỹ (D)Ỹ (B) (3.8)

In the SO(2N) case an analogous split holds such that the superpotential becomes

W2N =
N−ℓ−1∑
i=1

1

Ỹ
(D)
i

+
1

Ỹ
(D)
N−ℓ

+
ℓ−1∑
i=1

1

Ỹ
(D)
i

+
1

Ỹ
(D)
ℓ

+
√
η Ỹ (D)Ỹ (D) (3.9)

In presence of F vectors the leftover superpotential is just
√
ηỸ (D)Ỹ (B/D) in the

SO(2N + 1)/SO(2N) cases or
√
ηỸ

(D)
SpinỸ

(B/D)
Spin in the Spin(2N + 1)/Spin(2N) cases.

This lifts the Coulomb branch and we are left with two orthogonal gauge theories,

interacting through such monopole superpotential. Observe that in this case we

keep F − h real masses at zero, while we scale h real masses as 1/2r1. The model

obtained so far on the circle can be sent to a pure 3d theory by sending the radius to

zero. In this limit η → 0 and the final picture consists of two decoupled models (at

infinite distance in the Coulomb branch). On one side we have a SO(2(N − ℓ)+1) or
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SO(2(N − ℓ)) theory with F − h vectors. On the other side we have a SO(2ℓ) gauge

theory with h vectors.

While the procedure discussed so far is generic and can be applied in principle to

any gauge theory, we will study in the various examples the prescription necessary

to preserve the duality in this limit by focusing on the various cases. In general, we

need to find the split of the dual gauge group and then we must consistently decouple

the sectors at infinite distance in the Coulomb branch such to preserve the duality.

4 Double scaling and localization: from I4d to ZS3
b

The presence of dualities between theories implies identities between the correspond-

ing partition functitons. As previously discussed, in the context of the reduction of

4d dualities to 3d ones, it is necessary to first define the theories on S1×S3
b and then

to perform a dimensional reduction along the thermal circle to recover a 3d duality

from a 4d one. From the localization perspective this procedure relates ZS1×S3
b
to

S3
b partition functions and depending on the details of the prescription for the di-

mensional reduction, one ends with a gauge theory with possibly non-trivial matter

content and interactions after decoupling the massive KK modes for the fields. Then,

from physical considerations it follows that

ZS1×S3
b
≈

∞∏
KKmodes

ZS3
b
. (4.1)

In order to define a supersymmetric theory on S1 × S3
b , with r1 the radius of S1

and r3 the radius of S3
b , we require the symmetry group to include at least a U(1)R

symmetry [35]. The isometries of the background define an SU(2)1 × SU(2)2 ×U(1)

symmetry group with generators j1, j2 and ∆ respectively. The supersymmetric

partition function for a supersymmetric field theory on S1 × S3
b is known to be

proportional to the 4d sphere index of the theory, with the difference between the

two given by the supersymmetric Casimir energy [36]. This term can be ignored

when considering the dimensional reduction along S1, being proportional to the size

of the thermal circle.

Turning on fugacities for the charges of the theory we can define the 4d index as

[16, 17]

I4d = Tr(−1)F e−βδpj1+j2qj1−j2(pq)R/2
∏
k

vekk , (4.2)

δ := {Q,Q†} = ∆− 2j1 −
3

2
R, (4.3)

which coincides with the superconformal index when the theory enjoys super-

conformal symmetry, with ∆ associated to the conformal dimension. Equivalently,
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eq. (4.2) can be interpreted as the partition function of the theory on S1 × S3
b ,

squashed by the fugacities p and q parametrizing the angular momenta of the three-

sphere, with squashing parameter b2 = log(p)
log(q)

, and twisted periodic boundary condi-

tions for the fields due to the presence of additional fugacities [37]. The squashed

three-sphere background requires p and q to be parametrized as6

p = e2πiτ , q = e2πiσ, (4.4)

τ =
β

2π
ω1, σ =

β

2π
ω2, β = 2πr1,

τ + σ

2
≡ r1ω (4.5)

We parametrize the additional gauge and flavor fugacities respectively as

zj = e2πiuj , vk = e2πimk . (4.6)

It is costumary to define a democratic basis for the fugacities of each field labeled by

a = 1, ..., F , which mixes R and flavor charges,

(pq)Ra/2
∏
k

v
eak
i ≡ ya ≡ e2πi∆a , (4.7)

together with a balancing condition

F∑
a=1

∆a = f(τ, σ, F,N, ...), (4.8)

constraining the charges so to encode the symmetries of the theory. The sphere

index for a 4d gauge theory with gauge group G and F flavors transforming in the

representation RG under G can be written as an elliptic hypergeometric integral of

elliptic Gamma functions [28]

I4d(y; p, q) =
(p; p)rkG∞ (q; q)rkG∞

|W |

∫ rkG∏
i=1

dui

∏F
a=1

∏
ρa∈RG

Γe((pq)
Ra/2zρa(u)vρf (m)a ; p, q)∏

α∈∆+
Γe(zα(u); p, q)Γe(z−α(u); p, q)

,

(4.9)

with ρ and α represent the weights and the roots relative to the representation under

which the matter and vector fields transform, |W | is the cardinality of the Weyl

group of G and

(z; q)∞ :=
∞∏
k=0

(
1− zqk

)
, (4.10)

6We consider S3
b with unit radius for simplicity, it is straightforward to introduce explicitly r3

in all the expressions, see [2] for instance. Notice that r1 in our expressions is a dimensionless
parameter, as it should be, corresponding to the dimensionless ratio r1

r3
for r3 ̸= 1.
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Γe(z; p, q) :=
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz
. (4.11)

We also introduce the modified elliptic Gamma function

Γ̃e(u, τ, σ) :=
∞∏

j,k=0

1− e2πi((j+1)τ+(k+1)σ−u)

1− e2πi(jτ+kσ+u)
, (4.12)

and suppress the explicit depence on τ and σ, so that the elliptic Gamma function

will be denoted simply by Γ̃e(u). If the gauge group possesses some abelian factors, an

extra FI term with parameter ξ4 can be introduced in the index for each U(1) factor.

When the theory is defined on S1 × S3
b , quantization conditions must be imposed to

preserve invariance under large gauge transformations along the compact circle. As

the component of the gauge field along S1 becomes periodic, namely A4 ∼ A4 +
1
r1
,

the FI parameter must satisfy the quantization condition [2]

ξ4 =
n

4π2
, n ∈ Z. (4.13)

This corresponds to an insertion of a zn factor in the 4d index in eq. (4.9), with z

the holonomy parametrizing the abelian factor.

The physical statement expressed by eq. (4.1) requires the elliptic Gamma func-

tions to admit an infinite product expansion of (squashed-)three sphere partition

functions for the KK tower of 3d chiral multiplets.

