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Abstract: Genetic data are the most sensitive information for a person, containing many specific features that uniquely
determine an individual and also make it possible to trace relationships with other people or evaluate the pre-
disposition to particular diseases. For this reason, any processing of genetic data should be carefully performed
and any threat to their privacy properly considered. A very important computation in medical and public health
domains involves the evaluation of the edit distance between human genomes, that can eventually lead to a
better diagnosis of several diseases. To maintain the privacy of the genetic data, it is possible to apply secure
computation protocols and then, in this context, the improvement of the computational performance of such
techniques is a key factor for real-world application scenarios.
In this paper we focus on the application of the garbling circuit technique for the computation of the edit dis-
tance, showing its efficiency. We apply the technique considering four different algorithms and compare their
performances to the best previous results found in literature. We show that the Ukkonen algorithm with gener-
alized cut-off is the one that performed better among the considered algorithms, reporting some experimental
results obtained considering datasets composed of both randomly generated and real genomic strings.

1 INTRODUCTION

Bionformatics is a rapidly advancing field, where the
application of information technology to the treat-
ment of biological data is helping in better analyzing
and understanding the various types of data resulting
from different biological processes. Last years have
registered a huge advance in speed and cost reduc-
tion, allowing the completion of the Human Genome
Project and the possibility to sequence a full genome
for a small amount of money.

However the intersection of genomics and secu-
rity arises stimulating ethical and social issues that
need to be addressed, since genetic information can
be considered the most sensitive data for a person and
consequently, it must be protected from any kind of
malicious attack or disclosure. Since genomes are
usually represented as strings, the computation of the
similarity between genomes can be easily mapped to
the application of efficient methods for string com-
parison. In particular, the computation of different
metrics such as edit distance or Needleman-Wunsch
distance can help in the diagnosis of several genetic
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diseases.
A natural way to protect genetic data is to ensure

that computations are performed on encrypted strings,
so that sensitive information remain protected even
in case of misbehaviour from one of the collaborat-
ing parties. Secure Multi-Party Computation (SMPC)
(Yao, 1982) is a branch of cryptography whose goal
is to enable a group of independent data owners, who
do not trust each other or any common third party, to
jointly compute a function that depends on all of their
private inputs. SMPC can be defined as the problem
of n players who want to compute an agreed func-
tion of their inputs in a secure way. Formally, we as-
sume x1, . . . ,xn inputs, where player i knows xi, and
we want to compute f (x1, . . . ,xn) = (y1, . . . ,yn) such
that player i is guaranteed to learn yi and nothing more
than that.

There are a number of efficient implementation of
these protocols based on ad-hoc techniques developed
to solve specific problems or on the generic transfor-
mation of the computed function, such as in the case
of garbled circuits protocol (Yao, 1986) (Micali et al.,
1987). Secure multi-party computation can be used to
solve a wide variety of real-life problems where sen-
sitive data may be compromised.

In this paper, we focus on the application of secure
multi-party computation to bioinformatics and more
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specifically to the computation of the edit distance,
generically used to compute the distance between two
strings. The human genome is composed by two com-
plementary strands, with 3 billion DNA bases each.
Each unit consists of Adenine (A), Cytosine (C), Gua-
nine (G), or Thymine (T), the nitrogenous bases that
constitute nucleotides.

Edit distance is an important metric to quantify
how dissimilar two DNA strings are, by counting the
minimum number of operations required to transform
one string into the other. It is one of the most used
and well established metrics among genetic similar-
ity indicators because it is very useful for the diagno-
sis and treatment of many genetically based diseases
such as cancer, Alzheimer’s, schizophrenia and others
(Koboldt et al., 2012) (Taylor et al., 2001) (Waddell
et al., 2015) (Evans and Relling, 2004).

In this work, we propose some secure implemen-
tations of the most efficient edit distance algorithms,
achieving better performances over existing proto-
cols found in literature, without sacrificing security
and accuracy. Moreover, a secure implementation of
the Ukkonen’s algorithm with the generalized cut-off
technique using all possible state-of-the-art optimiza-
tions for garbled circuits is proposed. Also, the pro-
posed algorithms are applied on both random, high-
entropy, and real genomics, low-entropy strings and
are provably secure with respect to the standard def-
inition of security for SMPC protocols. Finally, the
methodology, the experiment setup details, and the
source codes used for this study are described and
provided, defining a clear baseline for future works
and enabling anyone to reproduce the experiments in-
dependently.

