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Abstract

We consider the problem of designing experiments to detect the presence of a specified heteroscedastity in
Gaussian regression models. We study the relationship of the Ds- and KL-criteria with the noncentrality
parameter of the asymptotic chi-squared distribution of a likelihood-based test, for local alternatives. We
found that, when the heteroscedastity depends on one parameter, the two criteria coincide asymptotically
and that the D1-criterion is proportional to the noncentrality parameter. Differently, when it depends on
several parameters, the KL-optimum design converges to the design that maximizes the noncentrality
parameter. Our theoretical findings are confirmed through a simulation study.
Keywords: asymptotic power, heteroscedasticity, likelihood-based tests, noncentrality parameter, optimal discrimination designs

1 Introduction

In the literature of Optimal Design of Experiments, many papers concern precise estimation of the
regression coefficients or some transformation of them; classical references are Atkinson et al.
(2007), Silvey (1980), and Pázman (1986), among others. Much less attention is deserved to the
estimation of the error variance function, because frequently the error term is assumed to be ho-
moscedastic or with a heteroscedasticity derived from a variance function known up to a propor-
tionality constant.
The goal of this paper is to design an experiment to detect a specific kind of heteroscedasticity in

a nonlinear Gaussian regression model

yi = μ(xi; β) + εi, εi ∼ N(0; σ2h(xi; γ)), i = 1, . . . , n, (1)

where yi is a response variable with nonlinear mean function μ(xi; β) and error variance σ2 h(xi; γ);
herein β ∈ Rm is the vector of regression coefficients, σ2 is an unknown constant and h :Rp × Rs 7!
R+ is a continuous positive function that depends on a parameter vector γ ∈ Rs. Assume that there
exists a value γ0 such that h(xi; γ0)= 1; in other words, γ= γ0 leads to the homoscedastic model.
In many practical problems, it may be convenient to test for the model heteroscedasticity with a

likelihood-based test (log-likelihood ratio, score, or Wald test), since its asymptotic distribution is
known to be a chi-squared random variable with s degrees of freedom. In particular, we consider
local alternatives:

H0 : γ = γ0,
H1 : γ = γ0 +

λ��
n

√ , λ ≠ 0,

{
(2)
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with λ ∈ Rs, and we aim at designing an experiment with the goal of maximizing in some sense the
(asymptotic) power of a likelihood-based test. In this study, we justify the use of the Ds- and the
KL-criterion (López-Fidalgo et al., 2007) to optimally design an experiment with the inferential
goal of testing hypotheses (2). Some other authors who considered the inferential issue of hypoth-
eses testing (but concerning the regression functions) are Stigler (1971), Spruill (1990), and Dette
and Titoff (2009), who used the Ds-optimality and/or the T-criterion proposed by Atkinson and
Fedorov (1975); see also Chapter 6 of Fedorov (1972).
Both the Ds- and KL-criteria are related, in a different way, to the noncentrality parameter of the

asymptotic chi-squared distribution of a likelihood-based test. We prove that the first-order ap-
proximation of KL-criterion for discriminating between the homoscedastic and the heteroscedas-
tic models coincides with the noncentrality parameter. Although the same result does not hold in
general for the Ds-optimality, the Ds-criterion is proportional to the noncentrality parameter when
γ is scalar. Therefore, in the scalar case, the two criteria lead to the same optimal design,
asymptotically.
Themost relevant result is that the sequence of the KL-optimumdesigns is proved to converge to

the design that maximizes the noncentrality parameter. Furthermore, the analytic expression of
this limiting design (at which we expect to reach the maximum asymptotic power of the test) is
also provided.
The paper is organized as follows. In Section 2, with regard to problem (2), we give the expres-

sion of the noncentrality parameter for the chi-square asymptotic distribution of a likelihood-
based test. We also recall how the Ds-criterion is related to the noncentralitity parameter and
we prove that, in this context, the Ds-optimum design can be obtained as a D-optimality solution.
In Section 3, we provide the closed-form expression for the KL-optimal design, which is quite un-
common. Furthermore, we prove that the KL-criterion differs from the noncentrality parameter by
a term that goes to zero uniformly; this implies that the sequence of the KL-optimum designs con-
verges to the design maximizing the noncentrality parameter. Section 4 presents three examples
where we compute the asymptotic power of the log-likelihood ratio statistic for several designs;
in addition, the exact powers are computed through a simulation study. These numerical out-
comes confirm the theoretical findings. All the proofs of the theoretical results stated in the
main body of this manuscript can be found in the online supplementary material.

