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Abstract

High-fidelity control of spin ensemble dynamics is essential for many research areas, spanning from quantum computing and radio-
frequency (RF) engineering to NMR spectroscopy and imaging. However, attaining robust and high-fidelity spin operations remains
an unmet challenge. Using an evolutionary algorithm and artificial intelligence (AI), we designed new RF pulses with customizable
spatial or temporal field inhomogeneity compensation. Compared with the standard RF shapes, the new AI-generated pulses show
superior performance for bandwidth, robustness, and tolerance to field imperfections. As a benchmark, we constructed a spin en-
tanglement operator for the weakly coupled two-spin-1/2 system of 13CHCl3, achieving high-fidelity transformations under multiple
inhomogeneity sources. We then generated band-selective and ultra-broadband RF pulses typical of biomolecular NMR spectroscopy.
When implemented in multipulse NMR experiments, the AI-generated pulses significantly increased the sensitivity of medium-size
and large protein spectra relative to standard pulse sequences. Finally, we applied the new pulses to typical imaging experiments,
showing a remarkable tolerance to changes in the RF field. These AI-generated RF pulses can be directly implemented in quantum
information, NMR spectroscopy of biomolecules, magnetic resonance imaging techniques for in vivo and materials sciences.
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Significance Statement:

High-fidelity control of spin ensemble dynamics is at the foundation of many disciplines. Developing radio-frequency (RF) pulses
that accomplish this task is an open challenge. We combined an evolutionary algorithm and artificial intelligence to design new RF
pulse shapes with customizable fidelity and high compensation for external inhomogeneities. Our method lays the groundwork
for developing new experiments at high and ultra-high NMR fields for spectroscopy and imaging techniques, impacting structural
biology, biomedicine, and material sciences.

Introduction
High-fidelity control of quantum spin systems is at the foun-
dation of many applications such as quantum computing, co-
herent and optical spectroscopies, NMR, and MRI (1–5). Spin
operations such as excitation, inversion, refocusing, etc., are cen-
tral to these techniques and are achieved by applying radio-
frequency (RF) pulses of finite length and amplitude. However, the
RF and external field inhomogeneities and finite pulse length ef-
fects make the coherent manipulation of spin ensemble dynam-
ics challenging (6). In the experimental implementation of quan-
tum computing, inhomogeneities affect the experimental fidelity
of quantum gates, on-demand entangled state generation, and co-
herent control (1, 7, 8). These experimental errors also affect NMR
and MRI at high and ultra-high magnetic fields as they require
high-fidelity levels for coherent and high-efficiency control of het-

erogeneous spin ensembles (9, 10). Moreover, these imperfections
accumulate in multipulse experiments, leading to low-fidelity op-
erations and sizable signal losses (11). Although advanced com-
putational techniques have been instrumental for designing com-
pensated RF pulses such as composite, adiabatic, and numerically
optimized pulses (6, 12–18, 19, 20–29), high- and ultra-high–field
NMR and MRI spectroscopy require RF pulses with larger band-
widths, higher fidelity, and compensation for instrumental inho-
mogeneities. Here, we introduce a novel strategy to achieve high-
fidelity control of spin ensemble dynamics with a high-level com-
pensation for inhomogeneity and offset effects, reaching a fidelity
for several spin operations up to 0.99999. Instead of tuning RF
amplitude and duration for a given pulse shape, we search the
phase space and let an evolutionary algorithm generate a library
of ∼2,00,000 phase shapes with constant amplitude. We then
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trained an artificial intelligence (AI) algorithm with this library
to generate the optimal solution for a given problem. Searching
the phase space enabled the algorithm to achieve optimal solu-
tions and reach an operational fidelity of 0.9999. Our versatile ap-
proach enables the design of several spin operations for various
applications, including quantum computing, biomolecular NMR
spectroscopy, and MRI techniques.

Results and discussion
The architecture of the GENETICS-AI algorithm
To design high-fidelity RF pulses, we combined an evolutionary
algorithm with AI into a modular software, GENErator of TrIply
Compensated RF pulSes via Artificial Intelligence (GENETICS-AI).
The overall architecture of GENETICS-AI is reported in Figure
S1. The core module of the algorithm consists of a network of
interconnected optimization routines, including an iterative for-
ward search (IFSA) and iterative self-correcting algorithms (ISCA)
(Figure S2). These routines search the RF phase space and gen-
erate an Optimal Phase Surface (OPS) library through an iterative
evolution of the solutions. A neural network (PhaseNET) is trained
on this library and predicts new RF shapes with customizable flip
angles, bandwidth (BW) with a specified fidelity, RF inhomogene-
ity compensation, and operational fidelity (Figure S3). A standout
feature of GENETICS-AI is the multiple bidirectional validations
of each RF shape through the optimization network, where each
solution is connected to its neighbor as a generator or corrector.

High-fidelity spin entanglement using
GENETICS-AI
The creation and preservation of high-fidelity spin entanglement
are central to several quantum computing applications (30, 31)
and are ideal for testing the performance of GENETICS-AI (32–
35). A reliable physical implementation of entangling two quan-
tum systems requires unitary operations, which compensate for
instrumental inhomogeneity within the experimentally feasible
range. For NMR, dipolar/scalar coupled heteronuclear spins with
I = 1

