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Ontologizing health systems data at scale: making translational
discovery a reality
Tiffany J. Callahan 1,2✉, Adrianne L. Stefanski1, Jordan M. Wyrwa 3, Chenjie Zeng4, Anna Ostropolets2, Juan M. Banda5,
William A. Baumgartner Jr.1, Richard D. Boyce6, Elena Casiraghi 7,8, Ben D. Coleman8, Janine H. Collins 9, Sara J. Deakyne Davies 10,
James A. Feinstein11, Asiyah Y. Lin4, Blake Martin 12, Nicolas A. Matentzoglu13, Daniella Meeker14, Justin Reese15, Jessica Sinclair16,
Sanya B. Taneja 17, Katy E. Trinkley18, Nicole A. Vasilevsky19, Andrew E. Williams 20, Xingmin A. Zhang8, Joshua C. Denny4,
Patrick B. Ryan21, George Hripcsak2, Tellen D. Bennett12, Melissa A. Haendel12, Peter N. Robinson 8, Lawrence E. Hunter1,22 and
Michael G. Kahn 22

Common data models solve many challenges of standardizing electronic health record (EHR) data but are unable to semantically
integrate all of the resources needed for deep phenotyping. Open Biological and Biomedical Ontology (OBO) Foundry ontologies
provide computable representations of biological knowledge and enable the integration of heterogeneous data. However,
mapping EHR data to OBO ontologies requires significant manual curation and domain expertise. We introduce OMOP2OBO, an
algorithm for mapping Observational Medical Outcomes Partnership (OMOP) vocabularies to OBO ontologies. Using OMOP2OBO,
we produced mappings for 92,367 conditions, 8611 drug ingredients, and 10,673 measurement results, which covered 68–99% of
concepts used in clinical practice when examined across 24 hospitals. When used to phenotype rare disease patients, the mappings
helped systematically identify undiagnosed patients who might benefit from genetic testing. By aligning OMOP vocabularies to
OBO ontologies our algorithm presents new opportunities to advance EHR-based deep phenotyping.
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INTRODUCTION
Electronic health record (EHR) adoption, which is nearly universal
within the US healthcare system1,2, has increased adherence to
evidence-based clinical guidelines3 and facilitated greater patient
communication4 resulting in significant improvements in care5.
EHRs contain a myriad of systematically collected, longitudinal,
patient-level information and are a valuable resource for
population-level research6. The cornerstone of medicine, diagnosis
or clinical phenotyping, aims to identify empirically observable
traits exhibited by patients (i.e., signs and symptoms) known to be
characteristic of a specific disease7. Computational phenotyping is
the process of converting clinical phenotypes into computer-
executable algorithms in order to identify relevant patients from
large sources of clinical data, usually EHRs8. One promise of EHR-
based computational phenotyping is the ability to perform
population-level investigations of mechanistic drivers of disease
in diverse patient populations9,10. Despite significant progress, this
objective remains largely aspirational6,11–14.
Traditionally, computational phenotypes have been imprecise

due to their exclusive reliance on EHR data, which has been shown
to be insufficient at capturing the phenotypic heterogeneity

present in most complex diseases15–18. Deep phenotyping, or “the
precise and comprehensive analysis of phenotypic abnormalities
in which the individual components of the phenotype are
observed and described”7, is a fundamental component of
precision medicine that requires timely synthesis of multiple
types of patient data19,20. Deep phenotyping has been success-
fully applied to rare disease and genetic disorders21–33, can-
cer34–40, and pregnancy41–43 using a variety of clinical and -omic
data. Despite large-scale biobanking efforts and resources like the
UK Biobank (https://www.ukbiobank.ac.uk) and the All of Us (AoU)
Research Program (https://www.researchallofus.org), most EHRs
do not systematically integrate nor have the infrastructure to
integrate patient-level genomic data or other forms of external
knowledge (e.g., scientific literature) with clinical data44–46.
Within an EHR, most data used for research (i.e., structured data)

are stored using clinical terminologies or vocabularies. A clinical
vocabulary is a standard representation of preferred terms which
may or may not be hierarchical or have formally defined
relationships and is designed to facilitate meaningful and
unambiguous information exchange within the medical
domain47–49. Hundreds of clinical vocabularies have been
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developed and their use differs by hospital and country. Examples
include the International Classification of Diseases (ICD)50, the
Logical Observation Identifiers, Names and Codes (LOINC)51, the
Systematized Nomenclature of Medicine—Clinical Terms
(SNOMED-CT; https://www.snomed.org), and RxNorm52. Most
clinical vocabularies were not designed to be integrated or
interoperable with other vocabularies, which is one of the long
standing barriers preventing the secondary use of EHR data for
research46. Common data models (CDMs) like the Observational
Medical Outcomes Partnership (OMOP)53 have solved many of the
challenges of standardizing, representing, and utilizing clinical
EHR data. Unfortunately, most CDMs and associated terminology
management systems are not yet able to integrate and interpret
genomic data or other sources of external knowledge or publicly
available data54.
Similar to clinical vocabularies, ontologies are classification

systems that provide detailed representations of our knowledge of
a specific domain49. Ontologies, like those in the Open Biological
and Biomedical Ontology (OBO) Foundry, exist for nearly all scales
of biological organization and when combined, can provide a
semantically rich and biologically accurate representation of
molecular entities and mechanisms55–57. Unlike clinical vocabul-
aries, ontologies are semantically computable and interoperable
with formally defined relationships, which means they can be
logically verified and integrated with data from basic science and
clinical research49. Mapping clinical vocabularies to ontologies has
been recognized as a fundamental requirement for use in deep
phenotyping20,46,49,58. An example of how aligning these
resources improves deep phenotyping was recently demonstrated
by Zhang et al. who mapped LOINC to the Human Phenotype

Ontology (HPO)59, which enabled the harmonization of laboratory
tests with different clinical codes to common HPO concepts60.
Due to the time-consuming manual effort required to map clinical

vocabularies to OBO Foundry ontologies, no comprehensive
mapping across commonly used ontologies currently exists. While
automated mapping approaches exist, they largely remain unable to
correctly capture the complex semantics underlying clinical data and
the knowledge encoded by clinical vocabulary concepts61. For
example, when mapping the concept “Peptic Ulcer without
Hemorrhage AND without Perforation but with Obstruction”
(SNOMED-CT:54157007) to the HPO, most automated approaches
would return a single best mapping, most likely “Peptic Ulcer”
(HP:0004398). This HPO concept is much broader in meaning than
the clinical concept. A more precise mapping would explicitly
capture the presence and absence of all relevant phenotypic
features: “Peptic Ulcer” (HP:0004398) and “Gastrointestinal Obstruc-
tion” (HP:0004796) and NOT “Gastrointestinal Hemorrhage”
(HP:0002239) or “Intestinal Perforation” (HP:0031368). To the best
of our knowledge no existing mappings or mapping algorithms are
capable of capturing this type of complex semantics.
Building on LOINC2HPO, the goal of this work is to develop

OMOP2OBO, an algorithm that enables semantically interoperable
mappings between clinical vocabularies in the OMOP CDM to OBO
Foundry ontologies (Fig. 1). The resulting mappings will enhance
the semantic interoperability of the data represented by the OMOP
concepts and have the potential to advance deep EHR-based
phenotyping by enabling the identification of relevant patients
using existing knowledge of the molecular mechanisms underlying
disease rather than billing codes which are prone to error and
subject to bias. Using OMOP2OBO, we created healthcare system-
scale mappings between clinical vocabularies in the OMOP CDM

Fig. 1 Overview of the OMOP2OBO algorithm. The OMOP2OBO algorithm consists of three components: (1) Process input data. The
algorithm takes as input a table of Observational Medical Outcomes Partnership (OMOP) concepts and a list of one or more OBO (Open
Biological and Biomedical Ontology) Foundry ontologies. For both data types, the algorithm expects concept or class identifiers, source codes
or database cross-references, labels, synonyms, and ancestor concepts or classes. (2) Map OMOP vocabulary concepts to OBO Foundry
Ontology concepts. OMOP concepts are automatically mapped to OBO Foundry ontology concepts. The algorithm includes several different
approaches (e.g., concept alignment and concept embedding), prioritizing those that result in high-confidence mappings. (3) Synthesize and
output mapping results. The mapping results from the prior component are post-processed to include a mapping category and human-
readable evidence. Post-processed mappings are serialized and able output to a variety of file types.
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and eight of the most widely used OBO Foundry ontologies56

spanning diseases, phenotypes, anatomical entities, organisms,
chemicals, vaccines, and proteins. The mappings were evaluated
on: (1) accuracy, examined by a team of domain experts; (2)
generalizability, examined through comparison to a large set of
mapped concepts used at least once in clinical practice from 24
hospital systems; and (3) clinical utility, examined through the
identification of patients with an undiagnosed rare disease.
OMOP2OBO is open source (https://github.com/callahantiff/
OMOP2OBO) and includes a custom built interactive dashboard
(http://tiffanycallahan.com/OMOP2OBO_Dashboard).

RESULTS
Supplementary Table 1 lists the acronyms and definitions used in
the paper. The resources used to build and evaluate the
OMOP2OBO algorithm and mappings are described in Supple-
mentary Tables 2 and 3.