2 Ds-criterion and noncentrality parameter

Let x denote an experimental point that can vary in a compact experimental domain X ⊆ IRp.

Following Kiefer and Wolfowitz (1959), an approximate design ξ =
x1 . . . xk

ξ(x1) . . . ξ(xk)

{ }
is a dis-

crete probability measure on X . Let Ξ denote the set of all possible designs. A design is said ‘op-
timal’ if it maximizes some concave criterion function of ξ ∈ Ξ, which reflects the inferential goal.
The Ds-criterion of optimality is commonly used for precise estimation of a subset of parameters.
Herein, we are interested in estimating as precisely as possible the variance parameter vector γ. The
Ds-optimum design maximizes the precision matrix of the maximum likelihood estimator of γ.
From model (1), the log-likelihood function for one observation at x is

l(y; β, σ2, γ, x) = −
1
2
[y − μ(x; β)]2

σ2h(x; γ)
−
1
2
[ log (2π) + log (σ2) + log (h(x; γ))]

{ }
.

The score vector, denoted by u = (uT
β , uσ2 , u

T
γ )

T is

uβ =
∂l(y; β, σ2, γ, x)

∂β
=
[y − μ(x; β)]
σ2h(x; γ)

∇μ(x; β),

uσ2 =
∂l(y; β, σ2, γ, x)

∂σ2
=
1
2
[y − μ(x; β)]2

σ4 h(x; γ)
−

1
2σ2

,

uγ =
∂l(y; β, σ2, γ, x)

∂γ
=
1
2
∇h(x; γ)[y − μ(x; β)]2

σ2h(x; γ)2
−
1
2
∇h(x; γ)
h(x; γ)

,
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where ∇μ(x; β) = ∂μ(x; β)/∂β and ∇h(x; γ) = ∂h(x; γ)/∂γ. After some algebra, we have that

J(x; β, σ2, γ) = E[uuT] =

∇μ(x; β)∇μ(x; β)T
σ2h(x; γ) 0 0T

0 1
2σ4

∇h(x; γ)T
2σ2h(x; γ)

0 ∇h(x; γ)
2σ2h(x; γ)

∇h(x; γ)∇h(x; γ)T
2h(x; γ)2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

where the expectation is taken with respect to the Normal law.
The Fisher information matrix is

I (ξ; β, σ2, γ) =
∑k
i=1

J(xi; β, σ2, γ)ξ(xi) =
I11 I12

IT
12 I22

[ ]
,

where

I11 =
M(ξ; β, σ2, γ) 0

0 1
2σ4

[ ]
; M(ξ; β, σ2, γ) =

∑k
i=1

∇μ(xi; β)∇μ(xi; β)T
σ2h(xi; γ)

ξ(xi),

I12 =
0T∑k

i=1

∇h(xi; γ)T
2σ2h(xi; γ)

ξ(xi)

⎡
⎢⎣

⎤
⎥⎦; I22 =

∑k
i=1

∇h(xi; γ)∇h(xi; γ)T
2 h(xi; γ)2

ξ(xi).

The asymptotic covariance matrix of the MLE for γ is [I22.1(ξ; γ)]
−1, where I22.1(ξ; γ) = I22 −

IT
12I−1

11I12 is the Schur complement of I22 in I (ξ; β, σ2, γ). TheDs-optimumdesign for γminimizes
the generalized variance of the MLE for γ:

ξDs
= argmax

ξ
|I22.1(ξ; γ)|. (3)

The following theorem proves that the Ds-optimality for γ actually is D-optimality for an ‘auxil-
iary’ linear regression. This result is quite useful from a practical point of view, because there is
much statistical software to compute D-optimum designs, which can be exploited to determine
ξDs

.

Theorem 1 The Ds-optimum design for γ coincides with the D-optimum design for esti-
mating (α0, α

T), with αT= (α1,…, αs), in the following linear regressionmodel:

yi = α0 + αT∇ log h(xi; γ̃) + εi, εi ∼ N(0; σ2), i = 1, . . . , n,

where

∇ logh(x; γ) =
∂ log h(x; γ)

∂γ1
, . . . ,

∂ log h(x; γ)
∂γs

( )T

and γ̃ is a nominal value for γ.

