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Abstract: The tetranuclear iron(III) compounds [Fe4(µ3-O)2(µ-LZ)4] (1–3) were obtained by reaction
of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N′-bis(salicylidene)-o-Z-
phenylmethanediamine H2LZ (Z = NO2, Cl and OMe, respectively), where the one-carbon bridge
between the two iminic nitrogen donor atoms guide preferentially to the formation of oligonuclear
species, and the ortho position of the substituent Z on the central phenyl ring selectively drives towards
Fe4 bis-oxido clusters. All compounds show a flat almost-symmetric butterfly-like conformation
of the {Fe4(µ3-O)2} core, surrounded by the four Schiff base ligands, as depicted by both the X-
ray molecular structures of 1 and 2 and the optimized geometries of all derivatives as obtained
by UM06/6-311G(d) DFT calculations. The strength of the antiferromagnetic exchange coupling
constants between the iron(III) ions varies among the three derivatives, despite their magnetic cores
remain structurally almost unvaried, as well as the coordination of the metal ions, with a distorted
octahedral environment for the two-body iron ions, Feb, and a pentacoordination with trigonal
bipyramidal geometry for the two-wing iron ions, Few. The different magnetic behavior within the
series of examined compounds may be ascribed to the influence of the electronic features of Z on
the electron density distribution (EDD) of the central {Fe4(µ3-O)2} core, substantiated by a Quantum
Theory of Atoms In Molecules (QTAIM) topological analysis of the EDD, as obtained by UM06
calculations 1–3.

Keywords: tetradentate ligands; Schiff bases; oligonuclear complexes; X-ray structures; magnetic
properties; DFT calculations; halogen bond

1. Introduction

The need for miniaturized devices for technological applications is driving scientific
research into the replacing of existing materials with molecular species of nanometer
sizes [1–4]. Polynuclear compounds of transition metal ions are very promising materials
for this purpose because of their tunable electronic and magnetic properties [5–8], achieved
through the modulation of the magnetic exchange interactions. In the search for this
variability, until a few years ago, the serendipitous assembly approach led to a huge
increase in the amount of synthesized polynuclear complexes with different bridging
ligands [9], but a rational approach is most desirable, with precise control of the obtained
compounds and their properties by the modification of the ligands [10] and the synthetic
conditions [11–13].
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Schiff bases are well-known ligands that have been used for decades in the synthesis
of metal complexes for applications in different fields, such as catalysis [14], new materials
and optics [15–17]. From the most famous N2O2 tetradentate Schiff base H2salen, formed
by the condensation of salicylaldehyde (salH) with ethylenediamine (en) [18–20], new
functionalized families of structurally modified molecules have been designed for the
purpose of obtaining new polynuclear complexes with desired structural features and
functionalities [21–23]. In particular, the substitution of en with the shorter methylenedi-
amine in condensation with salH yields ligands (called H2salben’s when the methylene
bridge between the two nitrogen atoms carries a phenyl ring) that preferentially produce
oligonuclear compounds by complexation [24–27].

Based on our previous experience in working with Schiff bases and the preferred
isolation of oligonuclear metal clusters [8,24–31], in this work, we decided to exploit the
metal complexation ability toward iron(III) of three H2sal(o-Z)ben derivatives bearing a
substituent Z in the ortho position of the central phenyl ring (N,N’-bis(salicylidene)-o-Z-
phenylmethanediamine) [24,32] (abbreviated as H2LZ in this paper) with Z going from NO2
to Cl and OMe (Scheme 1). The tetranuclear iron(III) compounds [Fe4(µ3-O)2(µ-LZ)4] (1–3,
with Z = NO2, Cl, OMe, respectively, see Scheme 1) could be selectively obtained by reaction
with FeCl3 in contrast with the formation of dinuclear species [Fe2((µ-OMe)2(µ-sal(p-
Y)ben)2] when ligands with substituents Y in para position or absent were employed [27].
Here, we report the synthesis and the structural and magnetic characterization of these
complexes, revealing the modulation of Z on the exchange coupling constants between the
iron ions within the three derivatives. The topological analysis of the computed electron
density distribution (EDD) of 1–3 will help to discuss the electronic effect of Z.
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Scheme 1. Synthetic scheme of 1–3 (Z = NO2, Cl, OMe, respectively) and drawing of the arrangement
of the Schiff base ligands around the {Fe4(µ3-O)2} butterfly core (sal moieties are sketched as ∩ for
clarity; iron ions are divided into those of two body, Feb, and two wing, Few, ions, as applicable in
butterfly-like Fe4 clusters).

2. Results and Discussion
2.1. Synthesis and X-ray Crystal Structures

The reaction of H2LZ with FeCl3 in non-anhydrous MeOH or MeCN in the presence
of NEt3 as a base gave the tetranuclear complexes 1–3 good yields (see Scheme 1), with the
best ones in MeOH. The polynucleation ability of the salben ligands due to the one-carbon
bridge between the two iminic nitrogen atoms is clearly confirmed here [24–27]. There
is also the control on the nature of the oligonuclear compound upon substituent shift,
since the dinuclear species [Fe2((µ-OMe)2(µ-sal(p-Y)ben)2] are isolated when ligands with
substituents Y in para position or absent were employed [27]. The tetranuclear nature
of 1–3 is proven by the ESI+ mass spectra with the [M+Na]+ and [M+1]+ peaks and the
fragmentation of the [Fe3(O)(LZ)3]+ ions (see Experimental Section). Furthermore, single
crystals suitable for the X-ray structure determination of 1·1.5iPr2O and 2·2iPr2O were
obtained, and the crystal structures could be refined.