OMOP2OBO mapping data: OMOP data
The OMOP2OBO mappings were created using a de-identified
pediatric dataset from the Children’s Hospital of Colorado (CHCO)
normalized to the OMOP CDM (referred throughout the manu-
script as “CHCO OMOP Database” and described in detail in
Supplementary Table 3)53,62. Standardized vocabularies are a
fundamental component of the OMOP CDM, which serve as
primary vocabularies within each OMOP domain; all other
vocabularies within a specific domain are aligned to a standard
vocabulary using mappings provided by the CDM63. The standard
vocabularies used in this work included: SNOMED-CT (the OMOP
Condition domain for diseases and clinical findings), RxNorm (the
OMOP Drug domain for drug products and vaccines), and LOINC
(the OMOP Measurement domain for laboratory tests and
assessment scales). Concepts from these three vocabularies,
including labels, synonyms, source codes (i.e., standard vocabulary
codes), and ancestor concepts obtained from the OMOP CDM,
were extracted and used as input to the OMOP2OBO mapping

algorithm. Using the CHCO OMOP Database, concepts were
organized into two data waves according to whether or not they
had been used at least once in clinical practice (i.e., “Concepts
Used in Practice”) or not (i.e., “Concepts Not Used in Practice”).
Only “Concepts Used in Practice” were manually mapped.
The counts of concepts eligible for mapping by OMOP domain

and data wave are shown in Table 1. There were 109,719 condition
concepts (Concepts Used in Practice: n= 29,129; Concepts Not
Used in Practice: n= 80,590) and 11,803 drug ingredient concepts
(Concepts Used in Practice: n= 1693; Concepts Not Used in
Practice: n= 10,110) available to map. For measurements, there
were 4083 concepts, representing 11,269 measurement results
(Concepts Used in Practice: n= 1606 concepts [4425 results];
Concepts Not Used in Practice: n= 2477 concepts [6844 results])
available to map. With respect to the Concepts Used in Practice,
the 29,129 conditions had a median frequency of 25 (range
1–544,618), the 1693 drug ingredients had a median frequency of
251 (range 1–2,267,866), and the 1606 measurement concepts
had a median frequency of 313.5 (range 1–56,823,139).

OMOP2OBO mapping data: OBO Foundry ontologies
Under the guidance of domain experts, eight OBO Foundry
ontologies were selected to represent the following domains:
diseases (Mondo), phenotypes (HPO), anatomical entities (Uber
Anatomy Ontology [Uberon]64; Cell Ontology [CL]65), organisms
(National Center for Biotechnology Information Taxon Ontology
[NCBITaxon]66), chemicals (Chemical Entities of Biological Interest
[ChEBI]67), vaccines (the Vaccine Ontology [VO]68), and proteins
(the Protein Ontology [PRO]69). Each set of ontology concepts also
included metadata, which was obtained by querying each
ontology for labels, definitions, synonyms, and database cross-
references (i.e., codes from other vocabularies and ontologies).
The amount of metadata available for mapping is shown in
Table 2 and varied across the OBO Foundry ontologies, with
NCBITaxon containing the most metadata and Uberon containing
the least (visualized in Supplementary Fig. 1). A chi-square test of
independence with Yate’s correction revealed a significant

Table 1. Clinical data used for input to OMOP2OBO mapping algorithm.

OMOP domain and vocabulary Data wavea Concept level Concepts Labels Synonyms

Condition
SNOMED-CTb

Standard Concepts Used in Practice Concept 29,129 29,129 86,630

Ancestor 1,421,104 1,389,525 N/A

Standard Concepts Not Used in Practice Concept 80,590 80,590 194,264

Ancestor 3,458,072 3,393,343 N/A

Drug Ingredient
RxNormc

Standard Concepts Used in Practice Concept 1693 1693 1865

Ancestor 1697 1696 N/A

Standard Concepts Not Used in Practice Concept 10,110 10,110 11,235

Ancestor 10,578 10,578 N/A

Measurement
LOINCd

Standard Concepts Used in Practice Concept 1606 1606 41,917

Ancestor 20,784 21,196 N/A

Standard Concepts Not Used in Practice Concept 2477 2477 73,612

Ancestor 23,457 24,306 N/A

OMOP Observational Medical Outcomes Partnership.
aConcepts were mapped in two data waves according to whether or not they had been used at least once in clinical practice (i.e., Concepts Used in Practice) or
not (i.e., Concepts Not Used in Practice).
bThe Systematized Nomenclature of Medicine—Clinical Terms (SNOMED-CT) is the Observational Medical Outcomes Partnership (OMOP) standard vocabulary
used for Condition Occurrence concepts.
cRxNorm is the OMOP standard vocabulary used for Drug Exposure Ingredient concepts.
dThe Logical Observation Identifiers, Names and Codes (LOINC) is the OMOP standard vocabulary used for Measurement concepts.
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association between the ontology and the amount of available
metadata (χ2(14)= 2,664,853.8, p < 0.0001). Post hoc tests with
Bonferroni adjustment confirmed the ontologies provided sig-
nificantly different amounts of metadata (p < 0.0001 for all
significant comparisons).

OMOP2OBO mappings
Figure 2 includes example mappings and illustrates how the OBO
Foundry ontologies were used to map concepts from each OMOP
domain. As illustrated by this figure, OMOP conditions were
mapped to HPO and Mondo, OMOP drug ingredients were
mapped to ChEBI, NCBITaxon, PRO, and VO, and OMOP
measurements results were mapped to HPO, Uberon, NCBITaxon,
PRO, CheBI, and CL. As illustrated in the bottom panel of Fig. 1,
each mapping consists of four elements: (1) the approach used to
create it (i.e., “automatic”, “manual”, or “cosine similarity”); (2)
cardinality (i.e., one-to-one or one-to-many); (3) level (i.e., concept
or ancestor); and (4) evidence, which consists of pipe-delimited
free-text phrases that explain what fields were used to construct
the mapping. Supplementary Table 4 provides additional details
on and examples of the OMOP2OBO mapping categories. The
mapping procedures and resources are described in the
“OMOP2OBO Algorithm” sections of the Methods.

OMOP2OBO mappings: conditions
Unified Medical Language System (UMLS)70 concept unique
identifiers (CUIs) were found for 96.6% of condition concepts
(n= 105,976) representing 69 unique Semantic Types71. The
mapping results for each OBO Foundry ontology are displayed
in Fig. 3 and detailed in Supplementary Table 5. Of the 109,719
available concepts, 66.9% (n= 73,417) mapped to 5654 unique
HPO concepts (Concepts Used in Practice: 83.9%; Concepts Not
Used in Practice: 60.8%) and 57.8% (n= 63,374) mapped to 9637
unique Mondo concepts (Concepts Used in Practice: 68.9%;
Concepts Not Used in Practice: 53.8%). Only 50 concepts we
attempted to map (excluding purposefully unmapped concepts)
were unable to be mapped to at least one OBO Foundry ontology
concept.
The frequency distributions of the Concepts Used in Practice by

mapping category and ontology are visualized in Fig. 4. The
majority of automatic mappings were one-to-one at the concept-
level for Concepts Used in Practice (HPO: n= 3601; Mondo:
n= 4836) and Concepts Not Used in Practice (HPO: n= 1166;
Mondo: n= 4261). The majority of the manual mappings were
one-to-many (HPO: n= 10,328; Mondo: n= 2835). Cosine

similarity-scored concept embeddings enabled 1374 HPO (Con-
cepts Used in Practice: median 0.5, range 0.2–1; Concepts Not
Used in Practice: median 0.4, range 0.2–1) and 667 Mondo
(Concepts Used in Practice: median 0.8, range 0.2–1; Concepts Not
Used in Practice: median 1, range 0.2–1) mappings (Supplemen-
tary Fig. 2a). On average, more evidence was found for mappings
to Concepts Not Used in Practice than Concepts Used in Practice
for HPO (8.9 vs. 3.9) and Mondo (12.4 vs. 10.6).

OMOP2OBO mappings: drug ingredients
UMLS CUIs were found for 99.3% of drug ingredient concepts
(n= 11,716) representing 23 unique Semantic Types. The map-
ping results for each OBO Foundry ontology are displayed in Fig. 3
and detailed in Supplementary Table 6. Of the 11,803 available
concepts, 37.4% (n= 411) mapped to 4072 unique ChEBI concepts
(Concepts Used in Practice: 100%; Concepts Not Used in Practice:
26.9%), 21.5% (n= 4661) mapped to 2535 unique NCBITaxon
concepts (Concepts Used in Practice: 23.9%; Concepts Not Used in
Practice: 42.1%), 2.1% (n= 4249) mapped to 142 unique PRO
concepts (Concepts Used in Practice: 10.5%; Concepts Not Used in
Practice: 0.7%), and 1.3% (n= 154) mapped to 132 unique VO
concepts (Concepts Use in Clinical Practice: 6.9%; Concepts Not
Used in Practice: 0.4%). All of the OMOP concepts were mapped to
at least one ChEBI concept.
The frequency distributions of the Concepts Used in Practice by

mapping category and OBO Foundry ontology are visualized in
Fig. 5. The majority of automated mappings were one-to-one at
the concept-level for Concepts Used in Practice (ChEBI: n= 959;
NCBITaxon: n= 20; PRO: n= 1; VO: n= 90) and Concepts Not Used
in Practice (ChEBI: n= 2192; NCBITaxon: n= 135; PRO: n= 42; VO:
n= 18). The majority of the manual mappings were one-to-one
(ChEBI: n= 321; NCBITaxon: n= 230; PRO: n= 157; VO: n= 21).
Cosine similarity-scored concept embeddings enabled 109 ChEBI
(Concepts Used in Practice: median 1, range 0.3–1; Concepts Not
Used in Practice: median 1, range 0.3–1), 4241 NCBITaxon
(Concepts Used in Practice: median 0.6, range 0.3–1; Concepts
Not Used in Practice: median 0.6, range 0.3–1), 18 PRO (Concepts
Used in Practice: median 0.8, range 0.4–1; Concepts Not Used in
Practice: median 1, range 0.6–1), and 17 VO (Concepts Used in
Practice: median 1, range 0.4–1; Concepts Not Used in Practice:
median 0.8, range 0.4–1) mappings (Supplementary Fig. 2b). On
average, more evidence was found for mappings to Concepts Not
Used in Practice than Concepts Used in Practice for ChEBI and
PRO, excluding NCBITaxon and VO (ChEBI: 7.6 vs. 7.6; PRO: 3.9 vs.
1; NCBITaxon: 1.2 vs. 1.1; VO: 3 vs. 4.1).