Corollary 1 If γ is scalar, then s= 1 and the D1-optimal design for γ is

ξD1
=

xl xu
0.5 0.5

{ }
, (4)

where xl ∈ {x : ∗argminx∇ log h(x, γ̃)} and xu ∈ {x : ∗argmaxx∇ log h(x, γ̃)}
with ∇ logh(x, γ) = ∂ log h(xi; γ)/∂γ.
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When the inferential goal is testing homoscedasticity (γ= γ0) versus the local alternavices
γ = γ0 + λ/

��
n

√
, the Ds-optimum design is commonly applied because somehow it maximizes the

asymptotic power of a likelihood-based test. It is well known that, under the alternative hypoth-
eses, the log-likelihood ratio, Wald and Score tests are asymptotically distributed as a chi-squared
random variable with noncentrality parameter ζ(ξ; λ; γ0) = λTI22.1(ξ; γ0)λ.
Therefore, the Ds-optimum design (3) with γ= γ0 maximizes ‘in some sense’ ζ(ξ; λ; γ0), without

considering any specific value of λ.
Replacing I11, I12, and I22 into the expressions of I22.1(ξ; γ) and setting γ= γ0, we can provide

the analytic expression of the noncentrality parameter:

ζ(ξ; λ; γ0) =
1
2
λT

∑k
i=1

∇h(xi; γ0)∇h(xi; γ0)Tξ(xi)
(

−
∑k
i=1

∇h(xi; γ0)ξ(xi)
∑k
i=1

∇h(xi; γ0)Tξ(xi)
)
λ.

(5)

Remark 1 From Corollary 1, if γ is scalar and the inferential goal is testing hypothesis (2),
then the D1-optimal design for γ is equally supported at xl ∈ argminx∇h(x; γ0)
and xu ∈ argmaxx∇h(x; γ0). Furthermore, from Equation (5), it exactly maxi-
mizes the noncentrality parameter.

3 Noncentrality parameter as first-order approximation of the KL-criterion

The KL-criterion proposed by López-Fidalgo et al. (2007) can be applied to discriminate between
heteroscedastic and homoscedastic models, under H1 and H0, respectively. If the heteroscedastic
model is completely known, i.e., if (βT1 , σ1, γ

T
1 ) are the assumed known parameter values underH1,

then the KL-criterion is

I12(ξ; γ1) =min
β,σ2

∑k
i=1

σ21h(xi) + [μ(xi; β1) − μ(xi; β)]2

σ2
− log

σ21h(xi)
σ2

( )
ξ(xi), (6)

where h(xi)= h(xi; γ1). Differentiating the sum on the right-hand side of (6) with respect to β and σ2

and setting it equal to zero the KL-criterion becomes

I12(ξ; γ1) = 1 + logAh − logGh, (7)

whereAh =
∑k

i=1 h(xi)ξ(xi) andGh =
∏k

i=1 [h(xi)]
ξ(xi) are the arithmetic and the geometricmeans of

the values h(xi), i= 1, …, k, respectively.
For the next results we need to introduce some regularity assumptions on h. Let B(γ0, r) be the

ball of radius r centred at γ0. We assume that there exists a value r> 0, and finite constantsM1 and
M2 such that the function h(x, γ) is twice continuously differentiable with respect to γ ∈ B(γ0, r) for
all x ∈ X and that

sup
x∈X

‖∇h(x, γ0)‖ ≤ M1 <∞;

sup
x∈X

sup
γ∈B(γ0,r)

‖h′′(x, γ)‖2 ≤ M2 <∞, (8)

where h″(x, γ)= (∂2/∂γ∂γT)h(x, γ) and ||A||2 indicates the spectral norm of a square matrix
A : ‖A‖2 = supu≠0 ‖Au‖/‖u‖, that coincides with the square root of the largest eigenvalue of
ATA. The next result follows from Equation (7).

Theorem 2 Let γ1 = γ0 + λ/
��
n

√
, and let assumption (8) hold for some constants M1, M2

and r> 0. Then, the KL-criterion is related to the noncentrality parameter
of the asymptotic distribution of a likelihood-based test by
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I12(ξ; γ1) = 1 +
1
n
ζ(ξ; λ; γ0) +O

‖λ‖3
n3/2

( )
.

Theorem 2 essentially states that if n is large enough to make the error term negligible, the
KL-optimum design maximizes the noncentrality parameter. Therefore, when γ is scalar (and n is suf-
ficiently large), KL- and D1-optimal designs should almost coincide, because the D1-optimality is pro-
portional to the noncentrality parameter. Differently, when γ is not scalar, the Ds-criterion is no longer
proportional to the noncentrality parameter and therefore, KL- and Ds-optimum designs differ. In
Section 4, for some values of λ and n, we compare the power of the log-likelihood ratio test when dif-
ferent designs are applied: the KL-optimum design for several specific values of λ, the Ds-optimal de-
sign and a uniform design, which is frequently applied in practice.
The following theorem has been very helpful to develop the simulation study, because it pro-

vides a closed form for the KL-optimum design.