The asymmetric unit of 1·1.5iPr2O contains two independent clusters [Fe4(µ3-O)2(µ-
LNO2)4], A and B, structurally very similar (see Figure S1 for molecule A and an overlap
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of A and B in Figure S2a in Supplementary Materials), and three iPr2O solvent molecules,
clathrated in the lattice voids. For 2·2iPr2O, in contrast, only one independent molecule of
[Fe4(µ3-O)2(µ-LCl)4] and two iPr2O molecules are present in the asymmetric unit (Figure 1).
Both molecules of 1 and 2 show four iron(III) ions linked together by two triply-bridging
oxido anions, giving the {Fe4(µ3-O)2} core. The four dianionic tetradentate ligands sal(o-
Z)ben2– surround the core, bridging two iron ions each, as shown in Scheme 1 and Figure 1
and Figure S1 in Supplementary Materials.
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Figure 1. (a) Molecular structure of [Fe4(µ3-O)2(µ-LCl)4] (2) (Fe = dark green, O = red, N = blue,
Cl = light green, C = grey; hydrogen atoms omitted for clarity). Fe1 and Fe4 are the Few ions, while
Fe2 and Fe3 are the Feb ions. (b) View of the tetranuclear cluster 2 almost along the Fe4O2 plane,
highlighting the flat core.

In such clusters, the {Fe4(µ3-O)2} core adopts a so-called butterfly-like conformation
where the iron(III) ions are usually divided into two ‘body’, Feb (Fe2, Fe3), and two ‘wing’,
Few (Fe1, Fe4), metal ions [33]. In this butterfly-like conformation, the Fe2–Fe3 fragment
features the body of the butterfly, and the Fe1Fe2Fe3 and Fe2Fe3Fe4 triangles schematize
the wings, with the Fe1 and Fe4 occupying the tip positions. The Fe4O2 moieties are
essentially planar, with maximum displacements from the least square (l.s.) planes of only
0.082 (Fe4A) and 0.064 Å (Fe4B) for 1, and 0.027 Å (O17) for 2 (see Figure 1 and Figure S1
in Supplementary Materials). Another proof of the planarity of the metal cores can be
detected through the dihedral angles between the l.s. planes defined by the two wings,
which are 176.9 and 176.2◦ (molecules A and B, respectively) in 1 and 179.1◦ in 2, very
close to the ideal value of 180◦. There are few other cases that have been reported in which
the two wings lie in the same plane [34–37], but they are usually associated with higher
displacement values of the oxido ions from the Fe3 planes, which is not the case here.

The µ3-O bridges in 1 are asymmetric: the Few–O distances (average 1.790 Å) are
shorter than the Feb–O ones (average 1.960 Å). Similar asymmetry is also present in 2, with
a short Few–O average distance of 1.802 Å and a long Feb–O average distance of 1.945 Å
(see Table S1 in Supplementary Materials). This feature is in line with values reported
in the literature for butterfly-like Fe4O2 clusters [33], in which the Few–O distances of
our compounds are among the shortest observed. The µ3-O bridge asymmetry is evident
also by analyzing the Fe–O–Fe angles, ranging from 130.0(3)◦ to 133.2(3)◦ in 1 and from
127.81(6)◦ to 132.71(6)◦ in 2 for Few–O–Feb, while the values are much smaller for Feb–
O–Feb (from 96.7(2)◦ to 97.2(2)◦ in 1 and 99.31(5)◦ and 99.64(6)◦ in 2 (see Table S1 in
Supplementary Materials for all values). The opening of the Feb–O–Feb angles in 2 leads to
a slightly longer Feb···Feb distance (2.9683(4) Å) compared to 1 (2.929(2) and 2.937(2) Å)
and to an asymmetry in the Few position that brings Fe1 and Fe4 closer to Fe3, compared
to Fe2 in 2 (Fe1···Fe2 = 3.4241(4) Å, Fe1···Fe3 = 3.3738(5) Å, and Fe4···Fe2 = 3.4211(5) Å,
Fe4···Fe3 = 3.3737(4) Å), while all the Few···Feb distances range around 3.41 Å in 1.

Considering the metal coordination, the two Few ions have a trigonal bipyramidal
(tb) coordination (see Figure 1 and Figure S1 in Supplementary Materials), while usually
they show an octahedral (oh) geometry [33–51]; this feature can be ascribed to the ‘strain’
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induced by the Schiff base ligands. Considering the trigonal plane formed by the three
oxygen atoms coordinated to Few, the tb polyhedra are rotated on average by 70◦ (1) and
84◦ (2) with respect to each other and by about 55◦ (1) and 48◦ (2) with respect to the Fe4O2
l.s. plane. The two Feb ions have instead quite a distorted octahedral coordination, still due
to the ‘strained’ surrounding ligands (see Table S1 in Supplementary Materials).