OMOP2OBO mappings: measurements
UMLS CUIs were found for 94.8% of measurement concepts
(n= 3869) representing a single Semantic Type. The mapping
results for each OBO Foundry ontology are displayed in Fig. 3 and
detailed in Supplementary Table 7. Of the 11,269 measurement
results, 96.6% (n= 10,888) mapped to 1115 unique HPO concepts
(Concepts Used in Practice: 92.4%; Concepts Not Used in Practice:
99.4%) and 45 unique Uberon concepts (Concepts Used in
Practice: 92.4%; Concepts Not Used in Practice: 99.4%), 76.8%
(n= 8657) mapped to 425 unique NCBITaxon concepts (Concepts
Used in Practice: 64.4%; Concepts Not Used in Practice: 84.9%),
42.6% (n= 4804) mapped to 172 unique PRO concepts (Concepts
Used in Practice: 35.5%; Concepts Not Used in Practice: 47.2%),
87.9% (n= 9904) mapped to 443 unique ChEBI concepts
(Concepts Used in Practice: 78.9%; Concepts Not Used in Practice:
93.7%), and 9.9% (n= 1114) mapped to 38 unique CL concepts
(Concepts Used in Practice: 15.3%; Concepts Not Used in Practice:
6.4%). Only 13 concepts we attempted to map (excluding
purposefully unmapped concepts) were unable to be mapped
to at least one OBO Foundry ontology concept.

Table 2. Open Biological and Biomedical Ontology Foundry
ontologies used for input to OMOP2OBO mapping algorithm.

Ontology Classes Labels Synonyms Cross-references

ChEBI 126,169 126,169 269,798 231,247

CL 2238 2238 2124 1376

HPO 15,247 15,247 19,860 19,569

Mondo 22,288 22,288 98,181 159,918

NCBITaxon 2,241,110 2,241,110 263,571 18,426

PRO 215,624 215,624 590,190 195,671

Uberon 13,898 13,898 36,771 51,322

VO 5789 5789 6 0

ChEBI Chemical Entities of Biological Interest, CL Cell Ontology, HPO Human
Phenotype Ontology, Mondo Mondo Disease Ontology, NCBITaxon National
Center for Biotechnology Information Taxon Ontology, OMOP Observa-
tional Medical Outcomes Partnership, PRO Protein Ontology, Uberon Uber-
Anatomy Ontology, VO Vaccine Ontology.
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The frequency distributions of the Concepts Used in Practice by
mapping category and OBO Foundry ontology are visualized in
Fig. 6. The majority of the automated mappings were one-to-one
at the concept-level for Concepts Used in Practice (HPO: n= 17;

Uberon: n= 1793; NCBITaxon: n= 444; PRO: n= 44; ChEBI:
n= 264; CL: n= 182) and Concepts Not Used in Practice (HPO:
n= 3; Uberon: n= 3589; NCBITaxon: n= 444; PRO: n= 12; ChEBI:
n= 515; CL: n= 186). The majority of the manual mappings were

Fig. 2 OMOP2OBO mapping examples by OMOP domain. This figure illustrates which OBO (Open Biological and Biomedical Ontology)
Foundry ontologies were used for each OMOP (Observational Medical Outcomes Partnership) domain and provides example mappings.
OMOP conditions were mapped to HPO and Mondo. OMOP drug ingredients were mapped to ChEBI, NCBITaxon, PRO, and VO. OMOP
measurements were mapped to ChEBI, CL, HPO, NCBITaxon, PRO, and Uberon. UMLS Unified Medical Language System, HP Human Phenotype
Ontology, MONDO Monarch Disease Ontology, CHEBI Chemical Entities of Biological Interest, NCBITaxon National Center for Biotechnology
Information Taxon Ontology, PR Protein Ontology, VO Vaccine Ontology, UBERON Uber-Anatomy Ontology, CL Cell Ontology.
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one-to-one (HPO: n= 3902; Uberon: n= 406; NCBITaxon:
n= 2300; PRO: n= 1267; ChEBI: n= 1377; CL: n= 319). Cosine
similarity-scored concept embeddings enabled 113 HPO (Con-
cepts Used in Practice: median 0.4, range 0.3–0.8; Concepts Not
Used in Practice: median 0.4, range 0.3–0.9), 142 Uberon
(Concepts Used in Practice: median 0.3, range 0.3–0.8; Concepts
Not Used in Practice: median 0.4, range 0.3–0.7), 150 NCBITaxon
(Concepts Used in Practice: median 0.4, range 0.3–0.7; Concepts

Not Used in Practice: median 0.4, range 0.3–0.7), 132 PRO
(Concepts Used in Practice: median 0.4, range 0.3–0.7; Concepts
Not Used in Practice: median 0.4, range 0.3–0.6), 476 ChEBI
(Concepts Used in Practice: median 0.4, range 0.3–1; Concepts Not
Used in Practice: median 0.3, range 0.3–0.6), and 102 CL (Concepts
Used in Practice: median 0.4, range 0.3–1; Concepts Not Used in
Practice: median 0.4, range 0.3–1) mappings (Supplementary Fig.
2c). On average, more evidence was found for mappings to

Fig. 3 OMOP concept mapping results by domain, concept type, mapping category, and ontology. This figure features a Sankey Diagram
illustrating the mapping flow implemented by the OMOP2OBO algorithm beginning with OMOP (Observational Medical Outcomes
Partnership) concepts from the Conditions, Drugs, and Measurements domains, which were grouped by Data Wave (i.e., whether or not the
concept has been used at least once in clinical practice), and organized by mapping category. The flow lines in the diagram are weighted by
the count of OMOP concepts from the Children’s Hospital Colorado pediatric OMOP database. OBO Open Biological and Biomedical Ontology,
HPO Human Phenotype Ontology, Mondo Monarch Disease Ontology, ChEBI Chemical Entities of Biological Interest, NCBITaxon National
Center for Biotechnology Information Taxon Ontology, PRO Protein Ontology, VO Vaccine Ontology, Uberon Uber-Anatomy Ontology, CL Cell
Ontology.

Fig. 4 Condition concept frequency of use in clinical practice by mapping category and ontology. This figure presents the frequency
distributions of OMOP (Observational Medical Outcomes Partnership) condition concepts used at least once in clinical practice (log 10 scale)
in the Children’s Hospital Colorado pediatric OMOP database by mapping category and OBO (Open Biological and Biomedical Ontology)
Foundry ontology. In each boxplot, the box extends from the first to third quartile of the data with a center line used to indicate the median.
Whiskers extend from each box by 1.5x the interquartile range and outliers that extend past the whiskers shown as dots. The x-axis labels are
numbers which correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept; (2) Automatic One-to-One Ancestor;
(3) Automatic One-to-Many Concept; (4) Automatic One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6) Manual One-to-One
Concept; (7) Manual One-to-Many Concept; and (8) Unmapped. HPO Human Phenotype Ontology, Mondo Monarch Disease Ontology.
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Concepts Used in Practice than Concepts Not Used in Practice for
HPO, Uberon, and PRO (HPO: 1.03 vs. 1.02; Uberon: 2.3 vs. 1.9; PRO:
1.1 vs. 1; NCBITaxon: 1.3 vs. 1.4; ChEBI: 2.7 vs. 2.9; CL: 2.5 vs. 2.8).

Validation: accuracy
The goal of this task was to verify the accuracy of randomly
selected sets of manual one-to-one and one-to-many OMOP2OBO
mappings from each OMOP domain through domain expert
review. Of the 2000 condition mappings, 73.9% were correct
(n= 1477). Of the 116 reviewed drug ingredient mappings, 70.7%
(n= 82) were correct. Upon review, it was found that 165 (31.6%)
of the incorrect condition and 14 (41.2%) of the incorrect drug
ingredient mappings could be improved by creating more specific
mappings through adding new concepts to the OBO Foundry
ontologies or by replacing multiple mappings to broad ancestor
concepts with a single best representative ancestor concept.
Measurement concepts were reviewed at the result-level using a
survey and manual domain expert review. On the survey, 92.9%
(n= 251) of the mappings were found to be correct. Of the 1350
measurement results, 97.3% (n= 1314) were correct.

In addition to expert review, each mapping was inspected at
least twice by a member of the research team (T.J.C.). If we assume
that the automatic one-to-one mappings created using resources
provided by the UMLS, OMOP CDM, and OBO Foundry ontologies
are correct and exclude mappings that occur at the ancestor level
(assuming those are too broad) and unmapped concepts, then the
following concepts received at least one form of review: (1)
Conditions: 18.4% of Mondo and 9.9% of HPO; (2) Drug
Ingredients: 95.3% of NCBITaxon, 90.3% of VO, 85.3% of ChEBI,
and 33.3% of PRO; and (3) Measurements: 79.2% of HPO, 50.8% of
Uberon, 48.5% of CL, 12.7% of ChEBI, 10.6% of NCBITaxon, and
3.9% of PRO.

