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A B S T R A C T

The pervasiveness and high number of Internet of Things (IoT) applications in people’s daily
lives make this context a very critical attack surface for cyber threats. The high heterogeneity
of involved entities, both in terms of hardware and software characteristics, does not allow
the definition of uniform, global, and efficient security solutions. Therefore, researchers have
started to investigate novel mechanisms, in which a super node (a gateway, a hub, or a router)
analyzes the interactions of the target node with other peers in the network, to detect possible
anomalies. The most recent of these strategies base such an analysis on the modeling of the
fingerprint of a node behavior in an IoT; nevertheless, existing solutions do not cope with the
fully distributed nature of the referring scenario.

In this paper, we try to provide a contribution in this setting, by designing a novel and fully
distributed trust model exploiting point-to-point devices’ behavioral fingerprints, a distributed
consensus mechanism, and Blockchain technology. In our solution we tackle the non-trivial issue
of equipping smart things with a secure mechanism to evaluate, also through their neighbors,
the trustworthiness of an object in the network before interacting with it. Beyond the detailed
description of our framework, we also illustrate the security model associated with it and the
tests carried out to evaluate its correctness and performance.

. Introduction

Nowadays, the Internet of Things (IoT) has grown rapidly, attracting not only researchers but also people from industrial
nd commercial environments. Indeed, this paradigm, characterized by heterogeneous and connected devices sharing data and
roviding services, creates huge opportunities in numerous domains. Radio Frequency identification (RFID), wireless sensors and
ther smart technologies are integrated into a variety of applications to create networks with enhanced capabilities in terms of
ensing information about the environment and collecting measurements or operational data from their devices.

One of the peculiarities of this new scenario is that there is no need for constant human intervention for the things to handle
ata, process them, exchange messages in the network, or execute instructions [1,2]. A typical case, in which the user takes almost
o active role and fully relies on devices and services to act on her/his behalf, is the smart home environment. Think, for instance,
f sensors able to recognize the presence of humans in home rooms to switch on/off lights. The information collected and used to
erform this task is one of the most sensitive and personal (i.e., people’s movements inside their own homes) [3]. Hence, solving
he trade-off between the functionalities provided (as well as the degree of autonomy of the objects) and the sensitivity of data
xchanged to obtain them is a demanding challenge to be faced. Moreover, the need for privacy increases when an untrusted (or
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also honest-but-curious) party is involved, and, in the aforementioned scenario, data is not completely processed inside the user’s
object directly, but rather it is handled by some external cloud-based service.

Other domains in which lots of sensitive information is exchanged involve healthcare [4,5]. In this case, wearable devices collect
ata about users’ health conditions continuously to monitor them for medical security reasons. Also, in this case, data loss or
ompromise can result in serious damages [6]. Moreover, if an IoT device is implanted in a human body for the good functioning
f an organ, an attacker gaining access to it can endanger the life of the victim. Unfortunately, the hacking of a device is not a
emote possibility, indeed, a research study carried out by Packard, reported that more than 70% of the existing IoT systems have
evere vulnerabilities due to a number of reasons, such as insecure Web interfaces, insufficient authorization mechanisms, lack of
ncryption for transport, and inadequate software protection [7,8].

To make reference to recent events, think for instance of famous botnet attacks launched against a large number of IoT devices,
uch as: the Mirai attack in 2016, that infected around 2.5 million devices connected to the Internet through a Distributed Denial of
ervice (DDoS) attack, and the Hajime attack, which brings more sophistication to some of the techniques used by Mirai [9,10].

Another domain gaining benefits from the growth of IoT is the Cyber–Physical System (CPS, hereafter) context. In such systems,
hysical and software components are deeply interconnected to continuously monitor the environment, and thanks to the support
f intelligent systems, CPSs are also able to make decisions based on the physical changes in the surroundings. Since CPSs control
ssets of critical importance (e.g., industrial control systems, power grids, transportation), neglecting security standards can lead to
erious consequences.

Besides autonomy, a factor that makes the management of IoT devices even more critical is their intrinsic heterogeneity. Their
ifferent computational capabilities, memory, and provided functionalities, cause that, generally, poorly secured objects can connect
o the Internet and can interact with more powerful devices. Hence, these objects can represent multiple points of failure that expose
he entire IoT network to possible attacks, increasing the need to define and adopt non-standard security methods [11].

In this scenario, the classical countermeasures to face privacy and security threats have to be rethought taking into account the
any restrictions and limitations of IoT devices (in terms of components and devices, computational, and power resources) and

ven their heterogeneous and distributed nature. Since IoT technologies and applications are so intimately associated with people,
step forward in this direction could make consumers less reluctant to adopt this new paradigm.

Recently, researchers have started to exploit the possibility for nodes to collaborate to make IoT networks more robust to
ttacks [2,12]. One area of investigation in this context is trust and reputation management, which is crucial to allow efficient
ollaboration among the actors of the network that might not have sufficient prior knowledge about each other [13]. Trust in IoT
s a comprehensive concept that takes people, devices, and their connections into account. It can be defined as the expectation that

thing is reliable, in other words, that it acts without harming the user or other objects in the network, is resilient to attacks,
nd belongs to a user who is always who she/he claims to be [14]. To make an example, assessing that a smartwatch is trusted
ould mean that it always gives the right (i.e., correct, complete, and fresh) information to its user when queried (for instance,
ime, temperature, heartbeat, and so forth). Moreover, by doing so, it should not reveal more information about user habits than
ecessary, and it should not act as a malicious node performing tasks it is not authorized for.

As for thing-to-thing trust evaluation, classical approaches exploit remote attestation. Through this security service, an object
an evaluate the current state of a potentially hacked or compromised remote device before contacting it. Remote attestation
lgorithms span from heavy-weight secure hardware-based techniques (such as cryptography), to light-weight software-based ones
e.g., control-flow integrity) [15].

More recent approaches are based on the computation of device fingerprint [16,17]. Fingerprint represents a set of features useful
to identify an object not relying on its classical network identities (such as IP or MAC addresses), but exploiting the information
from the packets that the device exchanges over the network. Always in this context, a step forward is represented by the notion
of behavioral fingerprint. All the approaches based on this concept build a device profile describing what it usually does (how it
interacts with the environment) and some patterns of communication (both with other objects and humans). This profile is used to
analyze the current behavior of an object and to assess whether it is congruent with the expected one [18,19].

However, classical trust models are usually too computationally heavy and do not exploit the peculiarity of IoT nodes that
can collaborate to obtain consensus. Moreover, most of the approaches based on behavioral fingerprint are centralized and, as a
consequence, do not take into consideration features obtainable by analyzing message payloads [16].

We start from the above considerations to design a solution based on a fully distributed behavioral fingerprint computation
used as an input to a general IoT trust model. Essentially, to assess the trustworthiness of an object in the network our approach
proceeds through two steps. The former is the construction of behavioral models representing the expected conduct of every node
in the network, and the latter is a suitable monitoring activity to detect possible variations in it.

The novelty and importance of our solution in the context of pervasive computing lays also on the fact that to reach our goal, we
exploit all the peculiarities of IoT nodes, such as their being autonomous, heterogeneous, and collaborative. Indeed, in our approach,
we enforce that:

• To guarantee objects autonomy we design a solution in which nodes can learn models to represent the expected behavior of
a target object unobtrusively without human intervention.

• To exploit the intrinsic heterogeneous nature of IoT objects, the training and inference phases can be also obtained through
a privacy-preserving collaborative delegation approach in which simpler objects are supported by more powerful nodes to
implement the solution.
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• Finally, since collaboration is a fundamental characteristic of a network of things, we based our anomaly detection algorithm
on it. Indeed, nodes cooperate to constantly monitor other objects’ conduct and signal possible anomalies in their normal
behavior through a distributed algorithm based on a consensus mechanism.

Another point of strength of our approach is that it is completely distributed. Blockchain technology is used to deploy part of our
olution in a fully decentralized manner. In particular, we exploit both the power of smart contracts, which are already being used to
anage, control, and secure IoT devices [20], and a lightweight adaptation of Blockchain designed to support resource-constrained

oT devices [2]. Relying on these solutions our approach allows to: (i) keep trace of the evaluation of the behavior of objects at a
global level and (ii) identify the best peers to contact to enable the aforementioned collaborative approach.

In the following of this paper, through a deep experimental campaign, carried out leveraging real-life smart object data, we prove
that our approach is feasible and equips the nodes of an IoT network with the possibility to detect if another peer is compromised
before contacting it. Interestingly, our strategy is based on a lightweight behavioral fingerprint model suitable for IoT devices and
our secure delegation strategy produces advantages also in terms of running time.

Our paper starts from the research direction described in [18], where the framework H2O (Human to Object) is presented. Node
belonging to H2O can continuously authenticate an entity in the network, providing a reliability assessment mechanism based on
behavioral fingerprinting. Our proposal extends that work by presenting several critical enhancements and designing novel security
mechanisms to improve object interaction in IoT. In particular, the contributions of our paper can be summarized as follows.

1. We extend the ideas proposed in the recent scientific literature [19,21] by developing a light deep learning model for the
computation of the distributed behavioral fingerprinting also through a Tiny Machine Learning approach. This improves the
usability of our solution across several device types, even the less computationally capable ones.

2. We propose a distributed consensus mechanism and design a novel secure delegation strategy to compute the object’s
reliability. This allows the improvement of the security and autonomy of smart objects.

3. We add a Blockchain-based solution to trace, in a fully distributed fashion, the evolution of the behavior of objects when
interacting with each other.

4. Through a detailed security analysis, we show that our proposal is robust and addresses its objectives in the presence of
attacks.

The outline of this paper is as follows. In Section 2, we examine the literature related to our approach. In Section 3, we give a
general overview of our reference IoT model and illustrate the proposed framework in detail. In Section 4, we describe our security
model. In Section 5, we present the set of experiments carried out to test our approach and analyze its performance. Finally, in
Section 7, we draw our conclusions and have a look at possible future developments of our research efforts.

2. Related works

Since the IoT environment is widely distributed and dependable on user-sensitive data, the concept of trust management is
becoming a crucial prerequisite for the design of new applications in this field [14]. In scientific literature, different trust definitions
have been settled but, speaking about IoT devices, the research community agrees to define trust as the probability that the intended
behavior of a thing and its actual behavior are equivalent, given fixed context, environment, and time [13].

In the last years, different approaches for trust management of IoT object-to-object communications have been provided.
Typically, the mechanism through which a node can check the current state of a potentially compromised remote device, before
interacting with it, is referred to as remote attestation. This security service is implemented by [22], where a Multiple-Tier Remote
Attestation protocol, called MTRA, is presented. In particular, this framework provides two methods to monitor IoT devices on
the basis of their characteristics. Specifically, less smart devices are verified through a lighter software-based attestation algorithm,
whereas more powerful ones are monitored by means of trusted hardware called Trusted Platform Module (TPM). Another scheme in
this context, providing enhanced functionalities is proposed in [23], where the authors describe a many-to-one attestation approach
for device swarms. Through some redundancy, this solution reduces the possibility of a single point of failure typical of architectures
in which a verifier node has to assess the reliability of more IoT devices.

Possible strategies to empower objects with a means to trust peers in their network are provided by cryptographic techniques [24,
25]. Nevertheless, in an IoT scenario, key management represents an issue due to resource-constrained devices and a lack of a unique
standard. Moreover, besides the fact that these approaches are computationally demanding, they are also not robust against internal
malicious nodes having valid cryptographic keys. Finally, another weakness is that they usually rely on an external level for the
computation of the node trust score.

