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Abstract—The cloud computing has deeply changed how distributed systems are engineered, leading to the proliferation of ever-
evolving and complex environments, where legacy systems, microservices, and nanoservices coexist. These services can severely
impact on individuals’ security and safety, introducing the need of solutions that properly assess and verify their correct behavior.
Security assurance stands out as the way to address such pressing needs, with certification techniques being used to certify that a
given service holds some non-functional properties. However, existing techniques build their evaluation on software artifacts only,
falling short in providing a thorough evaluation of the non-functional properties under certification. In this paper, we present a multi-
dimensional certification scheme where additional dimensions model relevant aspects (e.g., programming languages and development
processes) that significantly contribute to the quality of the certification results. Our multi-dimensional certification enables a new
generation of service selection approaches capable to handle a variety of user’s requirements on the full system life cycle, from system
development to its operation and maintenance. The performance and the quality of our approach are thoroughly evaluated in several

experiments.

Index Terms—Assurance, Certification, Security, Service Selection

1 INTRODUCTION

Modern distributed systems are based on (micro)services
developed using cloud-native technologies, composed at
run time with orchestration platforms, and continuously
monitored to ensure scalability and elasticity. At the same
time, (micro)services coexist with legacy systems consisting
of large and difficult-to-maintain codebases, on one side,
and nanoservices consisting of few lines of codes, on the
other side, substantially increasing systems’ complexity [1].
This scenario radically changed the governance, risk, and
compliance landscape, invading the safety and security of
people. Distributed systems are in fact supporting virtually
every transaction and process in our everyday life, calling
for solutions properly assessing and verifying their behavior
and, in turn, the impact on the individual’s personal sphere.

In the last decade, security assurance has been widely
accepted as a means to model and assess the behavior of a
distributed system, to the aim of increasing its trustwor-
thiness [2]. Assurance techniques have been consistently
applied, with certification schemes adopted to drive the
evaluation of non-functional (e.g., confidentiality, integrity)
properties of a given target system (e.g., software, ser-
vice) [3]-[6]. Notwithstanding the continuous research on
certification [2], existing techniques are still inadequate and
rarely applied to modern service-based scenarios. On the
one hand, traditional schemes (e.g., Common Criteria) lack
of flexibility to properly tackle the challenges of service-
based systems, such as automatic service selection [7], [8].
On the other hand, service-specific schemes (e.g., [4]-[6]) fail
to evaluate the services in their entirety. They in fact build
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their evaluation on the final software artifacts only (i.e., exe-
cutable service), ignoring additional and relevant aspects of
the target service, such as the development process [8]. This
negatively affects the whole certification process, impairing
existing approaches in retrieving a detailed and realistic
description of the service and, in turn, reducing the accuracy
of the certification results. This also negatively influences the
life cycle management of distributed systems, since certified
services are selected and composed on the basis of certified
yet incomplete information.

Our paper aims to fill in the above gaps by defining a
novel certification scheme that expands the scope of certi-
fication beyond the simple evaluation of software artifacts.
It considers additional aspects related to, for instance, de-
velopment and verification processes. Our scheme groups
these aspects into coherent dimensions, permitting to retrieve
a certified, complete, and well-structured picture of the
target service, paving the way for a fully-informed and
safe decision-making. Our scheme supports a new wave of
certification, where i) services are certified by considering
each dimension independently; ii) each dimension can be
managed according to its peculiarities (e.g., its life cycle);
iif) non-functional properties are verified by integrating
the certification results in each dimension. Our certification
scheme is finally integrated within the distributed system
life cycle management to support a certification-based ser-
vice selection, where functionally-equivalent services are
ranked and selected according to non-functional require-
ments defined by the users.

The contribution of our paper is twofold. We first define
a multi-dimensional certification scheme, where the state-
of-the-art evaluation of non-functional properties focusing
on software artifacts only is extended to consider additional
dimensions, modeling relevant aspects that contribute to the
quality of the certification results. To this aim, the proposed
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scheme introduces a novel certification model as the collec-
tor of all activities driving a service certification, where all
its building blocks (i.e., non-functional properties, target of
certification, evidence) are based on dimensions to enable
modular certification. Our scheme certifies the properties of
a given target service composing the results of the evalu-
ation in each dimension, and producing a more accurate
certificate of the service behavior. We then implement a cer-
tification-based service selection process, where services are
ranked according to the certified non-functional properties
they hold and corresponding users’ requirements, using a
Multi-Criteria Decision-Making (MCDM) technique.

The remainder of this paper is organized as follows.
Section 2 discusses the state of the art and our motivations.
Section 3 introduces our approach at a glance. Section 4
defines the certification model driving all certification ac-
tivities, whose execution is described in Section 5. Section 6
details the methodology for ranking and selection of certi-
fied services. Section 7 presents an extensive experimental
evaluation of the proposed certification scheme. Finally,
Section 8 draws our conclusions.

2 BACKGROUND AND MOTIVATIONS

Certification schemes aim to verify whether a given sys-
tem supports one or more non-functional properties and
behaves as expected. Schemes are based on a certification
model that specifies all the activities that have to be executed
on the target of certification (e.g., a software or a service)
to collect the evidence proving a given non-functional (e.g.,
confidentiality, integrity, reliability) property. If the collected
evidence supports the given non-functional property, the
certification scheme triggers the release of a certificate for
the service, which is further used to comparatively select
services according to non-functional requirements of end
users. Certification schemes, in fact, have been commonly
adopted to drive service ranking and selection according
to certified non-functional properties and corresponding
evidence in certificates [9].

Existing certification schemes followed the evolution of
ICT systems [2], first focusing on the certification of tradi-
tional software-based systems (e.g., [10]) and then focusing
on the certification of service-based and cloud-based sys-
tems in virtually any domains (e.g., [3], [4], [6], [11]). Two
main approaches to evidence collection have been proposed
to support existing certification schemes: i) test-based evidence
collection, where evidence is collected as the result of testing
activities performed by the Certification Authority (CA) on
the target of certification [3], [4], [6]; ii) monitor-based evidence
collection, where evidence is collected in the form of metrics
retrieved by monitoring service execution [11]-[19]. These
approaches have been then applied in additional scenarios,
including compliance with Service-Level Agreements [13],
[16], [17], [20]-[23], verification-as-a-service in grid com-
puting [24], behavioral analysis of Network Virtualization
Functions [25], as well as data integrity in cloud-edge datas-
tores [26]. Peculiar schemes also include other means for ev-
idence collection, such as Trusted Platform Modules [5], and
formal methods for certification of functional properties (i.e.,
correctness) [24], [27]. Certification schemes also support
self-adaptive systems, ensuring the compliance of a system
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in any of its states and driving the system adaptations
according to properties in the certificates [28], [29].

The undebatable advantages brought by certification
schemes conflict with some strong assumptions that limit
their applicability and quality as follows.

A1) Benign behavior of all involved parties. Service
providers, end-users, and certification authorities fol-
low the certification scheme and its rules, resulting
in certificates properly modeling the properties of the
certified services. We note that some peculiar schemes
relax this assumption [3], [26], [30], though they are out
of the scope of this paper.