2 (such as 1H and 13C in 13CHCl3, Figure 1A) form a two-
qubit (quantum bit) quantum computer. External field inhomo-
geneities and errors in determining the coupling constant lower
the fidelity of unitary operations, affecting the faithful implemen-
tation of quantum gate or quantum state creation. To improve the
fidelity of unitary operations, we used GENETICS-AI to create a
robust entangling operator (GEN-Entangler) for the weakly cou-
pled two-spin-1/2 system of 13CHCl3 (Figure 1A to E). Each pulse
in GEN-Entangler is triply compensated (36) to minimize inhomo-
geneities of RF field (�ω1), offset (�), and weak scalar coupling in-
teractions (�J). The modular nature of the GEN-Entangler makes
it possible to individually customize the level of compensation for
�ω1, �, and �J, conferring a higher level of control for the de-
sired operation. The J-coupling compensation level is controlled
by the number of spin-echo (SE) elements (n) in the entangler se-
quence. For n = 1, GEN-Entangler consists of a single SE element
with three global pulses and a J-coupling compensation level up
to ±10%. For n = 2, the tolerance increases to ±30% and for n = 4
to ±50% (Figure 1C). To test the performance of GEN-Entangler,
we used a pulse sequence with n = 2 and inhomogeneity com-
pensation levels of ±20% and ±2 kHz for �ω1 and BW, respec-
tively (Figure 1C and Table S1). We first created a |αα〉 pseudo-
pure state (37) for the 13C–1H spin pair (Figure 1F). Starting from
the |αα〉 state, we generated a maximally entangled state, 1/

√
2

(|αα〉 + |ββ〉), between the 1H and 13C spins. Figure S4 shows

the representative 1H NMR spectra of thermal equilibrium, |αα〉
and 1/

√
2 (|αα〉 + |ββ〉 states created by a π/2 pulse with

phase zero. As a metric for robustness, we simulated a 0.99
fidelity iso-surface of the quantum states obtained by GEN-
Entangler with the simultaneous compensation of �ω1, �, and
�J, and compared it with the corresponding iso-surface gen-
erated using a standard Controlled-NOT (C-NOT) gate entan-
gler using rectangular pulses (Figure 1G). We then experimen-
tally generated six entangled states by detuning the pulses
calibrated for optimal values. The yellow outer iso-surface in
Figure 1G represents the fidelity volume obtained with the
GEN-Entangler for n = 2, while the inner red surface represents the
fidelity volume corresponding to the standard C-NOT entangler.
Considering the maximum levels of inhomogeneity for all three
parameters, the fidelity volume obtained by GEN-Entangler is ap-
proximately 100 times larger than the corresponding rectangular
shape pulse. For an iso-surface fidelity of 0.98, the volume ratio,
VGEN/VRECT, increases to 200 times (Figure 1H), demonstrating that
the new entangler has a significantly higher tolerance for experi-
mental errors. Additionally, the GEN-Entangler sequence is ∼62%
shorter than the �J compensated C-NOT gate sequence (38), of-
fering an additional advantage in terms of time duration.

As an additional test, we generated high-fidelity broadband (BB)
RF pulses with arbitrary flip angles. Generalizing BB operations
for an arbitrary spin-flip angle is quite challenging, as it requires
individual optimization for the desired final state (39). The BB
pulses for arbitrary flip angle transitions generated by our algo-
rithm are reported in Figure 2A and B. Remarkably, the neural net-
work trained on this OPS library output BB RF with smooth phase
shapes with a fidelity greater than 0.9999 for any flip angle. We
then tested this RF pulse generator by creating a programmable
single qubit quantum state creator and a quantum gate generator.
The former assumes an initial state |α〉, whereas the latter con-
sists of a BB universal flipping operation. Notably, the duration of
the pulses does not depend on the flip angle or spin state. This
feature is critical for quantum computing as the fixed length of
these pulses removes any inhomogeneity associated with changes
in time duration. The Bloch sphere trajectories of selected pulse
operations with various flip angles are shown in Figure 2C and D.
For example, we created the RF pulse of a 113.5◦ flip angle, with
a smooth shape and an average fidelity of 0.9999 over a band-
width of 50 kHz (Figure 2E-F). These high-fidelity single-qubit oper-
ations and the GEN-Entangler form a complete set of operations
for universal quantum computing (40). Taken together these re-
sults show that the newly AI-generated pulses can perform any
spin operation with high compensation and fidelity.

GENETICS-AI pulses for NMR spectroscopy at
high and ultra-high magnetic fields
A critical requirement for NMR spectroscopy at high and ultra-
high magnetic fields is the uniform excitation, inversion, and re-
focusing of nuclear magnetization over a broader BW. With this
in mind, we programmed GENETICS-AI to generate new universal
π/2 and π pulses to be used for multidimensional biological NMR
(41). Two prototypical GENETICS-AI π/2 and π pulses are shown
in Figures S5 and S6. These new pulses cover a BW of 40 kHz
with pulse lengths less than 300 μs, with a constant RF amplitude
(ω1 = γ B1/2π ) of 25 kHz, and an average operational fidelity of
0.9999, outperforming the standard rectangular pulses. The com-
parison between the universal GENETICS-AI π pulses and the rect-
angular pulses for different BWs show that the latter pulses dis-
play a limited high-fidelity region (Figure S7A), while the former
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Figure 1. Generation of spin entanglement for 13CHCl3. (A) 13CHCl3 used for validating the GEN-Entangler pulse sequence. (B) GEN-Entangler pulse
sequence. All the pulses are global for both 1H and 13C nuclei. Pulses and delay parameters for different values of n are given in Table S1. (C) J response
curve of entanglement fidelity for n = 1, 2, and 4. (D) and (E) RF shapes and corresponding fidelity profiles used for GEN-Entangler with n = 2. (F)
Quantum state tomography for the real and imaginary part of the |αα〉 pseudo pure state created for 1H and 13C nuclear spins. (G) Simulated
iso-surface at 0.99 fidelity for the entanglement created with n = 2 (outer surface—yellow) and standard C-NOT entangler with rectangular-shaped
pulse (inner surface—red). The quantum state tomography results for simulated inhomogeneities on the 0.99 fidelity iso-surface for both extreme
values of all three variables are shown in blue. (H) Fidelity volume fraction of entanglement created with GEN-Entangler (VGEN) over standard C-NOT
with rectangular pulses (VRECT) for fidelities of 0.995, 0.99, and 0.98. All experiments were performed on a Bruker 600 MHz spectrometer at 300 K.