The asymmetry in the wing iron ion positions and the different rotation of the tb
polyhedra can probably be explained by crystal packing and/or the steric and electronic
effects of the Z substituents. In particular, the arrangement of the four sal(o-Cl)ben2– ligands
around the {Fe4(µ3-O)2} core in 2 is noteworthy, where each of the chlorine atoms points
towards the center of the adjacent phenyl ring, giving rise to a C–Cl···π halogen bond [52]
(average distance of Cl from the l.s. plane through the phenyl ring = 3.66 Å, see Figure 1),
due to the interaction between the positive region of the electrostatic potential on the
halogen along the extension of the C–Cl bond with the π system of the phenyl ring [53–55].
On the other hand, the nitro group in 1 is unable to produce a stabilizing interaction with
the π system of the adjacent phenyl ring, determining a more irregular arrangement of
the four sal(o-NO2)ben2– ligands with respect to the {Fe4(µ3-O)2} core (see Figure S1 in
Supplementary Materials). This feature also leads to slightly different conformations of the
surrounding ligands, mainly affecting the central phenyl ring carrying the substituent Z, as
is clearly perceivable by superimposing the two structures (see Figure S2b in Supplementary
Materials for the overlap of 1A and 2).

The Fe–O bonds involving the phenoxido oxygen atoms of the Schiff base ligands are
in the range 1.865(5)–1.964(5) Å for 1 and 1.8660(12)–1.9698(13) Å for 2, with usually shorter
distances when the wing Fe1 and Fe4 ions are involved. Fe–N bonds are longer than Fe–O
ones, ranging from 2.160(6) to 2.234(6) Å in 1 and from 2.1509(15) to 2.2730(13) Å in 2, but
they show the same trend with respect to Few and Feb. It is instead hard to discern a direct
effect of the substituent Z on the coordination distances.

2.2. Optimized Geometries

Aimed at confirming the stability of 3 and ascertaining the influence of Z, if any, on the
coordination distances of the iron ions, UM06/6-311G(d) calculations were performed on
1–3. Selected distances are reported in Table 1 in direct comparison with the corresponding
experimental ones. The resulting optimized structures are essentially symmetric, unlike the
experimental ones, which show a slight degree of asymmetry as described above, probably
due to crystal packing effects. The comparison of the Few–O and Feb–O computed distances
with the corresponding experimental average values in 1 and 2 indicates an overall good
agreement, with just a little overestimate for the former (1.818 and 1.825 Å vs. 1.790(5) and
1.802(11) Å, respectively) and a better correspondence for the latter (1.951 and 1.947 Å vs.
1.960(5) and 1.945(11) Å, respectively (see Figure S2c,d in Supplementary Materials for an
overlap of the optimized and experimental structures).

The computed structures evidence a minor influence of the Z groups on the coordina-
tion bond lengths of the central {Fe4(µ3-O)2} cores by comparing the corresponding bond
lengths in 1, 2 and 3, with the Few–O and Feb–O distances slightly increasing (1.818, 1.825,
1.829 Å) and decreasing (1.951, 1.947, 1.944 Å), respectively, going from Z = NO2 to Cl and
then to OMe. The remaining Fe–O distances do not show significant variations along the
same series (Few–O is essentially unvaried, Feb–O slightly increases from 1.956 to 1.960 and
1.967 Å), while more significant, though still small, variations are observed in the Fe–N
distances, which decrease for both Few (2.170, 2.157, 2.150 Å) and Feb (2.225, 2.224, 2.211 Å)
ions when going from 1 to 3. The geometry of the {Fe4(µ3-O)2} core is only slightly different
in the three complexes, with a lengthening of the Few···Few distance up to 0.028 Å and
shortening of the Feb···Feb one equal to 0.023 Å going from the electron-withdrawing NO2
group to the electron-donating OMe group. As already evidenced in previous studies on
copper(II) complexes of salen analogues with push–pull structures [15], NO2 exerts the
strongest electronic effect on the coordination geometry with respect to OMe.
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Table 1. Selected experimental (first row, if available) and UM06/6-311G(d) computed (second row,
figures in italics) distances (Å) for 1, 2 and 3 1,2.