Still in this context, some approaches aim at facing threats to reputation models, such as bad-mouthing and slandering
attacks [26,27]. For instance, in [26] the authors show a trust mechanism with a consensus-based false information filtering
algorithm (TM-CFIFA) to defend a wireless sensor network against bad-mouthing attacks and false-praise attacks. Whereas the
authors of [27] employ trust evaluation components based on success ratio and node misbehavior to unmask possible attacks,
such as on-off attacks and bad-mouthing attacks. Observe that although our approach shares some similarities with those providing
countermeasures to attacks against the trust and reputation model, actually the objective of our proposal is quite different. Indeed, we
aim to propose a fully distributing strategy for collaborative anomaly detection in IoT. This last task is obtained through behavioral
3

fingerprinting models, whereas the distributed nature is supported by a secure consensus-based mechanism leveraging an underlying
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reputation model. In Sections 4.2 and 5.5 we show that our solution is resistant to attacks menacing the security of the reputation
model (such as bad-mouthing or collusion attacks) and that our strategy can also be used to isolate nodes carrying out them.

A wide group of works focuses on the issue of IoT device identification and authentication to assess reliability, such as the
trategies presented in [28,29]. They start from the consideration that network identifiers like IP addresses, MAC addresses, ports
umbers, etc. have been used for identifying devices, but they can be spoofed easily.

Hence, some of them explore the concept of device fingerprinting as a way to identify an object not through its classical network
IDs, but exploiting the information contained in the communication packets exchanged over the network. In particular, the work
presented in [16] analyzes a sequence of packets from high-level network traffic to extract a set of unique flow-based features.
From these features, a fingerprint for each device is created through machine learning techniques. In the same context, the authors
of [30] exploit the potentialities of deep learning approaches to compute a set of features useful to provide a device fingerprint.
Whereas, in [31] a framework called IoT Sentinel is described. This schema is able to automatically provide an anomaly detection
task, identifying vulnerable devices being connected to an IoT network and enforcing mitigation measures for them. In this way, it
can minimize damage resulting from their forgery. Also, the proposal presented in [17] presents an IoT device identification method
that models the behavior of the network packets exchanged during communication by the objects. Some of these approaches are
based on timing analysis and are designed to fingerprint specific devices that exhibit a certain behavior, e.g., probe scans for an
access point.

A step forward in this context is carried out by some approaches dealing with behavioral fingerprinting. This type of technique
focuses on more application-level features to model objects’ traits, instead of relying only on the physical and link layers, as done by
models using device fingerprints. Among these characteristics there are: protocols, request–response sequences, and any periodicity
in the specific typology of packets along with their sizes [19]. In particular, in [32], the authors describe a distributed solution
for behavioral fingerprinting in IoT exploiting a decentralized approach. They identify some network nodes, called gateways, that
can monitor objects using trained classification models, thus assuring a more scalable solution. Some controller nodes, instead, are
in charge of performing the training of the models. The feature vector identified contains 111 dimensions. Instead, the approach
roposed in [29] is related to object reliability in a Multiple Internet of Things (MIoT), defining, only theoretically, the concept of
bject profile. Like our approach also this scheme is based on a consensus mechanism, but the main difference is that the reliability
core is simply proportional to: (i) the fraction of successful transactions performed by the instances, and (ii) the reliability of the
orresponding objects.

As stated in the Introduction, our work starts from the considerations analyzed in [18] where a framework called H2O (Human
o Object) is presented. Also, nodes belonging to H2O are equipped with a mechanism to estimate the reliability of their contacts,
ut there are substantial differences with respect to our approach, that are worth to be detailed in the following.

The first improvement deals with the behavioral fingerprinting technique, allowing an object to assess if another one (which it
sually interacts with) has been hacked or corrupted. In H2O, it leverages state-of-the-art approaches, whereas, in the present paper,
e implement a custom model. This new model, through some technical improvements and the use of a Tiny Machine Learning
pproach, makes our solution suitable for devices with limited capabilities with only a maximum variation of 1% of the accuracy
ith respect to the state-of-the-art solutions (see Sections 3.3 and 5 for all the details).

Moreover, in H2O, a node can attest to the reliability of another peer if multiple confirmations of the peer trust score from
eighbors exist (i.e., neighbors hold a fingerprint model of the peer) and if the mean of these scores is higher than a given threshold.
n the present algorithm, instead, we improve the computation of the reliability score using Blockchain technology. Indeed, as
n additional functionality, our approach also estimates the quality of the contributions of each node involved in the reliability
stimation, to make our algorithm more robust to malicious false negative scores. This value affects the reliability score provided
y that node and, to be globally accessible, it is stored in a Blockchain.

Another functionality provided by this paper is the design of a strategy for secure delegation to allow less capable devices
o participate and benefit from the approach. This algorithm is community-oriented and privacy-preserving, instead in the H2O
ramework this possibility is only mentioned without developing a detailed implementation.

As for the work presented in [19], it illustrates an enhanced behavioral fingerprinting models, which considers also features
erived from the analysis of packet payloads (for instance, different types of devices and their traffic characteristics). In our scenario,
e are considering a more general IoT context in which also legacy devices are available. Therefore, starting from the two solutions
bove, we tried to lighten the architecture as much as possible, so that it could also be used by devices characterized by medium-
o-low computational power and limited functionalities. Moreover, we reduce to the minimum possible complexity of the machine
earning model in such a way as to directly involve the maximum possible number of nodes (see Section 3.3 for more details).

Another new and promising technology for establishing trust in IoT networks in a distributed way is Blockchain. Indeed, different
roposals have been recently developed in order to provide forms of trust or authentication in an IoT network through this new
echnology. In particular, the work presented in [33] deals with an Obligation Chain containing obligations generated by a number
f nodes, called Service Consumers. These transactions are first locally accepted by Service Providers and, then, shared with the rest
f the network. This kind of framework is based on the concept of Islands of Trust, defined as the portion of the IoT network where
rust is managed by both a full local PKI (Public Key Infrastructure) and a Certification Authority. Also, the approach in [34] relies on
ecure virtual zones (called bubbles) where things can identify and trust each other. These bubbles are obtained through Blockchain
echnology. Although Blockchain provides decentralized security and privacy, it has some drawbacks in terms of delay, energy, and
omputational overhead generated, that are not always suitable for most limited IoT devices. Both the works presented [2,35] try
o overcome these limitations by proposing a light architecture for improving the end-to-end trust. The proposal presented in [35]
4
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Table 1
Comparison of our approach with related ones.

Approach Approach type Trust Reputation Lightweight Secure
scheme delegation

Our approach Fingerprint, Consensus, Delegation x x x x
[18,29] Fingerprint, Consensus x x – –
[22,23] Remote Attestation x – – –
[24,25,38] Cryptographic x – – –
[16,17,28,30,31] Fingerprint x – – –
[33–35] Blockchain x x x –
[36] Social network x x – –

nodes, (ii) the reputation of the sensor node, and (iii) the observation confidence. If the neighboring sensor nodes are associated
with different gateway nodes, then, the gateway nodes may share the evidence with their neighboring gateway nodes to calculate
the observation trust values. This architecture is not fully distributed and secure delegation is not performed, indeed, more powerful
nodes are used as a gateway. Whereas the work presented in [2] proposes a two-tier Blockchain framework to increase the security
and autonomy of smart objects in the IoT by implementing a trust-based protection mechanism. This work deals with the concept of
communities of objects and relies on a first-tier Blockchain that is used only to record probing transactions performed to evaluate the
trust of an object in another one of the same community or of a different community. Periodically, these transactions are aggregated
and the obtained values are stored in the second-tier Blockchain to be globally accessed by all the communities. In our approach,
Blockchain is solely used to keep track of the evaluation of the behavior of objects for the anomaly detection task and to identify
the best peers to contact to enable the aforementioned collaborative approach.

A different perspective to build a trust and reputation scheme is taken by [36], in which the authors investigate the trustwor-
thiness management in a Social Internet of Things (SIot, hereafter). An SIoT, first introduced by [37], models device interaction
as social ties, allowing an object to crawl the network to find other (possibly heterogeneous) objects in an autonomous way and
establish friendship relationships. In [36] the authors combine a subjective model and an objective one. In the former, each node
computes the trustworthiness of its neighbors on the basis of its own experience and on the opinion of the friends in common with it.
In the latter, the information about each node is distributed and stored in a distributed hash table structure, so that this information
is accessible by all the nodes in the network.

In Table 1, we summarize the comparison with all the works introduced above based on the different functionalities provided
by our approach, namely:

• Trust. A functionality that allows nodes in the network to assign a trust score to another node according to its behavior.
• Reputation. A functionality that allows a node in the network to compute a reliability score according to its neighbors’ opinion

about another node, even if they have not been in contact before.
• Light Fingerprinting. A functionality that allows the computation of behavioral fingerprinting for a node suitable for an IoT

scenario, in which nodes have limited capabilities.
• Secure Delegation. A functionality according to which some computation can be entrusted to more capable devices in a

privacy-preserving way.

In this table, with the letter ‘x’ we denote that the corresponding property is provided by the cited paper.

3. Description of our approach

3.1. General overview

In this section, we present a general overview of our approach. As stated in the Introduction, our proposal focuses on the
definition of a fully distributed trust model for IoT using behavioral fingerprinting. Behavioral fingerprinting is a technique largely
investigated in the scientific literature (see Section 2) to model the expected and typical conduct of an online device (typically, an
IoT object) when interacting with other entities in the observed ecosystem. In traditional behavioral fingerprinting schemes, the
modeling is usually performed by a centralized super-entity that can monitor and supervise objects’ interactions (e.g., a network
hub, an access point, or a base station) [21]. However, with explicit reference to the most recent trend of IoT, in which objects are
more and more autonomous and, hence, equipped with higher computational capacities, our approach defines a solution for fully
distributed behavioral fingerprinting that can, hence, be used as an input to a general IoT trust model.

According to the recent scientific literature, behavioral fingerprinting can be built by training a deep learning model on
the information derived by the observed object (from which the fingerprint must be derived) and its communications. From a
computational point of view, we can distinguish between two phases: (i) the training phase, and (ii) the inference phase. The
former represents the most computationally expensive one and, depending on the amount of available data and the complexity of
the involved model, it may require the exploitation of medium to high computationally capable devices. The inference phase, instead,
is still a computationally demanding task but has far less impact when compared to the training phase. In general, it requires low
to medium computationally capable devices also considering that optimizations can be applied during the training phase to obtain
5

lighter models for the inference [39]. It is worth noticing that, in a modern IoT scenario, we can identify three categories of objects:
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Fig. 1. The general architecture of our solution.

• Basic Device (BD, for short): low-power device with limited computational power.
• Capable Device (CD, for short): devices with sufficient computational power, but for which the training phase of the machine

learning model would require too much time, or would negatively impact on battery consumption and therefore a conservative
use of resources is preferable.

• Powerful Device (PD, for short): devices with high computational power and stability sufficient to both train and run machine
learning models.

In general, a modern IoT is composed of a constellation of heterogeneous devices belonging to the three categories above.
Therefore, for starters, to develop a fully distributed behavioral fingerprinting approach it is necessary to suitably orchestrate a
collaboration mechanism to involve all the nodes in the solution. Moreover, as stated above, the goal of our approach is to design
a fully distributed trust model of IoT leveraging behavioral fingerprinting as a fundamental component of an anomaly detection
strategy. Therefore, information about the trustworthiness of an object in the network requires both the construction of behavioral
models representing its expected conduct and suitable monitoring activities to detect possible variations in it. By leveraging a
collaborative and community-based point of view, as already done by several works in the scientific literature [2,18,40,41], in
our approach we enforce that more objects can learn models to represent the expected behavior of a target one and that they can
collaborate to monitoring its future conduct by signaling an anomaly in case of an unexpected and impacting variation. Also, the
training and inference phases can be obtained through a privacy-preserving collaborative delegation approach in which PD and CD
devices cooperate and provide support to BD ones to implement the solution.