The partition function of a 3d chiral multiplet on a squashed S3
b with squashing

parameter b and unit radius [21] is expressed in terms of Rains’ hyperbolic Gamma

functions [22]. Let us introduce ω1 = ib, ω2 = ib−1 and ω = ω1+ω2

2
. Assuming

Im
(

ω2

ω1

)
> 0, the hyperbolic Gamma function can be defined in terms of an infinite

product representation of the quantum dilogarithm ψb(z)
7 (see for instance Corollary

6 of [39])

exp

{
πi

2ω1ω2

(
z2 +

ω2
1 + ω2

2

12

)}
Γh(iz + ω; ω1, ω2) = ψb(z), (4.14)

with

ψb(z) :=

(
−e

2πz
ω2

+iπ
ω1
ω2 ; e

2πi
ω1
ω2

)
∞(

−e
2πz
ω1

−iπ
ω2
ω1 ; e

−2πi
ω2
ω1

)
∞

. (4.15)

In the following we suppress conventionally the explicit dependence on ω1, ω2 in

Γh(iz + ω; ω1, ω2).

The function ψb(z) satisfies the inversion formula

7The function ψb(z) is related to the Faddeev’s quantum dilogarithm eb(z) in [38] by ψb(z) =
eb(−iz).
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ψb(z)ψb(−z) = exp

{
πi

ω1ω2

(
z2 +

ω2
1 + ω2

2

12

)}
(4.16)

from which also an inversion formula

Γh(x+ ω)Γh(x− ω) = 1 (4.17)

for the hyperbolic Gamma functions immediately follows.

The 3d partition function on S3
b for a gauge theory with gauge group G and F

flavors can then be written. It corresponds to a matrix integral over the scalar σ

of the 3d vector multiplet. Each matter field contributes to the partition function

at the 1-loop level with an hyperbolic Gamma function, while the vector multiplet

contributes both classically with a e
πiσ2

i
ω1ω2 term if a CS term is present and at the

1-loop level with Γh(α(σ))
−1, after combining with the integration measure.

Moreover, when the gauge group possesses abelian factors, also a Fayet-Iliopoulos

term is allowed in the partition function. This can be interpreted as a real mass

parameter for the topological symmetries U(1)J of the theory. The FI parameter ξ3
can be related to ξ4 [2]:

ξ3 = −4π2r1ξ4 = nr1 ω1ω2, n ∈ Z. (4.18)

All in all, the 3d partition function is

Z(µ; ξ3) =
1

|W |

∫ rkG∏
i=1

dσi√
−ω1ω2

e
2πiξ3σi
ω1ω2 e

πiσ2
i

ω1ω2

∏F
a=1

∏
ρ∈RG

Γh(ρa(σ) + µa)∏
α∈∆+

Γh(α(σ))Γh(−α(σ))
, (4.19)

where µa := ρf (m)a+ωRa are understood as real mass parameters incorporating the

R and flavor fugacities of the theory.

Defining for convenience

tn(u) :=
2π

iβ

(
u− τ + σ

2
+ n

)
= −i

(
u+ n

r1
− ω

)
, n ∈ Z (4.20)

we can relate elliptic and hyperbolic Gamma functions. The elliptic Gamma func-

tions satisfy the identity [39]

Γ̃e(u) = eiπQ(u)ψb(t0(u))
∞∏
n=1

ψb(tn(u))

ψb(−t−n(u))
, (4.21)

where

Q(u) := − u3

3τσ
+
τ + σ − 1

2τσ
u2 − τ 2 + σ2 + 3τσ − 3τ − 3σ + 1

6τσ
u (4.22)
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− 1

12
(τ + σ − 1)(τ−1 + σ−1 − 1) +

(
u− τ+σ

2

)2
τσ

− τ 2 + σ2

12τσ
(4.23)

Upon substitution of eq. (4.14) in eq. (4.21) we get, defining sign(0) = 1,

Γ̃e(u) = eiπQ(u)

∞∏
n=−∞

e
−sign(n) πi

2ω1ω2

((
u+n
r1

−ω
)2

−ω2
1+ω2

2
12

)
Γh

(
u+ n

r1

)
, (4.24)

which is the precise formulation of the physical KK reduction in eq. (4.1).

The exponential terms within the produt act as regulators in the small r1 limit,

precisely cancelling out the asymptotic divergent behaviour of the hyperbolic Gamma

functions [22]:

Γh(z;ω1, ω2) ∼
|z|→∞

exp

{
sign(z)

πi

2ω1ω2

(
(z − ω)2 − ω2

1 + ω2
2

12

)}
. (4.25)

The reduction of S1 × S3
b along the thermal circle lifts the massive KK modes

on the S1 leaving only zero modes in the effective theory.

To obtain a non-trivial 3d theory in the reduction process we must assign an

appropriate scaling in the fugacities of the 4d theory. The standard paramaterization

assigns a linear dependence on r1 on all the fugacities. For this reason let us discuss

first the r1 → 0 of the elliptic Gamma function with u = xr1. This is the so-called

hyperbolic limit in the mathematical literature [22, 40].

Taking the 3d limit r1 → 0 in eq. (4.24) the massive KK modes decouple and

only the n = 0 term survives, giving

Γ̃e(u) =
r1→0

e
− iπ(x−ω)

6r1ω1ω2
+O(r1)Γh(m), (4.26)

where the Casimir energy O(r1) enters linearly and thus does not contribute in

the hyperbolic limit. In this limit a divergent contribution appears which can be

understood as a mixed U(1)R (and flavor)-gravitational anomaly term, as discussed

in [2]. It can be interpreted as a non-trivial background for the U(1)R symmetry.

This divergent term can be neglected as long as dualities are concerned, upon proving

that the same contribution arises in both theories. This is in fact expected, due to ’t

Hooft anomaly matching arguments between dual theories. Such fact will reveal to

be crucial below, where a matching between these terms in the dual phases will select

the vacuum around which performing the 3d reduction, alongside with a non-trivial

background for the flavor symmetries.

The standard hyperbolic limit procedure, in which a linear scaling is assigned

to all the fugacities, has the net effect of reducing the 4d theory with zero real

mass background around vanishing holonomies. This is the starting point for the

ARSW prescription [2] to engineer 3d dualities from 4d dualities directly from the
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partition functions. When applying this prescription to SQCD both the electric and

the magnetic theories are first expanded around the gauge holonomies configuration

σ = (0, . . . , 0). It is then possible to explore different vacua in the Coulomb branch by

implementing a real mass flow for the flavor fugacities as discussed in [2] and recover

3d dualities. When a mass flow is implemented, the vacua in the electric and the

magnetic theory are not trivially related anymore. A vacuum at vanishing holonomies

in the electric theory could be related to a non-trivial point in the Coulomb branch

in the magnetic side.

However, this procedure fails to work in some cases. For instance, it is not

possible to obtain 3d dualities for theories the reduction of the partition function

with this prescription, for theories where the Coulomb branch of the 3d theory is

not completely lifted near the σ = 0 vacuum by monopole-induced superpotential

terms. This is precisely the case for orthogonal SQCD. In this situation taking the

hyperbolic limit produces a divergent partition function in 3d, due to the index being

unsensitive to the unlifted direction on the Coulomb branch and makes it impossible

to recover a 3d duality from localization [7]. In general, it is not always the case that

the point σ = 0 is a stable vacuum of the theory or other vacua can be possible [25].