Theorem 3 Let us denote by h= infx h(x; γ1)> 0 and h = supx h(x; γ1) <∞. Let further
X l = {x : h(x; γ1) = h} and Xu = {x : h(x; γ1) = h}. A KL-optimal design is

ξKLγ1 =
x x
ω 1 − ω

{ }
, ω := ω(γ1) =

h

h − h
−

1

log h − logh
, (9)

where x ∈ X l and x ∈ Xu.

If nω is not an integer number, then the best approximation is its integer
part.

Under mild assumptions, the following theorem proves that, when n goes to infinity (and thus
γ1→ γ0), the KL-optimum design tends to become equally supported at x and x.

Theorem 4 Let h = supx h(x; γ1) and h= infx h(x; γ1). If x = arg infx h(x; γ1) and x =
arg supx h(x; γ1) do not depend on γ1 and h(x; γ1) is such that h/h � 1 as
γ1→ γ0, then

lim
γ1�γ0

ω(γ1) = 1/2,

where ω(γ1) is defined by (9). In particular, for all γ1 such that h/h > 1,

ω(γ1) > 1/2.

Let the limiting KL-optimal design be denoted by

ξKLγ0 =
x x
0.5 0.5

{ }
.

Theorem 2 shows the asymptotic link between the KL-divergence and the noncentrality parameter
of a likelihood-based test (under the alternative). The following result proves that the asymptotic
expansion in Theorem 2 holds uniformly in ξ, and this implies that, as n goes to infinity, the se-
quence of KL-optimal designs converges to the design which maximizes the noncentrality
parameter.

Theorem 5 Assume that (8) holds for some constantsM1,M2, and r> 0. Also assume that
λ belongs to a bounded set Λ : supλ∈Λ||λ||≤L<∞. Then, the following result
holds for all λ∈Λ

sup
ξ∈Ξ

|n(I12(ξ; γ1) − 1) − ζ(ξ, λ, γ0)| =O(n−1/2).
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From Theorems 4 and 5 we have the following result.

Corollary 2 The design which maximizes the noncentrality parameter ζ(ξ, λ, γ0) is the lim-
iting KL-optimal design ξKLγ0 .

4 Applications

In this section, we compare the performance of different designs in testing hypotheses (2) through a
simulation study.We apply the log-likelihood ratio test using samples of data generated from each
design and then we compare the corresponding powers. We also develop a comparison among the
asymptotic powers of the test statistic.
In these applications, we consider model (1) with σ2= 1 and three different kinds of

heteroscedasticity:

Case 1: h(x, γ)= eγx;
Case 2: h(x, γ)= 1 + 0.1(γx + sin (2πγx));
Case 3: h(x, γ)= 1 + γ1 x+ γ2 x

2.

Without loss of generality, we set x∈ [0, 1] to guarantee the above variance functions to be positive
for γ ∈ Rs

+. As mean function we consider,

μ(x, β) = β0 + β1x, β0 = β1 = 1

in Cases 1 and 2, and the EMAX model

μ(x, β) = β0 +
β1x

β2 + x
, β0 = β1 = 1 and β2 = 0.25

in Case 3.
Let us note that Ds- and KL-optimal designs depend only on the variance function h(x, γ) and are

not affected by μ(x, β), as shown in Sections 2 and 3. The computation of the likelihood-based
tests, however, depends on the choice of the mean function. Therefore, this choice acts on the finite
sample powers. However, this dependence should disappear as n increases. We point out that, in
Case 1, we have developed simulations also for the EMAX model but the results are not reported
herein because they are very similar to those given in Table 2. In the same way, in Case 3, we have
considered also the linear mean function obtaining results different but consistent (in their trend)
with those displayed in Table 4.
In Cases 1 and 2, function h(x, γ) depends on a one-dimensional parameter γ ∈ R, and thus s= 1.

As we can appreciate from Figure 1, in the first case h(x, γ) is monotonic in x, while in the second,
for large enough values of γ, describes a nonmonotonic heteroscedasticity. Case 3, instead, con-
cerns a two-dimensional parameter γ ∈ R2, and thus s= 2. Note that, in all the three cases, the ho-
moscedastic model is obtained when γ0= 0 or γ0= 0 (Cases 1 and 2 or Case 3, respectively).
Therefore, from H1 in (2), γ = λ/

��
n

√
in the first two cases and γ= (γ1, γ2)

T in Case 3, where γ1 =
λ1/

��
n

√
and γ2 = λ2/

��
n

√
.