A2) Chain of trust rooted at the CA. The CA is trusted by
design, meaning that it correctly produces and executes
certification models driving the certification activities.
The trust is propagated from the CA to the certificates,
and is guaranteed by cryptographic signatures [6].
Certificates awarded to services according to their
software artifacts only. The certification scheme builds
its evaluation, and corresponding certificate award, on
evidence collected by analyzing the software artifacts
of the target of certification [3], [4], [6], [11]. In other
words, evidence is collected by testing and monitoring
the software artifacts of the target service, ignoring
additional information coming from, for example, the
development process.

A4) Software artifacts sufficient for optimal selection.
Service ranking and selection are built on certified non-
functional properties. The latter are evaluated accord-
ing to corresponding evidence on software artifacts [9],
[13], [16], [20]-[23], [31] stored in certificates. Though
partial, the evidence is assumed to be complete and
support accurate ranking.

A3

~

Assumptions Al) and A2) limit the applicability of cer-
tification schemes to scenarios where all parties are benign
and the chain of trust is built on a trusted party (i.e., the
CA), while posing no limits to the quality of retrieved
certificates. By contrast, assumption A3) reduces the qual-
ity of the certificates, by limiting the amount of evidence
that can be collected. Services are in fact evaluated and
certified on the basis of partial information describing their
final software artifacts only, while discarding all evidence
related to, for instance, how the software artifacts have been
implemented, which can still provide relevant insights [8].
This lack of information degrades the quality of decisions
based on certificates [32] directly impairing assumption A4),
which requires complete information to retrieve an accurate
ranking for optimal service selection.

As a result, the effectiveness and usefulness of current
certification schemes is strongly impaired by assumptions
A3) and A4); this results in scenarios where the selected ser-
vices can exhibit a suboptimal behavior once provisioned,
thus impacting on the users’ trust in service providers.

The certification scheme in this paper addresses these
gaps departing from assumptions A3) and A4). It extends
the evaluation of target services beyond software artifacts
(assumption A3)) at the basis of an accurate service selection
(assumption A4)), by integrating relevant aspects of the
target services influencing their certificates.
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Table 1
Non-functional attributes of services s1—s5 grouped in the three dimensions.

Servi Dimension Artifacts Dt Dimension Development D g, Dimension Evaluation D.,q;
ervice Repl. [ Repl. Zones | HA Prot. | Prog. Lang. Dev. Proc. Type State Mgmt. | Code Review | Trust. Contr. When
51 3 3 Managed Python Waterfall Monolith Stateful No No After
52 3 2 Custom Java Spiral Microservice Stateless No No During
53 1 1 Custom Java Prototype Monolith Stateless Yes Yes After
S4 3 3 Managed Rust DevSecOps | Microservice Stateless Yes Yes During
S5 2 3 Managed Python DevOps Microservice Stateless No Yes After
Our scheme radically changes the definition and execu-
tion of the certification model by modifying the definition
of non-functional property in literature (e.g., [6]). Our defi-
specifies () prepares nition of property, which is formalized in Section 4, models
requirements — different aspects influencing the evaluation of the service
\ Certification . . . .
Model Service behavior beyond simple software artifacts. New attributes
(4) Selection

Provider

(2) is executed
against

Service

(3) is awarded
with

implements

Service
Repository

is inserted
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Figure 1. Overview of our approach.

3 OUR APPROACH

Our reference scenario in Figure 1 is a cloud environment
where services are first certified and then selected according
to their non-functional properties to ensure stable quality
of service. It includes the following main parties: i) service
provider that implements and distributes certified services;
ii) end user that selects and integrates certified services
within its system according to certified non-functional prop-
erties; iii) certification authority (CA) that defines and exe-
cutes a certification scheme proving non-functional proper-
ties on services. Our certification scheme is based on the
novel concept of dimension (Section 3.1), departing from the
state of the art and positively impacting on all the involved
parties (Section 3.2).

3.1

The certification scheme in this paper implements a flow
of activities composed of three steps: i) certification model
definition (Section 4 and step (1) in Figure 1), where the
CA describes the activities to be executed on the target
of certification to collect evidence proving the support of
a non-functional property; ii) certification model execution
(Section 5.1 and step (2) in Figure 1), where the CA executes,
with the help of its verification labs, the activities in the
certification model; iii) certificate award (Section 5.2 and step
(3) in Figure 1), where the CA awards a certificate proving
a given non-functional property to the target of certification
according to the collected evidence. End users finally select
and compose services with certified behavior on the basis
of their certificates and corresponding properties (Section 6
and step (4) in Figure 1).

Dimension-Based Certification

(see Table 1) organized in dimensions are added, where
each dimension describes a particular aspect of the non-
functional property, as follows.

Definition 1 (D). A dimension D is a set {(a1,v1), ...,
(an,vn)}, where each attribute is a pair (a;, v;) with
e a; the attribute name;
o v,€V,, the value for a;, denoted as a;.v;.

We note that V,, is a totally ordered set according to total
order relationship >,, defined by experts (e.g., the CA).
>,, orders attribute values on the basis of their effect on
the strength of the corresponding non-functional property,
such that, for any pairs of attribute values a;.v;, a;.v€Vy,,
a;.vj >q, 6;.V iff a;.v; increases the property strength more
than a;.v.

While being generic and extensible, the approach in this
paper considers three dimensions as presented in Table 1:
i) Dqr+ that includes attributes describing the software arti-
facts of the target (i.e., the attributes considered in the state
of the art); ii) Dge, that includes attributes describing the
development process used to implement the target, such
as attributes Prog. Lang., Dev. Proc., Type, State Mgmt., and
Code Review;' iii) Dgyq that includes attributes describing
the verification process at the basis of the target certification,
such as attributes Trust. Contr. and When.

3.2

Let us consider a service directory with 5 functionally-
equivalent services s1-ss5, to be certified for property reli-
ability, whose non-functional attributes and corresponding
dimensions are shown in Table 1. For instance, service
s4 is a microservice operating in 3 replicas spread in 3
zones, indirectly managing the application state, and im-
plemented following a DevSecOps methodology. Following
our scheme, the CA certifies each service s1—s5 for property
reliability according to three dimensions Dgy, Dgey, and
D¢yq; in the certification model (Section 4), whose execu-
tion (Section 5.1) triggers the release of the correspond-
ing certificate (Section 5.2). Each certificate departs from
assumption A3), expanding the service behavior beyond
dimension D+, and supporting a certification scheme that

Impact and Reference Example

1. We that note the development process has a substantial impact on
the resulting software and, in turn, on the non-functional properties it
holds [8], [33].
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is i) fine-grained, since it models service behavior according
to several detailed attributes, ii) dimension-aware, since it
organizes attributes in dimensions influencing the non-func-
tional property [8]. Certificates are then matched and ranked
against user’s requirements to support service selection
(Section 6). This addresses the shortcomings of assumption
A4), grounding selection on more complete and accurate
multi-dimensional information on service behavior.

The proposed scheme provides benefits for all the in-
volved parties as follows.

Service provider retrieves certificates better reflecting the
behavior of its services [30], [32], [34]. For instance, the
certificate of s, models the corresponding development
process, which outperforms the development process
of other services in Table 1, being built on a DevSecOps
approach and microservices with code review.

End user selects services according to more accurate cer-
tificates, supporting fully-informed and safe decisions.
The accuracy of properties in certificates, as well as
the structure and content of certificates are in fact fun-
damental in decision-making [32]. For instance, when
evaluated according to D, s1 or s4 are equivalent
among them and clearly outperform the remaining
ones. However, when considering the additional di-
mensions in our scheme, it is clear that s; is largely
unacceptable and sy is the best solution. In fact, s;
is a legacy service developed following a Waterfall
process, has not been validated using code review, and
directly manages application state, a practice which is
not recommended.