For this reason we modify the ARSW prescprition by defining a “double scaling

limit”, which turns on a fixed non-trivial background for the real masses, while com-

pactifying the thermal circle. When studying the theory on this background some or

all of the KK matter fields zero modes can become massive and get lifted. Depending

on the choice of the background, we can thus reduce to 3d theories with different

matter content, with respect to the original one. This has the effect of selecting a

different vacuum when reducing the theory on S3
b , in which correspondingly different

monopoles superpotentials are generated on the Coulomb branch.

To this aim we modify the standard parametrization of the fugacities of the

hyperbolic limit by fixing a background for the real masses and a generic non-zero

vacuum for the holonomies. Equivalently, we perform a double scaling limit, in which

the real masses are taken to be large with a 1/r1 scaling, while the radius of the S1

goes to zero. Therefore, we parametrize the 4d fugacities as

ui = σ∗
i + σir1 ∆k = µ∗

k + µkr1, (4.27)

isolating a fixed background and a O(r1) part in the chemical potentials of the

fugacities. Then, depending on the specific background chosen for the real masses

either all the massive KK modes for the matter and gauge fields become massive

and decouple or some zero modes remain, generating a 3d gauge theory after the

reduction. Concretely, let us consider the case of a chiral multiplet charged under a

U(1) gauge group, with R-charge R and real mass m under some U(1) flavor charge.

Let us define some background µ∗ for µ = m+ ωR and expand the gauge holonomy

near some holonomy σ∗. The partition function of a chiral multiplet on S1 × S3
b is
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just an elliptic Gamma function. Let us denote k = σ∗ + µ∗ and xr1 = (σ + µ)r1.

Then, we have:

Γ̃e(k + xr1) = eπiQ(k+xr1)

∞∏
n=−∞

e
−sign(n) πi

2ω1ω2

((
k+n
r1

+x−ω
)2

−ω2
1+ω2

2
12

)
Γh

(
k + n

r1
+ x

)
.

(4.28)

Before proceeding with the reduction we will put ourselves in the region 0 ≤ k ≤ 1

using the periodicity of the elliptic Gamma functions Γ̃e(u+ 1; τ, σ) = Γ̃e(u; τ, σ) so

to avoid introducing periodic Bernoulli polynomials. Now, depending on the choice

of the background the whole KK tower can either lift or a zero mode can survive

Γe(k + xr1) ∼
r1→0

{
e
− iπ(x−ω)

6r1ω1ω2 Γh(x), k ∈ Z
eiπQ(k+xr1), k /∈ Z ∧ 0 < k < 1,

(4.29)

Q(k + xr1) = − 1

ω1ω2

(
k(2k − 1)(k − 1)

6r21
+

(x− ω) (6k(k − 1) + 1)

6r1
+

+
(2k − 1)(6x2 + ω2

1 + ω2
2 + 3ω1ω2 − 12xω)

12

)
+O(r1). (4.30)

When the 3d reduction with the prescription of eq. (4.27) is performed on a 4d

gauge theory, the original gauge group is generically broken to a product of subgroups

depending on the vacuum configuration. In principle, the reduction may generate CS

and FI terms for general gauge group and generic vacuum, through the decoupling

of the massive KK modes in eq. (4.29). Depending on the details of the theory

the generation of some of these terms can be obstructed. In addition, this can be

prevented by focusing on specific points for the background of the real masses and

the vacua. For instance, notice that in the mirror point k = 1/2, Q(1/2 + xr1)

simplifies and obstructs the generation of any CS term.

In such cases the original theory factorises at the level of the partition func-

tion into a product of theories on the circle at finite small r1, interacting only

through monopole superpotential terms. The monopole superpotential is imple-

mented through the balancing conditions constraints, which are crucial to preserve

the duality at the level of the partition functions.

The matter content of such theories depends crucially on the choice of back-

ground for the real masses, namely a tuning of the background such that µ∗+σ∗ ∈ Z
is required to preserve some KK zero modes in eq. (4.27) and reduce to a 3d gauge

theory with non-empty matter content.

After the choice of some background µ = (µ∗
1, µ

∗
2, . . . ), which splits the flavor
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group F → F1 × F2 × . . . , and a vacuum ⟨σ⟩ = (σ∗
1, σ

∗
2, . . . ), for which the original

gauge group splits into G→ G1 ×G2 × . . . , the index reduces as

I4d ∼
∏
i

Z(i)
∏
i, j

eΦij , (4.31)

where each Z(i) is the partition function defined in (4.19) of i-th gauge theory, with

gauge group Gi, with its matter content and flavor symmetry itendified by Fa, ob-

tained by the reduction

I(i)
4d =

(p; p)rkGi
∞ (q; q)rkGi

∞
|Wi|

∫ rkGi∏
i=1

dui
1∏

α∈∆+
Γe(zα(u))Γe(z−α(u))

. . . ∼
r1→0

∼ e
− iπω|Gi|

6r1ω1ω2

|Wi|

∫ rkGi∏
i=1

dσi√
−ω1ω2

1∏
α∈∆+

Γh(α(σ))Γh(−α(σ))
. . . , (4.32)

where the dots stand for the matter content. The asymptotic expansion of the

Pochhammer symbols can be derived from the Dedekind Eta function and its modular

properties

(p; p)∞ = e−
iπτ
12 η(τ) ∼

r1→0
−πi
12

(
τ +

1

τ

)
− 1

2
log(−iτ). (4.33)

The term eΦij represents the mixing between the holonomies and real masses for all

the matter and vector KK modes in the i-th and the j-th gauge model on the circle,

for which the corresponding hyperbolic Gamma functions are lifted

eΦij = eiπ
∑

fields Q(k+xr1). (4.34)

The divergent terms eΦij arising from the lifting of the whole KK tower in this

prescription for the reduction reveal to be crucial in preserving dualities, as they need

to be identical in both dual phases. Identifying the dual split of the gauge group is

crucial in order to properly recover those terms. In the next section we will use this

prescription to recover 3d dualities from 4d theories in various examples. We will

start discussing unitary and symplectic SQCD. Then, we will apply the prescription

to the orthogonal case. In all the examples studied we will always consider a splitting

of the gauge and flavor groups into a product of two subgroups for simplicity.

5 Unitary and symplectic cases

Double scaling for U(N) Seiberg duality

Here we start discussing the reduction of ordinary U(N) Seiberg duality with F > N

flavors on a circle. The matter content and charges of the electric theory are: while

the matter content and charges of the dual magnetic theory are
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U(N) SU(F )1 SU(F )2 U(1)B U(1)R

Q 1 1 F−N
F

Q̃ 1 -1 F−N
F

Table 1. Matter content and charges of 4d U(N) SQCD.

U(F −N) SU(F )1 SU(F )2 U(1)B U(1)R

q 1 N
F−N

N
F

q̃ 1 - N
F−N

N
F

M 1 0 2F−N
F

Table 2. Matter content and charges of the magnetic theory U(Ñ) SQCD.

After weakly gauging the flavor symmetry we choose a configuration with F − h

flavors at the origin and h flavors at the mirror point. The gauge holonomies split

in N − ℓ at the origin and ℓ and at the mirror point. We require F − h ≥ N − ℓ and

h ≥ ℓ in order to have a stable configuration.