pulses show quite large fidelity regions, which extend to reach ap-
proximately 500 kHz for a pulse duration of 1360 μs (Figure S7B
to E). To estimate the tolerance of these pulses to instrumental
noise, we added random numerical noise to the phase and am-
plitude of a GENETICS-AI universal π pulse with a BW of 100 kHz
and RF amplitude (ω1) of 25 kHz and evaluated changes in its op-
erational fidelity (Figure S8A to C). In the absence of noise, this
pulse performs spin operations with a fidelity of 0.999. Upon ad-

dition of numerical noise with an amplitude of 5 kHz (20%), the
fidelity drops by only 0.014 (i.e. 0.985), demonstrating a high toler-
ance to random noise sources. A similar scenario is predicted for
errors in both amplitude and phase shape. Lastly, we assessed the
performance of GENETICS-AI refocusing pulses against the best-
performing pulses currently used for NMR and MRI. (16, 17, 36,
42–45) We compared their duration, operational BW, and average
fidelity (Figure 3A, Table S2 and Table S3). The minimum fidelity
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Figure 2. BB high-fidelity arbitrary flip angle pulses generated with GENETICS-AI. (A) OPS of a BB arbitrary state preparation with fidelity > 0.99999.
The Y-axis represent the zenith angle (ζ ) of the final state. The OPS was generated with an initial state fixed at |α〉 and varying the ζ from 0 to π

iteratively. The total nutation angle of the pulse was fixed at 8.68 π for all states. (B) OPS for arbitrary flipping operation with fidelity > 0.9999. The
Y-axis represents the flip angle (θ ) of the pulse. The OPS was created with θ as a target variable. The total nutation angle for the operation was fixed at
11.42 π . (C) Bloch sphere trajectories for the preparation of four different states (A, B, C, and D) using RF shapes from the OPS shown in (A). (D) Bloch
sphere trajectories of two different flipping operations from A and A’ to B and B’ using RF shape from the OPS shown in (B). All trajectories are
trimmed to show only 10% of the initial and final part. (E) RF shape of 113.5◦ universal flipping for a bandwidth of 50 kHz. The RF amplitude is
constant (25 kHz). (F) 2D-fidelity response with offset and RF amplitude of the RF shape shown in (E).

for all GENETICS-AI pulses within the BW range is 0.99. For all the
shapes analyzed, our new pulses show higher fidelity levels and
shorter duration. Unlike the published shapes, our pulses are also
time-optimal and customizable for any operational fidelity.

We then generated BB pulses that constitute the basic elements
of many high-resolution NMR and MRI experiments. These pulses’
homogeneity is critical for excitation, refocusing, and inversion
operation in triple-resonance NMR pulse sequences for biomacro-
molecules (41). Additionally, BB pulses are used for excitation of
active nuclei with large chemical shift breadth (e.g. 14 N, 19F, 31P,
etc.) (46, 47), and are also essential for MRI in vivo and in mate-
rials science (48, 49). However, even in simple NMR experiments,
the current pulses and pulse sequences generate artifacts (50) and
suffer signal losses due to their low operational fidelity as well
as the relaxation properties of the nuclear spin systems. Thanks
to the flexibility of the Iterative Forward Search Algorithm (IFSA)
and Iterative Self Correction Algorithm (ISCA) modules, we cre-
ated customizable RF shapes for any operational fidelity. Several
BB inversion pulses with fidelity varying from 0.9 to 0.99999 are
represented in Figure S10A. Empirically, we found that the opera-
tional fidelity (F) of these RF pulses and the total nutation angles
(�) follow this relationship:

� ∼= −S · log (1 − F ) + G, (1)

where S and G are the slope and intercept functions that depend
on the BW, RF amplitude, and compensation level (Figure S10B).
Equation 1 enables one to design and tune the inversion pulses
with the desired fidelity level. This relationship also holds for uni-
versal π pulses as shown in Figure S10C to D. The performance
of several inversion pulses with various operational fidelity is re-
ported in (Figure S11A to B). Remarkably, we obtained a fidelity
of 0.99999 for BB inversion pulse with a duration of 274 μs, BW
of 100 kHz, and RF amplitude of 25 kHz. If the pulse length be-
comes a problem (as in the case of large macromolecular sys-

tems), this operation can be performed using a 57.5 μs pulse with
a lower fidelity (e.g. 0.9), avoiding signal losses due to fast relax-
ation rates. It should be noted that the IFSA and ISCA optimization
modules explore the phase space of any operation up to the limit
imposed by the pulse shape digital resolution, i.e. the number of
points (n) used to represent a given shape faithfully. To determine
how the resolution influences a specific operation, we performed
multiple optimizations of BB inversion pulses with different dig-
ital resolutions (n = 16, 26, 50, 76, and 100). The progress for the
IFSA/ISCA algorithm is shown in Figure S12. In this case, we ob-
served a linear relationship between the total nutation angle, �,
and BW, i.e. the increase of BW is constant for a unit change of the
pulse length or amplitude (Figure S12A). The linearity holds up to
maximum BW (BWmax) and increases with the digital resolution
of the pulse shape (Figure S12B). However, at larger BW, this rela-
tionship is no longer linear, and the slope of the curve decreases,
i.e. the RF power required to excite a specific BW increases. As the
BW increases, the geometrical complexity of the specific shape in-
creases, and more digital points are required. As an example, we
generated ultra-BB universal π and inversion pulses and analyzed
the � versus BW plot (Figure S12C) as well as their geometrical
complexity (Figure S13). This analysis shows that achieving a BW
of 20 × ω1 for a universal π operation requires an increase of the
shape resolution of 2,000 digital points.