Validation: generalization
The goal of this evaluation was to characterize the generalizability
or coverage of concepts in the OMOP2OBO mapping set to a set
of OMOP standard concepts that are commonly utilized in clinical
practice. The Observational Health Data Sciences and Informatics
(OHDSI) Concept Prevalence Study contains OMOP standard
concepts that are commonly utilized in practice from several
independent study sites across the OHDSI network (see

Fig. 5 Drug ingredient concept frequency of use in clinical practice by mapping category and ontology. This figure presents the frequency
distributions of OMOP (Observational Medical Outcomes Partnership) drug exposure ingredient concepts used at least once in clinical
practice (log 10 scale) in the Children’s Hospital Colorado pediatric OMOP database by mapping category and OBO (Open Biological and
Biomedical Ontology) Foundry ontology. In each boxplot, the box extends from the first to third quartile of the data with a center line used to
indicate the median. Whiskers extend from each box by 1.5x the interquartile range and outliers that extend past the whiskers shown as dots.
The x-axis labels are numbers which correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept; (2) Automatic
One-to-One Ancestor (3) Automatic One-to-Many Concept; (4) Automatic One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6)
Manual One-to-One Concept; (7) Manual One-to-Many Concept; and (8) Unmapped. ChEBI Chemical Entities of Biological Interest, NCBITaxon
National Center for Biotechnology Information Taxon Ontology, PRO Protein Ontology, VO Vaccine Ontology.
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Supplementary Table 3 for more information)72–75. For this
evaluation, we leveraged data (referred throughout the remainder
of the manuscript as the “OHDSI Concept Prevalence Data”) from
24 independent study sites, which included hospitals, academic
medical centers, and claims databases. For this analysis, the
OMOP2OBO mappings were filtered to identify all concepts with
at least one valid mapping (i.e., excluding unmapped and not yet
mapped concepts) across all of the ontologies mapped within
each OMOP domain.
The OHDSI Concept Prevalence Data contained 62,335 condi-

tion concepts from 24 independent sites. The filtered OMOP2OBO
mapping set contained 92,367 eligible condition concepts, which
covered 92.5% (99.5% weighted coverage) of the OHDSI Concept
Prevalence Data condition concepts (n= 57,663 concepts; median
689, range 100–874,824,195). Of the remaining condition con-
cepts, 34,704 were only found in OMOP2OBO (median 100, range
100–39,975) and 4672 were only found in the OHDSI Concept
Prevalence Data (median 100, range 100–52,739,431). These
findings are visualized in Fig. 7. OMOP2OBO concept coverage
ranged from 93–99.7% across the 24 OHDSI Concept Prevalence
Data sites. Supplementary Fig. 3a presents the counts of OMOP
condition concepts in the OHDSI Concept Prevalence Data by site.
A chi-square test of independence with Yate’s correction revealed
a significant association between the OHDSI Concept Prevalence
Data sites and OMOP2OBO coverage (χ2(23)= 7559.1, p < 0.0001).
Post hoc tests using Bonferroni adjustment confirmed that 32% of
the pairwise OHDSI Concept Prevalence Data site comparisons
had significantly different OMOP2OBO coverage (p < 0.001 for all

significant comparisons). The results of this analysis are visualized
as a heatmap in Supplementary Fig. 3b. The OMOP2OBO concept
count by OBO Foundry ontology, data wave, and coverage type
are shown in Supplementary Fig. 4.
Results for the 4672 (7.5%) OHDSI Concept Prevalence Data

condition concepts missing from OMOP2OBO are visualized in Fig.
8. Roughly 7.9% (n= 367) of condition concepts were accounted
for using a newer version of the OMOP CDM and occurred in an
average of 2.6 sites with a mean frequency of 27,412.3 (range
100–3,539,698.5). In total, 90.6% (n= 4231) of condition concepts
purposefully excluded from the OMOP2OBO mapping set (i.e., no
clear pathological or biological origin, not yet mapped, or were
unable to be mapped) occurred in an average of 1.7 sites with a
mean frequency of 6139.3 (range 100–8,254,186.5). The remaining
condition concepts (1.6%; n= 74) were truly missing and occurred
in an average of 2.7 sites with a mean frequency of 5320.1 (range
100–100,483). The frequency of distributions of the covered
condition concepts from OMOP2OBO and Concept Prevalence
condition concepts missing from OMOP2OBO in the OHDSI
Concept Prevalence Data by site are visualized in Supplementary
Fig. 3c, d. The five most frequently occurring missing condition
concepts are shown in Table 3. Domain expert review determined
these condition concepts were likely missing due to differences in
patient populations and coding practices. The domain experts
identified comparable condition concepts in the OMOP2OBO
mapping set.
The OHDSI Concept Prevalence Data contained 4588 drug

ingredient concepts from 18 independent sites. The OMOP2OBO

Fig. 6 Measurement concept frequency of use in clinical practice by mapping category and ontology. This figure presents the frequency
distributions of OMOP (Observational Medical Outcomes Partnership) measurement concepts used at least once in clinical practice (log 10
scale) in the Children’s Hospital Colorado pediatric OMOP database by mapping category and OBO (Open Biological and Biomedical
Ontology) Foundry ontology. In each boxplot, the box extends from the first to third quartile of the data with a center line used to indicate the
median. Whiskers extend from each box by 1.5x the interquartile range and outliers that extend past the whiskers shown as dots. The x-axis
labels are numbers which correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept; (2) Automatic One-to-One
Ancestor; (3) Automatic One-to-Many Concept; (4) Automatic One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6) Manual
One-to-One Concept; (7) Manual One-to-Many Concept; and (8) Unmapped. HPO Human Phenotype Ontology, Uberon Uber-Anatomy
Ontology, NCBITaxon National Center for Biotechnology Information Taxon Ontology, PRO Protein Ontology, ChEBI Chemical Entities of
Biological Interest, CL Cell Ontology.
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Fig. 7 OMOP2OBO—concept prevalence coverage. This figure visualizes the coverage distributions of Observational Medical Outcomes
Partnership (OMOP) concepts over their frequency of use in clinical practice (log 10 scale) within the Concept Prevalence Study data by
domain (Conditions [left]; Drugs [middle]; and Measurements [right]). The three modeled distributions include: concepts only found in the
Concept Prevalence Study data (magenta), concepts only found in the OMOP2OBO mapping set (blue), and concepts found in both the
Concept Prevalence Study data and the OMOP2OBO mapping set (yellow).

Fig. 8 OMOP2OBO—concept prevalence coverage error analysis. This figure visualizes the distributions of Observational Medical Outcomes
Partnership (OMOP) concepts missing from the OMOP2OBO mapping set over their frequency of use in clinical practice (log 10 scale) within
the Concept Prevalence Study data by domain (Conditions [left]; Drugs [middle]; and Measurements [right]). The three modeled error analysis
distributions include: concepts recovered in a newer version of the OMOP common data model (CDM; magenta), concepts that were
purposefully excluded, not yet mapped, or unable to be mapped by OMOP2OBO (blue), and concepts that were truly missing from the
OMOP2OBO mapping set (yellow).

Table 3. Concept prevalence concepts missing from the OMOP2OBO mapping set.

OMOP domain Concept Concept labela Average concept frequencyb Study sites

Condition 4,091,502 Increased fluid intake 100,483.0 1

37,311,061 COVID-19 93,585.0 1

40,443,308 Polycystic ovary syndrome 62,900.3 3

35,615,055 Saddle embolus of pulmonary artery with acute cor pulmonale 22,324.4 10

36,684,319 Adjustment disorder with mixed anxiety and depressed mood 18,453.0 1

Drug Ingredient 37,498,625 Hepatitis A virus strain CR 326F antigen, inactivated 175,551.3 14

1,510,467 Erenumab 60,618.0 10

35,200,577 Fremanezumab 15,579.6 5

35,200,800 Galcanezumab 11,594.8 5

35,201,105 Baloxavir marboxil 11,366.7 3

Measurement 3,045,980 Pulse intensity of Unspecified artery palpation 1,219,846,862.0 1

3,021,716 Penicillin G potassium [Mass] of Dose 253,609,945.0 1

40,760,098 Sodium [Moles/volume] in Saliva (oral fluid) 246,641,311.0 1

3,045,820 Cotinine/Creatinine [Mass Ratio] in Urine 246,063,202.0 1

3,008,500 Chloride [Moles/volume] in Saliva (oral fluid) 234,931,483.0 1

OMOP Observational Medical Outcomes Partnership.
aConcept labels were obtained from the Athena web application (https://athena.ohdsi.org/) on 12/29/2022.
bThe average concept frequency was calculated as the frequency of each concept divided by the number of Concept Prevalence study sites with that concept
by each clinical domain.
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mapping set contained 8611 eligible drug ingredient concepts,
which covered 87.9% (99.9% weighted coverage) of the OHDSI
Concept Prevalence Data concepts (n= 4037 concepts; median
7299, range 100–1,308,580,305). Of the remaining drug ingredient
concepts, 4574 were only found in OMOP2OBO (median 100,
range 100–69,311) and 551 were only found in the OHDSI Concept
Prevalence Data (median 300, range 100–10,748,492). These
findings are visualized in Fig. 7. OMOP2OBO drug ingredient
concept coverage ranged from 91.2–98.4% across the 18 Concept
Prevalence Study sites. Supplementary Fig. 5a presents the counts
of OMOP drug ingredient concepts in the OHDSI Concept
Prevalence Data by site. A chi-square test of independence with
Yate’s correction revealed a significant association between the
OHDSI Concept Prevalence Data sites and OMOP2OBO coverage
(χ2(17)= 195.6, p < 0.0001). Post hoc tests using Bonferroni
adjustment confirmed that 22% of the pairwise OHDSI Concept
Prevalence Data site comparisons had significantly different
OMOP2OBO coverage (p < 0.001 for all significant comparisons).
The results of this analysis are visualized as a heatmap in
Supplementary Fig. 5b. The OMOP2OBO drug ingredient concept
count by OBO Foundry ontology, data wave, and coverage type
are shown in Supplementary Fig. 6.
Results for the 551 (12%) OHDSI Concept Prevalence Data drug