At finite r1 we have an IR effective 3d dynamics, where the fundamental monopoles

X±
1 and X±

2 of U(N − ℓ) and U(ℓ) interact through a superpotential

W = X+
1 X

−
2 +X−

1 X
+
2 (5.1)

Observe that this superpotential breaks both one combination of the two topological

symmetries and one combination of the two axial symmetries of the two gauge the-

ories. The signs ± in X±
1,2 then refer to the surviving topological symmetry. In the

dual model the corresponding vacuum preserving the 4d duality requires F−h−N+ℓ

holonomies at the origin and h− ℓ holonomies at the mirror point. The dual super-

potential is

W =
∑
I=1,2

MIqI q̃I + X̃+
1 X̃

−
2 + X̃−

1 X̃
+
2 (5.2)

where the index I labels the two dual gauge groups, U(F − h−N + ℓ) at the origin

and U(h − ℓ) one at the mirror point, while the dual fundamental monopoles are

indicated with a tilde. Again a combination of the two topological symmetries and

a combination of the two axial symmetries are broken by the superpotential (5.2).

Locally we can regard the U(h − ℓ) theory as an effective 3d gauge theory at

large 1/2r1 distance in the Coulomb branch with respect to the U(F − h − N + ℓ)

gauge theory. For this reason we study the r1 → 0 limit, after performing a local

duality on the U(h−ℓ) SQCD. We locally dualize U(h−ℓ) by using pure 3d Aharony

duality and we obtain a U(ℓ) gauge theory with superpotential

W =M2N2 +N2q2q̃2 +X−
2 X̃

+
2 +X+

2 X̃
+
2 . (5.3)
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In this case the fields X̃±
2 correspond to singlets of the U(ℓ) gauge theory and we

denoted the fundamental monopoles of this last as X±
2 as above. The superpotential,

after integrating out the massive fields, becomes

W =M1q1q̃1 +X−
2 X̃

+
2 +X+

2 X̃
+
2 + X̃+

1 X̃
−
2 + X̃−

1 X̃
+
2 (5.4)

The role of the singlets X̃±
2 is to identify the monopoles of the U(ℓ) sector with the

ones of the U(F − h−N + ℓ) sector. Then we decouple from the electric and from

the magnetic theory the sectors U(ℓ) in the r1 → 0 limit, observing that while in the

electric theory this removes the monopole superpotential in the dual theory there is

still an effect due to the presence of the singlets X̃±
2 . Such singlets have the same

quantum numbers of the monopoles X±
1 and they set the monopoles X̃±

1 to zero in

the chiral ring. We end up with electric U(N − ℓ) SQCD with F − h flavors and

vanishing superpotential, dual to magnetic U(F − h − N + ℓ) SQCD with F − h

flavors and superpotential

W ∝M1q1q̃1 +X+
1 X̃

−
1 +X−

1 X̃
+
1 (5.5)

corresponding to Aharony duality. In this derivation we have used, locally, the duality

itself; however one way to “circumvent” this procedure consists in considering h = 1

and ℓ = 0 such that the dual theory corresponds to SQED and where one can locally

use mirror symmetry instead of Aharony duality. Actually such an approach is not

different from the one we took here because Aharony duality reduces to SQED/XYZ

duality for U(1) with one flavor.

Let’s see then how this entire process is formulated on the reduction of I4d to Z3d.

Defining ∆a and ∆̃a the 4d fugacities of the fundamentals and the anti-fundamentals

charged under the global SU(F )1 × SU(F )2 × U(1)B × U(1)R symmetry in Table 1,

the index for the electric theory is

Iel
U(N) =

(p; p)N∞(q; q)N∞
N !

∫ N∏
i=1

dui

F∏
a=1

N∏
i=1

Γe(ui +∆a)Γe(−ui + ∆̃a)∏
i ̸=j

Γe(ui − uj)
, (5.6)

with the balancing condition

F∑
a=1

(∆a + ∆̃a) = 2r1ω(F −N). (5.7)

When considering the effective field theory on the circle the flavor fugacities in

the superconformal index become the real scalars in the background vector multiplets

of the effective 3d description. We then turn on a background for such real masses
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and consider the theories around a vacuum configuration for the integration variables

identified with the gauge holonomies, associated, in the 3d effective description, to the

real scalars in the U(N) and U(F −N) vector multiplets. Such vacuum configuration

corresponds to fix one set of these integration variables at the origin, corresponding

on the field theory side to the origin of the Coulomb branch. On the other hand

the second set is fixed at the mirror point on the circle, that, in the field theory

interpretation corresponds to a point at 1/r1 distance in the Coulomb branch with

enhanced gauge symmetry.

The original 4d theory is split, in this 3d effective picture, into a product of

gauge theories (see Figure 1 LHS), with breaking pattern and flavor content

U(N)w/F flavors → U(N − ℓ)w/F − h flavors⊗ U(ℓ)w/h flavors, (5.8)

labeled by two integers ℓ = 1, . . . , N and h = 1, . . . , F . From the point of view of the

partition function we have two decoupled integrals over the two sets of integration

variables σ obtained by expanding the 4d gauge holonomies u around the origin and

the mirror point respectively. Furthermore, the 4d flavor fugacities ∆ and ∆̃ become

the 3d real masses µ and ν according to{
ui = σir1 i = 1, . . . , N − ℓ

uN−ℓ+i =
1
2
+ σN−ℓ+ir1 i = 1, . . . , ℓ

∆a = µar1 a = 1, . . . , F − h

∆̃a = νar1 a = 1, . . . , F − h

∆F−h+a =
1
2
+ µar1 a = 1, . . . , h

∆̃F−h+a = −1
2
+ νar1 a = 1, . . . , h

(5.9)

U(N)
µ∗ = ±1/2 µ∗ = 0

U(N − ℓ)
σ∗ = 0

U(ℓ)
σ∗ = 1/2

U(F −N)
µ∗ = ±1/2 µ∗ = 0

U(F −N −K)
σ∗ = 0

U(K)
σ∗ = 1/2

Figure 1. Split into a product of gauge theories in the 3d effective picture, both in the electric
and in the magnetic unitary SQCD.

The 4d index in this effective 3d picture can be obtained by considering the

whole KK theory on S1
r1
on this non-trivial flavor background. The index in this case

splits as

Iel
U(N) =

(p; p)N∞(q; q)N∞
N !