To favor interactions at a global IoT level, our approach leverages a Blockchain-based solution to support the development of
the distributed trust model. In particular, a Blockchain is used to both keep track of the evaluation of the behavior of objects for
the anomaly detection task and to identify the best peers to contact to enable the aforementioned collaborative approach.

In practice, our solution is composed of three main components, namely: (i) a distributed behavioral fingerprinting strategy; (ii)
a community-oriented secure delegation; (ii) a distributed consensus mechanism to estimate object reliability.

A general architecture of our solution is reported in Fig. 1.

3.2. The proposed model

In this section, we introduce the model adopted to represent the main components and concepts exploited in our solution.
In particular, as explained above, we are considering a scenario characterized by the presence of different types of devices.
In our model, we consider the following concepts:

• the IoT node;
• the IoT interaction;
• the fingerprinting model;
• the Blockchain.

In the following, we formally define the above concepts. For the sake of clarity, in Table 2, we report all the symbols adopted
in our model.
6
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Table 2
Summary of the symbols used in our model.

Symbol Description

𝐷 The set of devices of the network
𝐵𝐷 The set of basic devices, a subset of 𝐷
𝐶𝐷 The set of limited devices that have sufficient computation power, a

subset of 𝐷
𝑃𝐷 The set of powerful devices that can train machine learning models,

a subset of 𝐷
𝑑𝑥 A device that is part of 𝐷
𝑝𝑖 A packet sent in the network
𝑠𝑡
⟨𝑑𝑥 ,𝑑𝑦⟩

The 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 of packets between two devices, 𝑑𝑥 and 𝑑𝑦
𝐶
⟨𝑑𝑥 ,𝑑𝑦⟩ The set of 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 between 𝑑𝑥 and 𝑑𝑦 in 𝐷

𝑓𝑑𝑥 ,𝑑𝑦 Fingerprint model of the device 𝑑𝑦 built by the device 𝑑𝑥
in relation to the 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 𝐶

⟨𝑑𝑥 ,𝑑𝑦⟩

The IoT node. IoT nodes are the main actors of our system and are associated with a profile including all the information to enable
interaction with other nodes (also referred to as devices or objects). The considered profile consists of an IoT identifier and a
Blockchain account. Moreover, a node includes all the information necessary to enable communication with other nodes (such as
the MAC address, the IP address, and so forth). A device 𝑑𝑥 can belong to one of the categories described in Section 3. Therefore,
we can identify the following sets:

• 𝐵𝐷: the set of basic, low-power devices.
• 𝐶𝐷: the set of limited devices that have sufficient computation power for the inference, i.e., to use a trained machine learning

model, but with limitations (e.g., battery constraints or power stability) preventing them from performing a full training.
• 𝑃𝐷: the set of powerful devices that can train machine learning models.

More formally, we can define the set of devices of the IoT network 𝐷 as:

𝐷 = {𝑑𝑥|𝑑𝑥 ∈ 𝐵𝐷 ∪ 𝐶𝐷 ∪ 𝑃𝐷}

The IoT interaction. An IoT interaction represents any data exchange between a pair of devices. In particular, an IoT interaction is
established whenever a generic device, 𝑑𝑥, sends a packet, 𝑝𝑘, to another device, 𝑑𝑦.

Subsequently, we define an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 at the time 𝑡, as a consecutive packet exchange from 𝑑𝑥 to 𝑑𝑦 established with a
first packet 𝑝1 sent at the time 𝑡, such that the inter-arrival time between the packages is lower than a threshold 𝜏.

𝑖𝑠𝑡
⟨𝑑𝑥 ,𝑑𝑦⟩

= {𝑝1, 𝑝2,… , 𝑝𝑛}

In our representation, we preserve the direction of an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, meaning that 𝑖𝑠𝑡
⟨𝑑𝑥 ,𝑑𝑦⟩

≠ 𝑖𝑠𝑡
⟨𝑑𝑦 ,𝑑𝑥⟩

Finally, we can define the following:

efinition 3.1. Given two IoT nodes, say 𝑑𝑥 and 𝑑𝑦, and their interaction_sequence, say 𝑖𝑠𝑡
⟨𝑑𝑥 ,𝑑𝑦⟩

, we can define a 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡
as the set composed of all the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠, performed at any time 𝑡, between 𝑑𝑥 and 𝑑𝑦.

𝐶
⟨𝑑𝑥 ,𝑑𝑦⟩ = {𝑖𝑠𝑡

⟨𝑑𝑥 ,𝑑𝑦⟩
∀ 𝑡}

he fingerprint model. A behavioral fingerprint models how the conduct of a device 𝑑𝑦 is perceived by another device 𝑑𝑥. Specifically,
e introduce the following definition:

efinition 3.2. Given a pair of IoT nodes, say 𝑑𝑥 and 𝑑𝑦, and their 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡, say 𝐶
⟨𝑑𝑥 ,𝑑𝑦⟩, a behavioral fingerprint is a

achine learning model 𝐌𝐋 built by using the 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 between 𝑑𝑥 and 𝑑𝑦 and aiming at fitting the typical conduct of 𝑑𝑦:

𝑓𝑑𝑥 ,𝑑𝑦 = 𝐌𝐋(𝐶
⟨𝑑𝑥 ,𝑑𝑦⟩)

The rationale beyond this definition is that by learning the ‘‘original’’ interaction style (i.e., the way a node sends packets to
nother one, as described by a suitable set of features, in the absence of anomalies), it could be possible to detect any anomalous
ehavior by analyzing possible variations in such a style.

.2.1. The blockchain
It is the shared ledger used to record information about trust relationships among the IoT nodes. Our solution leverages a

ombination of behavioral fingerprinting and a community-oriented secure delegation strategy to enable safe interaction in IoT.
or this reason, we will introduce a trust model (see Section 3.4) based on a consensus mechanism, to estimate the reliability of a
ode. In this solution, the Blockchain is used to securely store all the information needed to build the consensus mechanism and to
race the evolution of trust scores among nodes.

Although it is orthogonal to our approach, several proposals exist to create Blockchain solutions for IoT [42–45]; the only
equirement in our solution is the explicit support to smart contracts.
7
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Table 3
Example of symbol mapping.

Source port type Packet length TCP flag Protocol type IAT Payload value Payload value shift Symbol

2 4 2 6 0 – – 0
2 0 16 6 0 – – 1
2 6 24 6 0 0 1 2
2 0 17 6 0 – – 3
2 5 0 17 0 – – 4

3.3. Distributed behavioral fingerprinting

This section is devoted to the description of the adopted strategy for behavioral fingerprinting. Our solution starts from the
esults described in [19] and extends the proposed strategy by improving the underlying deep learning model making it lighter, also
hrough a tiny machine learning approach [46], and more suitable for an IoT scenario. The approach described in [19] considers
oth network parameters, as done also in [21,47,48], and introduces important new features related to the packet payload. The
nalysis of payload-based features is fundamental to making the behavioral fingerprint model robust also against attacks directly
argeted at the surrounding Cyber–Physical System. In this case, the objective of the attacker is to leave the general interaction
ehavior of the victim object unaltered and to modify only the content of the exchanged control packages to force the other entities
n the system to adopt specific countermeasures [49].

In particular, the approach of [19] starts from the results of [21] and considers the same set of networking-related features
irectly extracted from interaction packets among IoT devices. Moreover, it adds two important features related to the packets’
ayload. After that, an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, say 𝑖𝑠𝑡

⟨𝑑𝑥 ,𝑑𝑦⟩
, is converted into a corresponding sequence of symbols, say 𝑠𝑠𝑡

⟨𝑑𝑥 ,𝑑𝑦⟩
=

{𝑠1, 𝑠2,… , 𝑠𝑛}, obtained on the basis of the value of the aforementioned features for each packet. The considered features list is as
follows.

• Source Port Type. The possible values are user, system, or dynamic. This feature can be converted by mapping its values to
the numbers 0, 1, and 2.

• TCP Flags. For this feature, the original numerical values for the considered packet are preserved.
• Encapsulated protocol types. Also, in this case, we can use the original numerical values already available in each packet.
• Interval Arrival Time (IAT). This feature represents the time elapsed between two consecutive packets in an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒
𝑛𝑐𝑒. Therefore, given an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, we applied a binning transformation based on the distribution of the IAT values
of the involved packets and we considered 3 indexed equal-width quantiles. In this way, each IAT value is converted into the
index of the corresponding quantile.

• Packet Length. The engineering of this feature considers the length of all the packets involved in an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and
computes the corresponding frequency distribution. At this point, the first 9 most frequent values can be mapped into 9 bins
and all the other (less frequent) values can be mapped to a single final bin.

• Payload Value. This feature depends on the specific type of payload included in a packet. In particular, two macro-categories
of payload can be considered, namely: categorical, and numerical. As for the former, the categorical payload values can be
mapped to a corresponding number ranging in the interval [0, 𝑛], where 𝑛 is the number of the possible distinct categorical
values for the payload. Concerning the latter, a binning-based strategy can be applied. In particular, continuous payload values
can be mapped to 3 bins. The bins are identified based on the traffic generated during a controlled ‘‘safe’’ period (see Section 4
for the details). Specifically, all the payload values produced in this ‘‘safe’’ period can be mapped to a central bin. At this point,
all the values lower than the lower bound of such a central bin will be assigned to the first bin, and all the values higher than
the upper bound of the central bin will be assigned to the last bin.

• Payload Value Shift. This feature encodes the information related to the ‘‘variation’’ in the payload values for consecutive
packets. In particular, it is equal to the absolute difference between the current payload value for a packet and the payload
value of the preceding packet in an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.

A symbol, say 𝑠𝑖, is univocally associated with a combination of feature values. Packets with the same values of the involved
eatures will be associated with the same symbol. An example of this mapping is reported in Table 3.

At this point, a behavioral fingerprint solution can be seen as a machine learning model trained to predict the next possible and
dmissible symbol in an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. The ratio underlying this definition is that practically speaking, learning the behavior
f an IoT node implies being able to decide in advance the next most probable action that it will carry out.

For our solution, we started from the results described in [21] and in [19], in which the features based on the payload are tested.
n both these works, the behavioral fingerprint model has been built as a Gated Recurrent Unit (GRU, hereafter) neural network
omposed of 3 neurons and a dense output layer. The size of the output layer is tailored on a specific 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡, i.e., all
he 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 between two IoT nodes; indeed it depends on the actual number of distinct symbols present in the overall
𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡. The experiments performed in [21] proved that this approach can reach very satisfactory results by considering a
equence of 20 symbols to be able to predict the next one. Similarly, the approach of [19], in spite of the addition of payload-related
8

eatures, obtained important results using again a window of 20 symbols with a light training (less than 10 epochs with a training
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set of about 5K samples) to obtain an accuracy higher than 80%. Both the above approaches assume the presence of a ‘‘safe’’ period
n which no IoT device is corrupted. This is a fundamental requirement to train the behavior fingerprint model.