ingredient concepts missing from OMOP2OBO are visualized in
Fig. 8. Roughly 0.9% (n= 5) of drug ingredient concepts were
accounted for using a newer version of the OMOP CDM and
occurred in an average of 8.4 sites with a mean frequency of
51,732 (range 100–221,229.7). In total, 82.8% (n= 456) of drug
ingredient concepts purposefully excluded from the OMOP2OBO
mapping set (i.e., not yet mapped) occurred in an average of
3.9 sites with a mean frequency of 18,847.3 (range
100–1,077,258.9). The remaining drug ingredient concepts
(16.3%; n= 90) were truly missing and occurred in an average
of 2.7 sites with a mean frequency of 3361.2 (range
100–175,551.3). The frequency of distributions of the drug
ingredient concepts covered by OMOP2OBO and Concept
Prevalence drug ingredient concepts missing from OMOP2OBO
in the OHDSI Concept Prevalence Data by site are visualized in
Supplementary Fig. 5c, d. The five most frequently occurring
missing drug ingredient concepts are shown in Table 3. Domain
expert review of these drug ingredient concepts found that they
were likely missing as a result of hospital vendor differences or
because they were a new high-risk biologic whose safety and
efficacy had not yet been tested or confirmed for use in pediatric
populations. The domain experts identified comparable drug
ingredient concepts in the OMOP2OBO mapping set.
The OHDSI Concept Prevalence Data contained 25,513 mea-

surement concepts from 18 independent sites. The resulting
OMOP2OBO mapping set contained 3828 eligible measurement
concepts (n= 10,676 results), which covered 11.1% (67.7%
weighted coverage) of the OHDSI Concept Prevalence Data
measurement concepts (n= 2260 concepts; median 1355, range
100–1,465,815,430). Of the remaining measurement concepts,
1208 were only found in OMOP2OBO (median 100, range
100–1,842,485) and 20,893 were only found in the OHDSI Concept
Prevalence Data (median 109, range 100–1,219,846,862). These
findings are visualized in Fig. 7. OMOP2OBO measurement
concept coverage ranged from 4.2–75% across the 18 OHDSI
Concept Prevalence Data sites. Supplementary Fig. 7a presents the
counts of OMOP measurement concepts in the OHDSI Concept
Prevalence Data by site. A chi-square test of independence with
Yate’s correction revealed a significant association between the
OHDSI Concept Prevalence Data sites and OMOP2OBO coverage
(χ2(17)= 3872.3, p < 0.0001). Post hoc tests using Bonferroni
adjustment confirmed that 56% of the pairwise OHDSI Concept
Prevalence Data site comparisons had significantly different
OMOP2OBO coverage (p < 0.001 for all significant comparisons).
The results of this analysis are visualized as a heatmap in

Supplementary Fig. 7b. The OMOP2OBO measurement concept
count by OBO Foundry ontology, data wave, and coverage type
are shown in Supplementary Fig. 8.
Results for the 20,893 (81.9%) OHDSI Concept Prevalence Data

measurement concepts missing from OMOP2OBO are visualized
in Fig. 8. Roughly 0.1% (n= 13) of measurement concepts were
accounted for using a newer version of the OMOP CDM and
occurred in an average of 3.2 sites with a mean frequency of
9836.3 (range 100–29,098.2). In total, 0.8% (n= 158) of measure-
ment concepts purposefully excluded from the OMOP2OBO
mapping set (i.e., not mapped test type, unspecified sample, or
were unable to be mapped) occurred in an average of 5.2 sites
with a mean frequency of 282,115.3 (range 100–14,317,951.9).
The remaining measurement concepts (99.2%; n= 20,722) were
truly missing and occurred in an average of 2.8 sites with a mean
frequency of 218,874 (range 100–1,219,846,862). The frequency of
distributions of the measurement concepts covered by OMO-
P2OBO and Concept Prevalence measurement concepts missing
from OMOP2OBO in the OHDSI Concept Prevalence Data by site
are visualized in Supplementary Fig. 7c, d. The five most
frequently occurring missing measurement concepts (reported
as the average frequency across the 18 sites and number of sites
with that concept) are shown in Table 3. Domain expert review of
these measurement concepts confirmed that they were likely
missing due to inconsistencies in hospital use of LOINC, a finding
that’s been observed in literature76. The domain experts
identified comparable measurement concepts in the OMOP2OBO
mapping set.

Validation: clinical utility
Many patients with a genetic disease never receive a specific
diagnosis, even after genetic sequencing77–80. Longitudinal EHR
data has been used to identify patients with genetic disor-
ders81–84. Inspired by the fact that most genetic diseases manifest
as a recurring pattern of multiple symptoms or phenotypes
affecting multiple organ systems82, the phenotype risk score
(PheRS), which measures the similarity between an individual’s
diagnosis codes and phenotypic features of known genetic
disorders, was developed81. While the PheRS has shown great
promise for identifying patients with undiagnosed Mendelian
disease from EHR data58, it requires mappings that link ICD codes
to HPO concepts, which most EHRs do not contain. The existing
mappings58 developed to support PheRS were manually con-
structed, which may limit scalability when applied to new data.
The goal of this evaluation was to determine if the OMOP2OBO

mappings could be used to facilitate the application of the PheRS
to EHR data and to compare their performance to an existing set
of validated manual mappings. For this analysis, the OMOP2OBO
HPO mappings were compared to the ICD-HPO mappings58 using
data from the AoU Research Program. The AoU Data were selected
for this task because it provides access to a large sample of EHR
data and genetic testing results (see Supplementary Table 3 for
additional details on this data source). Five genetic diseases (and
their associated genes) for which diagnosis codes have been
found to be of high positive predictive value in EHRs58, were
examined: Marfan syndrome (FBN1 and TGFBR1), multiple endo-
crine neoplasia (MEN1 and RET), neurofibromatosis (NF2), para-
gangliomas (SDHAF2, SDHB, SDHC), and tuberous sclerosis (TSC1,
TSC2). These diseases were associated with 2257 unique
phenotypic features (HPO codes). When querying AoU data to
identify patients who had at least one of these phenotypic
features, the ICD-HPO mappings (n= 7815 ICD codes) took
~30min to complete and returned 210,718 patients and the
OMOP2OBO mappings (n= 3783 OMOP concepts) took ~10min
to complete and returned 209,342 patients. Of the 208,831
patients found in common, 1887 were only identified by the ICD-
HPO mappings, and 601 patients were only identified by the
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OMOP2OBO mappings. When the PheRS was applied to patients
from both mappings they were found to be highly correlated
(r2 > 0.6 across all diseases). This suggests that the patients
returned by both mappings were similar.
For additional validation, case-control studies using only the

OMOP2OBO mappings were performed: Marfan syndrome (131
cases and 63,086 controls), multiple endocrine neoplasia (86 cases
and 72,150 controls), neurofibromatosis (255 cases and 65,256
controls), paraganglioma (105 cases and 65,256 controls), and
tuberous sclerosis (38 cases and 58,555 controls). The results of
these studies are shown in Supplementary Table 8 and the
distributions of PheRS scores for cases and controls for each of the
five diseases are visualized in Supplementary Fig. 9. As shown in
this figure, PheRS were higher for cases than controls across all
examined diseases. These results are further supported by one-
sided Wilcoxon rank sum tests, which indicated that the PheRS
were significantly higher for cases than controls (p < 0.001 for all
diseases). Collectively, these results support the use of OMO-
P2OBO mappings as a scalable alternative to an existing set of
validated manual mappings for use with PheRS to aid in the
systematic identification of patients who might benefit from
genetic testing.

DISCUSSION
In this paper we present OMOP2OBO, an algorithm that
semantically aligns conditions, drug ingredients, and measure-
ment results from standard vocabularies in the OMOP CDM to
OBO Foundry ontologies. Using OMOP2OBO, we built mappings
for 92,367 condition, 8615 drug ingredient, and 10,673 measure-
ment result concepts to ontology concepts representing 9636
diseases, 6309 phenotypes, 83 anatomical entities, 2704 organ-
isms, 4261 chemicals, 132 vaccines, and 272 proteins. The
mappings were evaluated on accuracy, generalizability, and
clinical utility. For the first task, a panel of 10 domain experts
reviewed subsets of the manually-derived mappings from each of
the OMOP domains and found that 73.9% of the condition, 70.7%
of the drug ingredient, and 92.9% of the measurement result
mappings were correct. For the second task, we examined the
generalizability of the concepts and found that 99.5% of
conditions, 99.9% of drug ingredients, and 68% of measurement
results overlapped with concepts used in clinical practice from 24
independent hospitals and claims databases. For the final task, we
compared OMOP2OBO HPO mappings to an existing set of
validated manual mappings when used to identify patients with
five rare genetic diseases using data from the AoU Research
Program. Queries using the OMOP2OBO mappings identified
99.3% of the patients returned by the validated manual mappings
using fewer codes and one-third of the time. To the best of our
knowledge, the OMOP2OBO mappings are the largest set of
publicly available mappings between clinical vocabularies and
OBO Foundry ontologies. The OMOP2OBO algorithm can easily be
incorporated into existing clinical workflows and presents new
opportunities to advance EHR-based deep phenotyping (recently
published examples are described below).
Existing work to develop mapping sets and mapping algorithms

has largely focused on using ontologies to improve the
phenotyping of specific diseases (e.g., infectious disease85, rare
diseases86,87, and cancer88) and for the investigation of specific
biological (e.g., glycobiology89) and clinical domains (e.g.,
laboratory test results60 and medical diagnoses61,90). Our work is
most similar to LOINC2HPO60, which we have expanded in our
current mapping set (with annotations to five additional OBO
Foundry ontologies). OMOP2OBO complements existing pheno-
typing efforts like the Electronic Medical Records and Genomics or
eMERGE Network (https://emerge-network.org) and the AoU
Research Program, by providing access to resources not currently
available in EHRs and opportunities to improve the semantic

interoperability of definitions through alignment to the OBO
Foundry ontologies.
A portion of the mappings that are automatically derived by