∫ N∏
i=1

duiI
F1

U(N1)
IF2

U(N2)
I(1, 2), (5.10)
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where

IFi

U(Ni)
=

Fi∏
a=1

Ni∏
i=1

Γe(ui +∆a)Γe(−ui + ∆̃a)∏
1≤i ̸=j≤Ni

Γe(ui − uj)
(5.11)

and upon using the periodicity under integral shifts of the elliptic gamma functions,

we defined

I(1, 2) =

F1∏
a=1

N2∏
i=1

Γe (1/2 + uN1+i +∆a) Γe

(
1/2− uN1+i + ∆̃a

)
F2∏
a=1

N1∏
i=1

Γe (1/2 + ui +∆F1+a) Γe

(
1/2− ui + ∆̃F1+a

)
(

N2∏
i=1

N1∏
j=1

Γe (1/2 + uN1+i − uj)

N1∏
i=1

N2∏
j=1

Γe (1/2 + ui − uN1+j)

)−1

.(5.12)

Taking the limit (eq. (4.29)) in this background and employing eq. (5.7) we get

I(1, 2) ∼ eΦ
el
1,2 , (5.13)

with, including also theO
(

1
r1

)
contribution arising from the reduction of the Pochham-

mer symbols for later convenience,

Φel ′

1,2 = Φel
1,2 +

iπN

6r1ω1ω2

=

=iπ

 ∑
φ∈Q,Q̃

Q(1/2 + ρφ(u) + ∆φ)−
∑
V

Q(1/2 + α(u)) +
N

6r1ω1ω2

 =

=
iπ

12r1ω1ω2

(
2ω(3ℓ(2h− ℓ) +N2 − 3hN) + 3(N − 2ℓ)

F∑
a=F−h+1

(µa + νa)

)
. (5.14)

Then, as discussed above, the index (5.10) factorises into a product of two decoupled

3d partition functions:

Iel
4d ∼

r1→0
eΦ

el ′
1,2ZN−h

U(N−ℓ)Z
h
U(ℓ). (5.15)

Actually the 3d theories associated to the partition functions on the RHS of (5.15)

interact through their fundamental monopoles as discussed above. On the partition

function side such interaction is reflected by the balancing condition

F∑
a=1

(µa + νa) = 2ω(F −N) (5.16)
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arising from (5.7).

Next we study the reduction of the 4d dual magnetic theory. The index of this

theory can be written from the charges in Table 2 and, by defining Ñ = F − N , it

corresponds to the integral

Imag

U(Ñ)
=

(p; p)Ñ∞(q; q)Ñ∞
Ñ !

F∏
a,b=1

Γe(∆a + ∆̃b)

∫ Ñ∏
i=1

dui

F∏
a=1

Ñ∏
i=1

Γe(ui + r1ω −∆a)Γe(−ui + r1ω − ∆̃a)∏
1≤i ̸=j≤Ñ

Γe(ui − uj)
. (5.17)

We consider the limit (eq. (4.29)) with non-trivial background of the form (5.9).

At this level of the discussion we split the flavor symmetry as in the electric side,

because it is a necessary condition to maintain the duality. On the other hand we

split the gauge holonomies by keeping F −N −K at the origin and K at the mirror

point (see Figure 1 RHS). We arrive at

Imag
4d ∼

r1→0
eΦ

mag ′
1,2 ẐF−h

U(F−N−K)Ẑ
h
U(K), (5.18)

where the notation ẐFi

U(Ni)
also includes the contribution from the meson and thus

ẐFi

U(Ni)
=

Fi∏
a,b=1

Γh(µa + νb)ZFi

U(Ni)
, (5.19)

while

Φmag ′

1,2 =
iπ

12r1ω1ω2

(
2ω(3h2 − 3K2 +N − 3hN) + 3(N − 2h+ 2K)

F∑
a=F−h+1

(µa + νa)

)
.

(5.20)

In order to maintain the integral identity between (5.15) and (5.18) the mapping of

the vacua across the dual phases requires K = h− ℓ. This indeed reflects the result

obtained from the field theory approach.

The relation K = h − ℓ is precisely the constraint that emerges by the duality

requirement Φel ′

(1, 2) = Φmag ′

(1, 2) and it can be read off directly from the requirement:

Φmag ′

1, 2 − Φel ′

1, 2 =
iπ(h−K − ℓ)

2r1ω1ω2

(
ω(h+K − ℓ)−

F∑
a=F−h+1

(µa + νa)

)
!
= 0 (5.21)

Notice that K = h− ℓ implies h > ℓ and h > K, which are the vacuum stability
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condition on the number of flavors in both the dual theories. After imposing (5.21)

on the identity between (5.15) and (5.18) the effective 3d duality on the partition

function corresponds to the identity:

ZU(N−ℓ)(µ
(1), ν(1), λ)ZU(ℓ)(µ

(2), ν(2), λ) =
F−h∏
a,b=1

Γh(µ
(1)
a + ν

(2)
b )

h∏
a,b=1

Γh(µ
(2)
a + ν

(2)
b )

× ZU(F−h−N+ℓ)(ω − µ(1), ω − ν(1),−λ)ZU(h−ℓ)(ω − µ(2), ω − ν(2),−λ) (5.22)

with the balancing condition (5.16). Observe that in this formula we have inserted

back the explicit dependence of the partition functions from the flavor fugacities and

from the topological symmetry. We split the fugacity vectors µ and ν as (µ(1), µ(2))

and (ν(1), ν(2)) respectively, corresponding to the split into F − h and h real masses

for both the fundamentals and antifundamentals. The parameter λ labels the FI

terms in the various gauge sector and their follow with the duality map.

The 3d limit is obtained by first applying locally the integral identity correspond-

ing to U(N) Aharony duality on the last integral on the RHS of (5.22). Such identity

corresponds in this setup to the relation

ZU(h−ℓ)(ω − µ(2), ω − ν(2),−λ) = Γh

(
ω(ℓ+ 1) +

1

2

h∑
a=1

(µ(2)
a + ν(2)a )± λ

2

)

×
h∏

a,b=1

Γh(2ω − µ(2)
a − ν

(2)
b )ZU(ℓ)(µ

(2), ν(2), λ) (5.23)

Observe that plugging this relation into (5.22) corresponds in the field theory ap-

proach to the local use of the pure 3d duality in the effective description. Then we

can rearrange the contribution of the singlets in the first term on the RHS of (5.23)

using the balancing condition (5.16).

At this point the final step corresponds to get rid of the common intagrals

ZU(ℓ)(µ
(2), ν(2), λ). This indeed corresponds to consider the pure 3d limit where

the physics at large distance in the Coulomb branch is effectively decoupled. The

monopoles of the electric theory acting as singlets in the dual model are not lift by

the limit and they appear in the final identity, that is

ZU(N−ℓ)(µ
(1), ν(1), λ) = Γh

(
ω(F − h−N + 1)− 1

2

F−h∑
a=1

(µ(1)
a + ν(1)a )± λ

2

)
F−h∏
a,b=1

Γh(µ
(1)
a + ν

(1)
b )ZU(F−h−N+ℓ)(ω − µ1), ω − ν(1),−λ)

(5.24)
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which holds without any balancing condition. This final identity is the partition

function realization of 3d Aharony duality, obtained here from the double scaling

limit of the identity between the supersymmetric indices of U(N) 4d Seiberg duality.

Double scaling for USp(2N) Intriligator–Pouliot duality

A similar study can be pursued for the case of Intriligator Pouliot duality involving

a USp(2N) gauge group with 2F fundamentals. The matter content and charges of

the electric theory are:

USp(2N) SU(2F ) U(1)R

Q F−N−1
F

Table 3. Matter content and charges of USp(2N) SQCD.

The matter content and the charges of the magnetic theory are:

USp(2F − 2N − 4) SU(2F ) U(1)R

q N+1
F

M 1 2F−N−1
F

Table 4. Matter content and charges of magnetic USp(2F − 2N − 4) SQCD.