CA improves the quality and in turn the trustworthiness of
its certification scheme, providing higher accuracy with
a marginal increase in overhead.

4 CERTIFICATION MODEL DEFINITION

Our certification scheme defines a certification model detail-
ing all activities required to certify a given target against a
non-functional property (step (1) in Figure 1).

Definition 2 (M). A certification model is a tuple of the
form M=(p, ToC, £, F), where

e p is the non-functional property in Definition 3;

o T'oC is the target of certification in Definition 4;

¢ & is the evidence collection model in Definition 5;

e F is the evaluation function in Definition 7, deter-
mining the final outcome of the certification model
execution.

The certification model follows the state of the art in
Section 2 and specifies the non-functional property to be
certified on a target service according to an evidence collec-
tion process. It is prepared and cryptographically signed by
the certification authority, and trusted by service providers
and end users according to the chain of trust in Section 2 [6].
Hereafter we detail the different components of the certifi-
cation model.

4.1 Non-Functional Property and Target of Certification

A non-functional property p describes the non-functional
behavior of a target of certification, as follows.

4

Definition 3 (p). A non-functional property p is a pair
®,{D1,...,Dy}), where p is an abstract property (i.e.,
the property name) and D, is a dimension organizing
non-functional attributes as described in Definition 1.

Similarly, the target of certification is defined as a set of
mechanisms that are logically grouped according to dimen-
sions, as follows.

Definition 4 (T'oC). A target of certification ToC' is a set
{®p,,...,0p, }, where ©p,={01,...,0,,} is a set of non-
functional mechanisms 6; describing the target accord-
ing to dimension D; in Definition 1. A non-functional
mechanism 6; is a pair (6, Ag), where 6 is a mechanism
type and Ay is a set of values refining it [6].

We note that non-functional mechanisms are the means
by which the target supports a non-functional property.

Example 1. Let us consider our reference example in Sec-
tion 2. Property reliability is defined as pre;=(Prei,
{Darts Daev, Devar}). Attribute values are ordered ac-
cording to >,, following their position in the corre-
sponding definition. For instance, attribute values of
attribute Prog. Lang. in Dge, are ordered as [Rust
>a, Java >, Python]. The certification model for s4,
defined as M,,, includes s4 as ToC={Op,.,,Op,..,
©p,,.. }, where ©p, ,={Replica Manager=Kubernetes},
©p,., ={Pipeline=File Content, Source Code=Rust, Code
Review Document=File Content}, and ©p_, ,={Certifica-
tion Framework=Trusted-and-Continuous}. More in de-
tail, s4 is deployed in Kubernetes, is written in Rust and
has a code review document ( Op,, ), and is certified
by means of a trustworthy and continuous certification
framework (Op_, ).

4.2 Evidence

The certification scheme collects evidence to prove that
a target of certification holds a non-functional property.
Evidence can be collected according to testing, monitoring,
or formal proofs, and is bound to a subset of the T'oC
it insists on. For simplicity but no lack of generality, we
consider test-based evidence, where the execution of testing
activities permits to collect evidence on the service behavior.
Evidence is collected according to an evidence collection model
E=€p,,.YEp,.,UED,, .., where Ep is the evidence collection
model detailing the testing activities in dimension D, as
follows.

art

Definition 5 (£p). An evidence collection model £p for
dimension D is a set {{(01,t1),-. .. ,(0n,tx)}}, where each
{(01,81)5- -, (On,tn)} is a single test case. Each test case
consists of several steps (0;,t;), where 6,€0p is the
portion of the target the evidence collection model insists
on, and ¢; is a step of the test case used to verify such
target.

In other words, the evidence collection model &p is
a sequence of test cases. Each test case verifies a specific
(set of) non-functional mechanisms in ©p to prove a non-
functional property in dimension D. It is a sequence of steps
t; specifying all inputs, preconditions, and postconditions
for its execution, as well as the expected output, at design
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Table 2
Evidence collection model in M, .

D Ep
Dart {{(Replica Manager=Kubernetes, Get-Orchestrator),
(Replica ~ Manager=Kubernetes,  Check-Replicas),
(Replica Manager=Kubernetes, Check-Zones)} }

Dgey | {{(Pipeline=File Content, Dry-Run)}, {(Source
Code=Rust, Check-Code)}, {(Code Review Docu-

ment=File Content, Check-Review-Document)} }

Deyar | {{(Certification Framework=Trusted-and-Continuous,

Check-Document)} }

time [6]. The result of the execution of an evidence collection

model &p is a set of evidence {ev}p defined as follows.

Definition 6 (ev). An evidence ev is a set {(toy, tr1), ...,
(ton, try)} describing the result of the execution of a
single test case in £p. It consists of several pairs (to;, tr;),
where to; is the output of the execution of test step ¢;,
and tr; is either Success or Failure indicating whether the
execution of ¢; is successful, that is, output to; matches
the expected output in ¢;.

Evidence collection model £p and the corresponding set
of evidence {ev}p provide the trust anchor of our scheme,
binding certificates on concrete evidence retrieved from the
execution of the test cases against the targets.

Example 2. Following Example 1, we present an excerpt
of the evidence collection model My,.Ep, ., ={{(Replica

Manager=Kubernetes, Get-Orchestrator), Replica
Manager=Kubernetes, Check-Replicas), Replica
Manager=Kubernetes, Check-Zones)}}. It contains

one test case consisting of three steps insisting on
the same mechanism Replica Manager. 1t first retrieves
the orchestrator checking whether it is a HA-enabled
Kubernetes cluster (step “Get-Orchestrator”); it then
verifies the number of replicas checking whether it is
compatible with the expected number of replicas (step
“Check-Replicas”); it finally verifies the number of
zones (e.g., data centers) where the replicas are spread
checking whether it is compatible with the expected
number of zones (step “Check-Zones”). We note that
the details of each step (e.g., preconditions, inputs) are
omitted for brevity. Table 2 shows the complete M, .E.

4.3 Evaluation Function

The last component of the certification model is evaluation
function F. It determines the outcome (success or failure)
of evidence collection and, if positive, enables certificate
release. It follows the concept of dimension and is mod-
eled as a sequence of Boolean functions, each retrieving
the outcome of evidence collection in a specific dimension.
Functions are then combined using a Boolean operator AND
as follows.

Definition 7 (F). The evaluation function F is a Boolean ex-
pression Fp, A...AFp,, where Fp,: {ev}p, — {T,L}
is a function returning the outcome of the certification
model execution within a dimension D; according to the
collected evidence {ev}p,.

5

According to the dimensions in Section 3, F is defined
as Fp,,., N\Fp,., N\Fp.,.- Each function takes value: i) T, in
case of success, allowing certificate release, or ii) L, in case
of failure, preventing certificate release. We note that the
evaluation function can support complex rules determining
the result of the certification, beyond the “all-or-nothing” in
this paper where all evidence must be successfully collected
or all dimensions must be successfully certified.

eval *

Example 3. Following Example 2, the certification model for
84 is defined as M, =(pyc;, ToC, E, F), where p,.; and
ToC are defined in Example 1; £=€p_,, UEp,., UED, ../
with £p,,, defined in Example 2; F is defined as Fp,, A
FDyew NFD

art

eval®

5 CERTIFICATION MoODEL EXECUTION AND CER-
TIFICATE AWARD

Our certification scheme executes the certification model in
Section 4 and, if successful, awards a certificate to the ToC
(steps (2) and (3) in Figure 1). The soundness of the entire
scheme is built on the well-formedness of the certification
model defined by the CA.