OMOP2OBO overlap with existing mappings provided by the
OMOP CDM, the UMLS, and the OBO Foundry ontologies. The
UMLS and OMOP CDM each align more than 200 vocabularies. At
the time of our analysis (and determined using the same data),
only the UMLS provided mappings to an OBO Foundry ontology,
which included: the Gene Ontology91 (67,807 CUIs covering 69
vocabularies and an average of 166.9 codes), HPO (16,154 CUIs
covering 91 vocabularies and an average of 1668.7 codes), and
NCBITaxon (1,776,212 CUIs covering 55 vocabularies and an
average of 3236.1 codes). Of these mappings, only the HPO and
NCBITaxon are relevant to our work. Of the 1,776,212 CUIs aligned
to NCBITaxon, 1128 were mapped to LOINC and 138 were mapped
to RxNorm covering 0% of the measurement and 1.1% of the drug
ingredient concepts in the CHCO OMOP Database, respectively. Of
the 16,154 CUIs aligned to HPO, 993 were mapped to LOINC and
18,212 were mapped to SNOMED-CT covering 0% of the
measurement and 4.2% of the condition concepts in the CHCO
OMOP Database, respectively. Similar to the OMOP CDM and the
UMLS, some of the OBO Foundry ontologies provide mappings to
vocabularies in these resources. Collectively, the eight OBO
Foundry ontologies used in this work provided 489,794 unique
database cross-references from 179 unique data sources. Of these,
only the HPO (11,616 ontology concepts to 19,569 codes from 16
data sources), Mondo (22,110 ontology concepts to 159,918 codes
from 45 data sources), CL (949 ontology concepts to 1376 codes
from 29 data sources), and Uberon (10,865 ontology concepts to
51,322 codes from 91 data sources) mappings were relevant to
our work. Of the 19,569 HPO and 159,918 Mondo database cross-
references only 3.6% and 15.6% mapped to a condition concept in
the CHCO OMOP Database, respectively. These findings highlight
that while there are some existing mappings between the
resources that OMOP2OBO aligns, at best, they covered only
~15% of the OMOP concepts that we aimed to map supporting
the need for its development. Further, it should be noted that the
vast majority of the mappings provided by the OMOP CDM, UMLS,
and OBO Foundry ontologies are simple one-to-one mappings.
While OMOP2OBO contributes one-to-one mappings, it also
provides more complex one-to-many mappings.
The OMOP2OBO mappings have been used to characterize

differences in definitions of long COVID92, generate long COVID
phenotypes93,94, and improve the categorization and prediction of
psychiatric diseases among patients with long COVID95. Addition-
ally, our recent work in pediatric rare disease subphenotyping
demonstrated that patient representations constructed from the
OMOP2OBO mappings produced more clinically meaningful
clusters than representations built using OMOP concepts alone96.
We further demonstrated the value of the mappings by leveraging
them to successfully integrate external gene expression data from
an independent sample of pediatric patients resulting in more
clinically-meaningful and biologically-actionable phenotypes than
those generated using only clinical data. One potential use of
OMOP2OBO is to aid in the alignment of patient data to
ontologies in the Global Alliance for Genomics and Health’s
Phenopacket schema97, which was designed to support the global
exchange of computable patient-level phenotypic information.
OMOP2OBO has not been optimized for performance; all

possible ancestors are mapped when unable to generate a
mapping at the concept-level. A prioritization strategy would
significantly improve performance. OMOP2OBO does not take
advantage of all of the knowledge available in the UMLS.
Leveraging information in the mapping and hierarchy tables
could improve the automatically mapped concepts and would
enable use of other UMLS-aligned resources like the SemMedDB98.
We only evaluated the accuracy of a small subset of the manual
mappings. It is important to evaluate the remaining manually-
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derived mappings as well as to provide citations from the
resources from which they were derived. The Accuracy evaluation
revealed limitations of our expert review procedures; some of the
experts experienced challenges when trying to use the OBO
ontologies, which may have negatively impacted the results.
Providing better training and offering outcomes other than
correct/incorrect should be considered. Finally, OMOP standard
clinical vocabularies are also dependent upon a large set of CDM-
specific mappings and may be subject to similar errors as our
mappings.
There are two primary challenges that remain given the initial

development of the OMOP2OBO algorithm and mapping set. The
first challenge is to establish procedures and build infrastructure
to enable community sharing, monitoring, and updating of the
mappings. While the GitHub repository for the OMOP2OBO
currently contains policies for contributing to the mapping
algorithm, we have yet to establish an infrastructure or policies
for the mappings. Future opportunities include the adoption of a
system like the one utilized by the Bioregistry (https://
bioregistry.io)99. The Bioregistry provides extensive governance
policies and templates, which make it easy to incorporate new and
modify existing identifiers. They also developed a robust, semi-
automated infrastructure that facilitates review by the maintainers
and triggers rebuilds of the registry anytime changes are made. To
improve the shareability of the mappings, we would also like to
extend the mapping output formats to include Semantic Web
standards like RDF/XML and the Simple Standard for Sharing
Ontological Mappings or SSSOM100. In addition to creating a
system like the Bioregistry, future work may include adoption and
adaptation of OBO Foundry protocols for ontology development
and maintenance57,101.
The second challenge is to improve and expand the evaluation

of the algorithm and the mapping set. The UMLS, OMOP CDM, and
the OBO Foundry ontologies provide mappings between clinical
vocabularies and ontologies, which are automatically- or
manually-derived (e.g., mappings between source and standard
vocabulary concepts, mappings between clinical vocabularies and
ontologies, and/or database cross-references mapped to ontology
concepts). While the OMOP2OBO algorithm leverages these
mappings (i.e., leveraging source codes mapped to standard
concepts), verifying the quality of existing mappings was not
within the scope of the current work. Currently, no modules in the
OMOP2OBO algorithm verify the quality of existing mappings
used by OMOP2OBO or mappings generated by it. This should
include resources to validate automatic mappings as their
accuracy depends upon the quality of the resources from which
they were built, and ontologies are subject to a variety of
errors102–104. To do this, we might leverage pretrained language
models and/or develop new machine learning models using
trusted resources (e.g., the scientific literature) to verify the
database cross-references provided by the OBO Foundry ontolo-
gies, UMLS, and OMOP CDM database prior to running
OMOP2OBO.

METHODS
OMOP2OBO is open source (https://github.com/callahantiff/
OMOP2OBO), available on PyPI (https://pypi.org/project/
omop2obo), and includes an interactive dashboard that sum-
marizes the current mapping set (http://tiffanycallahan.com/
OMOP2OBO_Dashboard). We also created a dedicated Zenodo
Community, which provides access to data, mappings, and
presentations (https://zenodo.org/communities/omop2obo). A list
of the acronyms used in this paper are provided in Supplementary
Table 1 and the resources used by the OMOP2OBO algorithm and
mappings are described in Supplementary Table 2.

OMOP2OBO algorithm: resources
Although it is possible to apply the OMOP2OBO algorithm to any
clinical vocabulary, the OMOP CDM was selected because of its
rich data representation, standard vocabularies (and hierarchies)
and the mappings it provides to more than 200 commonly used
clinical vocabularies. To increase the coverage of the resources
and the potential of an automatic mapping, OMOP2OBO
leverages the National Library of Medicine’s UMLS (MRCONSO
and MRSTY tables [2020AA version105])70. These data are used to
annotate each OMOP concept with a UMLS CUI and a Semantic
Type71. Additionally, the mappings provided by the MRCONSO
table are used to enhance existing database cross-reference
mappings provided by OMOP and the OBO Foundry ontologies
(both described in detail in the “Input data used to create
OMOP2OBO mappings” section).

OMOP2OBO algorithm: overview
The OMOP2OBO algorithm (Fig. 1) consists of the following three
components: (1) Process Input Data; (2) Map OMOP Standard
Vocabulary Concepts to OBO Foundry Ontology Concepts; and (3)
Synthesize and Process Mapping Results and Output Mappings.
Each component is described in detail below.
The first component is Processing Input Data. The algorithm takes

as input a table of OMOP concepts and a list of one or more OBO
Foundry ontologies. For both types of data, the algorithm expects
concept or class identifiers, source codes or database cross-
references, labels, synonyms, and ancestor concepts or classes.
While the algorithm expects a table of input OMOP concepts (due
to the private nature of clinical data, the algorithm does not
assume a direct database connection is possible), it automatically
downloads the OBO Foundry ontologies using OWLTools (April 06,
2020 release; https://github.com/owlcollab/owltools).
The second component is Mapping OMOP Vocabulary Concepts to

OBO Foundry Ontology Concepts. This component is designed to
automatically map or align OMOP concepts to OBO Foundry
ontology concepts. The algorithm includes several different
approaches, prioritizing those that result in high-confidence
mappings. This component includes concept alignment and
concept embedding.