The paper is organized as follows: first we intro-
duce the basic notions about edit distance and secure
multi-party computation.

Next, we describe the optimized techniques for the
computation of the edit distance, and their implemen-
tation in SMPC. Finally we report the basic results
and draw some conclusions.

2 BACKGROUND

We now provide some basic definitions and quick
overview of the algorithms used for the computation
of edit distance.

2.1 Edit Distance

Given two strings s1 and s2 on an alphabet Σ, the edit
distance d(s1,s2) is the minimum number of edit op-
erations (insertion, deletion and substitution) required

to transform s1 into s2 and measures the similarity be-
tween the two sequences. An edit operation is the
basic step in transforming a word into another word.
There are different types of edit distance that allow
different combinations of editing operations. In com-
putational biology, one of the most frequently used
type of edit distance is the Levenshtein edit distance
(Levenshtein et al., 1966).

In more details, a word over the finite alphabet
Σ is a sequence a1, ...,an of symbols, where ai ∈ Σ

for i = 1,2, ...,n. The empty word is denoted by the
symbol ε. An edit operation is a pair (a,b) with
a,b ∈ Σ∪{ε} and ab ̸= ε and it is a basic step in trans-
forming a word into another word. There are three
types of operations: insertion, deletion and substitu-
tion. The edit operation is called insertion if a = ε,
deletion if b = ε, and substitution if a ̸= ε ̸= b.
Each of these operations has a cost associated with it.
Usually, the cost c(a → b) for a ̸= b is 1, whereas for
a = b it is 0. This results in a cost equal to 1 in the
case of insertion, deletion or replacement and a cost
equal to 0 when the two letters are the same.
An edit sequence S is a sequence of edit operations
S = ((a1,b1), ...,(an,bn)),n ≥ 1. The final cost of
an edit sequence S is defined as C(S) = ∑

n
i=1 c(ai,bi)

(Aziz et al., 2017).
In 2014 it has been proved (Backurs and Indyk,

2014) that the Levenshtein distance of two strings of
length n cannot be computed in time O(n2−µ) for any
µ greater than zero unless the strong exponential time
hypothesis (SETH) is violated. This issue introduces
strong limitations on the research for exact optimiza-
tion of edit distance because, despite O(n2) is a poly-
nomial time, it is not acceptable for specific applica-
tions or for very long strings.

2.2 Algorithms for Computing the Edit
Distance

Over the years, several exact algorithms, which seek
the optimal answer to the problem without consid-
ering margins of error or specific conditions, have
been proposed. The most famous exact algorithm is
the Wagner-Fischer algorithm (Wagner and Fischer,
1974), based on dynamic programming that has a time
complexity of O(nm), where n and m are the string
lengths to compare.

2.3 Wagner-Fischer Algorithm

The Wagner-Fischer algorithm is based on dynamic
programming and starts from the observation that
it is possible to create a matrix with a number of
rows and columns corresponding to the length of the
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two strings to be processed. The final edit distance
D(n,m), where n and m represent the lengths of the
two strings respectively, is obtained by resolving all
the edit distances of the substrings that constitute
the final strings. In other words, the computation
proceeds with each D(i, j) where i and j are values
smaller than n and m. The key idea is to solve all
the sub-problems relying on the values obtained from
the previous computation. Basically, we have to com-
pute D(i, j) for each 0 < i < n and 0 < j < m. Each
cell represents the edit distance of two substrings and,
consequently, one of these sub-problems.

Since exact algorithms require at least O(nm) op-
erations to compute the Levenshtein distance, over the
years scientific research has been heavily involved in
the search for better alternatives through approximate
algorithms that are generally faster (Hyyrö, 2003).

2.4 Ukkonen Algorithm

Typically, approximation algorithms search for ap-
proximate matches of a pattern from a string using
also a predetermined maximum error threshold that
indicates the maximum edit distance allowed for an
approximate match.