To discriminate these heteroscedastic models from the homoscedastic case, we firstly compute
several KL-optimal designs (for different choices of λ, λ1, and λ2) and the Ds-optimal design (for γ=
0 and γ= 0). In addition, as a benchmark, we consider a uniform design

ξU5
=

0 0.25 0.5 0.75 1
0.2 0.2 0.2 0.2 0.2

{ }
.

Uniform designs are a common choice in practice and, in specific contexts, they provide nice the-
oretical guarantees (see Biedermann & Dette, 2001; Wiens, 1991, 2019).
From each heteroscedastic model (Cases 1, 2, and 3) we generate n responses frommodel (1), in

different settings, applying the KL-optimal design, the Ds-optimal design, and the uniform design
described above.
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Table 1 lists all Ds- and KL-optimal designs we consider in our experiments. In the first two
cases, the D1-optimal design is supported at 0 and 1 as a consequence of Corollary 1. In Case
1, all the KL-optimal designs share the same support points, that are 0 and 1. This behaviour
can be explained by Theorem 3: the monotonicity of the variance function implies that x and x

Table 1. Optimal designs for Cases 1, 2, and 3

Case 1

ξD1
=

0 1
0.500 0.500

{ }
ξKL0.25 =

0 1
0.521 0.479

{ }
ξKL0.5 =

0 1
0.542 0.458

{ }

ξKL1 =
0 1

0.582 0.418

{ }
ξKL2 =

0 1
0.657 0.343

{ }
ξKL4 =

0 1
0.769 0.231

{ }

Case 2

ξD1
=

0 1
0.500 0.500

{ }
ξKL0.0625 =

0 1
0.504 0.496

{ }
ξKL0.125 =

0 1
0.507 0.493

{ }
ξKL0.25 =

0.00 0.55
0.510 0.490

{ }

ξKL0.5 =
0 1

0.510 0.490

{ }
ξKL1 =

0.72 0.28
0.512 0.488

{ }
ξKL2 =

0.36 0.64
0.520 0.480

{ }
ξKL4 =

0.18 0.89
0.532 0.468

{ }

Case 3

ξD2
=

0 0.5 1
0.333 0.333 0.333

{ }
ξKL(0,0) =

0 1
0.500 0.500

{ }
ξKL(0.05,0.05) =

0 1
0.501 0.499

{ }

ξKL(0.125,0.125) =
0 1

0.519 0.481

{ }
ξKL(0.125,0.25) =

0 1
0.526 0.474

{ }
ξKL(0.25,0.25) =

0 1
0.534 0.466

{ }

ξKL(0.125,0.5) =
0 1

0.540 0.460

{ }
ξKL(0.25,0.5) =

0 1
0.546 0.454

{ }
ξKL(0.5,0.5) =

0 1
0.557 0.443

{ }

ξKL(0.25,1) =
0 1

0.567 0.433

{ }
ξKL(0.5,1) =

0 1
0.575 0.425

{ }
ξKL(1,1) =

0 1
0.590 0.410

{ }

ξKL(0.5,2) =
0 1

0.602 0.398

{ }
ξKL(1,2) =

0 1
0.612 0.388

{ }
ξKL(2,2) =

0 1
0.629 0.371

{ }

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7
8 �
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2
4

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
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0
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1
2
4

Figure 1. Case 1 (left) and Case 2 (right) variance functions h(x, γ), for different values of γ.
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coincide with the extremes of the experimental domain [0; 1]. In Case 2, instead, the variance func-
tion is not monotone, for γ> 0.2755, and thus it does not necessarily reach its maximum and min-
imum at the extremes of [0; 1]. When the support of ξKLγ is not constant with respect to γ, the limit
result in Theorem 4 does not necessarily apply, although it is still true that ω(γ)> 1/2.
Let us note that, from Table 1 in both the scalar cases as γ = λ/

��
n

√
goes to γ0= 0, the KL-optimal

design approaches the D1-optimal design, which is the design which maximizes the noncentrality
parameter (see Remark 1); this is consistent with Equation (5) (Remark 1) and Corollary 2 that
imply asymptotic equivalence of D1- and KL-criteria. This is not true for Case 3, which concerns
a multidimensional parameter γ; in this case, the Ds-optimal design has three support points while
the KL-optimum design is always supported at 0 and 1. Note that in our settings, for Case 3,
ξKL(γ1,γ2) = ξKL(γ2,γ1). For this reason we do not consider redundant couples in our outcomes.