Concept alignment: exact-string matches between OMOP and
OBO Foundry ontology concept labels, definitions, and
synonyms are obtained. Prior to alignment, the label and
synonym fields are both made lowercase. This step also obtains
exact matches between OMOP standard concepts and source
codes to OBO Foundry ontology database cross-references. To
increase the likelihood of finding a match, the OMOP standard
concepts and source codes are first merged with terminologies
in the UMLS using core functionality from OHDSI Ananke106, a
program developed to align OMOP concepts to UMLS CUIs.
Prior to performing this alignment, the OMOP standard
concepts and source codes and the OBO Foundry ontology
database cross-references are normalized using a custom
dictionary (source_code_vocab_map.csv107). This resource
ensures that concepts referenced by the same code using
different prefixes or symbols can be aligned (e.g., SNOMED-
CT:1234567 and sctid:1234567).
Concept embedding: using scikit-learn108, a bag-of-words
(BoW)109 vector space model with term-frequency inverse-
document frequency (TF-IDF)110 and L2 normalization is used to
learn concept embeddings for all OMOP and OBO Foundry
ontology concepts and concept ancestors label and synonym
text strings. While the BoW model was used because it is easy
to understand and has shown great success when applied to
EHR data and when used to align biomedical ontologies111,112,
any language or embedding model could be utilized. The BoW
model is implemented as an N ×M document-term matrix with
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one row per input string and one column for each tokenized
word appearing in the universe of all input strings. The value of
each cell in the matrix is the normalized frequency each word
occurred in each input string (using TF-IDF normalization). Prior
to building the model, all text fields are made lowercase, stop
words are removed using the wordnet list from Python’s NLTK
library113, white spaces are removed, and word-level tokeniza-
tion and lemmatization are applied. After learning the model, a
final embedding is constructed for each input string by
aggregating the constituent concept embeddings. Cosine
similarity is used to compute scores between all pairwise
combinations of OMOP and OBO Foundry concept embed-
dings. Given that each OMOP and OBO concept can have a
label and one or more synonyms, only the single highest-
scoring pairwise comparison is selected for the final mapping.
Cosine similarity scores range from 0–1, where a score of one
indicates a greater match between the embedding pairs. To
improve the efficiency of this process, only the top 75% of pairs
with scores ≥0.25 are output, which was decided after
visualizing the score distribution using a histogram. All thresh-
olds and cut-offs are customizable. Concept embeddings are
created for all OMOP concepts, regardless of whether or not
they were automatically mapped by a prior Component. All
remaining unmapped concepts require manual curation.

The third component is Synthesizing and Outputting Mapping
Results. The mapping results from the prior component are post-
processed to include a mapping category and human-readable
evidence. The mapping category is constructed by combining the
following elements: (1) one or more OBO Foundry ontology
identifiers and labels; (2) mapping logic applied to specify
semantics when there are multiple ontology concepts (i.e.,
“and”, “or”) or to denote negation (i.e., “not”); (3) a mapping
category derived from the mapping approach (e.g., automatically
determined using an algorithm or manually derived by a human
annotator), cardinality (i.e., one-to-one aligning a single OMOP
concept to a single OBO Foundry ontology concept or one-to-
many aligning a single OMOP concept to one or more OBO
Foundry ontology concepts), and level (i.e., mapping to the OMOP
concept directly or to one of its ancestors); and (4) mapping
evidence represented as a pipe-delimited string that denotes all
resources that support the mapping (i.e., the exact string matches
between labels and synonyms, source codes and database cross-
reference alignments, and other sources supporting a mapping
like scored heuristics and references from manual review).
Supplementary Table 4 provides additional details on and
examples of the mapping categories. Post-processed mappings
are serialized and able to be output to a variety of file types, like
flat file, database dump, or RDF/XML file.

Input data used to create OMOP2OBO mappings
The OMOP2OBO mappings were constructed from two data
sources: (1) the CHCO OMOP Database and (2) OBO Foundry
ontologies (both are described in detail below). Figure 2 includes
example mappings and illustrates how the OBO Foundry
ontologies were used to map OMOP concepts from each domain.
Supplementary Table 4 provides additional details on and
examples of the mapping categories. Supplementary Table 3
provides descriptions of the clinical data sources used to build and
validate the OMOP2OBO mappings.

Input data used to create OMOP2OBO mappings: OMOP data
The OMOP2OBO mappings were constructed using data from the
CHCO OMOP Database, a de-identified database that contained data
from more than six million pediatric patients. The CHCO OMOP
Database is stored within University of Colorado Anschutz Medical
Campus Health Data Compass’ Health Insurance Portability and

Accountability Act compliant Google Cloud-based infrastructure
(created in October 2018; https://www.healthdatacompass.org). The
data conformed to the structure defined by the National Pediatric
Learning Health System (PEDSnet) OMOP CDM v3.0, which is an
adaptation of the OMOP CDM version 5.053,62. Data were obtained
from a de-identified database that was determined by the Colorado
Multiple Institutional Review Board to be non-human subjects (#15-
0445). Due to the broad scope of the projects approved to be
performed on this database, a Waiver of consent was obtained as it
was not practical to obtain consent from all patients.
Concept lists were derived from standard OMOP vocabularies

(i.e., SNOMED-CT [https://www.snomed.org; v20180131], RxNorm52

[v20180507], and LOINC51 [v2.64]) from the Condition Occurrence,
Drug Exposure (at the drug ingredient level), and Measurement
tables, respectively. For each concept set, metadata were extracted
from the OMOP CDM including concept codes (i.e., codes from
each standard vocabulary), labels, synonyms, and ancestor
concepts (codes, labels, and synonyms were also extracted for
each concept ancestor). Concept lists were organized into two data
waves according to whether or not they had been used in clinical
practice (i.e., Concepts Used in Practice and Concepts Not Used in
Practice). As manual annotation requires significant resources, only
concepts from the first data wave (i.e., Concepts Used in Practice)
were manually mapped. Prior to constructing the concept lists,
Condition and Measurement data were preprocessed to ensure the
mapping process was robust and reproducible.
For condition concepts, Concepts used in Practice, UMLS Semantic

Types were used to identify all concepts that had a clear pathological
or biological origin. All remaining concepts (e.g., accidents, injuries,
external complications, and findings without clear interpretations)
were marked as unmapped and the reason for exclusion was
provided in the evidence field. The Semantic Types were also used to
group OMOP concepts such that those typed as “Findings” or “Signs
and Symptoms” were treated as phenotypes and only mapped to
HPO and concepts typed as “Disease or Syndrome” were only
mapped to Mondo. For Concepts Not Used in Clinical Practice, all
possible automatic mappings were obtained and concepts which
were unable to be mapped automatically were marked as
unmapped and “NOT YET MAPPED” was provided as the mapping
evidence. This same approach was applied to drug ingredients.
For all measurement concepts, a scale and result type were

created. The scale (i.e., ordinal, nominal, quantitative, qualitative,
narrative, doc, and panel) of each measurement was identified
from the OMOP CDM or by parsing the concept synonym field. For
all Concepts Used in Practice, reference ranges were used to
determine the result type; concepts with numeric reference ranges
were typed as “Normal/Low/High” and concepts with reference
ranges that included “positive” or “negative” were typed as
“Positive/Negative”. Concepts Not Used in Practice with an ordinal
scale or with synonyms that contained the words “presence” or
“screen” were typed as “Positive/Negative”. Concepts with a
quantitative scale were typed as “Normal/Low/High”. All other
scale types were typed as “Unknown Result Type”. While it is
possible to infer the result type from the scale type (e.g., all
concepts with a quantitative scale have result type “Normal/Low/
High” and all concepts with an ordinal scale have result type
“Positive/Negative”), our approach aimed to maximize the inclu-
sion of concepts from all scale types. Mappings were created for
each result type using the procedures defined by LOINC2HPO60;
results were annotated with respect to their result type:

Concepts with result type “Normal/Low/High”: for example,
“Corticotropin [Mass/volume] in Plasma—4th specimen post
XXX challenge” (LOINC:12460-2). Results above the reference
range are mapped to “Increased Circulating ACTH Level”
(HP:0003154). Results below the reference range are mapped
to “Decreased Circulating ACTH Level” (HP:0002920). Results
within the reference are mapped to “Abnormality of Circulating
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Adrenocorticotropin Level” and logically negated (NOT
HP:0011043).
Concepts with result type “Positive/Negative”: for example,
“Amphetamine [Presence] in Urine by Screen Method”
(LOINC:19343-3). Positive results are mapped to “Positive Urine
Amphetamine Test” (HP:0500112). Negative results are mapped
to “Positive Urine Amphetamine Test” and logically negated
(NOT HP:0500112).

Also consistent with the procedures adopted by LOINC2HPO, all
concepts lacking sufficient detail (i.e., non-specific body sub-
stances) were marked as unmapped and “Unspecified Sample”
was provided as the mapping evidence.
The initial set of measurement concepts was supplemented

with LOINC2HPO annotations60, which were downloaded on
August 2, 2020 from the LOINC2HPO annotation Github reposi-
tory114. OMOP2OBO expands the LOINC2HPO mappings by
including the measurement substance (i.e., body fluids, tissues,
and organs via Uberon), the entity being measured (i.e., chemicals,
metabolites, or hormones via ChEBI; cell types via CL; and proteins
via PRO), and the species of the measured entity (i.e., organism
taxonomy via NCBITaxon). All modifications to the original
LOINC2HPO annotations were recorded in the mapping evidence
field, enabling users to easily identify when an original
LOINC2HPO annotation had been updated. All LOINC concepts
in the LOINC2HPO mappings that were not used at least once in
clinical practice in the CHCO pediatric OMOP Database were
categorized as a Concept Not Used in Practice.

Input data used to create OMOP2OBO mappings: OBO
Foundry ontologies
OBO Foundry ontologies were selected under the advice of
several clinicians, molecular biologists, and professional OBO
Foundry biocurators to cover the following domains: diseases
(Mondo115 [v2020-09-14]), phenotypes (HPO59 [v2020-08-11]),
anatomical entities (CL65 [v2020-05-21], Uberon64 [v2020-06-30]),
organisms (NCBITaxon66 [v2020-04-18]), chemicals (ChEBI67

[v191]), vaccines (VO68 [v1.1.102]), and proteins (PRO69 [v61.0]).
Similar to the clinical concepts, each ontology was queried to
obtain labels, definitions, synonyms (including synonym type), and
database cross-references. All OBO Foundry ontologies were
downloaded in September 2020 using OWLTools (April 06, 2020
release; https://github.com/owlcollab/owltools).

Mapping evaluation
The OMOP2OBO mappings were evaluated by assessing their
accuracy, generalizability, and clinical utility.