Splitting again F in F −h and h, N in N− ℓ and ℓ in the dual phase, we need to

split the gauge holonomies as F −h−N + ℓ− 1 and h− ℓ− 1. The superpotential of

the electric theory involves the fundamental monopoles Y1 and Y2 of USp(2(N − ℓ))

and USp(2ℓ) respectively, and it is W ∝ Y1Y2. Analogously, the dual superpotential

is

W =
∑
I=1,2

MIqI · qI + Ỹ1Ỹ2 (5.25)

The 3d limit is found by first applying Aharony duality on USp(2(h− ℓ− 1)) finding

USp(2ℓ). The r1 → 0 limit gives then the expected pure 3d duality where the

fundamental monopole of USp(2(N − ℓ)) acts as a singlet in the USp(2(F −h−N +

ℓ− 1)) gauge theory and it is identified with the singlet arising by the local duality

on USp(2(h− ℓ)) described above.

Next, we will study such reduction of the duality with the double scaling on the flavor

fugacities and on the radius r1 in the reduction of the 4d index to the 3d partition

function.
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The index of the electric theory can be written from the charges in Table 3 and

it is

Iel
USp(2N) =

(p; p)N∞(q; q)N∞
2NN !

∫ N∏
i=1

dui

F∏
a=1

N∏
i=1

Γe(±ui +∆a)∏
1≤i<j≤N

Γe(±ui ± uj)
∏

i Γe(±2ui)
, (5.26)

together with the balancing condition

2F∑
a=1

∆a = 2r1ω(F −N − 1). (5.27)

Taking the limit (4.29) in this case requires turning on an appropriate background

for the real masses and the real scalars in the vector multiplet in the effective 3d

description, in order to preserve the parity of the flavors in the effective 3d theories

emerging from the decoupling limit of the massive KK tower, and the balancing

condition
2F∑
a=1

µa = 2ω(F −N − 1). (5.28)

Thus, we take the limit (4.29) on the following configuration of 4d gauge holonomies

and flavor fugacities:
∆2a = µ2ar1 − 1

2
a = 1, . . . , F − h

∆2a−1 = µ2a−1r1 +
1
2

a = 1, . . . , F − h

∆2F−2h+a = µ2F−2h+ar1 a = 1, . . . , 2h{
ui = σir1 i = 1, . . . , N − ℓ

uN−ℓ+i =
1
2
+ σN−ℓ+ir1 i = 1, . . . , ℓ

(5.29)

The 4d theory in the effective 3d picture splits accordingly:

USp(2N)2F w/2F fund. → USp(2N − 2ℓ)w/2F − 2hfund.× USp(2ℓ)w/2hfund.

(5.30)

Then, employing eq. (4.29), the index reduces to

Iel
4d ∼

r1→0
eΦ

el ′
1,2Z2F−2h

USp(2N−2ℓ)Z
2h
USp(2ℓ), (5.31)
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with

Φel ′

1, 2 =
iπ

12r1ω1ω2

(
(6ℓ(1− 2h+ ℓ)−N(3− 6h+ 2N))2ω + 6(N − 2ℓ)

2F∑
a=2F−2h+1

µa

)
(5.32)

The index of the electric theory can be written from the charges in Table 4 and,

defining Ñ = F −N − 2, it becomes

Imag
USp(2N) =

(p; p)Ñ∞(q; q)Ñ∞
2ÑÑ !

∏
1≤a<b≤F

Γe(∆a +∆b)

∫ Ñ∏
i=1

dui

∏
a,i Γe(±ui + r1ω −∆a)∏

i,j Γe(±ui ± uj)Γe(±2ui)
.

(5.33)

Reducing the theory on the configuration (5.29), splitting the flavors as in the electric

side and the gauge as Ñ −K and K, we get

Imag
4d ∼

r1→0
eΦ

mag ′
1,2 Ẑ2F−2h

USp(2Ñ−2K)
Ẑ2h

USp(2K), (5.34)

with

Φmag ′

1, 2 =
iπ

12r1ω1ω2

(
(6h2 − 6K(1 +K)− 6h(1 +N) +N(3 + 2N))2ω+

+ 6(2− 2h+ 2K +N)
2F∑

a=2F−2h+1

µa

)
(5.35)

and with the relation

Ẑ2Fi

USp(2Ni)
=

∏
1≤a<b≤Fi

Γh(µa + µb)Z2Fi

USp(2Ni)
(5.36)

Again we impose

Φmag ′

1, 2 − Φel ′

1, 2 =
iπ(h−K − ℓ− 1)

(
(h+K − ℓ)ω −

∑2F
a=2F−2h+1 µa

)
r1ω1ω2

!
= 0, (5.37)

we identify the matching between dual vacua K = h − ℓ − 1, for any ℓ = 1, . . . , N

and h = 1, . . . , F . For the extremal cases h = 0, F and ℓ = 0, N we get K = 0 and

K = F −N − 2 respectively.

The effective 3d duality on the partition function corresponds to the identity:

ZUSp(2(N−ℓ)))(µ
(1))ZUSp(2ℓ)(µ

(2)) =
∏

1≤a<b≤2F−2h

Γh(µ
(1)
a + µ

(1)
b )

∏
1≤a<b≤2h

Γh(µ
(2)
a + µ

(2)
b )

× ZUSp(2(F−h−N+ℓ−1))(ω − µ(1))ZUSp(2(h−ℓ−1))(ω − µ(2))
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(5.38)

with the balancing conditions (5.28). Again we have inserted back the explicit de-

pendence of the partition functions from the flavor fugacities and we have split the

fugacity vectors µ as (µ(1), µ(2)), corresponding to the split into 2F − 2h and 2h real

masses for the fundamentals.

The 3d limit is obtained by first applying locally the integral identity correspond-

ing to USp(2N) Aharony duality on the last integral on the RHS of (5.38). Such

identity corresponds in this setup to the relation

ZUSp(2(h−ℓ−1))(ω − µ(2)) = Γh

(
2ω(ℓ− h) +

2h∑
a=1

µ(2)
a

)
∏

1≤a<b≤2h

Γh(2ω − µ(2)
a − µ

(2)
b )ZUSp(2ℓ)(µ

(2)) (5.39)

Observe that plugging this relation into (5.38) corresponds in the field theory

approach to the local use of the pure 3d duality in the effective description. Then,

we can rearrange the contribution of the singlets in the first term on the RHS of

(5.39) using the balancing condition (5.28).

At this point the final step corresponds to get rid of the common integrals

ZUSp(2ℓ)(µ
(2)). This indeed corresponds to consider the pure 3d limit where the

physics at large distance in the Coulomb branch is effectively decoupled. The

monopoles of the electric theory acting as singlets in the dual model are not lift

by the limit and they appear in the final identity, that is

ZUSp(2(N−ℓ))(µ
(1)) = Γh

(
2ω(F − h−N + ℓ− 1)−

2F−2h∑
a=1

µ(1)
a

)
∏

1≤a<b≤2F−2h

Γh(µ
(1)
a + µ

(2)
b )ZUSp(2(F−h−N+ℓ−1))(ω − µ(1))

(5.40)

which holds without any balancing condition. This final identity is the partition

function realization of 3d Aharony duality, obtained here from the double scaling

limit of the identity between the supersymmetric indices of 4d Intriligator-Pouliot

duality.