Moreover, we programmed GENETICS-AI to create ultra-BB
pulses for exciting nuclei with extensive chemical shift breadth.
Specifically, we designed universal π/2 and π pulses with a BW
of 30 × ω1, which corresponds to 750 kHz for an RF amplitude,
ω1, of 25 kHz (Figure 3B and C). The pulse length of this ultra-
BB pulse with 2,000 points generated was ∼1.5 ms. To the best of
our knowledge, this is the shortest universal pulse obtained for a
750 kHz BW. In theory, it is possible to generate ultra-BB pulses for
a range of very large BWs (Figure S14). For instance, we designed
an ultra-BB excitation pulse of 500 points to excite a BW of 22 × ω1

(Figure S15). This pulse is equivalent to an in-phase excitation BW
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Figure 3. BB universal pulses and comparison of GENETICS-AI refocusing pulses with previously reported shapes. (A) Plot of the “Refocusing
bandwidth-pulse length” for best performing GENETICS-AI pulses versus reported refocusing pulses. Refocusing BW of each pulse is calculated by
averaging the offset responses of Mx and My magnetizations with a cutoff operational fidelity of 0.95. Each pulse is labeled with a short form and
color-coded for the same family. Supplementary Table S2 shows the full names and relative reference for each pulse analyzed. The size of each dot
represents the average operational fidelity of the pulse. Offset responses of a few selected RF shapes are shown in Figure S9. (B) Ultra-BB universal π/2
and (C), π pulse of BW 30 × ω1. Amplitude shapes of these pulses are constant (ω1) with phase shapes shown on the left. Offset response of π and π/2
are shown for initial states Mz (middle). Simulated fidelity response with offset and RF amplitude are shown on the right panel.

of 550 kHz with a pulse duration of 440 μs (ω1 = 25 kHz). We exper-
imentally tested this BB pulse by recording a proton 1D spectrum
of uniformly 15N labeled K48C mutant of ubiquitin (U-15N UBIK48C)
with an RF amplitude of 0.5 kHz on an 850 MHz spectrometer. The
excitation BW of the pulse is 22 × 0.5 kHz = 11 kHz, sufficient for
the excitation of the entire 1H spectrum of a protein. A compari-
son between a rectangular pulse with ω1 of 16.67 kHz and the BB
pulse of 0.5 kHz is reported in Figure S15C. As expected, we ob-
served a loss of signal intensity for the ultra-BB pulse due to the
relaxation during the pulse execution. Nonetheless, the power re-
quired for these BB pulses is only 6.57 mW, while a corresponding
rectangular pulse would require 7.3 W to excite the same BW. The
latter shows that the algorithm has the potential to generate ul-
tra low-power pulses for MRI, where power deposition becomes a
problem for human subjects (9).

We then designed and applied BB pulses to multipulse NMR
experiments. Specifically, we implemented BB π/2 and π pulses
into the 2D [1H-15N] Heteronuclear Single Quantum Correlation
(HSQC) pulse scheme, a central building block for biomolecular
solution NMR spectroscopy (51–53). We first tested the tolerance
of the BB pulses to RF inhomogeneity. Figure 4A shows the phase
shapes of BB π/2 and π pulses designed to compensate for inho-
mogeneity in RF up to ±20% and an excitation BW covering the
full chemical shift range of 1H and 15N for a Larmor frequency up
to 1.2 GHz. The fidelity response of these pulses with offset and

RF amplitude is shown in Figure 4B. We compared the 2D spectra
of the amide fingerprint of U-15N UBIK48C (54) acquired with the
standard PFG-HSQC experiment (55, 56) with coherence selection
and rectangular pulses and the corresponding BB GENETICS-AI
version (GEN-HSQC). Figure 4C shows the 2D GEN-HSQC spectra
recorded on U-15N UBIK48C with calibrated RF amplitudes of 12.5
and 5.8 kHz for 1H and 15N, respectively. To assess the BB pulses’
tolerance for RF inhomogeneity on both 1H and 15N channels, we
scaled the RF pulse amplitudes in steps of 5% up to ±20% while
keeping their pulse duration constant. The insets of Figure 4C
show the comparison of representative resonance intensities of
the GEN-HSQC spectrum (IGEN) versus the standard PFG-HSQC ex-
periment (IRECT ). Overall, the spectrum acquired with the GEN-
HSQC sequence displays higher S/N ratios, with a significantly
higher tolerance for RF inhomogeneity across the entire spectrum.
The gain in sensitivity observed with the GEN-HSQC sequence can
be attributed to a combination of the high-fidelity pulse opera-
tion and RF inhomogeneity compensation. For PFG-HSQC, the in-
tensity of the residues near the 1H carrier frequency is ∼0.8 and
drops to ∼0.5 for off-resonance irradiation relative to GEN-HSQC
experiment. For amplitude attenuation of ±20%, the amide reso-
nances in the PFG-HSQC are barely observable, whereas the sig-
nal intensities in the GEN-HSQC show a constant response. We
performed the GEN-HSQC experiment on the catalytic subunit
of cAMP-dependent protein kinase A (PKA-C, Figure 4D). For this