1·1.5iPr2O 3 2·2iPr2O 3

Fe1–O17 1.784(5), 1.783(5) 1.7994(11) –
1.818 1.825 1.829

Fe4–O18 1.797(5), 1.789(5) 1.8040(11) –
1.818 1.825 1.829

Fe2–O17 1.948(5), 1.979(5) 1.9380(12) –
1.951 1.947 1.944

Fe2–O18 1.967(5), 1.964(5) 1.9461(11) –
1.951 1.946 1.944

Fe3–O17 1.970(5), 1.948(5) 1.9567(11) –
1.951 1.946 1.944

Fe3–O18 1.939(5), 1.967(5) 1.9389(12) –
1.951 1.947 1.944

Fe1–O1 1.865(5), 1.865(5) 1.9021(13) –
1.892 1.891 1.891

Fe1–O5 1.925(5), 1.925(5) 1.8662(12) –
1.892 1.889 1.891

Fe1–N1 2.160(6), 2.165(7) 2.1636(11) –
2.170 2.158 2.150

Fe1–N4 2.193(6), 2.171(6) 2.1930(15) –
2.170 2.157 2.150

Fe2–O4 1.964(5), 1.924(5) 1.9698(13) –
1.956 1.960 1.967

Fe2–O13 1.954(5), 1.915(6) 1.9319(11) –
1.956 1.959 1.967

Fe2–N3 2.211(6), 2.198(7) 2.2609(12) –
2.225 2.224 2.211

Fe2–N10 2.207(7), 2.233(6) 2.2729(13) –
2.224 2.224 2.211

Fe1···Fe2 3.426(2), 3.427(2) 3.4241(4) –
3.419 3.424 3.427

Fe1···Fe3 3.402(2), 3.406(2) 3.3738(5) –
3.419 3.426 3.427

Fe4···Fe2 3.413(2), 3.415(2) 3.4210(5) –
3.419 3.426 3.427

Fe4···Fe3 3.420(2), 3.428(2) 3.3736(4) –
3.419 3.424 3.427

Fe1···Fe4 6.168(2), 6.172(2) 6.1128(7) –
6.155 6.174 6.183

Fe2···Fe3 2.929(2), 2.937(2) 2.9683(4) –
2.980 2.965 2.957

1 O17 and O18 are the triply bridging oxido ions; 2 Fe1 and Fe4 are Few, while Fe2 and Fe3 are Feb; 3 the double
experimental values are referred to molecules A and B, respectively.

It is worth noting that the calculations correctly reproduce the Cl···π interaction
observed in the crystal structure, providing Cl distances from the ring centroids equal
to 3.668 and 3.660 Å. This agreement can be ascribed to the ability of the M06 functional
to describe weak dispersion-dominated interactions, unlike the B3LYP functional, which
has been shown to be unable to model the C–X···π halogen bond [53–55]. According to
previous CCSD(T) calculations at the complete basis set limit on model systems constituted
by benzene and DCl dimers (D = H, HCC, F and NC) in a T-shaped configuration [54], the
energy associated with this interaction ranges from –1.43 to –3.38 kcal mol–1 at the respective
equilibrium distances (from 3.45 to 3.25 Å), according to the electron-withdrawing ability of
the D group. It is then expected that the C–Cl···π interaction in 2, while present, is however
quite weak, owing to the observed large Cl···π distance and the non-optimal T-shaped
arrangement of the interacting species.
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By analyzing the conformation of the ligands in the optimized geometries of 1–3
(see Figure S2e in Supplementary Materials), it is apparent the different orientation of the
central phenyl ring carries the substituent Z, similar to the experimental structures, while
the cores and the coordination environments of the four iron ions are almost superimposed.
Moreover, the computed reciprocal rotations of the two tb polyhedra with respect to each
other (78.5, 81.1 and 83.5◦ for 1, 2 and 3, respectively) and with respect to the Fe4O2 plane
(50.8, 49.5 and 48.3◦ for 1, 2 and 3, respectively) show a lower variability with respect to the
X-ray crystal structures but follow the same experimental trend. This indicates that, besides
crystal packing effects, the intrinsic electronic and steric effects induced by Z are also
responsible for the observed conformational differences between 1 and 2 in the solid state.

2.3. Magnetic Properties

The magnetic susceptibility of 1–3 was measured between 5 and 300 K. The product
χMT (χM is the molar susceptibility referred to an Fe4 unit) of 1 (Figure 2a) is 16.5 ± 0.3 emu
K mol–1 Oe–1 at 300 K, which is slightly lower than that for four uncoupled iron(III) ions
(17.5 emu K mol–1 Oe–1, g = 2.00). On cooling, χMT of 1 decreases slowly down to 50 K and
more rapidly at lower temperature up until it reaches the value 1.55 ± 0.03 emu K mol–1

Oe–1 at 5 K. Such behavior suggests that the iron(III) ions are antiferromagnetically coupled
and that the coupling is weak.
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Figure 2. Temperature dependence of the χMT product of (a) 1, (b) 2 and (c) 3 (χM is the molar
susceptibility referred to an Fe4 unit). Top panels: experimental data (circles) and best-fit curves
(solid line) based on the simplified butterfly Hamiltonian Equation (1). Bottom panels: constant ssr
contours from ∆ssr = 1 (indigo inner curve) to ∆ssr = 10 (brown outer curve); the red dot marks the
best-fit point.

The product χMT of 2 and 3 (Figure 2b,c) at 300 K is 6.04 ± 0.02 and 10.0 ± 0.2 emu K
mol–1 Oe–1, respectively, which is much lower than that of four uncoupled Fe3+ ions. For
both 2 and 3, χMT decreases upon cooling but, differently from 1, the decrease is much less
curved between 300 and 5 K. Such results suggest that the antiferromagnetic interactions
between the iron ions are stronger in 2 and 3 than in 1, a conclusion seemingly contrasting
with the larger χMT values at low temperature (2.00 ± 0.01 and 2.91 ± 0.06 emu K mol–1