In Tables 2–4, we display the experimental results for Cases 1, 2, and 3, respectively.We present
Monte Carlo estimates of the actual significance level α̂ and the finite test powers η̂ of the
log-likelihood ratio (LR) test, for different optimality criteria in several experimental settings.
With a slight abuse of notation, the rows corresponding to n=∞ display the nominal significance
level α and the asymptotic test powers. Let us note that the asymptotic powers have been analyt-
ically computed from

P(X2
s [ζ(ξ; λ; γ0)] ≥ X2

s;1−α),

where X2
s;1−α is the quantile of a chi-squared random variable (rv) with s degrees of freedom (df),

α = 0.05, and X2
s [ζ(ξ; λ; γ0)] is a noncentral chi-squared rv with s df and noncentrality parameter

ζ(ξ; λ; γ0) given by (5). Finite sample powers are computed as the proportions in theM replications
of LR-statistics larger than the asymptotic threshold X2

s;1−α. In this paper, only tables for α= 0.05
are included. Different significant levels produce similar results.
The values of the asymptotic powers confirm the theoretical results described in Remark 1

and Corollary 2. From Tables 2 and 3, we can observe that the D1-optimal design, which max-
imizes the noncentrality parameter for any value of λ in the scalar case, actually guarantees the
largest asymptotic powers in all the scenarios. On the other hand, when λ is a vector, from
Table 4 (see the rows corresponding to γT= (0, 0)), we have that the design with the largest
asymptotic power (for any choice of λ) is the limiting KL-optimal design, ξKLγ0 = ξKL0 and this
is consistent with Corollary 2.

Table 2. Monte Carlo actual significance level α̂ and finite powers η̂, and their asymptotic counterparts, obtained
using different optimality criteria for Case 1, with variance function h(x; γ)=eγx, in various experimental settings

ξKLγ ξD1
ξU5

λ n γ α̂ η̂ α̂ η̂ α̂ η̂

5 25 1 0.0680 0.3777 0.0672 0.4090 0.0686 0.2362

100 0.5 0.0555 0.4185 0.0509 0.4280 0.0548 0.2342

400 0.25 0.0463 0.4334 0.0500 0.4203 0.0488 0.2434

∞ 0 0.0500 0.7054 0.0500 0.7054 0.0500 0.4239

10 25 2 0.0674 0.8813 0.0672 0.9196 0.0672 0.6464

100 1 0.0517 0.9304 0.0509 0.9371 0.0548 0.6937

400 0.5 0.0517 0.9353 0.0500 0.9446 0.0488 0.7035

∞ 0 0.0500 0.9988 0.0500 0.9988 0.0500 0.9424

20 25 4 0.0863 0.9962 0.0672 1.0000 0.0672 0.9886

100 2 0.0591 1.0000 0.0509 1.0000 0.0548 0.9976

400 1 0.0557 1.0000 0.0500 1.0000 0.0488 0.9990

∞ 0 0.0500 1.0000 0.0500 1.0000 0.0500 1.0000
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To analyse the finite sample performances of tests, we generated, for each design and for each
scenario (choice of h, λ, and n), M= 10,000 Monte Carlo replications of samples of increasing
sizes. Specifically, we chose n= 25, 100, 400 for Case 1 and Case 3, whereas n= 100, 400,
1,600, 6,400, 25,600 for Case 2. In fact, the nonmonotonicity of the conditional variance function
of Case 2 makes it quite difficult to discriminate between the two hypotheses in (2), thus a larger
sample size is needed to obtain some nonzero power. Several alternatives are considered, defined
by λ= {5, 10, 20} in Case 1, λ= {10, 20, 40} in Case 2, and λi= {2.5, 5, 10}, with i= 1, 2, in Case 3
(removing redundant couples).
Case 1. Besides ξD1

and ξU5
, we considered the KL-optimal designs, ξKLγ , for γ = λ/

��
n

√
in {0.25,

0.5, 1, 2 4}.
From Table 2, which summarizes the finite sample and asymptotic results under Case 1, wemay