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac133/6656376 by U

niversity of M
innesota - Tw

in C
ities user on 17 April 2023



6 | PNAS Nexus, 2022, Vol. 1, No. 4

Figure 4. RF inhomogeneity compensated high-resolution multipulse NMR experiment. (A) GENETICS-AI shapes for universal π and π/2 pulses for 1H
(blue) and 15N (red) channels. RF amplitudes were constant at 12.5 and 5.8 kHz for 1H and 15N channels, respectively. The pulse lengths for π/2 and π

pulses were 488.6 and 509.8 μs for 1H and 483.8 and 524 μs for 15N. (B) Simulated fidelity response with offset and RF amplitude for 1H (blue) and 15N
(red) for the pulse shapes in (A). The inner contour level indicates a fidelity of 0.99. (C) GENETICS-AI version of the HSQC (GEN-HSQC) spectrum of 15N
labeled K48C mutant of Ubiquitin recorded using calibrated amplitude values for 1H (12.5 kHz) and 15N (5.8 kHz) channels on a Bruker 850 MHz
spectrometer at 300 K. The insets show the intensity comparison of the standard PFG-HSQC (using the Bruker pulse sequence—“hsqcetfpf3gpsi2”)
(IRECT ) and GEN-HSQC (IGEN) at different RF amplitudes for selected residues. Left Y-axis shows the normalized peak intensities of standard (blue) and
GEN-HSQC (red) relative to the calibrated reference spectra (I0

RECT and I0
GEN), whereas the right Y-axis represents the normalized intensity of standard

HSQCs (blue) with respect to I0
GEN. (D) GEN-HSQC spectra of 200 μM 15N labeled catalytic subunit of protein kinase A (42 kDa). The figure insets

compare the intensity of various resonances recorded using GEN-HSQC (red) and PFG-HSQC (blue) of the HSQC experiment. Both experiments are
recorded on a Bruker 850 MHz spectrometer at 273 K using 128 complex indirect points were acquired with 16 scans per FID and a 1.5 s relaxation
delay. Maximum RF amplitudes were 16.67 kHz for 1H and 7.7 kHz for 15N.

larger protein (42 kDa), the GEN-HSQC spectrum shows a higher
S/N ratio and detects additional amide peaks that are not ob-
servable in the standard PFG-HSQC experiment. The drop in peak
intensities observed in the PFG-HSQC experiment is due to the
accumulation of pulse imperfections over multiple 180o pulses
on both channels, i.e. five pulses for 1H and four for 15N. In fact,
the GEN-HSQC experiment has a significantly higher RF inhomo-
geneity compensation relative to our previous implementation of

HSQC using the universal broadband pulse G5 (11). Lastly, we gen-
erated universal π/2 and π pulses for 1H, 13C, and 15N nuclei for
biomolecular NMR experiments up to 5 GHz (Figure S16). These RF
pulses cover a BW of 20, 200, and 30 ppm for 1H (B1 = 16.67 kHz),
13C (B1 = 16.67 kHz), and 15N (B1 = 5 kHz) channels, respectively,
for a static magnetic field B0 = 5 GHz. Even at this high mag-
netic field, the average fidelity reached by these pulses is 0.999.
Although this is a hypothetical scenario as the commercially
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Figure 5. Band-selective excitation and inversion pulses with (A) excitation on the left half of BW and (B) Inversion on left half of the BW. Note that to
observe Mz and -Mz, we added a reading pulse (90o) prior to acquisition. (C) Excitation on left half and inversion on right half of the BW,
simultaneously. The excitation/inversion half of the offset response can be swapped by inverting the phase array. An RF amplitude of 25 kHz was used
for the simulation. Experimental verification was performed using a uniformly 13C labeled maltose binding protein (MBP) on an 850 MHz spectrometer.
The band-selective excitation/inversion of aliphatic/carbonyl regions of the MBP are shown in the right column. The reference of the 13C spectra is
shown in blue, whereas the spectra obtained with different GENETICS-AI band-selective operations are shown in red.

available ultra-high magnetic fields are limited to 1.2 GHz,
it shows that GENETICS-AI-generated pulses are suitable for
biomolecular NMR spectroscopy at ultra-high magnetic fields
greater than 1.2 GHz. Moreover, we generated new band-selective
RF pulses for both excitation and inversion operations. These
pulses are central to several triple-resonance experiments for
liquid- or solid-state NMR techniques. However, the level of fi-
delity for the standard pulses is low, constituting a significant
source of signal losses, particularly for multiple simultaneous op-
erations (11, 56, 57). A typical application of selective excitation
(or inversion) is the irradiation of 13C carbonyl and aliphatic car-
bons resonances (58). Using GENETICS-AI, we generated selec-
tive pulses for excitation and inversion operations with a dura-
tion less than 1/4 of the traditional band-selective pulses (41, 59).
The shapes and offset responses in terms of excitation (or in-
version) regions of these band-selective excitation and inversion
pulses are shown in Figure 5. We experimentally tested the pulses
on the 13C resonances of U-13C labeled maltose-binding protein.
From the 1D spectra, it is apparent that selective excitation (or
inversion) occurs with almost no signal loss (Figure 5). Taken to-
gether, the simulations and experimental applications of BB and
selective pulses designed by GENETICS-AI support their applica-
tion to high and ultra-high magnetic field NMR spectroscopy on
biomacromolecules.