Definition 8. A certification model M is well-formed iff ¥ 0;
e M.ToC 3 (93‘, tj) e M.E | 0; = Gj.

The above definition requires that, for each mechanism
0; forming the ToC, there exists at least one test step (6;,
tj) in the sequence of test cases M.E verifying 6;. In other
words, each mechanism in the target of certification must be
verified by the test cases defined in the certification model.

In the following of this section, we present certification
model execution (Section 5.1) and certificate award (Sec-
tion 5.2), completing our certification scheme. The pseu-
docode of these steps is reported in Figure 2.

5.1 Certification Model Execution

A well-formed certificate model M enables a modular
execution, building on the concept of view as the portion
of M induced by a dimension DeM.p. A view contains
all relevant information to evaluate T'oC' against the non-
functional property in D. It is formally defined as follows.

Definition 9 (View). Let M be a certification model and D
a dimension in M.p. A view induced by D on M is a
tuple of the form V=(D, Op, p, Fp), where

e D is the dimension;

e Op is the portion of the T'oC corresponding to dimen-
sion D;

o &p is the evidence collection model of dimension D;

o Fp is the portion of the evaluation function F returning
the outcome of the certification model execution in the
current view.

According to the three considered dimensions in Sec-
tion 3, three views are induced on the certification model:
Vart, Vdev, and Veyqr. Each view is evaluated in two steps as
follows:

1) Evidence Collection. The certification process collects
evidence {ev}p by executing the test cases in V.Ep
against the portion ©p of ToC'.
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INPUT
M: Certification model

OUTPUT
C: Certificate

CERTIFICATION MODEL EXECUTION AND
CERTIFICATE AWARD

/* View Computation */

forall D; € M.p;
/* For each dimension D build the corresponding view*/
V; < build_view (D;);

endfor;

/* Certification Model Execution */
forall V; € {V1,..., Vn}
/* (1) Evidence Collection®*/
{evi}, {(m,v;)} < execute_test_cases(V;.£);
/* (2) Individual View Evaluation®/
Ti < V’L-}—D({evi})}
endfor;

/* Result Aggregation™/
/* Evaluate overall result using Evaluation Function F*/
res «— F({r:});

if res = T then
/* build certificate if evaluation is successful®/
C « build_cert(M, {evid;}, {(mi,vi)});
return C;

else return L ;

endif;

Figure 2. Certification process: pseudocode.

2) Individual View Evaluation. Evaluation function
Fp€{FDurs> FDueys FD.y., t determines the result (T
or 1) of evidence collection at step 1) in the corre-
sponding dimension Dy,¢, Dgev, Devar. In particular,
Fp is a Boolean expression over the collected evidence,
requiring each evidence eve{ev}p to be successful
(denoted as Succ(ev)=T). An evidence is successful if
all the test steps therein return Success (Definition 6).
In other words, evaluation function Fp is successful
(T) iff Yeve{ev}p, Succ(ev)=T. We note that different
domain-specific functions can refine the notion of suc-
cessful evidence with no impact on the overall process.

Evaluation function M.F finally aggregates the Boolean
results of the individual view evaluations and retrieves the
final result of certification model execution. Results of view
evaluations are aggregated according to an AND operator
(Definition 7), meaning that evidence collection must be
successful in any views and, in turn, in any dimensions.
Example 4. Following Example 3, Figure 3 shows an ex-

ample of certification model execution in dimension

Dyt The components in bold in the certification model

become the components of view V,, where evidence

is collected according to Va.Ep,,, in Table 2 (step (1)).

All evidence evp,,, is successful, therefore the view is

evaluated T (step (2)).

eval

5.2 Certificate Award

A successful certification model execution triggers the re-
lease of a certificate. It includes three main components:

((Pret, {Dart, Ddcvs Deval}),
{®Dat:ODgeys ODeyar s
Ep @] ngev Ué&p

art eval’

D

]:Dart A ‘FDdJ

lev eval

(1) Evidence
Collection

N

[evDaM ={(HA Kubernetes, Success), (3, Success), (3, Success)}]

{

(2) Individual View
Evaluation

T=FDg4ri (€VD41)

Figure 3. Example of certification model execution in dimension D¢
(excerpt).

i) the certification model, ii) the set of collected evidence,
iii) a set of test metrics describing the evidence collection
performance. A certificate is formally defined as follows.

Definition 10 (C). A certificate is a tuple of the form C=(M,

{62}}, {(mh vl)r .- a(mmv vm)}>/ where
e M is the certification model in Definition 2;
o {ev}={ev}p,U...U{ev}p, is the set of collected evi-
dence proving M.p on M.T'oC in each dimension;
o {(m;, v;)} is the set of metrics resulting from the
execution of the evidence collection model M.E.

Metrics {(m;, v;)} describe the performance of the evi-

dence collection model, where m; is a metric class and v; its
normalized value; notation m;.v denotes the value of metric
m,. Table 4 reports the considered metrics.

We note that the process for certificate awarding can

be replicated by executing £, and its correctness evaluated
against £, F, and {ev}.

Example 5. Following Example 4, views Vi, Viev, Veval

are retrieved from the certification model. Evidence is
collected in each view and, assuming these activities
to be successful according to evaluation functions, a
certificate C4 is released. C4=(Mau, {ev}, {(Input Partition
Coverage, 0.977), (Branch Coverage, 0.876)}), where:

o M, is the certification model in Example 3;

o {ev}={ev}p,, . U {ev}ip,., U {ev}p,,, is the set of
evidence in Table 3. For instance, test case {Check-
Code}, checking whether the used programming lan-
guage is Rust, returned as output {Rust } and therefore
{Success}. For brevity, Table 3 only reports the name of
the test cases.

o {(Input Partition Coverage, 0.977), (Branch Coverage,
0.876)} is a subset of the metrics in Table 4.
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Table 3
Example of evidence collected by certifying s4.

Test Case to tr
{Get-Orchestrator, Check-Replicas, | {HA Kubernetes, 3,3} | {Success,
Check-Zones} Success,
Success}
{Dry-Run} {ok} {Success}
{Check-Code} {Rust} {Success}
{Check-Review-Document} {Document exists} {Success}
{Check-Document} {Document exists} {Success}

Table 4
Metrics [35], [36].

Input Partition Coverage | The degree to which test cases cover
the partitions of the service inputs.
The degree to which test cases cover
the branches of the service.

The degree to which test cases cover
the conditions of the service.

The degree to which test cases cover
the possible linearly independent
paths of the service [37].

Branch Coverage

Condition Coverage

Path Coverage

6 SERVICE SELECTION

The certification model execution in Section 5 enables end
users to select certified services according to their specific
non-functional needs, increasing the trustworthiness of their
systems. We assume certified services to be functionally
equivalent (i.e., offer the same functionality) and match
the functional users’ requirements (step (4) in Figure 1).
The service selection process builds on dimension lattices as
the means to specify users’ requirements on services and
rank services according to their certificates. Each lattice is
induced by a dimension of a non-functional property, and is
defined as follows.