6 Orthogonal case

In this section we study the reduction of the 4d duality for orthogonal gauge groups

with vectors originally studied in [41]. In this case the matter content does not break

completely the center of the gauge group and various dualities are possible when
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considering type B and D gauge algebras [42]. Here we will mostly focus on the

SO(N)+ case with F vectors, where the dual theory is SO(F −N +4)+ with F dual

vectors interacting with a symmetric meson. The 3d reduction of this theory from the

field theory side has been deeply investigated in [7]. The global properties here play

again a non-trivial role and various options are possible, involving O(N)±, Spin(N),

SO(N) and Pin(N) gauge groups. Such options are related to the possibility of

(combined) discrete gaugings with respect to the Z2 charge conjugation and the Z2

magnetic symmetry. Such gaugings have here dramatic consequences on the dualities

because the matter content itself can modified by such gaugings These possibilities

have been summarized in [7], generalizing the results of [27, 34, 43, 44], holding

for the O(N)+ case 8. Even if the identities matching the three sphere partition

functions have been obtained for the O(N)+ dualities they imply the same identities

for the other pure 3d dualities discussed in [7], because the only difference stays in the

volume of the gauge groups, that is at most modified by a factor of 2. In this section

our goal consists then of deriving such 3d identities from the double scaling limit

designed above, starting from the 4d identity for the duality of [41]. This last was

originally derived in [28] . For these reasons we will not specify the global properties

of the 4d theory and we will mostly refer to the 4d SO(N)+ duality.

The charges and field content for SO(2N + ε), ε = 0, 1 SQCD with F SU(F )

fundamental vectors are

SO(2N + ε) SU(F ) U(1)R

Q F−N+2
F

Table 5. Matter content and charges of orthogonal SQCD

We can write the index for SO(2N + ε) SQCD by using the charges in Table 5 as

Ielε =
(p; p)N∞(q; q)N∞
2N−(1−ε)N !

F∏
a=1

Γe(∆a)
ε

∫ N∏
i=1

dui

F∏
a=1

N∏
i=1

Γe(±ui +∆a)∏
1≤i<j≤N

Γe(±ui ± uj)
N∏
i=1

Γe(±ui)ε
, (6.1)

with balancing condition

F∑
a=1

∆a = r1ω(F − 2N − ε+ 2) (6.2)

In the magnetic phase the field content and the charges are

8See also [45] for a deep analysis of the global properties for such dualities in the confining limit.
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SO(F − 2N + 4− ε) SU(F ) U(1)R

q N−2
F

M 1 2F−N+2
F

Table 6. Matter content and charges of the magnetic orthogonal SQCD.

The parity of the magnetic theory depends on the parity of the electric gauge

group and the number of flavors, F ≡ 2f + εf , via the combination εm = εf − ε. We

can write the magnetic index by using the charges in Table 6 as

Imag
εm =

(p; p)Ñ∞(q; q)Ñ∞
2Ñ−(1−εm)Ñ !

∏
1≤a≤b≤F

Γe(∆a +∆b)
F∏

a=1

Γe(r1ω −∆a)
εm

∫ Ñ∏
i=1

dui

F∏
a=1

Ñ∏
i=1

Γe(±ui + r1ω −∆a)

∏
1≤i<j≤Ñ

Γe(±ui ± uj)
Ñ∏
i=1

Γe(±ui)εm
. (6.3)

We distinguish four cases depending on the parity of the electric and the magnetic

theory respectively:

SO(2N + ε) SO(2Ñ + |εm|) ε εf εm

DN DÑ 0 0 0
BN BÑ 1 0 −1
DN BÑ 0 1 1
BN DÑ 1 1 0

Table 7. Electric and magnetic gauge groups for even and odd flavors εf = 0, 1. The
gauge groups are schematically labeled with the name of the Dynkin diagram they belong
to: DN → SO(2N) and BN → SO(2N + 1).

Turning on a background for the real masses, we expand the theory around a

vacuum configuration defined by two packages of holonomies, one at the origin of the

Coulomb branch and one at the mirror point on the circle respectively. The original

theory is split accordingly into a product of gauge theories, with breaking pattern

SO(2N + ε)w/F vec. → SO(2N + ε− 2ℓ)w/F − 2h vec.× SO(2ℓ)w/ 2h vec.,

(6.4)

labeled by two integers ℓ = 1, . . . , N and h = 1, . . . , ⌊F
2
⌋, parametrizing the configu-

ration of holonomies and background for the real masses as
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∆2a =

1
2
+ µar1 a = 1, . . . , h

∆2a−1 = −1
2
+ µar1 a = 1, . . . , h

∆a = µar1 a = 1, . . . , F − 2h{
ui =

1
2
+ σir1 i = 1, . . . , ℓ

ui = σir1 i = 1, . . . , F − 2h.
(6.5)

Notice that only for even F = 2h the effective 3d theory at the origin of the circle

can be completely lifted. As we will discuss in Section 7, this case corresponds to

a different duality, where the monopole superpotential proportional to Y 2 is turned

on. Reducing the electric index on the configuration described in (6.5), we get

Iel
ε ∼

r1→0
eΦ

el ′
1,2Z2f+εf−2h

SO(2N+ε−2ℓ)Z
2h
SO(2ℓ), (6.6)

with the interactions between the two partition functions constrained by the balanc-

ing conditions
F∑

a=1

µa = ω(F − 2N − ε+ 2). (6.7)

Similarly, reducing the magnetic index on the background defined in (6.5) with h

flavors and K holonomies at 1/2, we get

Imag
εm ∼

r1→0
eΦ

mag ′
1,2 Ẑ2f+εf−2h

SO(2f−2N+4−εm−2kl)Ẑ
2h
SO(2K). (6.8)

Matching the dual vacua requires tuning K so that Φmag ′

1,2 −Φel ′
1,2 = 0. The difference

can be written in a unique way for the four cases listed in Table 7:

iπ(h−K − ℓ− 1)
(
(2h+ 2K − 2ℓ+ εm)2ω − 4

∑F
a=F−2h µa

)
4r1ω1ω2

!
= 0 (6.9)

The effective 3d duality on the partition function corresponds to the identity:

ZSO(2N+ϵ−2ℓ)(µ
(1))ZSO(2ℓ)(µ

(2)) =
∏

1≤a≤b≤F−2h

Γh(µ
(a)
1 + µ

(b)
1 )

∏
1≤a≤b≤2h

Γh(µ
(a)
2 + µ

(b)
2 )

× ZSO(F−2h−2N+2ℓ−ε+2)(ω − µ(1))ZSO(2h−2ℓ+2)(ω − µ(2))

(6.10)

with the balancing condition (6.7). Again we have inserted back the explicit de-

pendence of the partition functions from the flavor fugacities and we have split the

fugacity vectors µ as (µ(1), µ(2)), corresponding to the split into F − 2h and 2h real
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masses for the vectors.