Prototypical pulses for MRI
RF inhomogeneity represents a severe problem for MRI both at low
and high magnetic fields, limiting both the resolution and sensi-
tivity of images (9). In an effort to reduce RF inhomogeneity, we
generated GENETICS-AI pulses for an SE imaging sequence, which
is typically used for MRI experiments (4). Figure 6A shows the

RF inhomogeneity-compensated SE sequence (GEN-SE), where π/2
and π were substituted with the GENETICS-AI pulses. The pulse
shapes and their fidelity response with offset and RF amplitude
are shown in Figure S17. As a phantom, we utilized two 4 mm
glass beads into a 5 mm Shigemi® tube filled with a solution of
10% H2O and 90% 2H2O (Figure 6B). We then generated 1D images
of the phantom along the Z-direction using the SE sequence with
standard rectangular-shaped pulses and compared them with the
GEN-SE sequence (Figure 6C). To simulate the effect of RF inhomo-
geneity, we scaled the RF pulse amplitudes up to ±100%, keeping
the pulse length constant. The intensity of the images acquired
with the standard rectangular pulses becomes significantly lower
with scaling the RF amplitude (Figure 6D). In contrast, the GEN-SE
creates high-quality images with fewer artifacts, even at ω1 in-
homogeneity of ±80% (Figure 6E) (60). Overall, these tests show
a superior tolerance of the GENETICS-AI pulses to RF field inho-
mogeneity than the rectangular pulses, making them more suit-
able for in vivo imaging and spectroscopy as well as for analyzing
materials.

The first application of artificial neural networks to pulse
design was pioneered by Gezelter and Freeman, who trained
a basic algorithm and generated JANUS pulses able to create
antiphase × magnetization (61). More recently, deep reinforce-
ment learning or neural networks have been used to optimize and
refine RF pulse shapes for imaging (62–65). In contrast, GENETICS-
AI generates pulse shapes for general spin operations with cus-
tomizable BW, inhomogeneity compensation, and fidelity. Notably,
during the execution of the GENETICS-AI pulses, there is no chem-
ical shift evolution (Figure S19), and the final state of magneti-
zation is unaffected by J-coupling (Figure S20). The GENETICS-
AI-generated pulses possess smooth phase shapes and constant
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Figure 6. SE imaging under ultra-high RF inhomogeneity. (A) SE pulse sequence used for imaging. The π/2 and π pulses are replaced with GENETICS-AI
pulses for GEN-SE sequence. The amplitude of the pulses is constant (16.67 kHz) and pulse lengths for π/2 and π pulses are 437 and 567 μs,
respectively. The maximum RF amplitude tolerance level (�ωmax

1 ) of these pulses were ±80%. The gradient strengths (G1 and G2) for all the
experiments were set at 50% (3.3 G cm–1). (B) Diagram of phantom and coil geometry. The phantom consists of two glass beads of diameter 4 mm in a
5 mm Shigemi tube filled with 10% D2O and 90% H2O. (C) 1D image of the phantom using the pulse sequence in (A). (D) RF inhomogeneity response of
1D imaging using standard rectangular-shaped pulses of amplitude 16.67 kHz. (E) Same as (D) using GENETICS-AI pulses. The RF shapes and their
fidelity profiles are shown in Figure S17. The experiments were performed in a Bruker 900 MHz NMR spectrometer.

amplitude, thanks to the neural network trained on an exten-
sive library of realistic high-fidelity RF shapes and performance
profiles. The forward and reverse optimization algorithms cou-
pled with a neural network generate time-optimal phase shapes
in a matter of milliseconds. Unlike all previously reported pulse
shapes, the operational fidelity, BW, RF inhomogeneity compen-
sation, and flip angle of the new pulses are customizable and
enable the user to meet the requirements of various magnetic
resonance applications. Remarkably, we generated BB pulses suit-
able for high and ultra-high magnetic field spectroscopy. We also
reached a high level of control for the spin dynamics in multi-
pulse NMR experiments, which involve large ensembles of nu-
clear spin quantum processors in a highly mixed state. At this
time, the GENETICS-AI algorithm can design only pulses with
constant amplitude or preselected amplitude shapes. Future de-
velopments will include coding the RF pulse amplitude in the
search space. The latter will potentially improve the design of
band-selective pulses, minimizing the power required for specific
operations.

In conclusion, we showed that combining an evolutionary al-
gorithm and AI makes it possible to control the spin dynam-
ics with high fidelity and design inhomogeneity compensated RF
pulses directly applicable to NMR, MRI, and quantum computing.
The proof-of-concept applications illustrated here lay the ground-
work for more complex implementations of AI-driven RF design.
These technical advancements will impact several fields, includ-
ing structural biology, biomedicine, material sciences, and quan-
tum information.

Experimental section
Architecture of GENETICS-AI
The architecture of GENETICS-AI is reported in Figure S1. Input
module: The first module consists of a customizable input inter-

face in which the user defines the specific problem to be solved.
The input parameters are as follows:

� Operator type: desired pulse operation, i.e. excitation, inver-
sion, universal π , π/2, π/3, and π/4 pulses;

� Maximum RF amplitude: maximum allowed peak amplitude
of the shape;

� Operational BW: desired BW for the pulse operation (kHz);
� RF amplitude compensation level: amount of RF inhomo-

geneity/miscalibration to be compensated;
� Average fidelity for the operation: average fidelity for the

pulse, where the average is calculated over the range of spec-
ified BW and/or amplitude compensation level.