Mapping evaluation: accuracy
Automatic mappings are created from exact alignments between
resources available in the OMOP CDM and the OBO Foundry
ontologies and thus are assumed to be accurate and high-
confidence mappings. The goal of this evaluation was to examine
the accuracy of a portion of the manually-derived mappings. For
conditions and drug ingredients, of all manual mappings
(including one-to-one and one-to-many), 20% were randomly
selected for manual review (n= 2000 conditions; n= 116 drug
ingredients) by a practicing resident physician (J.M.W.) and clinical
pharmacist (J.S.), respectively.
Measurement mappings are significantly more complex as they

require interpreting lab test results and annotating the source of the
sample (e.g., bodily fluid, anatomical entity, or cell type), entity being
measured (e.g., chemical or cell type), and organism of the measured
entity. While annotating the samples and entities is straightforward,
interpreting lab tests results and aligning them to HPO concepts can
be challenging. As a result, only the HPO mappings were evaluated
by domain experts. These mappings were evaluated in two ways: (1)

Survey. A subset of the mappings (n= 270) were independently
validated by five domain experts including three practicing pediatric
clinicians (T.D.B., J.A.F., and B.M.), a PhD-level molecular biologist
(A.L.S.), and a Computational Biology PhD candidate with Masters-
level training in epidemiology and biostatistics (T.J.C.) using a
Qualtrics Survey116. Any mapping that did not meet agreement by at
least one clinician and both the biologist and the epidemiologist
were re-evaluated by the most senior clinician. These mappings were
also vetted on the LOINC2HPO GitHub tracker (https://github.com/
TheJacksonLaboratory/loinc2hpoAnnotation/issues) by members of
the biocuration team. (2) Biocurator validation. A random subset of
1350 measurement results were manually verified by an OBO
Foundry biocurator.
All of the manual mappings were derived by a member of the

research team who at the time of the analysis was a Computa-
tional Biology PhD candidate with Masters-level training in
epidemiology and biostatistics (T.J.C.). As this individual does
not have specialized medical or pharmacological training, it is
assumed that these mappings may contain errors. Additional
details are provided on GitHub (https://github.com/callahantiff/
OMOP2OBO/wiki/Accuracy).

Mapping evaluation: generalizability
The generalizability of the OMOP2OBO mappings were examined
using the OHDSI Concept Prevalence Study data72–75. The Concept
Prevalence study provides data on the frequency of OMOP
concept usage in clinical practice across several independent sites
in the OHDSI network. In addition to the Concept Prevalence
Study sites, data were obtained from two independent academic
medical centers, bringing the total number of sites to 24. None of
the 24 sites overlapped with the site that was used to generate
the OMOP2OBO mappings. Consistent with the Concept Pre-
valence Study procedures, all concepts from the OMOP CHCO
Database occurring fewer than 100 times were assigned a count of
100. For all other analyses, the true range of counts in the OMOP
CHCO Database were utilized. The OMOP2OBO mappings were
filtered to remove all concepts without at least one ontology
mapping. Coverage of all standard OMOP concepts in the
OMOP2OBO mapping set was assessed by identifying: (1)
concepts that existed in the OMOP2OBO set and in at least one
Concept Prevalence Study site (i.e., Overlap); (2) concepts only
present in the OMOP2OBO set (i.e., OMOP2OBO Only); and (3)
concepts only present in the Concept Prevalence Study set (i.e.,
Concept Prevalence Only). Institutional review board approval was
not required to use these data as the dataset was completely de-
identified and contained no patient-level information.
An error analysis was performed to examine the Concept

Prevalence Only concept set. Three scenarios were examined:
(1) “Recovered in Newer Version of CDM”: concepts that could
be recovered using a newer version of the OMOP CDM (v5.3.1; 02/
25/2022); (2) “Purposefully Excluded”: concepts without clear
pathological or biological origin that were purposefully excluded
from the OMOP2OBO mapping set; and (3) “Truly Missing”:
concepts that could not be accounted for using the prior two
scenarios. For all scenarios, concept frequency within the Concept
Prevalence Study sites was used as a measure of concept
importance. Findings from each scenario were reviewed by a
practicing resident physician and a clinical pharmacist. See GitHub
for additional details (https://github.com/callahantiff/OMOP2OBO/
wiki/Generalizability).

Mapping evaluation: clinical utility
The clinical utility of the OMOP2OBO mappings was compared to
an existing set of validated manual mappings (ICD-HPO map-
pings58) when used to identify undiagnosed rare disease patients.
For this analysis, AoU Data (https://www.researchallofus.org) was
selected because it provides access to a large sample of EHR data
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with genetic testing results. For this evaluation, the version 6 build
was used, which contained data from ~630 sites on more than
528,000 patients. Five genetic diseases for which diagnosis codes
have been found to be of high positive predictive value in EHRs58

were selected, which included: Marfan syndrome, multiple
endocrine neoplasia, neurofibromatosis, paraganglioma, and
tuberous sclerosis. These diseases are associated with 11 of the
73 American College of Medical Genetics and Genomics (ACMG)
secondary finding genes (ACMG-73; v3.0), which have specific
mutations known to cause disorders, have well-defined pheno-
types, and are clinically actionable117. The diseases and associated
genes included: FBN1 and TGFBR1 (Marfan syndrome); MEN1 and
RET (multiple endocrine neoplasia); NF2 (neurofibromatosis);
SDHAF2, SDHB, and SDHC (paragangliomas); and TSC1, TSC2
(tuberous sclerosis). Using the Online Mendelian Inheritance in
Man (OMIM; https://www.omim.org) database and the HPO gene
annotation table118, each gene and its corresponding set of
phenotypic features were aligned to the HPO. To calculate the
phenotypic burden of each genetic disease, HPO mappings to
OMOP condition concepts from OMOP2OBO (v2.0.0 beta) and ICD
concepts from a validated set of ICD-HPO mappings58 were
queried against the AoU data. PheRS for each gene were then
calculated for patients from each the OMOP2OBO and Phecode
mapping sets. The PheRS81 is an algorithm used to identify
patients with phenotypic features that are clinically similar to
OMIM Mendelian profiles but who lack formal diagnosis and has
demonstrated utility for identifying underdiagnosed rare disease
patients using only EHR data58,81. The standardized version of the
PheRS was used because it is easier to interpret and reduces noise
when it is suspected that a large number of phenotypes will
overlap between cases and controls81. The OMOP2OBO and ICD-
HPO mappings were compared and evaluated on time to
complete the query against the AoU Data and differences in the
returned patient cohorts. As validation, case-control studies were
performed for each of the five diseases using the patients
returned from the OMOP2OBO mappings. Cases were defined as
patients with at least two occurrences of a relevant diagnosis code
and control patients had no instances of these codes. Cases and
controls were matched on age, sex, and length of EHR record. For
each disease, a one-sided Wilcoxon rank sum test was performed
in order to determine if PheRS were significantly higher for cases
than controls. Results were verified by a PhD-level Epidemiologist
specializing in genetics (C.Z.).
All analyses were performed in the AoU Researcher Work-

bench (https://www.researchallofus.org/data-tools/workbench)
by an authorized researcher (C.Z.). Informed consent is obtained
from all participants who enroll in the AoU Research pro-
gram119. Because the authors were not directly involved with
the participants and all data were de-identified, the use of these
data was exempt from institutional review. For additional
details, see “Do I need my project reviewed by the AoU
Institutional Review Board (IRB) in order to access this data
using the Researcher Workbench?” for more information
(https://www.researchallofus.org/frequently-asked-questions/
#workbench-faqs).

Statistics and technical specifications
OMOP2OBO was developed using Python 3.6.2 on a single
machine with 8 cores and 16GB of RAM. All code and project
information are publicly available and detailed on GitHub (https://
github.com/callahantiff/OMOP2OBO). The OMOP2OBO (v1.0)
mappings are publicly available from Zenodo120–122. The OMO-
P2OBO Mapping Dashboard was built with R (v4.2.1) using
Rmarkdown (v2.14) and flexdashboard (v0.5.2).
Descriptive and inferential statistics were performed to evaluate

the data available for mapping and the OMOP2OBO mapping set.
Chi-square tests of independence with Yate’s correction were used

to: (1) assess differences in the proportions of metadata available
from each OBO Foundry ontology; and (2) assess differences in the
proportions of mapped concepts between OHDSI Concept
Prevalence sites. Post hoc tests using Bonferroni adjustment to
correct for multiple comparisons were performed for significant
omnibus tests. Analyses were performed in Jupyter Notebooks
(v6.1.6) using the scipy (v1.4.1), statsmodels (v0.12.1), statistics
(v1.0.3.5), and numpy (v.1.18.1) libraries. Visualizations were
created using matplotlib (v.3.3.2). The “Clinical Utility” evaluation
was performed in the AoU Researcher Workbench (https://
www.researchallofus.org/data-tools/workbench) using R (v4.1.2)
and Python (v3.7). Analyses were performed on a machine with 16
CPUs and 60GB of memory.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Supplementary Table 2 lists the resources used by the OMOP2OBO algorithm. The
MRCONSO and MRSTY tables (2020AA) require a license and are available through the
UMLS (https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.
html). The data used to build and validate the OMOP2OBO mappings (v1) are described
in Supplementary Table 3. The OMOP concepts are available for download through
Athena (https://athena.ohdsi.org). The UMLS data require a license to use (https://
www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html) and some of the
OMOP CDM vocabularies also require a license. All users should read the licensing
agreements for both resources and consult their institution before developing new
mappings. The OBO Foundry ontologies are publicly available (https://obofoundry.org).
The OMOP2OBO (v1.0) mappings are publicly available and can be downloaded from
Zenodo: Conditions (https://doi.org/10.5281/zenodo.6774363); Drugs (https://doi.org/
10.5281/zenodo.6774401); and Measurements (https://doi.org/10.5281/zenodo.6774443).

CODE AVAILABILITY
OMOP2OBO is publicly available through GitHub (https://github.com/callahantiff/
OMOP2OBO) and PyPI (https://pypi.org/project/omop2obo). The interactive dash-
board code is also available on GitHub (https://github.com/callahantiff/
OMOP2OBO_Dashboard).
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