The 3d limit is obtained by first applying locally the integral identity correspond-

ing to the pure 3d duality for orthogonal gauge theories. It can be read from [27] by

readapting it to our setup and it is

ZSO(2h−2ℓ+2)(ω − µ(2)) = Γh

(
2ω(ℓ− h) +

2h∑
a=1

µ(2)
a

)
∏

1≤a≤b≤2h

Γh(2ω − µ(2)
a − µ

(2)
b )ZSO(2ℓ)(µ

(2)) (6.11)

Plugging this identity on the RHS of (6.10) and using (6.7) in the argument of the

two singlets in the first line of (6.11) we obtain

ZSO(2N−2ℓ+ϵ)(µ
(1)) = Γh

(
ω(F − 2h− 2N + 2ℓ− ε+ 2)−

F−2h∑
a=1

µ(1)
a

)
∏

1≤a≤b≤F−2h

Γh(µ
(1)
a + µ(1)

a )ZSO(F−2h−2N+2ℓ−ε+2)(ω − µ(1))

(6.12)

The final step has been obtained after getting rid of the common integrals ZSO(2ℓ)(µ
(2)).

This indeed corresponds to consider the pure 3d limit where the physics at large dis-

tance in the Coulomb branch is effectively decoupled. The monopoles of the electric

theory acting as singlets in the dual model are not lift by the limit and they appear

in the final identity, which holds without any balancing condition. This final identity

is the partition function realization of 3d duality for orthogonal SQCD, matching

with the results of [27], obtained here from the double scaling limit of the identity

between the supersymmetric indices of SO(N) 4d duality.

7 3d SO(2N) SQCD and W = Y 2

We conclude our analysis by reproducing a duality that was proposed in [14] from the

application of the duplication formula to the USp(2N) case in presence of monopole

superpotential. The final duality relates SO(N) and SO(F −N + 2) SQCD with F

vectors and a monopole superpotential W ∝ Y 2 in both the electric and magnetic

case. There are various possible variants of such duality involving the gauging of

ZC,M
2 and in some case we need to consider YSpin instead of Y 2. We will omit such

discussion here and concentrate to the SO(N) case.

The duality can be derived by exploiting our procedure if we considerN = 2n and

F = 2f as follows. We start from 4d and fix a background for the flavor symmetry

where all the flavor fugacity are set at 1/2r1. The gauge holonomies of both the dual
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phases are at 1/2r1 as well, we can verify that this is a vacuum only if there is an

even number of vectors.

We have two possibilities: either the electric and the magnetic orthogonal gauge

groups are both even or they are both odd in 4d. In the first case the flavor back-

ground at 1/2r1 gives the same result as considering it at the origin. There is a

KK monopole superpotential We ∝ ηZ and Wm ∝ η̃Z̃ in both the electric and the

magnetic phase, the Y direction of the Coulomb branch is unlifted and we do not

obtain any non-trivial identity by reducing the index to the partition function in the

two phases.

The situation is more interesting in the case of an odd number of colors. In such

a case we have a 4d duality between SO(2n+1) and SO(2f−2n+3) SQCD both with

2f vectors in 4d while we arrive at a duality between SO(2n) and SO(2f − 2n + 2)

SQCD both with 2f vectors on S1. The interesting aspect of this duality regards the

monopole superpotential that corresponds to We ∝ Y 2 and Wm ∝ Ỹ 2.

The relation between the 4d indices in this case gives a well-defined identity for

this duality that is

ZSO(2n)(µ) =
∏

1≤a≤b≤2f

Γh(µ
(a) + µ(b))ZSO(2f−2n+2)(ω − µ)

(7.1)

with the balancing condition

2f∑
a=1

µa = 2ω(f − n+ 1) (7.2)

where this constraint, following from the cancellation of the axial anomaly in 4d,

is imposed in 3d by the Y 2 monopole in the effective superpotential when consid-

ering a finite radius r1 for S1. The identity (7.1) corresponds to the one proven in

[14] with the help of the duplication formula and here we have shown that for this

specific choice of gauge ranks this effective duality can be proven from the circle

compactification in presence of non-trivial flavor holonomies.

8 Conclusions

In this paper we studied the 4d/3d reduction of N = 1 supersymmetric gauge the-

ories by modifying the prescription of [2] such to allow a double scaling limit by

considering a small limit of the radius of the S1 together with some large real mass.

The prescription given here restricts the scaling of such masses as the inverse radius,

with a proportionality factor setting them to a special point of the circle, i.e. the

point mirroring the origin of the circle. Such point is somehow special, as already
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observed in [2] (see also [23] for a geometric interpretation in terms of the Hanany-

Witten setup) because it is often associated to a gauge symmetry enhancement. Here

we have observed that many simplifications occur at such point both from the field

theory perspective and from the reduction of the 4d supersymmetric index to the

3d S3 partition function. This last aspects was actually the main motivation behind

our analysis. Indeed, as discussed in [7] the prescription of [2] applied to the SQCD

duality with orthogonal gauge groups cannot be applied to the localization setup,

because the effective description on the circle did not give rise to a finite result for

the S3 partition functions on both sides of the duality. It was then impossible to

recover the expected integral identity for the orthogonal version of Aharony dual-

ity, originally worked out in [27]. The double scaling considered here circumvents

the problem because it removes the divergences in the effective description. This is

possible because the presence of some large real mass in the small radius limit re-

quires also a different scaling for some of the gauge holonomies. This removes some

flat directions in the Coulomb branch and, once the prescription is translated in the

language of localization, it has the net effect of removing the divergencies in the S3

partition function. In order to corroborate the result we studied also the case of uni-

tary and symplectic SQCD, where our results are consistent with the literature. We

concluded our analysis with the case of orthogonal gauge theories where all the gauge

holonomies are forced to be at the mirror point. In this case we recover a duality

already proposed in the literature, either with a quadratic fundamental monopole

superpotential for a SO(2n)gauge group or with a YSpin monopole superpotential for

a Spin(2n) gauge group.

There are many open questions and possible lines of investigations that we left

to future analysis.

First, an interesting follow up of our analysis consists of studying type A and

D superpotentials for orthogonal gauge theories, reducing the dualities of [46–48]

and [49, 50] respectively. Such cases can give origin to more intricate structure of

monopole superpotential and to web of dualities. While we are planning to be back

to this problem in the future we have already verified that our procedure applied to

such cases is consistent with the results of [23] obtained from the brane setup, in the

case of type A superpotential.

Another interesting aspect that we did not investigate is associated to the analy-

sis of section 7. Indeed, the duality with the quadratic monopole superpotential pro-

posed there was already discussed in [15] following from the brane setup. Such case

regarded an affine compactification of a 4d duality involving SQCD with so(2n+ 1)

algebra. While the affine compactification of so(2n) and of usp(2n) do not give rise

to any new duality when considering the holonomies at the mirror point on the cir-

cle, this case is special because a new duality emerges. This is due, from the brane

picture perspective, to the fate of the O4 plane under T-duality. On the other hand

other possible compactifications are possible, by allowing a further twist by an outer
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automorphism of the gauge algebra. Such twisted affine compactifications have been

investigated from the brane perspective in [15] and it should be interesting to study

them following the prescription proposed here.

As we stressed above we did not study other possible large real mass scalings with

respect to the small radius of the circle. In general this possibility is expected to give

origin to 3d dualities with special unitary or unitary gauge groups and non-trivial

monopole superpotentials of the type proposed in [13–15]. It would be interesting

to derive these results along the lines of the 4d/3d reduction in presence of a double

scaling on the real masses.
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