Iterative Forward Search and Self Correction
Algorithms (IFSA-ISCA): generation of OPS
The first part of the algorithm consists of novel iterative opti-
mization algorithms called IFSA and ISCA that perform optimal
conversion of a resource into a target variable, generating a fam-
ily of solutions, i.e. optimal phase surface or OPS. The resource
variable provides the range of maximum RF amplitude or pulse
length for the IFSA-ISCA to explore. In contrast, the target vari-
able is set according to the problem type, such as operational BW,
fidelity, and compensation levels for various inhomogeneities. The
individual solutions in OPS are interconnected through the iter-
ative forward and backward optimization network of IFSA-ISCA.
These algorithms’ primary objective is to maintain a minimum
fitness value for the optimization network by altering the vari-
able’s value outside the optimal space and performing further
optimization. For the BB pulse design, the operational BW and
total nutation angle (�) are the target and resource variables.
� is the time integral of magnitude of RF field (|ω1|) shape over
the pulsing time. IFSA initializes these variables using the stan-
dard rectangular-shaped pulse BW and nutation angle, which is
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the minimum possible value for the resource variable. After ini-
tialization, IFSA performs an adiabatic perturbation of the tar-
get variable, which results in a loss of the fitness value. IFSA
maintains a minimum fitness value through an iterative loop
by increasing the resource variable, followed by an optimization
step. IFSA increases the degree of optimization through an itera-
tive perturbation-evolution process and finds optimal solutions
virtually impossible to reach using a standard optimization al-
gorithm. The iterative evolution process is always monitored to
check the fitness of the solutions, and a backward evolution is ini-
tiated if necessary. This perturbation-evolution process with for-
ward and backward searches connects each family’s solution ei-
ther as a generator or corrector. To illustrate IFSA-ISCA protocol,
let us consider the case of a 100-point BB inversion pulse design
(Figure S2A). ISCA optimization is initialized with BW and � of
a standard rectangular π pulse. The algorithm performs the first
iteration by perturbing the BW by ε. The small increase in BW re-
duces the fitness value of the RF shape. At this point, IFSA tries
to maintain the fitness of the shape by increasing �, a step which
is followed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) (66) or a
Genetic Algorithm (GA) optimization (67). This optimization step
evolves the RF shape to a new “perturbed” BW and updates the
fitness value. Once IFSA-ISCA attains a cutoff fitness value, BW
will be perturbed again and undergoes the same optimization pro-
cess. The evolution of broadband pulse is monitored by “�–BW”
plot (Figure S2B). The forward search of IFSA is coupled with a
self-correction protocol that initiates an ISCA to keep the time-
optimal trajectory. Once initiated, ISCA performs reverse itera-
tions by reducing � in small steps. As in the IFSA case, the system
compensates for the loss in fitness by reducing bandwidth by ε.
Once the system reaches the fidelity cutoff, the iterative reverse
search continues until the reverse trajectory meets the forward
(Figure S2B). This adiabatic transition of optimal RF shape from
low to high BW continues until the IFSA-ISCA reaches the max-
imum BW imposed by the digital resolution of the pulse shape
(Figure S12). The self-correcting protocol is based on a simple
philosophy that if the nth step’s fidelity is more than expected,
the previous steps may not be time optimal. Therefore, the self-
correcting protocol is triggered when IFSA detects an increase in
fitness, typically 20% close to the maximum from cutoff in one
optimization step. The latter indicates a possible correction in the
trailing trajectory, and ISCA updates this with a higher slope tra-
jectory. Every BFGS/GA optimization initiate with an RF shape ob-
tained from the previous iteration of both forward and reverse
searches. This initial guess considerably speeds up the optimiza-
tion procedure and maintains a smooth transition of the shape
with the target variable. As shown in Figure S18, we obtained a
smooth phase surface for a 200-point universal π pulse and inver-
sion pulse. This semi-continuous solution surface with increasing
BW is the OPS. OPS’s geometric features increase with operational
complexity, BW, average fidelity, and RF amplitude (ω1), compen-
sation level (Figure S12). OPS for 1,000-point inversion and 2,000-
point universal π pulse for higher BWs are shown in Figure S13.
The fitness function (F̄ ) used in IFSA-ISCA is defined as the aver-
age operational fidelity of a given RF shape, and is calculated over
a range of offset and �ω1:

F̄ = 1
NBWN�ω1

∑
BW

∑
�ω1

Trace
(
Utar · U†

pul

)
, (2)

where Utar is the target unitary operator, Upul is the unitary opera-
tor of the RF shape, NBW is the number of offset values from -BW/2
to +BW/2 used in the averaging, and N�ω1 is the number of RF am-

plitudes from (ω1 - �ω1/2) to (ω1 + �ω1/2) used in the averaging.
Even though higher values of NBW and N�ω1 improve the fitness,
smaller values are generally preferred as they are less computa-
tionally expensive. An example target unitary operator for univer-
sal π pulse is Utar = e -i π Ix. The fitness function given in equation
(2) is used for operator optimization, where the operator type is a
unitary operator. The fitness function for a state preparation (such
as excitation and inversion) pulse design is given by

F̄ = 1
NBWN�ω1

∑
BW

∑
�ω1

Trace
(
ρtar · Upul · ρini · U†

pul

)
, (3)

where ρini and ρtar are the initial and target states, respectively.
For the inversion pulse, the initial state corresponds to ρini = Iz,
and the target state is ρtar = -Iz.

Neural Network (PhaseNET): Generation of new
optimal solutions from the OPS library
Extracting a specific pulse shape with desired properties from the
OPS library is computationally challenging. Therefore, we used the
AI module coded in MATLAB® to speed up the selection of the
best phase shape and generate solutions that are not part of the
original OPS library. Once IFSA-ISCA generates the OPS library, all
the shapes are indexed using the “Contour Indexing Algorithm”
(CIA). CIA evaluates all the possible rectangles fit within the vari-
ous contour levels of the “offset-�ω1” pulse profile, as shown in
Figure S3A. The index values of each RF shape (CIA files) and
the corresponding shape are used for training the neural net-
work (PhaseNET), which predicts new RF shapes that are not di-
rectly available in the OPS library. To accomplish this task, we
used the traincgp function provided in MATLAB (Conjugate gradi-
ent back-propagation with Polak–Ribiére updates). A schematic of
PhaseNET is reported in Figure S3B. The validation of each shape
from the PhaseNET is performed by simulating the responses of
the RF pulse predicted by the trained neural network. If the fi-
delity, BW, and inhomogeneity compensation match the require-
ments, PhaseNET outputs a new shape in the specified format. In
the case of the arbitrary flip angle generator, the PhaseNET was
validated by evaluating the RF shapes for different flip angles us-
ing 1,000 different runs. For each run, the algorithm found the
optimal solution for the specified RF shape.