Definition 11 ((D,>,)). Let D be a dimension and p a
non-functional property. The dimension lattice is a pair
(D, =), where

e D=V, x ... x Vg, with V,, being the domain of
attribute a; (Definition 1);

e =, is a partial order relationship over D such that
for each pair of elements (dimensions) D;, D;€D,
D;=,D; iff for all attributes arp€D;,D; either
Dj.ap.v>q, Dj.ap.vor D;.ap.v=Dj.a;.v.

In other words a dimension lattice contains all the
possible dimensions organized according to a partial order
(dominance) relationship. We note that the empty value {}
models either an attribute not having a value or an attribute
whose value is unknown. Such a value is ranked last in the
total order relationship in Definition 1, that is, Vv, €V, , v;
>a. {}. We also note that the total order relationships >,
at the basis of the lattice are defined by experts (i.e., the CA,
see Definition 1).

A ranking function R: (D, =,)—[0,1] assigns a value to
each element D of the lattice according to the following
condition: VD“ Dj S (D, tp), R(Dl) Z R(Dj) iff Dz tp Dj,
that is, the ranking function is compatible with the lattice
ordering. We consider a standard ranking function defined
as follows.

Definition 12 (R). The ranking function is defined as
R(D):M where D is a lattice element, L(D) is the

n 7

INPUT

{s1, ..., sn}: Certified services with certificates {C1, ...
{(glb, lub); }: User requirements

W' Preferences over dimensions

Won: Preferences over metrics

7Cn}

OUTPUT
{(s;j,pos;)}: Ranking list

SERVICE SELECTION

/* Service Filtering */
/* Filter according to requirements*/
services < {s|Vi, lub;>=p Cr.p.Di>p glb;};

/* Service Ranking */

/* Apply VIKOR?/

{(s5,Qj)} + VIKOR(services, W);
sort({(s;, Q;)})

/* Totally-Ordered Service Ranking*/

/* Compute the final ranking*/

forall s; € {(s5,Q;)}
/* compute certificate strength using metrics*/
pj < compute_strength(C;, Wi,);

endfor;

forall {si, s;} € {(s5,@;)} | Qi = Q;
/* first, sort services with the same Q using strength;
then, sort services with the same strenght randomly*/
sort({s;, s;}, {pi, 15});

endfor;

{(sj,pos;)} «+ build_ranking_list(services);

return {(s;, pos;)};

Figure 4. Service selection: pseudocode.

function returning the number of arcs of the minimum
path from the least element to D in the corresponding
Hasse diagram of the lattice, and n=maz(L(D))+1.

Example 6. Figure 5(a) shows an example of lattice
(Dart, =re) for dimension artifact D,y and property
reliability. For brevity, we only consider attributes Repli-
cas and HA Prot. (the former denoted as “Repl.” in Fig-
ure 5(a)). We note that relationships >grepl. and >pa prot.
are defined by the CA. The least element of the lattice
is the worst one, corresponding to R(D)=0.16. It refers
to a service whose attributes are unknown/cannot be
certified. The top element of the lattice is the optimum,
corresponding to R(D)=1. It refers to a service with
3 replicas and a managed HA protocol. We note that
elements located at the same lattice levels are equivalent
and associated with the same value of ranking function,
for instance, R(D)=0.5 for level 2, and R(D)=0.83 for
level 4.

Service selection consists of three activities: i) service
filtering, which collects compatible services matching users’
requirements; ii) service ranking, which ranks compatible ser-
vices according to the property they hold; iii) totally-ordered
service ranking, which provides a totally-ordered ranking of
services according to certificate metrics in Definition 10.
Figure 4 shows the pseudocode of these steps, while Fig-
ures 5(a)—(d) shows an example based on services s;—s5 in
Table 1.
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8
INPUT
Lattice (Dart, =ret); =rel defined by experts according to: {s1, 52, 53, 54, 85} Set of services
o« SRepl= [3 >Repl. 2 Repl. 1 >Rept. {}] {C1,C2,C3,Ca,Cs5}: Set of certificates
o >HAProt= [Managed >Ha prot. Custom >pa prot. {}] ((Repl=2, HA Prot.=Custom), .
(Repl=3, HA Prot.=Managed)): User requirements
OUTPUT
{s1, 52, 54, 85 }: Compatible services
L(D)=5 Repl. HA Prot. Repl. HA Pro
R(D) = Sesj =1 3 Managed 3 Managed
L(D) :‘i 1 _ Repl. HA Prot. Repl. HA Prot. Repl. HA Pro.E2> Repl. HA Proﬁ5>
R(D) = =~ =083 3 Custom 2 Managed 3 Custom 2 Managed
,,,,,,,,,,,,,,,,,,,,W/,,,x”,,/ ,,,,,,,,,,,,,,,,,,,,,,, 1,,,!K ,,,,,,,,,,, Y oo
L(D)=3 _ | Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prot.
R(D)=3 =06 3 O 2 Custom 1 Managed 3 {3 2 Custom 1 Managed
A v A id A
****************** ?*”71*”?”7/1”?”” I Y O
L(D)=2 Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prof: -“ | Repl. HA Prot.
R(D) = 26 l-05 2 1 Custom {} Managed 2 {} I Custom {} Managed
\ / \ / } ’ i ’
L(D)=1 Repl. HA Prot. Repl. HA Prot. Repl. HA Prot. Repl. HA Prot.
R(D) = % =03 1 {} {} Custom 1 {} {}  Custom
\ / - -
L(D) = % L Repl. HA Prot. Repl. HA Prot.
R(D) =7~ =0.16 {3 {3 {} {3
(a) Dimension lattice. (b) Service filtering.
INPUT INPUT
{s1, s2, 54, 85} Set of compatible services {(sj,@Q;)}: Ranking list according to certificates {C;}
{C1,C2,C4,C5}: Set of certificates Win: Preferences over metrics
W: Preferences over dimensions
Serv.| IPC | BC Wi [IPC] | W [BC]
Serv.| R(Dart) | R(Ddev) | R(Devat) W[Dart] |W[Daeo] |[W[Deval 51 |0.331]0.259 0.5 0.5
51 1 0.4 0.6 03 | 03 | 03 s3 |0.613(0.373
S2 0.83 0.73 0.8 s4 |0.977(0.876
Sa 1 1 1 s5 |0.856(0.574
S5 0.83 0.73 0.8
OUTPUT
OUTPUT {s;}: Fully sorted ranking list
{(si, Q:)}: Ranking list of service s; and corresponding index Q;
Serv.| Q Cert.| p Serv.
Sa 0 sz 10.493 sq4 < best solution
< compromise solution $2,85(0.986 A ss |0.715 = 55
S1 1 S2
S1
(c) Service ranking. (d) Absolute ranking.
Figure 5. An example of a dimension lattice (a) and of the three activities of service selection (b)—(c)—(d) based on services in Table 1.
6.1 Service Filtering Definition 13 (Service Filtering). Let {s1, ..., s,} be a

Service filtering receives as input a set of certified services
and user’s requirements, and returns as output a subset of
compatible services addressing the requirements. Given a
non-functional property p, a requirement insisting on cer-
tified services holding p is a set of the form {(glb, lub);,
..., (glb, lub),}, where each (glb, lub); defines the greatest
lower bound (glb;) and the least upper bound ({ub;) on the
lattice induced by dimension D; of p.