appreciate that, coherently with the asymptotic findings, the D1-optimal design provides the high-
est finite power almost uniformly, with just one exception where ξKLγ is slightly better. In addition,
we can notice how, consistently with Remark 1, Corollary 2 and Theorem 4, the more γ decreases
the smaller the difference between KL- and D1-optimal designs.
In this example, h(x; γ)= eγx is a well-behaved variance function; powers increase rapidly both

with n and λ, although for λ= 5 it seems that a sample size of n= 400 is not large enough to ap-
proach the asymptotic power. Our benchmark, the uniform design, appears to be the worst choice
in all scenarios. For all criteria, the actual significance level converges to the nominal level, dis-
played on rows n=∞, as n increases and it is relatively close to it already for n= 25. In particular,
design ξD1

shows the fastest convergence.
Case 2. As previously pointed out, when the variance function is h(x; γ)= 1 + 0.1[γx + sin

(2πγx)], powers of the LR-statistic are very low and tend to increase quite slowly with n and λ,
as displayed in Table 3.

Table 3. MonteCarlo actual significance level α̂ and finite powers η̂, and their asymptotic counterparts, obtained using
different optimality criteria for Case 2, with variance function h(x; γ)= 1+0.1[γx+sin (2πγx)], in various experimental
settings

ξKLγ ξD1
ξU5

λ n γ α̂ η̂ α̂ η̂ α̂ η̂

10 100 1 0.0000 0.0003 0.0000 0.0021 0.0000 0.0005

400 0.5 0.0081 0.0305 0.0085 0.0108 0.0036 0.0120

1,600 0.25 0.0480 0.3743 0.0482 0.3709 0.0596 0.2222

6,400 0.125 0.0506 0.6096 0.0492 0.6159 0.0572 0.3921

25,600 0.0625 0.0489 0.6916 0.0514 0.6943 0.0512 0.4049

∞ 0 0.0500 0.9537 0.0500 0.9537 0.0500 0.7307

20 100 2 0.0000 0.0217 0.0000 0.0389 0.0000 0.0090

400 1 0.0000 0.0899 0.0085 0.0814 0.0036 0.0739

1,600 0.5 0.0493 0.3819 0.0482 0.0963 0.0596 0.2709

6,400 0.25 0.0486 0.9133 0.0501 0.9125 0.0596 0.7274

25,600 0.125 0.0518 0.9939 0.0514 0.9937 0.0541 0.8952

∞ 0 0.0500 1.0000 0.0500 1.0000 0.0500 0.9993

40 100 4 0.0000 0.2236 0.0000 0.1945 0.0000 0.0635

400 2 0.0000 0.3543 0.0085 0.2547 0.0036 0.1579

1,600 1 0.0109 0.5399 0.0482 0.2660 0.0596 0.4365

6,400 0.5 0.0521 0.9206 0.0501 0.2932 0.0596 0.7294

25,600 0.25 0.0492 1.0000 0.0514 1.0000 0.0541 0.9955

∞ 0 0.0500 1.0000 0.0500 1.0000 0.0500 1.0000
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It is worth noting that the actual significance level gets close to the nominal level only for n≥ 1,
600, for all designs. This means that the asymptotic critical values used to determine the rejection
region are too high, which reflects in a poor performance of the LR-test for small samples in all
scenarios. In general, it seems that KL-optimal designs provide higher finite power faster (i.e.,
for lower n) with respect to the D1-optimal design. Furthermore, in our experiments, only for
n= 25, 600 and γ= 0.0625 the D1-optimal design shows its asymptotic dominance over its com-
petitors, while in the other cases it is dominated by the KL-optimal design. Unfortunately, the finite
sample power of KL-designs is strongly dependent on the knowledge of the alternative and thus it
is difficult to suggest a rule of thumb for the choice of γ in the case of uncertainty. To this extent, we
suggest the reading of Tommasi and López-Fidalgo (2010).
Case 3. Table 4 displays the finite powers and actual significance level (and their asymptotic

counterparts) of the LR-tests associated to the different designs for variance function h(x; γ)= 1
+ γ1 x + γ2 x

2 and mean function μ(x, β)= β0 + β1 x/(β2 + x). We recall that, for this particular spe-
cification of h( · ; · ), ξKL(γ1,γ2) = ξKL(γ2,γ1), and thus, without loss of generality, we consider only
KL-optimal designs with γ1≤ γ2.
The results in Table 4 show that, for n≤ 100, the actual significance levels of the Ds- and the

uniform designs are two to three times larger than the nominal level. We can notice that
KL-optimal designs always dominate the other two designs, presenting larger finite powers and/