Oe–1 at 5 K for 2 and 3, respectively).
Several super-exchange pathways magnetically connect the wing and body iron ions

of the planar {Fe4(µ3-O)2} core in 1–3 (see Scheme 2). Thanks to the symmetry of the
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cores, all wing–wing super-exchange interactions can be considered equal, and the same
assumption can be made for wing–body and body–body interactions. Besides, any magnetic
communication through the Schiff base ligands can be neglected because of the longer
exchange pathway. Within these approximations, the spin system of 1–3 can be modelled
as a butterfly spin system [56] where the exchange couplings are fully determined by the
three coupling constants Jbb (body–body), Jwb (wing–body), and Jww (wing–wing). In
complexes 1–3, the wing–wing exchange can be neglected with respect to the wing–body
and body–body interactions because of the longer exchange pathway. By this further
assumption, we can set Jww = 0 and obtain a simplified butterfly spin system described by
the Hamiltonian:

Ĥ = -2Jbb Ŝb1·Ŝb2 − 2Jwb (Ŝw1·Ŝb1 + Ŝw1·Ŝb2 + Ŝw2·Ŝb1 + Ŝw2·Ŝb2) (1)
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Scheme 2. Magnetic exchange pathways in the simplified butterfly Fe4 spin system considered
during the fitting of the experimental data (Jww = 0, see text).

This Hamiltonian can be treated by the Kambe vector coupling method [57], and the
energy of the spin states can be expressed as

E(|Sbb, Sww, S〉) = -Jbb [Sbb(Sbb + 1) − 35/2] − Jwb [S(S + 1) − Sbb(Sbb + 1) − Sww(Sww + 1)] (2)

where the spin state |Sbb, Sww, S〉 is labelled as to the two intermediate (Ŝbb = Ŝb1 + Ŝb2
and Ŝww = Ŝw1 + Ŝw2) and the total (Ŝ = Ŝbb + Ŝww) spin operators. Molar susceptibility
χM was calculated by inserting these spin state energies into the Van Vleck equation [56]
and was then fitted to the experimental susceptibility data by varying Jbb and Jwb. In
all cases, the g-value was fixed to 2.00, as appropriate for high spin iron(III). This model
could be successfully applied to the experimental data of 1–3 (Figure 2), confirming the
starting assumptions.

Before discussing the best-fit results, we need to examine their reliability since the
Jbb values obtained from the magnetic susceptibility data of butterfly-like {Fe4(µ3-O)2}
complexes can be largely under-determined [37,43]. This occurs because at low temperature,
only |5,5,S〉 states are significantly populated, which differ in energy by

∆E(S′, S) = −Jwb [S′(S′ + 1) − S(S + 1)] (3)

Thus, a change in Jbb does not affect the energy of the low-lying states and, hence,
the magnetic susceptibility χM is scarcely sensitive to Jbb [35]. To analyze the confidence
level of the best-fit parameters, we computed the sum of squared weighted residuals (ssr)
for a region of the (Jbb, Jwb) plane about the best-fit values and found the constant-value
contours of the difference ∆ssr = ssr− ssrmin, i. e., the deviation from the minimum (best-fit)
ssr (see Figure 2). The ∆ssr contours show a well-defined minimum in the (Jbb, Jwb) plane,
proving that the best fit Jbb and Jwb values are reliable. Realistic estimates of the parameter
errors could be obtained by projecting the appropriate constant ∆ssr contours on the Jbb
and Jwb axes [58], and they are reported in Table 2. Both Jbb and Jwb were statistically
significant for all the three complexes. The reason for this reliability lies in the peculiar spin
level structure of 1–3 that we describe below.
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Table 2. Best-fit parameters Jbb and Jwb (cm–1), Jbb/Jwb ratio, and spin ground state for 1–3 obtained
by fitting the butterfly model to the experimental χMT data.

1 (NO2) 2 (Cl) 1 3 (OMe)

Jbb (cm–1) –0.94 ± 0.06 –41.7 ± 0.2 –14.0 ± 0.3
Jwb (cm–1) –1.20 ± 0.02 –25.2 ± 0.1 –8.2 ± 0.1

Jbb/Jwb 0.79 ± 0.05 1.66 ± 0.01 1.71 ± 0.04
Ground state |5,5,0〉 |3,5,2〉 |3,5,2〉

1 Model augmented with intermolecular exchange, zj = –1.05 ± 0.04 cm–1 [59].

Both Jwb and Jbb of 1 are weaker than any tetranuclear iron butterfly complex collected
in the literature [33], where Jwb ranges from –91.0 to –37.2 cm–1, and Jbb ranges from –21.8
to –1.2 cm–1. Furthermore, Jwb and Jbb show comparable strength (see Table 2). The Jbb/Jwb
ratio of 1 is much larger than that of the reported butterfly {Fe4(µ3-O)2} complexes (Jbb/Jwb
ranging from 0.031 to 0.265) [33], with a single exception (Jbb/Jwb = 1.48) [35]. The ground
state of 1 is the |5,5,0〉 singlet state, where the body–body antiferromagnetic interaction is
completely frustrated [43]. The energy separation between spin states is small, and many of
them are populated even at 5 K (see Figure S3 in Supplementary Materials), including states
with Sbb < 5, because of the weakness of both coupling constants. Thus, χM significantly
depends on Jbb through the energy difference between such states and the |5,5,0〉 ground
state (cfr. Equation (3)). That is the reason why Jbb could be reliably determined from the
susceptibility data of 1 [35].