Service filtering operates on each dimension indepen-
dently, then combines the results as follows.

set of services, {Ci, ..., C,} the set of corresponding
certificates for property p, and {(glb, lub);} user’s re-
quirements for each dimension D;. The result of service
filtering is the set {sy|Vi, lub;>=, Cy.p.D;>=, glb;} of
compatible services.

In other words, service filtering returns the set of com-
patible services satisfying users’ requirements in all dimen-
sions and lattices, according to partial order relationship =,
in Definition 11.

Example 7. Following Example 6, Figure 5(b) shows
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an example of service filtering. For brevity, we re-
port only dimension D,,;. User requirement {(Repl=2,
HA Prot.=Custom), (Repl=3, HA Prot.=Managed)} in-
dicates glb and lub in Definition 13, resp., depicted as
grey-filled nodes in Figure 5(b). Services whose non-
functional property is within glb and lub are kept for
the following activities, namely s1, 59, 54, S5, while s3,
having a property dominated by glb, is filtered out.

6.2 Service Ranking

Service ranking ranks compatible services according to the
non-functional property they hold. This activity is mod-
eled as a Multi-Criteria Decision-Making (MCDM) problem,
ranking n alternatives (the certified services) according to m
(weighted) criteria (the dimensions forming the property in
terms of ranking function in Definition 12). Each criterion is
associated with a weight reflecting the importance thereof
in the ranking. In our case, each dimension D; is associated
with a weight W[i] € [0, 1].

We use VIKOR [38] to find a compromise solution, that
is, the closest to the ideal among conflicting criteria. It
receives as input the set {s1,. .., s,} of compatible services
in Definition 13, the corresponding set of certificates {C1,

, Cn} and a vector W of weights, and returns as output
a ranking of the services, identifying the best services in
terms of their non-functional pro‘perty The weights of the
vector must sum to 1, formally > .7/ Wi Wli]=1. VIKOR-based
service ranking is a 5-step process workmg as follows.

Step 1. It takes as input the set {s;} of services, the cor-
responding set of certificates {C;} and the weight vector
W, and computes the positive-ideal (Equation 1) and the
negative-ideal (Equation 2) alternative for all dimensions

Dy,..., Dy, as follows.
Rf = nllax R(C; M.p.D;) (1)
j=
R, = I{un R(C;. M.p.D;) (2)
j=
where j=1,...,n is the number of certified services;
i=1,...,m is the number of dimensions of the non-func-

tional property; R(C;.M.p.D;) is the value assigned by the
ranking function in Definition 12 to the ¢-th dimension of
the j-th service. The positive-ideal R?‘ (negative-ideal R, ,
resp.) represents the best (worst, resp.) certified service in
terms of the non-functional property in the i-th dimension.

Step 2. It computes the group maximum utility U; and
the minimum individual regret Z; of a certified service j,
according to the following L,-metric.

m R — R(C; Mp.D)\]"”
Lpj= 1> (W [i] x —— ) ©)
i=1 i i

where 1<p<oo. L, ; is the (normalized) distance be-
tween service j and the positive ideal service. Based on such
a metric, we compute group maximum utility U; (Equa-
tion 4) and minimum individual regret Z; (Equation 5) of a
certified service j as follows.

9
N . _ Rf —R(C; M.p.D;)
Li;=U;= ; Wi] x R = = (4)

Step 3. It computes the sorting index @; for each service j
using Equation 6.

U~ Ut Z, — 7+
Q]-:vin__[ﬂ_—&—(1—1;)><7Z__ZJr (6)
where U= min U;, U= max U;, ZT= min Z;
j=1,...,n j=1,...,n j=1,...,n

Z~ = _11113)( Z;. Parameter v€[0, 1] is a decision threshold;
v>0. 5 models voting by majority, v=0.5 models consensus,
v<0.5 models veto.

Step 4. It ranks the services according to values U, Z,
of corresponding certificates in ascending order, producing
three ranking lists.

Step 5. It proposes the best compromise service having the

lowest value according to index @, denoted as ', if the

following conditions are met:

1) Q' provides an acceptable advantage over the second low-
est value in ), denoted as Q”, that is, Q"—Q'>1/(n —
1), with n being the number of alternatives (services).

2) Q' provides an acceptable stability in the decision making,
that is, )’ is ranked the best also by U and/or Z.

If condition 1) is not satisfied, the set of compromise
solutions consists of @, Q”, ..., Q™), where Q*) is given
by the relation Q*) —Q’<1/(n—1), for maximum k. In other
words, it returns all the solutions laying in the acceptable
advantage interval.

If only condition 2) is not satisfied, the set of compromise
solutions consists of @’ and Q"”, since there is no decision-
making stability and @', Q" represent the same compromise.

Example 8. Following Example 7, Figure 5(c) shows an
example of service ranking. Values of ranking function
R are taken according to the lattices of the three dimen-
sions and the values in Table 1. Service s4 is the only
compromise solution, having the lowest value for index
@ and both conditions satisfied. In particular, condition
1) is satisfied because Q2 — Q4 > 1/(n—1), as 0.986>0.3.
We note that services sy and s5 are equivalent, that is,
Q2=Q)5, and at the same ranking position.

6.3 Totally-Ordered Service Ranking

The index @), along with the results of conditions 1) and
2), are not enough to compute a total ordering of certified
services. The likelihood of having different services with the
same ranking is in fact not negligible and, when condition
1) does not hold, can result in all services tied for first. The
reason lies in how a dimension is mapped into a number
given as input to VIKOR. In our case, it is computed by
ranking function R in Definition 12, and only depends on
the position of the dimension in the lattice, calculated as
the distance between the current dimension and the least
dimension. Hence, even on lattices with a large number
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of elements, the number of possible outputs of R is typ-
ically small. To this aim, we follow the approach in [35]
and further compare equivalent services using metrics in
Definition 10. Metrics express the strength of the collected
evidence supporting the certified non-functional property,
and in turn the strength of the certificate.

The totally-ordered ranking is retrieved according to
a function that takes as input i) the ranking {(s;,Q;)}
returned by VIKOR (Section 6.2), where s; is a compatible
service with its certificate C; and @Q); the corresponding
VIKOR index; ii) a vector of weights W,,€[0, 1] expressing
the importance of the metrics, such that ZLV:VgI" Wli]=1,
with |W,,,| the number of metrics. We note that, for simplic-
ity, a set of predefined vectors can be used. The function
producing the totally-ordered ranking works as follows.

Step 1. It takes as input the ranking list and the weight
vector W,,,, and produces as output the strength 11; of each
certificate C;, according to Equation 7.

(Wi |
Hi = Z Wmm X Cj.mi.v (7)
i=0
In other words, certificate strength p; is computed as a
weighted sum of the metrics contained in the certificate.

Step 2. It takes as input the certificate strengths and the
ranking list, and returns as output a total ordering, com-
puted by refining the VIKOR ordering according to the
certificate strength. Formally, a service s; is ranked higher
(is better) than a service s; iff one of the following holds.

1) Qi <Q;
2) Qi =Qj N i > iy

Condition 1) states that s; is better than s; if VIKOR
index @); is lower. In this case, no additional sorting is
needed. Condition 2) states that, when the VIKOR index
of the two services is equal, certificate strength is used to
provide a total order. In other words, services are ranked
according to their VIKOR index first and, in case they are
equal, to their certificate strength. If there are services still
ranked at the same position, random sort is used.