The most important algorithm in this category is
the Ukkonen’s algorithm (Ukkonen, 1985), that op-
timizes the computation of edit distance by trying to
restrict the number of cells that must be filled in the
dynamic programming table. Given m and n the two
string lenghts, and i, j the coordinates of any cell in
the matrix, from the diagonal and adjacency proper-
ties, Ukkonen observed that if D(i, j)≤ k and m ≤ n,
then it is sufficient to fill only the cells in the di-
agonals: −⌊ (k−n+m)

2 ⌋,−⌊ (k−n+m)
2 ⌋+1, . . . ,⌊ (k+n−m)

2 ⌋
of the dynamic programming matrix. He concluded
that the d(i, j) values form a non-decreasing sequence
along any given diagonal, i.e. d(i, j)−1≤ d(i−1, j−
1) ≤ d(i, j) consequently, it’s necessary to calculate
only the values that do not exceed the chosen thresh-
old k. Once D(i, j)> k, the cells D(i+h, j+h) where
h ≥ 0 are irrelevant for computation purposes. This
technique is called cut-off because, intuitively, it cuts
out unnecessary values.

If we are not interested in an edit distance greater
than some maximum threshold k, then it is necessary
to calculate only the diagonal band of width 2k+1 of
the matrix because the other cells are irrelevant for the
computation.

2.5 Generalized Ukkonen

An advantageous optimization of the Ukkonen’s algo-
rithm with a generalization of the cut-off technique,

ε A C G T
ε 0 1
G 1 1 2
A 1 2 3
C 1 2 3
T 2 2

Figure 1: Generalized Ukkonen.

described and used in the final experiment, leverages
an implicit upper bound of the Levenshtein distance
and can be used without a pre-specified threshold pa-
rameter k (Ukkonen, 1985) (Seiji, 2019). This opti-
mization is rarely, if ever, used in literature although
it turns an approximation algorithm into an exact one.

Suppose we have two strings S and T whose
lengths are n and m respectively, with m ≥ n. We can
guarantee that the Levenshtein distance cannot exceed
LevenshteinDist(S,T )≤ m.
If we define the two strings as S = S1S2 . . .Sn−1Sn and
T = T1T2 . . .Tm−1, since m ≥ n, we can rewrite S =
S1S2 . . .Sn−1Sn and T = T1T2 . . .Tn−1TnTn+1 . . .Tm.
Now we can convert T into S by replacing the se-
quence T1 . . .Tn with S1 . . .Sn and deleting Tn+1 . . .Tm.
The cost of performing this operation is at most m be-
cause it needs n substitution and (m− n) deletions.
Hence, the upper bound is proved.

This upper bound is quite useful because it allows
fewer cells to be computed without specifying a pre-
cise threshold. Let Xc be the Manhattan distance from
a cell to the upper right corner. Then, as a rule, we
can say that as long as the expression

(n−Xc)+(m−Xc)≥ m with Xc ≥ 0
is valid, we can safely ignore the corresponding ma-
trix cells. An example is given in Figure 1.

Assuming two strings have the same lenghts n =
m, this optimization reduces by approximately ( n

2 +
1)( n

2 +2) the number of cells to be computed, result-
ing in a substantial computational gain.

2.6 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) is a field of
cryptography having the goal of enabling a group of
independent data owners who do not trust each other
or any common third party to jointly compute a func-
tion that depends on all of their private inputs. SMPC,
introduced by Andrew Yao in the early 1980s (Yao,
1982), can be defined as the problem of n players
who want to compute an agreed function of their in-
puts in a secure way. Formally, we assume x1, . . . ,xn
inputs, where player i knows xi, and we want to com-
pute f (x1, . . . ,xn) = (y1, . . . ,yn) such that player i is
guaranteed to learn yi and nothing more than that.
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Adversaries involved in the computation can be
categorized into two types: semi-honest and mali-
cious, according to how willing they are to devi-
ate from the protocol. In (Yao, 1982), Yao intro-
duced the idea of secure computation, in which n par-
ties (or players) want to jointly compute a function
f (x1,x2, . . . ,xm) where xi is the ith party’s private in-
put. In the next years he also introduced the Garbled
Circuits Protocol that is the basis for many of the most
efficient SMPC implementations still today.

At the beginning, secure computation was only
a theoretical interest but in the 2000s, algorithmic
improvements and computing costs reached a point
where it became realistic to think about building prac-
tical systems using general-purpose multi-party com-
putation.