The Jbb and Jwb of both 2 and 3 are in line with previously reported values [33]
when separately considered, but the body–body exchange interaction is unusually strong
compared to the wing–body interaction. Therefore, the body–body exchange interaction
is not completely frustrated, resulting in the |3,5,2〉 ground state and the |4,5,1〉 and
|2,5,3〉 lowest excited states. Thus, the spin states with unequal Sbb are populated even at
low temperature, again ensuring a reliable determination of Jbb. The Jbb/Jwb ratio (ca. 1.7
for both 2 and 3) is the highest obtained, and 2 and 3 are among the very few examples
of compounds with a {Fe4(µ3-O)2} core possessing a non-singlet ground state (quintet
S = 2), in addition to the reported complex with Jbb/Jwb > 1 and S = 1 [35]. Different spin
ground states can be instead stabilized for Mn4O2 clusters possessing a butterfly core
structure [60,61].

It is not then apparent that a magneto–structural correlation [62] exists between the
exchange coupling constants and spin state structure displayed by 1–3 and the structural
features of their {Fe4(µ3-O)2} cores. The pentacoordination of Few for sure introduces a
novelty that affects the coupling constants Jbb and Jwb and the spin ground state, but this
cannot be the discriminating factor, since all derivatives show this feature. The different
orientation of the tb polyhedra with respect to the Fe4O2 plane between 1 on one side
and 2 and 3 on the other side should not in principle affect the super-exchange magnetic
communication path since it mainly depends on Fe–O distances and angles. The latter in
any case show a certain non-negligible degree of variability among the three complexes,
even if small, that alter the magnetic core. Furthermore, the presence of Cl···π interactions
in 2 might further modulate its magnetic features.

2.4. Effect of the Substituents and QTAIM Analysis

The main differentiating element in 1–3 is for sure the substituent Z on the surround-
ing ligands, which displays a different electron demand, as shown by the Hammett-
like σortho constants [63,64]. Small, similar J constants are found when Z is strongly
electron-withdrawing (NO2, σortho = +0.8), whereas moderately electron-withdrawing
(Cl, σortho = +0.2) and electron-donating (OMe, σortho = −0.39) substituents are associated
with more negative coupling constants and the peculiar Jbb/Jwb > 1. It is thus tempting to
attribute (at least in part) the different magnetic properties of 1–3 to the different electronic
availability in the {Fe4(µ3-O)2} core, as we previously observed in electronically modulated
Cu3(µ3-OH) trinuclear copper(II) complexes [8].
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We have then performed a QTAIM topological analysis [65] of the computed elec-
tron density distribution (EDD) of 1–3, aimed at determining a possible effect of the
substituents Z on the EDD features of the metal core [66]. In Table 3 we report the inte-
grated net charges of the iron ions and the µ3-oxido anion. The computed charges on the
Feb, Few and µ3-O atoms are not far from the corresponding values obtained from the
QTAIM analysis of the experimental EDD for the carboxylate-bridge butterfly-like complex
[FeIII

4(µ3-O)2(O2CCMe3)8(NC5H4Me)2]·2CH3CN [34], amounting to 1.76, 1.67 and –0.91 e,
respectively. While very small differences have been obtained along series 1–3, a systematic
lowering of the positive charge on Feb and a concomitant increase in absolute charge on
Few and µ3-O can be detected, resulting in a progressive reduction of the {Fe4(µ3-O)2}
positive charge going from the complex with the electron-withdrawing NO2 group to
the one bearing the electron-donating OMe group. This agrees with a modulating effect
produced by Z on the EDD of the central core, which can consequently affect the magnetic
properties in our Fe4 clusters.

Table 3. Integrated net charge q (e) of the atomic basins Ω by the QTAIM partitioning in computed
EDD of 1–3.

1 (NO2) 2 (Cl) 3 (OMe)

Feb 1.899 1.898 1.897
Few 1.836 1.838 1.839
µ3-O –1.204 –1.207 –1.208

Σ{Fe4(µ3-O)2} 5.062 5.058 5.056

By looking at more detailed information as given by the values of the topological
parameters at the Bond Critical Points (BCP) of the central core (see Table 4), we note a
rather significant variation in the ρBCP values, and then in the bond strength, of the Fe–O
bonds in the three compounds, thus emphasizing the less apparent trend as given by the
bond lengths. The strength of the Feb–O bonds increases from 1 to 3, while that of the
Few–O bonds decreases within the series, to a greater extent with respect to the Feb–O
bonds. The ratio of the ρBCP values for the two types of bonds is in fact 0.706 for 1 and 0.742
for 3. Owing to the large discrepancy between the experimental and theoretical ρBCP values
obtained for the Fe–O bonds in the previously reported carboxylate-bridge butterfly-like
complex [34], it is quite problematic to draw some conclusion on the different density
values obtained for the Fe–O bonds in 1–3 with respect to other {Fe4(µ3-O)2} butterfly-like
compounds. It is, however, interesting to note that the ρBCP ratios obtained for the two
types of bonds in 1–3 are significantly larger than the corresponding value previously
reported, 0.66 from both experiment and theory [34]. Finally, the character of the Fe–
O bonds, as given by the Laplacian ∇2ρBCP and the local energy densities GBCP, VBCP
and HBCP = GBCP + VBCP, is essentially unvaried along the series 1–3, all quantities being
indicative of a predominantly closed-shell character for these bonds (∇2ρBCP > 0) with
quite a small covalence degree, as given by negative but close to zero HBCP values.