Example 9. Following Example 8, Figure 5(d) shows an
example of totally-ordered ranking. For brevity, we con-
sider only metrics Input Partition Coverage and Branch
Coverage in Table 4, abbreviated as IPC and BC, resp.
Totally-ordered ranking disambiguates between services
having the same VIKOR index, namely s, and s5, ac-
cording to certificate strength . The resulting totally-
ordered ranking is therefore sy, ss5, 52, 51.

7 EXPERIMENTS

We experimentally evaluated the performance and quality
of the proposed approach in a simulated environment.
Experiments have been run on a laptop equipped with an
Intel® Core i7-5500U @ 2.4 GHz (2 cores, 4 threads), 16 GBs
of RAM, operating system Ubuntu 20.04 x64, Java runtime
Open]DK 11.0.10, Python runtime 3.8.6. We compared our
approach with state-of-the-art certification schemes (e.g., [6],
[11]) that, according to assumptions A3) and A4) in Sec-
tion 2, evaluate software artifacts only. However, since
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source code, as well as precise modeling, of existing solu-
tions are generally not available, we compared our solution
with an approximation of the state of the art, instantiating
our scheme on dimension D, only.

We evaluated our scheme in terms of i) performance,
measuring the execution time of its phases (Section 7.1); and
ii) quality, comparing the result of service selection against
the state of the art and the global optimum (Section 7.2).

7.1 Performance

We evaluated the performance of our approach by running
two experiments measuring the execution time of lattice
building and service ranking.

The first experiment measured the time needed to con-
struct the data structure holding the dimension lattice in
Definition 11, using jhpl, an optimized Java library model-
ing lattices as sets of tries.” We generated lattices with a large
number of elements varying the number of attributes in 1,
3, 6, 9 and the number of possible values of each attribute
in 15, 25, 50, 75, 100. Figures 6(a)—(b) show that the time
needed for lattice building is negligible, never exceeding
0.025 milliseconds.

The second experiment measured the time needed to
perform service ranking in Section 6.2. We implemented
VIKOR on top of a Python library optimized for row- and
column-wise operations,3 and varied the number of services
in 100, 300, 600, 900, 1200, 1500, 1800 and dimensions in 1, 3,
6,9, 12. Figures 6(c)—-(d) show that the performance depends
only on the number of services involved, while the impact
of the number of dimensions is negligible. The reason is
that the time complexity is O(|services| - |dimensions|) =~
O(|services|), because the number of services is typically
one or more orders of magnitude larger than the number
of dimensions. Even in a worst case scenario, the execution
time is very low, never exceeding 0.9 seconds. We note that
our experiments did not measure the time for building a
totally-ordered service ranking in Section 6.3, since its cost
is the one of a sorting algorithm and therefore well-known,
that is, O(|services| - log |services|).

7.2 Quality

We evaluated the quality of our multi-dimensional service
ranking with respect to two approaches: i) global optimum,
and ii) state-of-the-art. The optimum approach is a manual
approach retrieving the service with highest quality, while
the state-of-the-art approach only considers dimension ar-
tifacts Dgy¢. Quality evaluation analyzes i) the cumula-
tive penalty introduced by each dimension with respect to
the optimum approach (Section 7.2.1), ii) the similarities
between the optimum ranking and the other approaches
(Section 7.2.2).

Table 5 presents the experimental settings varying the
number of dimensions in 3, 6, 9. For each setting, we defined
5 different configurations in the form of weights rating
the importance of each single dimension. In particular, we
considered different classes of weights: i) increasing weights,
where each dimension i is more important than dimension

2. https:/ / github.com/prasser/jhpl
3. https://pandas.pydata.org/
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Figure 6. Performance of lattice building and VIKOR execution.

i—1(C3.1, C6.1, C9.1 in Table 5); ii) balanced weights, where
all dimensions have the same importance (C3.2, C6.2, C9.2
in Table 5); iii) few-prevailing weights, where three dimensions
with similar weights have more importance (C3.3, C6.3,
(9.3 in Table 5); iv) decreasing weights, where each dimension
1 is less important than dimension i—1 (C'3.4, C6.4, C9.4
in Table 5); v) unbalanced weights, where one dimension has
much higher importance (C3.5, C6.5, C'9.5 in Table 5). We
then randomly generated 38,400 certificates, covering the
entire domain of our ranking function in Definition 12. For
each configuration, we randomly split certificates in 30 data
sets and i) manually calculated the optimum ranking, ii) ex-
ecuted our service ranking based on VIKOR, using the con-
sensus decision threshold v=0.5 (see Step 3 in Section 6.2),
and 7ii) executed the state-of-the-art ranking, where services
have been ranked according to dimension D, that is, the
first dimension in each setting. We finally averaged results
retrieved according to each configuration. We note that, for
simplicity, we assumed Service Filtering in Section 6.1 to
return all certified services; this choice does not impact on
the quality of our experiments as it applies to all approaches
(global optimum, our approach, state of the art).

7.2.1 Captured Quality

A penalty metric P(s) is first defined evaluating the degree
to which a service s (and its certificate) diverges from the
global optimum as follows.

maz(D;) — R(C.M.p.D;)
max(D;)

P(s) = WI[i] x (8)
i=0

where maz(D;) is the highest value for the i-th dimen-
sion among all certified services and R(C.M.p.D;) is the
value of the same dimension for the service under evalua-
tion, both according to the ranking function in Definition 12.
We note that penalty P(s) is the sum of the normalized
penalties contributed by each dimension.
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Table 5
Experimental settings

[ Abbr. [ Dim. | W

C3.1 3 0.1,0.3,0.6

c32 | 3 0.3,03,0.3

C33 | 3 0.35,0.4, 0.25]

C34 | 3 0.6,0.3,0.1

C35 | 3 0.8,0.1,0.1

C6.1 6 0.02, 0.065, 0.135, 0.20, 0.26, 0.32]

C62 | 6 0.16,016,0.16,0.16, 0.16,0.16]

C63 | 6 0.175,0.20,0.175,0.15,0.15,0.15

C64d | 6 0.32,0.26, 0.20, 0.135, 0.065, 0.02

C65 | 6 0.6, 0.08, 0.08, 0.08, 0.08, 0.08]

Co.1 9 [0.00260417,  0.00520833,  0.0078125,
0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5]

c92 | 9 [01,01,01,01,01,01,0.1,01,01]

C93 | 9 [0.2, 0.3, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05]

co4 | 9 [0.5,0.25, 0.125, 0.0625, 0.03125, 0.015625,
0.0078125, 0.00520833, 0.00260417]

C95 | 9 [0.4, 0.075, 0.075, 0.075, 0.075, 0.075,
0.075, 0.075, 0.075]

The quality QU (s) of a service s is then defined as
follows.
P(s) — min(P)
max(P) — min(P)

QU(s) = ©)

where min(P) and max(P) are the minimum and max-
imum penalties among all certified services, resp. QU (s)=0
is obtained when s has the lowest quality among all services,
QU (s)=1 is obtained when s has the highest quality.