In our scenario, we are considering a more general IoT context in which also legacy devices are available (i.e., devices with
edium to low computational capability). To successfully apply such a solution to our context, it is fundamental to reduce to the
inimum possible the complexity of the machine learning model in such a way as to directly involve the maximum possible number

f nodes. Therefore, starting from the two solutions above, we tried to lighten the architecture as much as possible so that it could
lso be used by devices characterized by medium-to-low computational power. In particular, the solution described in [21] estimates
he probability of the next packet; in our case, we reduced the problem to a classification task and we just focused on the prediction
f the presence or absence of a packet as the next element of an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. The presented neural network is again a

GRU network in which we lighten up the model by cutting two of the three GRU layers and shortening the sequence of symbols
required as input from 20 to 10. Interestingly, this design modification allows the achievement of pretty satisfactory performance
with variations with respect to the state-of-the-art solutions of 1% accuracy at maximum (see Section 5 for all the details). Moreover,
motivated by the recent introduction of Tiny Machine Learning approaches [50], we proceeded by converting our model into a tiny
one using the TensorFlow Lite library [51] passing from a model requiring 1.6 MB to be stored to a model requiring only 415 KB.
All the experiments devoted to proving the quality of the obtained results, as well as the study on the execution time for different
device types, are reported in Section 5.

Finally, as demonstrated again in [19,21], behavioral fingerprint models can be leveraged for anomaly detection in IoT. Indeed,
given an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and a sliding window, said 𝑆𝑊 , of the last 𝑘 consecutive packets, the anomaly detection strategy
onsists of the use of the fingerprint model to predict the expected packets and to compare these results with the actual content of
𝑊 . We define the misprediction rated 𝑚_𝑟 as the number of mispredictions over the total number of packets inside a window. An
nomaly is reported if the number of mispredictions observed in 𝑆𝑊 is higher than a fixed threshold (typically set to 50% of the
ackets in the sliding window).

.4. Distributed consensus mechanism to estimate object reliability

This section is devoted to describing our reliability model and the underlying distributed consensus mechanism. In particular, as
lready stated above, one of the objectives of our solution is to provide IoT devices with a strategy to evaluate whether to instantiate
new connection with another object based on its current behavior. Due to the fully distributed nature of our approach, this solution

everages an ad-hoc consensus mechanism based on the concept of word-of-mouth among devices.
Consider a scenario in which a source device 𝑑𝑠 may want to establish a new connection with an unknown target device 𝑑𝑥. Our

echanism allows 𝑑𝑠 to obtain information about the behavior of 𝑑𝑥 from the community of nodes belonging to its neighborhood.
o do so, our approach is based on the concept of evaluation paths that can be formally defined as follows:

efinition 3.3. Let 𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) = ⟨𝑑𝑦, 𝑑𝑤,… , 𝑑𝑒⟩ be an acyclic sequence of IoT nodes that must be contacted to reach an evaluator,
ay 𝑑𝑒, which owns a behavioral fingerprinting model of 𝑑𝑥. Let 𝐸𝑑𝑥 = {𝑑𝑒|𝑑𝑒 ∈ 𝐷 ∧ ∃𝑓𝑑𝑒 ,𝑑𝑥} be the set of evaluators for a target
ode 𝑑𝑥. Considering that multiple paths can exist from a source to a target node, we define the set of evaluation paths as:

𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) = {⟨𝑑𝑦, 𝑑𝑤,… , 𝑑𝑒⟩ | 𝑑𝑥, 𝑑𝑤,… , 𝑑𝑒 ∈ 𝐷 ∧ 𝑑𝑒 ∈ 𝐸𝑑𝑥}

The strategy adopted by 𝑑𝑠 to obtain information from potential evaluators of the target 𝑑𝑥 is as follows. First, it selects a
𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ value, which specifies the coverage range of the network. In particular, it indicates the maximum distance of
propagation, in terms of the number of network hops, of its request (e.g., if the maximum depth is 1 only the direct neighbors
will be contacted, if it is equal to 2 the direct neighbors will propagate this request to their neighbors, and so forth). After this,
it will send a request packet to all its neighbors specifying the desired target 𝑑𝑥. At this point, the receiving nodes will verify the
𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ value and they will decrease it by one. If this value is greater than zero, they will continue by adding their identifier
to the packet and forwarding this request to their neighbors, thus iterating this step. At each iteration, if the set of receiving nodes
will contain an evaluator a new 𝑝𝑎𝑡ℎ will be created. This concept is illustrated in the example of Fig. 2.

In this example, the source node 𝑑𝑠 asks its neighbors, nodes 𝑑𝑎, 𝑑𝑏, and 𝑑𝑐 , information about 𝑑𝑥 by specifying a 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ
of 2. During the first iteration 𝑑𝑎 and 𝑑𝑏 decrease the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ to 1 and propagate the packet to their neighbors (nodes 𝑑𝑑
and 𝑑𝑓 ). Node 𝑑𝑏, instead, owns a behavioral fingerprint model of 𝑑𝑥 and, therefore, performs two actions: (i) it replies to 𝑑𝑠, thus
reating the path ⟨𝑑𝑏⟩, (ii) it decreases the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ and propagates the packet to its neighbors (𝑑𝑓 ). At the second iteration,
odes 𝑑𝑑 and 𝑑𝑓 reply to 𝑑𝑎, 𝑑𝑏, and 𝑑𝑐 with the information about their models towards 𝑑𝑥, thus creating three paths, namely:
𝑑𝑎, 𝑑𝑑⟩, ⟨𝑑𝑏, 𝑑𝑓 ⟩, and ⟨𝑑𝑐 , 𝑑𝑓 ⟩. At this point, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ is equal to zero and no further propagation of the original request is
erformed.

To inhibit any attacker from forging fake paths, all the nodes involved will add a verifiable nonce that is univocally linked to
hem. To do so, we identify a solution adopting a trap-door function. In particular, when joining our system each node computes a
ash-chain of size 𝑞 starting from a secret 𝑠𝑒𝑒𝑑 through a cryptographic hash function 𝑐ℎ𝑓 . The last value of the chain, 𝑐ℎ𝑓 𝑞(𝑠𝑒𝑒𝑑),
s hence made publicly available to all the other nodes (through the underlying Blockchain, see all the details below). Every time

node is involved in a new path, it will add the next (in reverse order) element of this chain. Of course, the property of the
ash-chaining implies that 𝑐ℎ𝑓 (𝑐ℎ𝑓 𝑞−1(𝑠𝑒𝑒𝑑)) = 𝑐ℎ𝑓 𝑞(𝑠𝑒𝑒𝑑) for every 𝑞, thus providing a verification of the validity of the identifier.
s a final step, as will be clearer later, the value 𝑐ℎ𝑓 𝑞−1(𝑠𝑒𝑒𝑑) will be made publicly available to all the nodes through the underlying
lockchain, once used in a path.

At this point, given a path 𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) ∈ 𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥), the evaluator will reply with the estimation of the trust score of the target
btained through its behavioral model. In our case, a trust score can be defined as follows.
9
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Fig. 2. An example of e_paths identification in our scenario.

Definition 3.4. Given the average misprediction rate during the most 𝑘 recent 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠, say 𝑚_𝑟, we define the trust
score 𝜏𝑝𝑡ℎ𝑖 as the complement of the average misprediction rate obtained by the model during the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 between the
evaluator and the target node:

𝜏𝑝𝑡ℎ𝑖 = 1 − 𝑚_𝑟

As shown in the example above, multiple paths can be identified from a source to a target. Each path will end with a behavioral
model capable of measuring a trust score for the target. However, different conditions, such as the obsolescence of a model, a change
in the state of the target, and faults in the evaluator node, could lead to wrong estimations of such a score. To reduce the impact of
such anomalies, our approach adopts a consensus mechanism based on the majority of voters. In particular, we impose that, in order
to properly estimate the trustworthiness of a node, at least 𝑐 + 1 paths have to return values in agreement. In our case, we consider
in agreement two scores, say 𝑠1 and 𝑠2, such that |𝑠1−𝑠2| ≤ 𝑡𝑜𝑙; where 𝑡𝑜𝑙 is a suitable tolerance threshold. It is worth observing that,
as will be clearer in our Security Analysis (Section 4), given a neighbor inside the considered IoT, 𝑐 is identified as the maximum
theoretical number of paths that an attacker can control in such a specific neighbor. We call the set of paths returning values in
agreement as consensus set 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥). Let 𝑇𝑑𝑠 ,𝑑𝑥 be the average of all the trust scores of the 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), this value, also referred to as
trustworthiness value in the following, can be used by 𝑑𝑠 to decide whether to activate a communication towards 𝑑𝑥. More formally,
we can give the following definition of trustworthiness.

Definition 3.5. Given a consensus set 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), that is a set of paths returning values in agreement, we define a trustworthiness
value, say 𝑇𝑑𝑠 ,𝑑𝑥 , as the average of all the trust scores of the 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥).

As an additional functionality, our approach estimates the quality of the contribution of each node involved in the estimation
of 𝑇𝑑𝑠 ,𝑑𝑥 . Indeed, this average score could be used also to compute a reliability score for the participants on the different paths in
𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥). In particular, the nodes involved in paths of the 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) will receive positive feedback, whereas the members of paths
returning trust scores not in agreement with the majority set will receive negative feedback. The extent of the negative feedback
will be directly related to the bias between the returned trust score and average score 𝑇𝑑𝑠 ,𝑑𝑥 . Our solution is designed so that positive
feedback can balance a negative one, therefore if a node is involved in two paths, one belonging to the 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) and the other with
a bias in the trust score with respect to the average, then its reliability will not have a too negative impact. The ratio underlying this
choice is related to the following reasoning. A non-attacker node can be involved in paths in which there exists also an attacker and,
therefore, could receive negative feedback; however, the same node will probably be involved also in paths belonging to 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥).
An attacker, on the other hand, will mostly be involved in paths with bias in the trust scores, possibly caused by its actions. In this
way, while the balance mechanism will prevent the reliability of honest nodes from going down, this effect should not happen for
attackers. At this point, we can give the following definitions:

Definition 3.6. Given a consensus set 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) and the set of paths 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) = 𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) ∖ 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) with trust scores not in
agreement with it, we define 𝛤 (𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), 𝑑𝑦) (resp. 𝛤 (𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), 𝑑𝑦)) as a function returning the paths of 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥) (resp. 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥))
involving the node 𝑑𝑦:

𝛤 (𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), 𝑑𝑦) = {𝑝𝑡ℎ𝑖|𝑑𝑦 ∈ 𝑝𝑡ℎ𝑖 ∧ 𝑝𝑡ℎ𝑖 ∈ 𝐶_𝑆(𝑑𝑠 ,𝑑𝑥)}

At this point, the variation of the reliability for a node can be estimated as shown in Eq. (1).

𝛥_𝑅𝐿𝑑𝑦 =
∑

𝑝𝑡ℎ𝑖∈𝛤 (𝐶_𝑆(𝑑𝑠,𝑑𝑥 ) ,𝑑𝑦)

-|𝜏𝑝𝑡ℎ𝑖 − 𝑇(𝑑𝑠 ,𝑑𝑥)| + 𝛾 ⋅ |𝛤 (𝐶_𝑆(𝑑𝑠 ,𝑑𝑥), 𝑑𝑦)| (1)

Here, 𝛾 is a parameter used to tune the impact of a positive contribution with respect to a negative one. In our scenario, all the
nodes involved will start with a default reliability value, say 𝑟. Given a node 𝑑𝑦, its reliability value will be decreased of the value
𝛥_𝑅𝐿 , if 𝛥_𝑅𝐿 is less than zero; no updates at its reliability will be done, otherwise.
10
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Actually, as described in Section 3.2, our approach leverages a Blockchain-based solution to trace, in a fully distributed fashion,
he evolution of the behavior of objects when interacting with each other. In our application scenario, we consider a managed
lockchain supporting smart contracts. Our solution is based on a smart contract, say 𝑆𝑀 deployed on the Blockchain, which

gathers transactions from IoT nodes. In the solution above, once the paths have been identified and the source node has received
all the trust scores, it creates a transaction towards the Blockchain reporting information about all the paths, the identifier, and
the verifiable nonce of the involved nodes and the corresponding trust scores. At this point, 𝑆𝑀 will be executed to perform the
following tasks:

1. verify the nonce for each involved node1;
2. identify the consensus set, if it exists;
3. compute the average trust score;
4. compute 𝛥_𝑅𝐿 for each node;
5. update reliability values for the nodes with 𝛥_𝑅𝐿 < 0;
6. publish a transaction reporting the results of the previous steps.2

The information available in the Blockchain through 𝑆𝑀 is, then, used by IoT nodes to identify corrupted nodes that should not
be involved in the next interactions. In particular, we assume that all the nodes with a reliability lower than a control threshold 𝑐𝑡ℎ
will not be engaged in future actions.