Table 4. Topological properties at selected BCPs of the central core in computed EDD of 1–3.

ρBCP
(e Å–3)

∇2ρBCP
(e Å–5)

GBCP
(Hartree Å–3)

VBCP
(Hartree Å–3)

HBCP
(Hartree Å–3)

Compound 1
Feb–O 0.628 11.7 0.132 –0.143 –0.011
Few–O 0.889 16.9 0.210 –0.245 –0.035

Compound 2
Feb–O 0.636 11.9 0.134 –0.146 –0.012
Few–O 0.870 16.6 0.205 –0.237 –0.032

Compound 3
Feb–O 0.640 12.0 0.135 –0.147 –0.012
Few–O 0.863 16.5 0.202 –0.234 –0.032
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3. Materials and Methods
3.1. General

All used chemicals were reagent grade, and solvents were used as received (Sigma
Aldrich, Europe). Elemental analyses were performed at the Microanalytical Laboratory at
the Università degli Studi di Milano. ESI-MS spectra were recorded on MeOH or MeCN
solutions with a LCQ Advantage Thermofluxional instrument. Infrared spectra were
recorded as KBr disks using a JASCO FT-IR 410 spectrophotometer with a 2 cm–1 resolution.
Schiff bases H2LZ (Z = NO2, Cl, OMe) were obtained following the synthetic method A
reported in the literature [32].

3.2. Synthesis of [Fe4(µ3-O)2(µ-LNO2)4] (1)

First method: FeCl3 (0.0651 g, 0.401 mmol) was added to a solution of H2LNO2 (0.1511 g,
0.4025 mmol) in MeOH (6.0 mL) and NEt3 (1.5 mL). The red mixture was left under stirring
for 5 h, and then the red solid obtained was filtered, washed with MeOH, iPr2O and dried
in vacuo (0.1364 g, 77.7%). Second method: FeCl3 (0.0667 g, 0.411 mmol) was added to a
solution of H2LNO2 (0.1531 g, 0.4079 mmol) in MeCN (9.0 mL) and Et3N (1.5 mL) and the
red mixture was left under stirring for 5 h. The red solid obtained was filtered, and the
reaction mixture was taken to dryness, yielding further solid. Both solids were extensively
washed with a MeOH:H2O 1:1 mixture and then dried in vacuo (0.1125 g, 63.09%). Anal.
Calcd. for C84H60Fe4N12O18 (1748.82): C, 57.69; H, 3.46; N, 9.61%. Found: C, 57.29; H, 3.65;
N, 9.22%. MS (ESI): m/z 1771 ([M + Na]+, 60%), 1748 ([M + H]+, 100), 1302 ([Fe3(O)(LNO2)3]+,
95). IR (KBr): 1611 (νC=N), 1319 (νNO2) cm–1. Crystals suitable for X-ray diffraction were
obtained by diffusion of iPr2O into a MeOH solution of the title compound.

3.3. Synthesis of [Fe4(µ3-O)2(µ-LCl)4] (2)

First method: The dark-red product was obtained as above in MeOH starting from FeCl3
(0.0755 g, 0.465 mmol) and H2LCl (0.1670 g, 0.4578 mmol) (0.1173 g, 60.06%). Second method:
As above in MeCN from FeCl3 (0.1595 g, 0.9833 mmol) and H2LCl (0.3555 g, 0.9744 mmol)
(0.1056 g, 25.40%). Anal. Calcd. for C84H60Cl4Fe4N8O10 (1706.64): C, 59.12; H, 3.54; N,
6.57%. Found: C, 59.24; H, 3.50; N, 6.18%. MS (ESI): m/z 1728 ([M + Na]+, 30%), 1272
([Fe3(O)(LCl)3]+, 100). IR (KBr): 1611 (νC=N) cm–1. Crystals suitable for X-ray diffraction
were obtained by diffusion of iPr2O into a MeOH solution of the title compound.

3.4. Synthesis of [Fe4(µ3-O)2(µ-LOMe)4] (3)

First method: The dark-red solid was obtained as above in MeOH from FeCl3 (0.1081 g,
0.6665 mmol) and H2LOMe (0.2388 g, 0.6626 mmol) (0.1944 g, 69.49%). Second method: As
above in MeCN from FeCl3 (0.1528 g, 0.9420 mmol) and H2LOMe (0.3359 g, 0.9320 mmol)
(0.2489 g, 63.25%). Anal. Calcd. for C88H72Fe4N8O14 (1688.97): C, 62.58; H, 4.30; N, 6.76%.
Found: C, 62.85; H, 4.31; N, 6.24%. MS (ESI): m/z 1711 ([M + Na]+, 10%), 1688 ([M + 1]+, 15),
1258 ([Fe3(O)(LOMe)3]+, 100). IR (KBr): 1613 (νC=N) cm–1.