All GENETICS-AI algorithms are written in MATLAB® (R2018a)
and executed on a personal computer with Intel® Core™ i7-
7700 K processor. The generation of a single OPS of 100 points
takes approximately 12 hours of calculation on a single core. For a
500-point shape, the calculation time grows exponentially to ap-
proximately a week of computer time. So far, we implemented up
to 2,000-point RF shape, generating a database with more than
2,00,000 RF shapes for various operators, BWs, and RF inhomo-
geneity compensation levels.

The details of the GENETICS-AI software can be found at: https:
//patentcenter.uspto.gov/#!/applications/16861506/ifw/docs.

NMR sample preparations
For the spin entanglement experiments, neat 13C labeled chloro-
form (13CHCl3) was added to a solution of CDCl3 (1:10 ratio) and
loaded into a 5 mm Shigemi® tube. Two qubit quantum states of
1H and 13C spins were measured using quantum state tomogra-
phy, as explained in Mitra et al. (37). All experiments were recorded
on a Bruker 600 MHz spectrometer at 290 K.

Recombinant expression and purification of U-15N ubiquitin
K48C mutant (UbiK48C) were carried out as described previously
(68). The sample consisted of 0.80 mg of U-15N UbiK48C was
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solubilized in 10 mM sodium acetate buffer (pH 6.0) and 100 mM
NaN3. The final concentration of the sample was 500 μM. All ex-
periments were performed on a Bruker 850 MHz spectrometer at
300 K.

The catalytic subunit of PKA (PKA-C, Mus musculus gene)
was expressed in Escherichia coli BL21 (DE3) cells in M9 mini-
mal medium at 24◦C. After cell lysis, PKA-C purification was car-
ried out with affinity chromatography using the His6-RIIa(R213K)
subunit (Hemmer et al., 1997). The pellets of cell overexpress-
ing Rlla (R213K) and PKA-C were combined and suspended in a
buffer containing 30 mM 3-(N-morpholino) propane sulfonic acid
(MOPS), 200 μM ATP, 15 mM MgCl2, 0.15 mg mL−1 lysozyme, 1 mM
PMSF; 100 U mL−1 DNAse I (Roche Applied Science), and 5 mM
2-mercaptoethanol (pH 8.0). The cells were lysed using a French
press at 1,000 psi. After centrifugation, the supernatant was added
to a slur of Ni+2-NTA nitrilotriacetic acid resin (Thermo Scien-
tific, 1 mL of resin per liter of culture) and shaken at 4◦C for ap-
proximately 3 hours. After washing the resin with 30 mM MOPS,
25 mM KCl, 15 mM MgCl2, and 5 mM 2-mercaptoethanol (pH
8.0), PKA-C was eluted using 30 mM MOPS, 25 mM KCl, 15 mM
MgCl2, 5 mM 2-mercaptoethanol, and 1 mM cAMP (pH 8.0). The
fractions containing PKA-C were collected and dialyzed overnight
in 20 mM KH2PO4, 25 mM KCl, and 5 mM 2-mercaptoethanol
(pH 6.5). Cation exchange chromatography was performed us-
ing a HiTrap SP column (GE Healthcare Life Sciences) to sep-
arate the different phosphorylated isoforms of PKA-C. A linear
gradient of KCl in 20 mM KH2PO4 at pH 6.5 (Yonemoto et al.,
1993) was applied, and the purified protein was collected and
stored in phosphate buffer with 10 mM DTT, 10 mM, MgCl2, and
1.0 mM NaN3, at 4◦C. For perdeuterated protein expression, the
cells were growth 80% 2H2O in M9 minimal medium using a 2.0 L
fermenter. The most abundant isoform of PKA-C, correspond-
ing to phosphorylation at S338, T197, and S10 residues (isoform
II) (Walsh and Ashby, 1973), was utilized for acquiring the NMR
experiments.

MBP was expressed in E. coli BL21 DE3 cells (NEB) contain-
ing the pMAL plasmid. After an overnight growth in LB me-
dia, the cells were spun down and resuspended in M9 media in
100% 2H2O with 15NH4Cl as the only source of nitrogen. MBP ex-
pression was induced at an OD600 of 0.8 using isopropyl β-D-1-
thiogalactopyranoside (IPTG). Upon reaching an OD of ∼5, the
cells were harvested and lysed in a buffer containing 20 mM
phosphate buffer (PBS), 120 mM NaCl, 1 mM EDTA, mM 0.15 mg
mL−1 lysozyme, 0.05% glycerol, 2 mM dithiothreitol (DTT), one
tablet of protease inhibitor (cOmplete™, Roche Applied Science),
and 100 U mL−1 DNAse I (Roche Applied Science). Amylose resin
(NEB) was added to the supernatant and stirred overnight. Af-
ter washing with a buffer containing 20 mM PBS, 120 mM NaCl,
and 1 mM EDTA, the resin was loaded into a mini-column, and
MBP was eluted using 60 mM maltose. The elution containing
MBP was concentrated and loaded into a size exclusion Superdex
200 (GE Healthcare Life Sciences) to eliminate impurity. The cor-
rect mass was assessed using mass spectrometry. The final sam-
ple consisted of 1 mM MBP in 10 mM Na2HPO4, 0.1 mM EDTA,
and 1 mM NaN3 buffer. The PFG-HSQC and GEN-HSQC exper-
iments were collected on a Bruker 850 MHz spectrometer at
300 K.
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