Table 4. MonteCarlo actual significance level α̂ and finite powers η̂, and their asymptotic counterparts, obtained using
different optimality criteria for Case 3, with variance function h(x; γ)=1+ γ1 x+ γ2 x2 and mean function μ(x, β)= β0 + β1
x/(β2 + x), in various experimental settings

ξKLγ ξD2
ξU5

λT n γT α̂ η̂ α̂ η̂ α̂ η̂

(2.5, 2.5) 25 (0.5, 0.5) 0.0639 0.2300 0.1423 0.2808 0.1649 0.2973

100 (0.25, 0.25) 0.0527 0.3016 0.1111 0.2855 0.1062 0.2682

400 (0.125, 0.125) 0.0480 0.3448 0.0696 0.2668 0.0678 0.2031

∞ (0, 0) 0.0500 0.6028 0.0500 0.4384 0.0500 0.3400

(2.5, 5) 25 (0.5, 1) 0.0690 0.3387 0.1423 0.3656 0.1649 0.3632

100 (0.25, 0.5) 0.0549 0.4928 0.1111 0.4466 0.1062 0.3875

400 (0.125, 0.25) 0.0492 0.6093 0.0696 0.4360 0.0678 0.3551

∞ (0, 0) 0.0500 0.9291 0.0500 0.8038 0.0500 0.6753

(5, 5) 25 (1, 1) 0.0687 0.4530 0.1423 0.4495 0.1649 0.4318

100 (0.5, 0.5) 0.0569 0.6743 0.1111 0.5777 0.1062 0.5011

400 (0.25, 0.25) 0.0522 0.8125 0.0696 0.6315 0.0678 0.5135

∞ (0, 0) 0.0500 0.9965 0.0500 0.9668 0.0500 0.9028

(2.5, 10) 25 (0.5, 2) 0.0712 0.5234 0.1423 0.5240 0.1649 0.4960

100 (0.25, 1) 0.0537 0.7974 0.1111 0.7054 0.1062 0.6286

400 (0.125, 0.5) 0.0529 0.9283 0.0696 0.7821 0.0678 0.6738

∞ (0, 0) 0.0500 1.0000 0.0500 0.9983 0.0500 0.9876

(5, 10) 25 (1, 2) 0.0702 0.6049 0.1423 0.5849 0.1649 0.5584

100 (0.5, 1) 0.0531 0.8793 0.1111 0.7800 0.1062 0.7039

400 (0.25, 0.5) 0.0519 0.9739 0.0696 0.8861 0.0678 0.7896

∞ (0, 0) 0.0500 1.0000 0.05 1.0000 0.05 0.9990

(10, 10) 25 (2, 2) 0.0647 0.7235 0.1423 0.6827 0.1649 0.6234

100 (1, 1) 0.0527 0.9624 0.1111 0.9004 0.1062 0.8289

400 (0.5, 0.5) 0.0501 0.9976 0.0696 0.9701 0.0678 0.9264

∞ (0, 0) 0.0500 1.0000 0.0500 1.0000 0.0500 1.0000
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or smaller actual significant levels. This becomes more evident as n increases, which is in line with
the asymptotic theory: for small values of ||γ|| the KL-criterion tends to coincide with the noncen-
trality parameter of the asymptotic chi-squared distribution under the alternative (Theorem 2).

5 Conclusions

The main goal of this paper is the study of optimality criteria for detecting heteroscedasticity in a
nonlinear Gaussian regression model, under local alternatives. Three tests of hypotheses are typ-
ically used for discriminating between nested rival models: the likelihood ratio, the score and the
Wald tests. All of them are related to the likelihood function (thus, they are referred to likelihood-
based tests) and, under local alternatives, they share asymptotically the same noncentral
chi-squared distribution. On the other hand, from the experimental design perspective, Ds- and
KL-optimalities are the most common criteria to design experiments for discrimination. In this pa-
per, we prove theoretically to what extent both these criteria are related to the noncentrality par-
ameter of a likelihood-based test for discriminating heteroscedasticiy versus homoscedasticity.
The KL-criterion is proved to be asymptotically equivalent to the noncentrality parameter.
Therefore, asymptotically the KL-optimum design guarantees the maximum power of the
likelihood-based tests. The Ds-criterion instead is proportional to the noncentrality parameter
whenever the variance function depends just on one parameter (even for finite samples, not
only asymptotically). Therefore, in this last case, the two criteria of optimality are asymptotically
equivalent.
The numerical outcomes obtained from a simulation study confirm these theoretical results.
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