We retrieved the 10 best services in each approach as
follows: i) global optimum: the 10 services with highest qual-
ity; ii) our scheme: the 10 best services according to service
ranking; 7ii) state of the art: the 10 services with highest value
of ranking function in dimension D,,:. We then calculated
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Table 6
Summary of the captured quality

Dim. Our appr. State of art
3 0.9178 0.755
6 0.9231 0.7166
9 0.924 0.6887
AVG 0.9217 0.7201
(a) Captured quality
Dim. Ourappr. State of art
3 72 16
6 70 16.667
9 76.6667 5
AVG 72.889 12.556

(b) N. of occurrence when the global optimum is captured (%)

Dim. Glob. opt. Ourappr. State of art
3 0.5316 0.4825 0.5872
6 0.3253 0.2876 0.3091
9 0.3007 0.2681 0.3409
AVG 0.3859 0.3461 0.4124

(c) Highest normalized contribution to penalty

the average quality of the 10 selected services in each
individual data set and configuration. Table 6(a) and Fig-
ures 7(a)—(c) summarize our results. Our approach captures
92% of the quality of the optimum approach on average,
that is, Avg(QU (s))=92%, compared to 72% of the state of
the art. As expected, the only settings where the quality of
the state of the art is close to the quality of our approach are
those where dimension D, has (much) higher importance
(i.e., C3.5,C6.5, C9.5). Furthermore, our approach provides
a consistent quality of 92% on average in all configurations,
while the quality of the state-of-the-art approach decreases
from 76% (3 dimensions) to 72% (6 dimensions) and 69%
(9 dimensions) on average. Table 6(b) and Figures 7(d)—(f)
show the number of times, in percentage, when the first-
ranked service of our and state-of-the-art approaches is the
optimum one. Our approach retrieves the optimum in 73%
of the cases, while the state-of-the-art approach in only 13%
of the cases. Even when the optimum is not reached, our
approach always provides a remarkable quality >85%, that,
in most (98%) of the cases, is >90%.

A second important aspect is the contribution that each
dimension gives to the penalty, that is, the distribution of the
penalty among the dimensions. To this aim, we computed
the highest normalized contribution to penalty of a service
s according to the following Equation.

< ma (W[z] y max(D;) — R(C.M.p.Di)) (10)

1
P(s) max(D;)

Table 6(c) and Figures 7(g)-(i) show our results. In our
approach, the highest contribution to penalty is 35% on
average, compared to 39% of the global optimum and 41%
of the state-of-the-art. This means that our ranking favors
balanced services, reducing scenarios in which selected ser-
vices show high variance in dimension penalty.

7.2.2 Ranking Evaluation

We finally compared the ranking produced by our ap-
proach with respect to state of the art and global optimum
according to two metrics measuring distances between

12
Table 7
Kendall’s = (K') and Spearman’s footrule (.S) values
Confi K S
g Our Appr.  St.of Art  Our Appr.  St. of Art
C3.1 0.0782 0.4539 0.1129 0.6129
C3.2 0.116 0.3046 0.1665 0.4233
C3.3 0.1088 0.2977 0.1562 0.4143
C3.4 0.0785 0.1544 0.1135 0.2186
C3.5 0.0276 0.0562 0.041 0.08
C3.AVG  0.0818 0.2534 0.118 0.3498
6.1 0.1212 0.489 0.1727 0.6531
C6.2 0.1539 0.368 0.2186 0.5053
C6.3 0.1444 0.3618 0.2056 0.4974
C6.4 0.1216 0.2693 0.1736 0.3758
C6.5 0.0471 0.0915 0.0678 0.1298
C6.AVG 0.1176 0.3159 0.1677 0.4323
9.1 0.0857 0.4981 0.1234 0.6643
C9.2 0.1719 0.393 0.2435 0.5383
C9.3 0.1195 0.3489 0.1712 0.4807
C9.4 0.0869 0.1664 0.1247 0.2349
C9.5 0.0847 0.1543 0.121 0.218
C9.AVG  0.1097 0.3121 0.1568 0.4272
[ AVG 0.1030 0.2938 0.1475 0.4031 ]

ranking lists: i) Kendall’s T distance [39] and ii) Spearman’s
footrule distance [40]. We used the experimental configura-
tions adopted in Section 7.2.1 with totally-ordered service
ranking, using metrics in Table 4 with random values and
equally-distributed weights. This way, metrics values are
given randomly both to high- and low-quality services, and
certificate strength in Section 6.3 is entirely computed on
random values.

The Kendall’s 7 distance counts the number of pairwise
disagreements between two ranking lists. Let o, be the
global optimum ranking list, o, the VIKOR-based ranking
list, an o5 the state-of-the-art ranking list, and o(i) the
notation indicating the rank of element ¢ in a given ranking
list 0. Kendall’s 7 distance of rankings o,, o, with respect
to o, is defined as

n

> inu(i, §)

(4,5):i<j

K(oy,04) = K(0oy) = (11)

where ye{v, s} and inv(i,j) returns 1 if (oq(2)<oy,(j) A
oq(1)>0y(5)) V (04(i)>0y(5) A oq(i)<oy(j)), 0 otherwise.
Such a distance can be normalized in the range [0, 1] by
dividing by the highest possible value n(”T_l

The Spearman’s footrule distance measures the total
displacement between o, 05 and o4, and is defined as

n

S(oy,0q) = S(oy) = Z |og (i) — oy ()]

i

(12)

where ye{v, s}. Such a distance can be normalized in the
range [0, 1] by dividing by the highest possible value %2
Table 7 summarizes our results. In all cases, our ranking
o, outperformed the state of art. The number of pairwise
disagreements K (o, ) and the total displacement S(c,) are,
on average, ~3 times less than state-the-of-art K (o) and
S(oy). More in detail, o, requires to reorder only 10% of
all pairs, compared to 29% of the state of art; it also shows
a total displacement of 15%, compared to 40% of the state
of art. Therefore, our approach improves the state of the art
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Figure 7. Quality Evaluation.

producing a ranking that, in terms of the aforementioned
distances, is similar to a global optimum-based approach.

To conclude, our experiments show that the proposed
ranking has a good quality. It outperformed the state of the
art, capturing 92% of the quality of the global optimum in
all settings (Table 6(a)), while better approaching the global
optimum-based ranking, almost six times more than the
state of the art (Table 6(b)). Furthermore, our approach has
the lowest value of the highest normalized contribution to
penalty (Table 6(c)). This means that it favors balanced ser-
vices, guaranteeing good quality and low variation among
all dimensions.

8 CONCLUSIONS

An important goal of the evolution of ICT is to combine
the opportunities provided by modern distributed systems
composed of several services in terms of efficiency, flexibil-
ity and added-value applications, with an adequate level
of trustworthiness over system behavior. The approach in
this paper provides a concrete solution towards this goal,
defining a novel certification scheme that goes beyond the
simple evaluation of a service behavior, and considers ad-
ditional factors describing, for instance, how the service has

been implemented and verified, to increase the quality and
performance of a distributed system. The proposed scheme
enables a multi-dimensional certification approach based
on a novel and fine-grained definition of non-functional
properties, where the certification execution is split in dif-
ferent and logically-separated domains called dimensions.
This modeling leads to more accurate certificates and, conse-
quently, more accurate decision-making when services/soft-
ware are dynamically selected at run time on the basis of
their certificates. Our approach provides benefits for all the
involved parties: service providers obtain certificates better
reflecting all the best practices they followed; end users take
decisions on more detailed and well-structured certificates;
the CA provides a more useful certification scheme.
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