3.5. Crystal Structure Determination

1·1.5iPr2O: C186H162Fe8N24O39, M = 3804.20, monoclinic, a = 26.954(5), b = 26.974(5),
c = 25.774(5) Å, β = 99.10(1)◦, V = 18,503(16) Å3, T = 293(2) K, space group Cc (no. 9), Z = 4,
µ = (Mo-Kα) 0.690 mm–1. A total of 17,490 reflections (9001 unique; Rint = 0.062) were
collected at room temperature, employing a 0.28 × 0.12 × 0.10 mm crystal mounted on a
Bruker APEX II CCD diffractometer using graphite-monochromatized Mo-Kα radiation
(λ = 0.71073 Å). Final R1 [wR2] values were 0.0754 [0.2265] on I > 2σ(I) [all data].

2·2iPr2O: C96H88Cl4Fe4N8O12, M = 1910.94, tetragonal, a = 25.465(3), c = 14.683(2) Å,
V = 9522(2) Å3, T = 293(2) K, space group P–4 (no. 81), Z = 4, µ = (Mo-Kα) 0.772 mm–1.
A total of 55,409 reflections (17,810 unique; Rint = 0.060) were collected as before at room
temperature, employing a 0.25 × 0.08 × 0.07 mm crystal. Final R1 [wR2] values were 0.0585
[0.1693] on I > 2σ(I) [all data].
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Datasets were corrected for Lorentz-polarization effects and for absorption (SAD-
ABS [67]). The structures were solved by direct methods (SIR-97 [68]) and completed by
iterative cycles of full-matrix least squares refinement on Fo

2 and ∆F synthesis using the
SHELXL-97 [69] program (WinGX suite) [70]. Hydrogen atoms, located on the ∆F maps,
were allowed to ride on their carbon atoms. Crystallographic data for 1·1.5iPr2O and
2·2iPr2O (excluding structure factors) were deposited into the Cambridge Crystallographic
Data Centre as supplementary publication no. 883278 and 883279, respectively. These
data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or
from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; e-mail:
deposit@ccdc.cam.ac.uk).

3.6. Theoretical Calculations

Unrestricted DFT calculations were performed on 1–3 at the highest spin multiplicity
21 (S = 10), assuming all iron(III) ions in their high spin state (S = 5/2), using Gaussian
09 [71]. All the structures were optimized in vacuo with the 6-311G(d) basis set, starting
from the X-ray geometries for 1 (molecule A) and 2, and using 2 with the appropriated
substitutions as a guess starting geometry for 3. The functionals B3LYP [72,73] and M06 [74]
were tested to check their performances in reproducing the X-ray structures of 1 and 2.
The latter functional, which was properly developed to treat organometallic complexes,
provided the best agreement with the experimental geometries (see Tables S1 and S2 in
Supplementary Materials for a full comparison between computed and experimental bond
distances). Quantum Theory of Atoms In Molecules (QTAIM) [65], as implemented in
AIMAll [75] was used for evaluating the net charges of the iron and oxido ions.

3.7. Magnetic Measurements

The magnetic moment µ of powder samples of 1–3 was measured between 5 and 300 K
using a Quantum Design MPMS XL-5 SQUID magnetometer. Weighed amounts (about
15 mg) of 1–3 were sealed in polycarbonate capsules, and the magnetic moment µ was
measured under an applied magnetic field of 1 kOe from 300 K down to 5 K. The molar
susceptibility was obtained as χM = (µ/H) × (MW/m), where MW is the molecular weight
of the complex, m is the sample mass, and H is the applied magnetic field. Diamagnetic
contributions were subtracted from µ before calculating χM. The ligand diamagnetism was
estimated using Pascal’s constants [76].

4. Conclusions

The reaction of FeCl3 with the Schiff bases H2LZ (Z = NO2, Cl, OMe) led selectively to
the tetranuclear iron compounds 1–3, confirming the oligonucleation ability of these short-
ened ligands and the control of the nature of the oligonuclear compound upon substituent
shift in ortho position of the central aryl ring. The analysis of the X-ray molecular structures
of 1 and 2 and of the unrestricted-DFT computed geometries of all derivatives shows the
similarity of the planar {Fe4(µ3-O)2} cores, together with intramolecular Cl···π halogen
bonds in 2. In contrast, the Jbb and Jwb exchange coupling constants in 1–3 are different,
and the unusually large Jbb/Jwb ratio for 2 and 3 suggests a quintet (S = 2) ground state
for these compounds, which add up to another reported example of triplet (S = 1) ground
state [35] being different from the singlet ground state (S = 0) usually reported for butterfly
tetrairon(III) complexes [33].

The cores are slightly geometrically affected by the nature of the substituent Z, with
the main differentiating factor given by the orientation of the tb polyhedra of the Few ions
with respect to the Fe4O2 plane. The different spin ground states and the great variability
of the J values can hardly be attributed to this structural difference. The unequal donating
or accepting power of the substituent Z, which changes the EDD at the {Fe4(µ3-O)2} core as
confirmed by the topological QTAIM analysis, together with the different conformations
of the surrounding ligands due to crystal packing and/or the steric and electronic effects
of Z, may contribute to explaining the different magnetic properties of compounds 1–3.
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Further studies in this respect are certainly necessary and are planned in order to shed
more light on our findings. In any case, the latter represents a solid starting point for
investigating new butterfly Fe4 clusters with different substituents on the surrounding
Schiff bases to fully exploit the potentiality of these shortened salen-type ligand molecules
as potent oligonucleating and magnetically modulating agents.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24065808/s1.
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