Algorithm 1 summarizes the steps of our consensus mechanism for the object reliability assessment. Observe that evalPaths is a
recursive function used to compute all the 𝑒_𝑝𝑎𝑡ℎ𝑠 between the source and target node in the network.
Algorithm 1: Consensus mechanism for object reliability
Data: 𝑑𝑠, 𝑑𝑥, 𝑑𝑒 ; /* source, target and evaluator node */
𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) ← ⟨𝑑𝑦, 𝑑𝑤,⋯ , 𝑑𝑒⟩ ; /* path towards 𝑑𝑒 */

𝑑𝑥 ← {𝑑𝑒|𝑑𝑒 ∈ 𝐷 ∧ ∃𝑓𝑑𝑒 ,𝑑𝑥} ; /* set of evaluators for 𝑑𝑥 */
_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) ← {⟨𝑑𝑦, 𝑑𝑤,⋯ , 𝑑𝑒⟩ | 𝑑𝑥, 𝑑𝑤,⋯ , 𝑑𝑒 ∈ 𝐷 ∧ 𝑑𝑒 ∈ 𝐸𝑑𝑥} ; /* evaluation paths */
esult: 𝑇𝑑𝑠 ,𝑑𝑥 ← 𝑑𝑥 reliability
valPaths(𝑑𝑠, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ, 𝑑𝑥) is

𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) ← 𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) + 𝑑𝑖;
𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ ← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ − 1;
if 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ ← 0 ∨ 𝑑𝑠 ∈ 𝐸𝑑𝑥 then

return 𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) ;
else

while 𝑑𝑖 ∈ 𝑁𝑒𝑖𝑔ℎ𝑠 do
𝑑𝑠 sends a request to 𝑑𝑖 for 𝑑𝑥;
𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) ← 𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) + 𝑒𝑣𝑎𝑙𝑃𝑎𝑡ℎ𝑠(𝑑𝑖, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ, 𝑑𝑥);

end
end

end
𝑑𝑠 selects 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ > 0;
𝑑𝑠 computes 𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) ← 𝑒𝑣𝑎𝑙𝑃𝑎𝑡ℎ𝑠(𝑑𝑠, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑑𝑒𝑝𝑡ℎ, 𝑑𝑥);
while 𝑝𝑡ℎ𝑖(𝑑𝑠 ,𝑑𝑥) ∈ 𝑒_𝑝𝑎𝑡ℎ𝑠(𝑑𝑠 ,𝑑𝑥) do

𝑑𝑠 requests to 𝑑𝑒: 𝜏𝑝𝑡ℎ𝑖 ;
nd
𝑠 creates a Blockchain transaction with all the information of nodes ∈ 𝐸𝑑𝑥 ;

3.5. Community-oriented secure delegation

As stated above, our application scenario embraces a situation in which heterogeneous devices, belonging to the three categories
escribed in Section 3.1, collaborate to build our secure interaction scheme. To achieve this objective, we also propose a secure
elegation mechanism according to which capable devices (belonging to the 𝐶𝐷 category) can delegate the training of behavioral

fingerprint models to devices of the 𝑃𝐷 category. Similarly, nodes of the 𝐵𝐷 category can again delegate powerful devices (belonging
to the 𝑃𝐷 category) to train their models and can leverage both 𝐶𝐷 and 𝑃𝐷 nodes for the model inference.

1 Observe that, a node can be involved in multiple paths. In this case, it will use different values of its inverse hash chain. 𝑆𝑀 will verify the consistency
f all the values for a single node by linking them to the previously published element of the chain.

2 The transaction will also include the last verified nonce for each involved node.
11
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In particular, our approach leverages a combination of the Blockchain solution described above and an IPFS-based [52] strategy
o exchange information about training data and the obtained models. IPFS (InterPlanetary File System) is a peer-to-peer fully
istributed file system that is typically exploited in combination with Blockchain technology to enable secure data exchange.

At this point, our secure delegation mechanism works as follows. Given a node 𝑑𝑥, the activation of a secure delegation starts
by identifying, among the neighbors of 𝑑𝑥, reliable nodes to be delegated. The delegation can concern two aspects, namely: (1) the
training of a behavioral fingerprint model; (ii) a trained model inference. As for the former, only nodes of 𝑃𝐷 can be involved.
The latter instead can be demanded to both nodes from 𝑃𝐷 and 𝐶𝐷. In any case, to identify reliable nodes, 𝑑𝑥 can leverage the
information from the smart contract 𝑆𝑀 defined in Section 3.4 to obtain, for each node in its neighborhood 𝑁𝑒𝑖𝑔ℎ𝑑𝑥 (𝑖) (at any level
𝑖), the corresponding reliability values 𝑅𝐿. At this point, 𝑑𝑥 will send a delegation request to all the nodes having a reliability higher
than the control threshold 𝑐𝑡ℎ (see Section 3.4). Depending on their current status (including battery condition, traffic overhead,
nd so forth) each neighbor will decide whether to accept the request from 𝑑𝑥 or not.

In the positive case in which at least one node, say 𝑑𝑛, accepted the delegation request, our solution will proceed with the steps
escribed below.

First, it is worth observing that, the construction of a behavioral fingerprinting model according to our scheme requires the
xploitation of sensitive information available in the data exchanged between 𝑑𝑥 and a target node in the system, for which it
ants to build the behavioral fingerprint (see Section 3.3 to have a list of the information pieces required by our solution). For

his reason, a crucial aspect to consider when enabling a delegation strategy is the privacy concern. Hence, our secure delegation
cheme includes a privacy-preserving strategy so that 𝑑𝑥 can share the required information with 𝑑𝑛, still preserving the privacy of the
riginal communication between it and the target node. To do so, as described below, we leverage the peculiarity of our behavioral
ingerprint model to work with a sequence of symbols. As seen in Section 3.3, each symbol corresponds to a specific combination of
he features extracted from the packets of an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Therefore, to preserve the privacy of the communication between
𝑥 and the target node, our secure delegation strategy enforces that such a sequence of symbols is converted into a corresponding
equence of values using a cryptographic hash function for the mapping.

ecure delegation: training a behavioral fingerprint model. The node 𝑑𝑥 collects the training data of its target and derives the
orresponding symbols using the feature engineering task described in Section 3.3. To make our solution robust to privacy issues
elated to the knowledge included in the symbols, we impose that 𝑑𝑥 applies a salt-based cryptographic hash function to each symbol,
𝑠𝑖 = 𝑐ℎ𝑓 (𝑠𝑖, 𝑠𝑎𝑙𝑡). The choice of the adopted cryptographic hash function depends on the trade-off between the need for privacy
rotection and the computational effort to obtain the hashed symbols. The hashed dataset will then be uploaded into a folder of
PFS and the reference of the address of such a folder will be sent to 𝑑𝑛. At this point, 𝑑𝑛 will proceed by training a behavioral
ingerprint model using the data from 𝑑𝑥.3 Finally, if the secure delegation concerns only the training phase, 𝑑𝑛 will upload the
rained model to IPFS and will share the position with 𝑑𝑥. Instead, if the delegation concerns also the model inference, 𝑑𝑛 could
etain the trained model in its memory to support 𝑑𝑥 during the subsequent model inference phase.

ecure delegation: model inference. Given a trained model, the node 𝑑𝑥 will gather the data (set of symbols) related to a sliding
indow, according to the approach described in Section 3.3. For each symbol 𝑠𝑖 of this sliding window, 𝑑𝑥 will compute the

orresponding hashed version using the salt-based cryptographic hash function ℎ𝑠𝑖 = 𝑐ℎ𝑓 (𝑠𝑖, 𝑠𝑎𝑙𝑡). The obtained values will be
sed as input to the trained model. At this point, two situations may occur: either 𝑑𝑥 can directly perform a model inference or
𝑥 will share this data with its delegate 𝑑𝑛. In both cases, the output will be the misprediction rate measured in the corresponding
liding window.

Fig. 3 sketches the solution described above and the use of IPFS to exchange both the training data and the trained behavioral
ingerprint model.

Algorithm 2 summarizes the steps of our community-oriented secure delegation mechanism.

. Security model

This section is devoted to the security model underlying our solution. In the next sections, we introduce both the attack model
nd the security analysis proving that our approach works also in the presence of attacks. Since the main contribution of our strategy
s the construction of a mechanism to evaluate the trustworthiness of IoT nodes, in our security analysis we consider classical attacks
n reputation systems such as those mentioned in [2,53].

.1. Attack model

Preliminary, observe that our solution in the stationary scenario considers enough nodes available to carry out the steps required
y our approach. As a consequence, we do not focus on the initial stages possibly characterized by anomalous situations in which
he IoT network is not yet active or complete.

With that said, before analyzing the security properties of our model, we outline the following starting assumptions:

3 Observe that, again for privacy reasons, the identifier of the target node of the model is not available to 𝑑 .
12
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Fig. 3. An example of our secure delegation strategy.

Algorithm 2: Secure Delegation mechanism
Data: 𝑑𝑥, 𝑑𝑡, 𝑐𝑡ℎ ; /* source node, target node, control threshold */
ℎ𝑠𝑖 ← 𝑐ℎ𝑓 (𝑠𝑖, 𝑠𝑎𝑙𝑡) ; /* salt-based cryptographic hash function for symbol 𝑠𝑖 */
Result: 𝛥_𝑅𝐿𝑑𝑡 ; /* 𝑑𝑡 misprediction rate */
𝑑𝑥 gets from the Blockchain the list of nodes 𝑁𝑒𝑖𝑔ℎ𝑑𝑥 (𝑖) ;
while 𝑑𝑛 ∈ 𝑁𝑒𝑖𝑔ℎ𝑑𝑥 (𝑖) do

if 𝑅𝐿𝑑𝑛 > 𝑐𝑡ℎ then
𝑑𝑥 sends a delegation request to 𝑑𝑛;
if 𝑑𝑛 status ← ok then

𝑑𝑛 accepts 𝑑𝑥 request;
𝑑𝑥 collects training data of 𝑑𝑡;
𝑑𝑥 applies ℎ𝑠𝑖 ← 𝑐ℎ𝑓 (𝑠𝑖, 𝑠𝑎𝑙𝑡);
if secure delegation includes only the training phase then

𝑑𝑛 trains a behavioral fingerprint model using 𝑑𝑥 data;
𝑑𝑛 uploads the trained model to IPFS;
𝑑𝑛 shares the position with 𝑑𝑥;

else
𝑑𝑛 (or 𝑑𝑥) computes 𝛥_𝑅𝐿𝑑𝑡 ;

end
end

end
end

A.1 An attacker can control at most 𝑐 paths of a set 𝑒_𝑝𝑎𝑡ℎ𝑠𝑑𝑠 ,𝑑𝑥 , between any pair of nodes, 𝑑𝑠 and 𝑑𝑥.4

A.2 There exists a safe stage in which behavioral fingerprint models can be computed in the absence of attacks.
A.3 An attacker cannot control all the behavioral fingerprint models associated with IoT nodes.
A.4 An attacker has no additional knowledge derived from any direct physical access to IoT objects (especially about the paths

linking nodes).
A.5 The Blockchain technology exploited to implement the support public ledger is compliant with the standard security

requirements already adopted for common Blockchain applications.
A.6 An attacker cannot have access to the secrets to generate the hash chains of IoT nodes.
A.7 The adopted cryptographic hash function is robust against collision, preimage, and second preimage attacks.

4 Observe that, this is a common assumption for distributed domain scenarios, in which the majority of users or nodes in a network or a system can be
considered honest at any time [54–56].
13
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As stated above, our model ensures a list of security properties (SP, in the following), which are listed below.

SP.1 Resistance to attacks to the Blockchain and the smart contract technology.
SP.2 Resistance to Self-promoting Attacks.
SP.3 Resistance to Whitewashing or Self-serving Attacks.
SP.4 Resistance to Slandering or Bad-mouthing Attacks.
SP.5 Resistance to Opportunistic Service Attacks.
SP.6 Resistance to Ballot Stuffing Attacks.
SP.7 Resistance to Denial of Service (DoS) Attacks.

4.2. Security analysis

This section is devoted to the analysis of the security properties presented above to prove that our approach can ensure them.
n the next sub-sections, we analyze each of these properties in detail.

.2.1. SP.1 — Resistance to attacks to the blockchain and the smart contract technology
This category of attacks aims at finding vulnerabilities in the Blockchain and the smart contract technology adopted in our

pproach. This technology has been the subject of studies from the research community in recent years. Anyway, the security of
lockchain is still under the spotlight and represents an open issue [57–60]. The approach presented in this paper is not devoted
o facing security challenges on Blockchain but focuses on its application as a secure public ledger to support a collaborative
ully distributed approach for secure device interactions in IoT. Therefore, we assume that the Blockchain and the smart contract
echnology can be considered secure (Assumption A.5). Our approach is, hence, orthogonal to any solution, available in the scientific

literature, to improve the security of Blockchain that can, hence, be applied in our context to guarantee our assumption.

4.2.2. SP.2 — Resistance to self-promoting attacks
In this case, an attacker controlling a node or a set of nodes could work to manipulate the reliability and trustworthiness of a

target node. This attack can be done by either a single node or through joint actions of different colluding nodes. Concerning the first
case, actually, a node cannot alter the perception that other nodes have of it, because the trustworthiness of a node is estimated
using behavioral fingerprinting. Therefore, any variation in its typical behavior would increase the misprediction of the models
associated with this node. To alter this value, the attacker should have access to the nodes holding a fingerprint model towards
the target. However, this cannot happen thanks to Assumptions A.2, A.3, and A.4. Also, the reliability cannot be altered because
t is associated with the collaborative approach described in Section 3.4. As such, the attacker should include its node always in
aths belonging to consensus sets to avoid the detriment of its reliability. However, for Assumption A.4 an attacker cannot know the
opology of the network nor force the inclusion of a node into a path due to the security mechanism leveraging the cryptographic
ash chaining strategy described in Section 3.4, which thanks to Assumptions A.6 and A.7 cannot be broken or forged.

According to the second strategy, an attacker could leverage different nodes colluding to positively change the trustworthiness
nd reliability of a node. As for the trustworthiness, once again, due to Assumptions A.2, A.3, and A.4 the attacker cannot control
ll the behavioral fingerprint models; moreover, she/he cannot forge a trustworthiness score for the target node by leveraging a
ollaborative self-promoting attack. Indeed, thanks to Assumption A.1, the attacker can only control 𝑐 paths in the set of 𝑒_𝑝𝑎𝑡ℎ𝑠
etween the target node and any other node in the system. However, the trustworthiness value of a node can only be estimated if
here exist at least 𝑐+1 paths with a trust score in agreement. Therefore, also thanks to Assumptions A.6 and A.7, this attack cannot
appen. As for the reliability, as already seen for the single node version of this attack, because the estimation of the reliability
erives from the consensus mechanism and since the attacker cannot forge paths nor control more than 𝑐 real paths in an 𝑒_𝑝𝑎𝑡ℎ𝑠
et (Assumptions A.6, A.7, and A.1), this attack cannot be carried out.

Finally, in any case, the attacker cannot alter the computed trustworthiness and reliability scores from the Blockchain thanks to
ssumption A.5 and the security property SP.1.

.2.3. SP.3 — Resistance to whitewashing or self-serving attacks
This attack concerns any attempt of a malicious node to clean its trustworthiness and reliability scores to be involved again in

he activity of the network. In our approach, trustworthiness scores are computed through the evaluation of the behavior of the
arget nodes by exploiting an existing trained fingerprint model. Therefore, also thanks to Assumption A.3, an attacked node cannot
hitewash this score as it depends on the models owned by the surrounding nodes. As for the reliability of a node when participating

n the collaborative consensus-based mechanism, the corresponding value is permanently stored in the underlying Blockchain. In
he absence of attacks, the reliability is set initially to a default positive (over the control threshold) value 𝑟, and it can only be
educed (no positive increment) if the interactions of the node during the execution of the consensus algorithm are not evaluated
ositively by the community. If the reliability of a node is under a control threshold (see Section 3.4), this node will not be involved
n the next activities by the other members of the IoT network. Depending on the security requirement of the considered scenario,
n under-threshold reliability score can stay so for a time interval of ban, say 𝑡𝑏𝑎𝑛. After that, the reliability is restored to the default
nitial value 𝑟. Of course, for critical scenarios, this value could be infinite so that the restoration of a node could be done only
14
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It is worth observing that, in IoT, one of the main problems is related to the difficulty of assessing a unique identifier for a
evice. In our case, there is a direct relationship between a device identifier and its profile on the underlying Blockchain. Of course,
n attacker could perform a whitewashing attack on a node by exiting the system and re-introducing the device with a different
forged) identifier. To face this situation, we adopt a pessimistic attitude approach, which imposes that newly introduced devices
ill be associated with a negative (under the control threshold) reliability [61–63]. Under this assumption, a new device will start in
banned state (no other node will interact with it) until its reliability is set to the default value after 𝑡𝑏𝑎𝑛. In this way, attempting a
hitewashing by forging a new identifier for a device would result again in the node being banned for 𝑡𝑏𝑎𝑛. Therefore, no advantage

s obtained by the attacker.

.2.4. SP.4 — Resistance to slandering or bad-mouthing attacks
This attack occurs when an intruder tries to distort innocent nodes’ reputations by sending negative reputation values about

hem. In this way, the attacker ruins the trustworthiness and/or the reliability of a target node to force its exclusion from the
ystem. Classically, there are a number of strategies used as security countermeasures against this kind of attack that generally
onsider: (i) nodes’ historical trust value; (ii) nodes’ current trust value and (ii) path trust value [64]. In our approach we partially
everage all of these countermeasures exploiting and combining them with the additional potentialities of our solution.

In particular, as for trustworthiness, this can only be estimated through existing trained behavioral fingerprint models.
or Assumption A.3, the attacker cannot control all the models referring to its target. Our approach is designed to use a consensus
trategy to estimate the trustworthiness of a node by leveraging all the information obtained by the possibly different trained models
escribing its behavior. When it comes to reliability, instead, this is evaluated based on the quality of the interactions of a node
uring the execution of the consensus algorithm. In this case, the adversary can attempt to execute two different strategies. Because
he overall reliability variation derived from an interaction depends on the difference between the result provided by the consensus
et and that of the paths in which a node is involved, the attacker could force a wrong estimation for a path it is also involved
n. In this way, all the nodes (including the attacker) in such a path will be negatively evaluated. Our strategy implies a balancing
echanism according to which if a node is involved in both a positive and a negative path, no negative variation is recorded for

ts reliability. Our assumption here is that a non-malicious node will be involved in different paths that cannot be all controlled
y an attacker (Assumption A.1). Of course, if a node is only linked to an attacked one, it can be considered under the control of
he attacker itself, and, hence, it should be excluded by the system. According to the second strategy, instead, the attacker could
ry to forge false paths returning results very different from any consensus set and involving the target node. In this way, she/he
ould effectively cause a detriment on the reliability of such a node. As a countermeasure, our approach includes a mechanism to
nsure the real membership of a node to a path. Indeed, when a path is formed, each involved node would add a verifiable nonce
niquely related to it. This solution is obtained through a cryptographic hash chain that each node builds when joining the system.
he first element of the (inverse) chain is stored on the Blockchain and is used to verify the correctness of the following values. At
he end of the execution of the consensus algorithm, the used elements of the chain are made publicly available on the Blockchain
see Section 3.4). Of course, this implies that no one could re-use the information of a path to perform a reply-attack because the
erifiable nonce must not be already available in the Blockchain (so that 𝑐ℎ𝑓 (𝑐ℎ𝑓 𝑞−1(𝑠𝑒𝑒𝑑)) = 𝑐ℎ𝑓 𝑞(𝑠𝑒𝑒𝑑)). This strategy, also thanks
o Assumptions A.5, A.6, and A.7 makes our approach robust against this attack.

.2.5. SP.5 — Resistance to opportunistic service attacks
A malicious node could selectively behave good or bad, opportunistically. This strategy can be carried out on both the

tandard interactions with the other nodes and on the interactions related to the consensus mechanism. As for the former aspect,
ehavioral fingerprint models can successfully detect any change in the behavior even if selective. Indeed, these models are built
nder Assumption A.2 in which no malicious behavior is present. As for the second strategy, the idea underlying it is that the
ttacker knows of the balancing effect in the computation of the reliability and tries to leverage this feature to partially attack
he network while still preserving its status. However, because our approach enforces the existence of a consensus set to evaluate
he trustworthiness of a node, thanks to Assumption A.1, no advantage can be obtained by the attacker. Of course, she/he could
electively cause the detriment of the reliability of nodes that are only linked to the attacker (and, hence, are not involved in other
onest paths). However, as stated above, if a node is reachable only through the attacker, it can be assumed under her/his control.
or this reason, the consequent isolation of such a node (due to low reliability) is actually intended in our solution.

.2.6. SP.6 — Resistance to ballot stuffing attacks
According to this typology of attack, an adversary could exploit the position of a node in the network to positively increment

he trustworthiness and/or reliability of a target (malicious) node. As for trustworthiness, the attacker would need to control
ll the behavioral fingerprint models of the target, which is forbidden by Assumption A.3. Moreover, she/he cannot control all
he paths towards the target so to selectively hide the honest models and privilege the controlled ones to obtain a consensus set
Assumption A.1). Finally, for Assumptions A.6, and A.7, she/he cannot forge artificial paths to favor the access to controlled
malicious) models. As for reliability, the attacker cannot positively increment it for a node because our approach records only
egative variations. Once under the control threshold, the reliability can be restored only after a ban period 𝑡𝑏𝑎𝑛 (see the description
or the security property SP.3). Finally, recall that reliability scores are stored on the Blockchain, which enforces that no devices
15
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4.2.7. SP.7 — Resistance to Denial of Service (DoS) attacks
Denial of Services (DoS) attacks try to bog down a system by overflooding it with a very high number of (dummy) transactions.

In our approach, this attack could also result in the impossibility of nodes to gather information about the trustworthiness and
reliability of the other nodes. Indeed, the goal of the attacker could be to prevent the identification of the consensus set to estimate
he trustworthiness of a node. Although it may represent a problem in our context, our strategy does not directly deal with this
ypology of attack. However, it is important to mention that, our approach does not add any advantage to an adversary performing
his typology of attack. For this reason, any existing strategy conceived to prevent/face DoS attacks in IoT could be included in our
pproach, such as the solutions presented in [65–68].

In IoT, DoS attacks can take the form of a Sleep Deprivation Attack (SDA, hereafter) whose objective is the power consumption
f the devices to exclude them from the system through a battery drain. As for this aspect, our approach natively supports a
ountermeasure. Indeed, when performing a DoS attack a node alters its standard behavior. Such information is detectable by
ur behavioral fingerprint models; therefore, IoT nodes can safely discard all the requests from nodes whose behavior is anomalous,
hus preventing SDA attacks from happening.

. Experiments

This section is devoted to the experiments for validating our approach. In particular, in the next sub-sections we report in
etail the performance evaluation of our solution to build a behavioral fingerprinting model, the tests to identify the best tuning
onfigurations, the experiments devoted to assessing the quality of our delegation strategy, as well as the performance of the
verall approach on different type of devices, and, finally, we show the results of our solution for the anomaly detection using
ur consensus-based algorithm.

.1. The underlying dataset

To conduct our experiments we started from the same dataset and approach of [19]. In particular, we leveraged the dataset
escribed in [69] and available at https://iotanalytics.unsw.edu.au/attack-data. The dataset is composed of two parts: the raw
acket traces, and the flow counters. The data concerns the interactions of 27 IoT nodes; among these 10 devices were also included

in attack traffic. Benign and attack traffic has been recorded for two periods, namely from May 28th 2018 to June 20th 2018, and
from October 10th 2018 to October 29th 2018. The attack traffic was properly labeled and occurred in the periods from June 1st
2018 to June 8th 2018, on June 20th 2018, and from October 20th 2018 to October 27th 2018. The information about the attacks
comprises the start and end time, the flow influenced by the attack, the type of the attack, the bit-rate of the attack, the attacker
identifier, and the victim identifier.

A limitation of this dataset in our context is related to the fact that the considered scenario concerns a centralized environment
in which a hub collected the message exchanges. Because the central hub is not the intended recipient of such messages, the collected
packet information cannot include payload data (due to the message encryption). However, payload-based features are an important
component in our approach and, therefore, we adopted the strategy proposed in [19] to alter the previous dataset and include
synthetic payload data. In particular, among all the packets available in the original dataset, the ones carrying a payload can
be identified by checking the PSH TCP flag. At this point, we used the algorithms originally proposed in [19] to generate both
quantitative and categorical payload data. Quantitative payload generation simulates devices like temperature, pressure, or humidity
sensors (Algorithm 3).

Algorithm 3: Algorithm for quantitative payload generation [19]
Data: 𝑅 = [lower bound, upper bound], 𝐻𝑂𝑃 , 𝑛
esult: 𝑃𝐿; /* PL is a list of 𝑛 payload values */
← 1;
𝐿_0 ∼ 𝑈 (𝑅);
hile 𝑖 < 𝑛 do
𝑃𝐿𝑖 ∼ U(R∩[𝑃𝐿𝑖−1 −𝐻𝑂𝑃 , 𝑃𝐿𝑖−1 +𝐻𝑂𝑃 ]);
𝑖 ← 𝑖 + 1;

In practice, this algorithm takes in input the range values in which the generated payloads should be contained (𝑅), the number
of consecutive payload values that should be generated (𝑛), and the maximum gap admitted between 2 consecutive payload values
(𝐻𝑂𝑃 ≥ 0). Hence, it generates the first payload value 𝑃𝐿0 through a uniform sampling in 𝑅. Each subsequent payload value, say
𝑃𝐿𝑖, is uniformly sampled in an interval centered around the value of the previous payload, say 𝑃𝐿𝑖−1, with a size of 2 ⋅𝐻𝑂𝑃 . The
algorithm controls the rate of variation of the generated quantitative payload values based on the 𝐻𝑂𝑃 parameter.

As for the categorical payload generation, we adopted the Algorithm 4 originally proposed, once again, in [19].
This algorithm accepts the list of categorical values (𝑅), the total number of different payloads to be generated (𝑛), and a stability

period representing the time interval in which the categorical value should not change. At this point, the algorithm extracts a
duration for a categorical value in the range defined by the stability period. After that, it randomly extracts the corresponding value
from 𝑅. This value will be contained in all the packets exchanged during a time window equal to the duration extracted above. The
stability period is used to control the oscillation frequency of the categorical payload. Some statistics about the obtained dataset are
reported in Table 4.
16
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Algorithm 4: Algorithm for categorical payload generation [19]
Data: 𝑅 = {𝑣𝑎𝑙1,… , 𝑣𝑎𝑙𝑞}, 𝑛, 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃 𝑒𝑟𝑖𝑜𝑑=[min, max]
Result: 𝑃𝐿; /* PL is a list of 𝑛 payload values */
𝑖 ← 0;
𝑃𝐿0 ∼ 𝑈 (𝑅);
while 𝑖 < 𝑛 do

𝑆𝑇𝐴𝐵 ← 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃 𝑒𝑟𝑖𝑜𝑑;
if 𝑖 + 𝑆𝑇𝐴𝐵 < 𝑛 then

𝑣𝑎𝑙 ∼ 𝑈 (𝑅);
𝑃𝐿𝑖,...,𝑖+𝑆𝑇𝐴𝐵 ← 𝑣𝑎𝑙;
𝑖 ← 𝑖 + 𝑆𝑇𝐴𝐵 + 1;

else
𝑣𝑎𝑙 ∼ 𝑈 (𝑅);
𝑃𝐿𝑖,...,𝑛 ← 𝑣𝑎𝑙;
𝑖 ← 𝑛;

Table 4
Statistics of the dataset considered in our study.

Type of communication Min # of packets Max # of packets

Benign 12,793 97,256
Benign with payload 4,670 39,000
Malign 6,971 89,148
Malign with payload 2,196 8,694

Table 5
Accuracy of the models on Test Set.

Model Accuracy F-Measure

Model of [19] 79% 77%
Our Model 78.6% 76.6%
Tiny Machine Learning Version 78.6% 76.6%

5.2. Analyzing the performance of our lightweight fingerprint model

This section reports the details about the training and the performance obtained for our lightweight behavioral fingerprinting
odel. To conduct this experiment, we randomly selected the communication set of three different devices from the dataset introduced

in Section 5.1. As stated in Section 3.3, our solution starts from the results reported in [19,21], and we strove to build a lighter
version of the models proposed in this previous study to cope with the limitation of the considered IoT context. To prove the
performance of our solution, we carried out a comparative evaluation between our new model and the model of [19]. The results
of this comparative analysis are reported in Table 5.

The task addressed is the same for each of the models analyzed in this table, i.e., the prediction of the next symbol of an input
sequence. Our objective is to obtain a lighter model than the one used in [19] to guarantee the suitability of our solution to the widest
possible range of smart objects in modern IoT scenarios. For this reason, as explained in Section 3.3, we reformulated the prediction
problem into a classification problem in which, instead of estimating the probability of the next symbol, we limited it to the
prediction of the presence or absence of a symbol as next element of a sequence. By doing so, we were able to reduce the complexity
of the adopted deep learning model. From the analysis of Table 5, we can see that the performance of our simplified model mostly
matches that of [19] with a difference of less than 1% in both accuracy and f-measure. The already negligible performance difference
is even less impacting if we consider that the model is then used in a window-based mechanism for anomaly detection. The dimension
of the windows is designed to estimate the average behavior of a node considering different packet exchanges during a monitoring
period. Such a window-based approach is intended to smooth out any prediction error caused by the considered model. Further
experiments on the role of the window-based mechanism, confirming the suitability of our lighter model for anomaly detection, are
reported in Section 5.3. The consideration above remains true also for the tiny version of our model obtained through the conversion
done with TensorFlow Lite [51]; the quantization applied by this strategy does not impact the model performance which preserves
the accuracy results.

It is worth mentioning that the lightning process has allowed us to reduce the number of model parameters by 60% as shown
in Table 6, while maintaining the desired performance.

This complexity reduction of the proposed model allowed us to obtain pretty satisfactory performance on several hardware
configurations as will be shown in the next sections. This aspect, along with the previous considerations on the satisfactory accuracy
results with respect to previous approaches, makes the tiny machine learning version of our reduced model the optimal solution to
be adopted in the reference IoT context.
17
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Fig. 4. Traffic analysis with windows of different sizes: (a) 25 packets size and (b) 400 packets size.

Fig. 5. Number of packets required to detect an anomaly.

Table 6
Number of parameters.

Model Number of parameters

Model of [19] 260 k
Our model 106 k

5.3. Anomaly detection: Window size selection

After training the model for the prediction of the next symbol, it is possible to build our solution for anomaly detection to identify
changes from the normal behavior of the analyzed object.

To do so, we check the misprediction rate of the next symbol in a given window of consecutive packets. In our approach, we
detect an anomaly when more than half of the packets predicted are different from the packets received. Following the reasoning
above, our anomaly detection strategy strongly depends on the correct size of the chosen window. Therefore, using the models
obtained from the previous experiment, we proceeded by analyzing the misprediction rate of the devices using windows of different
sizes. In particular, in our experiment, we considered an interaction_sequence of 2,000 packets, in which the first half part of the
sequence represents benign traffic and the second half malign one. We tested our solution with different window sizes and, for each
of them, we analyzed the misprediction rate and, in particular, we focused on the difference between the maximum and minimum
peaks of this curve. As a result, we obtained that the bigger the window size the more stable the obtained curve. In Fig. 4, we report
the result of this analysis for both a window size of 25 packets and one of 400 packets. In this figure, the x-axis reports the sliding
window number, while the y-axis indicates the misprediction rate. The anomaly threshold is fixed at 0.5 (meaning that an anomaly
is detected if half of the packets inside a window are incorrectly predicted).

As we can see from this figure, the size of the window drastically changes the oscillation of the misprediction rate curve. This
oscillatory behavior can, of course, lead to a not unstable anomaly detection.

Intuitively, bigger window sizes would result in a greater number of packets to detect an anomaly. In particular, from Fig. 5, we
can see how the number of required packets to detect anomalous behavior is directly proportional to the size of the window.
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Fig. 6. Difference between Minimum and Maximum Peaks.

Table 7
Training and model inference execution times for different classes of device.

Single-Core ARM Raspberry Pi 4 Powerful device

Training Epoch Time (seconds) 671 30 3
Prediction Time (milliseconds) 1500 86 7
TinyML Prediction model Time (milliseconds) 0.4 0.4 0.004

Therefore, to select the best window size, starting from the difference between the maximum and minimum peaks of the
misprediction curve, we leverage the Kneedle algorithm [70]. Specifically, this algorithm tries to find the elbow/knee in a curve by
selecting the right operating point for a given system.

In Fig. 6, we demonstrate the application of this strategy to identify the best window size for interaction_sequences involving
three different devices. The results show that the Kneedle algorithm returned a correct window size of about 100 packets for all
three devices.

5.4. Analysis of the execution time for different types of device

In this section, we study the execution time required by the different tiers of devices to train and execute the fingerprinting
model described in Section 5.2. The objective of this experiment is to verify the advantages, in terms of running time, introduced
by our secure delegation strategy.

In this experiment, we compare three different devices, one belonging to the class of Basic Devices, one to the class of Capable
Devices, and one belonging to the Powerful Device class. In particular, as for the Basic Device, we used an emulation device equipped
with a single core 1GHz Arm processor (ARM 1176) using the QEMU emulator. This kind of processor is usually employed in objects
such as smart locks, smart thermostats, or simple boards like the first version of the Raspberry Pi family. Concerning the Capable
Device class, we selected a general-purpose single-board personal computer, namely Raspberry Pi 4. These devices are very common
examples of IoT nodes [71,72]. Finally, as for the Powerful Device class, we employed a device equipped with an eight-core Desktop
CPU (Ryzen 7 5800x).

We tested the performance of these devices for both training and model inference and we reported the results in Table 7.
From this table, we can see how the class of Basic Devices requires more than 10 minutes to complete an epoch compared to the

3 seconds required by the class Powerful device. The Capable Device class would require about 30 seconds for each training epoch.
In our experiment, we found that the training needs about 10 epochs to reach satisfactory performance with a training set of about
5𝐾 samples. For this reason, the overall training would be mostly prohibitive for the Basic Device class. Instead, it would require
moderate energy consumption for the class of Capable Devices (about 5 minutes of computation, on average). The training cost would
be negligible for the Powerful Device class (about 30 seconds on average). Thus making our secure delegation strategy particularly
advantageous in this case.

As for the model inference, the time required to predict a single symbol appears sustainable in all the cases, with a maximum of
1.5 s for the Basic Device class. Interestingly, this value reduces drastically after the conversion of our model to a TinyML solution.

5.5. Anomaly detection using the consensus algorithm

The experiments described in this section aim at evaluating the performance of our strategy for distributed anomaly detection.
In general, in our scenario, an anomaly in the behavior of a node can be caused by either a hardware malfunction or an undergoing
19
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cyber attack. Here, we focused only on anomalies caused by attacks and we studied the capability of our solution to detect them. We
considered two categories of active attacks that a malicious IoT node can perform, namely: (i) direct interaction attacks; (ii) attacks
on the consensus mechanism. To the former category belong attacks that typically alter the communication behavior of controlled
nodes to cause damage to the surrounding environment, such as Denial of Service, Sleep Deprivation, Ping of Death, ARP Spoofing,
TCP SYN-ACK reflection, and so forth. The latter category, instead, comprises attacks targeting the reputation model and, hence,
our consensus mechanism. Examples of attacks in this category are Self-promoting, Slandering, and Bad-mouthing.

We start our evaluation by considering the former category of attacks above. Such attacks cause a variation in the communication
behavior of malicious nodes and, therefore, to validate our proposal we tested the performance of our distributed behavioral
fingerprint-based solution to detect such behavioral anomalies. Indeed, although, thanks to the extreme lightness of our model,
all the classes of devices can train a behavioral fingerprinting model, either directly (Powerful Devices and Capable Devices) or
through our secure delegation mechanism, and perform model inference, this can happen only in presence of a safe period that
can be assumed, for example, during the start-up of the network. For this reason, only a percentage of nodes can ultimately have
behavioral models for some of their neighbors. To enable the propagation of trustworthiness data on the whole IoT network, we
designed a distributed consensus mechanism to estimate the trust values associated with a node (see Section 3.4). Therefore, in this
experiment, we tested the average time required by a generic node in the network to detect anomalous behavior of a peer, estimated
through our distributed consensus mechanism. It is worth explaining that, in this first experiment, we did not consider the possible
coexistence of attacks of the second category above. To do so, we built a simulated IoT by using device emulation solutions (such
as QEMU and VirtualBox) equipped with a telemetry system (to log all packet exchanges) written in Python. We implemented our
solution and used the dataset described in Section 5.1 to simulate real interactions among the nodes. To perform our experiment,
we injected data from a malicious node in the simulated network and collected all the information and data exchanged among the
nodes. In particular, starting from the dataset generated in Section 5.1, we crafted different communications between devices inside
the network maintaining the integrity of the normal behavior for the involved nodes. The crafted communications are composed
of half-benign and half-malign traffic in order to monitor the shift between normal behavior and anomalous one. Specifically, we
measured the number of malicious packets necessary to detect an anomaly through our consensus algorithm. We found that this
number is about 61 on average. Clearly, depending on the dynamicity of the network (in terms of the frequency of packet exchange
among nodes) this could correspond to very different detection times, spanning from a few seconds to minutes. However, it is worth
noting that, when a node is compromised and exhibits an anomalous behavior, direct neighbors using a behavioral fingerprinting
model will detect the anomaly almost instantaneously. The additional 61 packets reported above represent the average effort required
by our system so that any interested node inside the whole IoT network can detect a behavior change of a malicious actor.

At this point, we proceeded by assessing the capability of our solution to contrast the second category of attacks, i.e., those
targeting our underlying consensus-based reputation model. Here, we stress the concept that, as described in Section 4.2, our scheme
is resistant to such attacks and, therefore, no damage can be done by them to our reputation model. However, our approach natively
implements a countermeasure to these attacks as the reputation of nodes carrying out them will be negatively impacted and, hence,
they will be promptly isolated from the system. To test this additional capability of our solution, we focused on two common
attacks in this category, namely Self-promoting and Bad-mouthing attacks. Specifically, starting again from the dataset above, we
simulated the presence of different attackers controlling target nodes on the network and carrying out the attacks above. Moreover,
we considered different attack intensity levels and studied the variation of the reliability score for these nodes. In particular, we
organized this experiment into consecutive iterations during which attacked nodes are involved in the consensus mechanism and
attack it with three different intensity levels: Low, Medium, and High. The attack intensity level depends on the variation between
the real trust score of the target node (as correctly detected by the nodes in the paths of the consensus set) and the score forged
by the attacker. In our experiment, we set a variation from 10% to 25% for a low intensity attack, from 25% to 50% for a medium
intensity attack, and from 50% to 75% for a high intensity attack.

After each iteration, we computed the reliability score variation for the attacked nodes. We report the averaged results in Fig. 7,
in which the dotted horizontal line indicates a standard limit threshold (half of the maximum reliability value) under which the
node can be considered attacked and isolated from the system.

By analyzing this figure, we can see that the variation of the reliability score is very accentuated for attacks with high and
medium intensity, thus allowing our solution to isolate the attacking nodes after just two iterations with a permissive threshold set
to half of the maximum reliability score. As for attacks with low intensity, we can see that the reliability score decreases with a
lower slope, and, hence, our system would need up to four iterations to identify the attacks and isolate the corresponding node.

As a final result, we also analyzed the overhead introduced by the use of the Blockchain as a shared platform to record and
link the information about trust relationships among nodes. In Fig. 8, we report the number of transactions (write operations) and
reading operations required on average to detect a compromised node.

By inspecting this figure, we can see that, in our experimental setup, when passing from a low to a high intensity attack, the
number of reading operations ranges from 20 to 39, while the number of transaction created ranges from 4 to 8, on average. Observe
that, as will be clearer in the next section, a possible target Blockchain for our solution is IOTA. On the IOTA 2.0 Devnet Nectar,
the average transaction throughput is 1,000 transactions per second, while the confirmation time for a set of transactions is around
10 s [73]. This means, that all the transactions of a single iteration of our approach (i.e., the operations to compute a variation in
the reliability of a node) can be written to the Blockchain in less than 1 second and their final confirmation will be visible in the
20
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Fig. 7. Degradation of the reliability score for nodes carrying out attacks on the consensus mechanism.

Fig. 8. Number of operations on the Blockchain required to identify a compromised node.

. Integration of the blockchain in our solution

In this section, we focus on the role of the Blockchain and its integration into our proposal. As stated in Section 3.2, our solution
xploits an underlying Blockchain layer as a shared ledger in which data about the trust and reputation of involved entities are
tored. Specifically, the computation and the tracking of the evolution of reliability scores for each node involved in our approach
re computed through a dedicated smart contract whose behavior is described in Section 3.4. Reliability values available in the
lockchain are, hence, used to control and protect the subsequent interactions among nodes. In particular, our solution enforces
hat nodes with a low (under a fixed threshold) reliability will not be involved in actions or engaged in future interactions by
ther peers. Also, as a special case, the Blockchain along with the reliability scores available in it is exploited to identify potential
elegated nodes according to our secure delegation scheme described in Section 3.5. In this case, first, the reliability scores are
sed to identify valid candidates for delegation. Then, the Blockchain is used in conjunction with IPFS to exchange and control the
ecessary information to train or execute the inference of behavioral fingerprinting models.

However, despite its crucial role as a support tool in our solution, Blockchain technology along with its research challenges
nd open issues are orthogonal to our approach; this is actually a common strategy adopted by several research works in the
iterature [59]. Indeed, as initially stated in Section 3.2, we assume that any existing Blockchain can be used to implement our
21
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that the exploited Blockchain solution guarantees the standard security requirements already adopted for common Blockchain
applications [58].

Therefore, also because our proposal does not aim at extending existing Blockchain solutions we do not consider vulnerabilities
nd possible direct attacks to it (see Security Property SP.1). Instead, in Section 4.2, we focus on attacks that can leverage the
dditional functionalities introduced by our approach and analyze the robustness of our security scheme against them. It is worth
nderlying that, although this may seem a limitation of our study, Blockchain security is currently under the spotlight of the research
ommunity and, therefore, a large number of security advancements are constantly studied and proposed [57,58]. In our work, we
ssume that the adopted Blockchain can benefit from and can be constantly updated with state-of-the-art solutions against known
enaces.

Finally, we remark that in our approach we make explicit reference to a managed Blockchain dedicated to support our solution.
n our basic design, we consider IoT nodes as light nodes (as opposed to the full nodes) of the Blockchain and, therefore, not involved
n mining activities nor in the storage of the whole chain as typically done in the IoT context [75]. Generally, IoT devices cannot
irectly act as full nodes, and, hence, cope with the computational complexity and energy consumption of traditional Blockchain
chemes. Indeed, the most popular Blockchain solutions are based on the famous Proof-of-Work paradigm, which is not suitable
or IoT smart objects. Anyway, it is worth mentioning that, several approaches to building IoT-aware lightweight Blockchain have
een proposed in the recent scientific literature [76–78]. One of the most discussed solutions in this setting is, for sure, the IOTA
latform.5 IOTA is based on a micro-transaction infrastructure and is specifically designed to support the IoT context. It is referred
o as a more energy-efficient technology with respect to classical Blockchain schemes. The adoption of a lightweight Blockchain
ould also be a proper choice in our setting allowing for a more direct involvement of IoT nodes into the Blockchain management.

. Conclusion

In the last years, we assisted in an enormous increase in the number and potentialities of IoT devices. From simple sen-
ors/actuators to smarter nodes, all these actors enable the IoT network with complex monitoring, automation, and decision-making
apabilities. Obviously, in this scenario, where IoT services and applications are intimately associated with people and are more
nd more autonomous, the issue of trust management becomes a major challenge. This paper makes a contribution in this setting,
esigning a complete framework to assess the trustworthiness of an object before contacting it. Our approach, based on collaboration
nd delegation, proceeds through two steps. At the initial stage of the network, behavioral models representing the conduct of every
ode are built thanks to a novel tiny machine learning algorithm suitable for limited devices. In the following fully operational
tate, every node is equipped with the possibility to detect possible variations or anomalies in the expected behavior of other
bjects and then decide to contact them. This feature is provided by a distributed consensus mechanism based on the concept of
ord-of-mouth between neighbors. Moreover, all the nodes, even the less smart ones can participate in our framework thanks to a

ecure delegation mechanism, according to which they can entrust the training of behavioral fingerprinting models to more powerful
evices. Furthermore, Blockchain is used to store the reliability and trust scores related to the behavior of objects and to identify
he best peers to contact to enable our collaborative approach.

The research directions taken in this paper can be considered as a starting point since we plan to make further investigations
n this field in the future. For instance, behavioral fingerprinting of a group of objects can be analyzed to detect specific typologies
f complex and distributed attacks in the network. A behavioral group fingerprinting solution can be seen as a machine learning
odel trained to predict the next possible distributed attack in the network.
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