The first project that implemented this type of
system was Fairplay (Malkhi et al., 2004). For the
first time, with Fairplay, it was possible to express a
privacy-preserving program in a high level language
and compile it to executables that could be run by
the parties involved in the computation. However, its
scalability and performance limited its use to toy pro-
grams.

The speed of the SMPC protocol significantly
increased over time and today is several orders of
magnitude higher due to a combination of crypto-
graphic, protocol, network and hardware improve-
ments. These improvements made possible the adop-
tion of SMPC implementations in important con-
texts and applications (Evans and M. Rosulek, 2020).
Thanks to the increasingly efficient protocols for
SMPC that have been proposed in recent years,
SMPC can now be considered as a practical solution
to several real-life problems.

2.6.1 Yao’s Garbled Circuits Protocol

Yao’s Garbled Circuits protocol (GC) is one the most
widely known SMPC technique (Yao, 1986) (Micali
et al., 1987). Furthermore, Yao’s GC runs in con-
stant rounds and avoids the costly latency associated
with approaches where the number of communica-
tion rounds scales with the circuit depth. The starting
point for this and all other protocols is the same: we
want to evaluate a given function F(x,y) where party
P1 holds x ∈ X and P2 holds y ∈ Y .

First of all we have to convert the function we
need into a boolean circuit. Then we have to evalu-
ate each gate securely. To do this, Alice picks two
random keys for each wire (inputs and outputs). One
key corresponds to 0, the other to 1. There are a total
of 6 keys for a 2-input gate. Alice encrypts each row
of the truth table by encrypting the output key with
the corresponding pair of input keys, then she ran-

domly permutes (“garbles”) the encrypted truth table
and sends it to Bob. In this way Bob doesn’t know
which row of garbled table corresponds to which row
of original table. Then Alice sends to Bob the corre-
sponding key to her input bit. Since keys are random,
Bob won’t know what this bit is. The last step consists
in running the oblivious transfer protocol between the
two keys and Bob’s 1-bit input in order to provide Bob
with the correct key.

3 SECURE COMPUTATION OF
THE EDIT DISTANCE

Edit distance, weighted edit distance and Needleman-
Wunsch algorithms are often used and widely adopted
in the bioinformatics research field. However, se-
curely computing these metrics is a highly challeng-
ing research task. Many research works focused on
secure and efficient implementations of edit distance
algorithms and the analysis of their benchmarks (Zhu
and Huang, 2020) (Zhu and Huang, 2017) (Kaghaz-
garan, 2017) (Aziz et al., 2017) (Wang et al., 2015)
(Huang et al., 2011). However, almost none of these
works precisely define and provide all the details used
for the experiment setup, such as machine type, cho-
sen framework, implementation and benchmarking
settings, source codes, used input data, custom op-
timizations, etc.

In this work we implement novel secure imple-
mentations of existing edit distance algorithms, par-
ticularly the Ukkonen’s generalized algorithm which
has never been implemented before in literature, us-
ing the current state-of-the-art garbled circuits in the
context of semi-honest model. We will also analyze
their performances, and define a clear baseline for fu-
ture works.

3.1 Experimental Setup

In order to provide meaningful and reproducible re-
sults, we decided to use Google Cloud Platform. For
this work, the N1, a Compute Engine’s first gen-
eration general-purpose machine type, was chosen;
specifically the n1-standard-1 instance, provided
with 1 vCPU and 3.75 GB of memory and Ubuntu
21.04.

To develop all secure implementations we chose
the EMP-toolkit framework (Wang et al., 2016), be-
cause it integrates all existing applicable optimiza-
tions for garbled circuits including efficient OT exten-
sion (Kolesnikov and Kumaresan, 2013) (Ishai et al.,
2003), FreeXOR technique (Kolesnikov and Schnei-
der, 2008) and Half-Gates garbling (Zahur et al.,
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Table 1: Algorithms performance on different string lengths. Computation inputs are two n-nucleotides genomes. Times are
in seconds.

String Lengths

Randomly Generated Genomic (iDash)

Algorithm 200 1000 2000 3000 4000 3456 3465 3475

Wagner-Fischer 0.2 8.1 34.9 - - - - -
Wagner-Fischer (opt.) 0.2 7.8 34.0 82.6 146.7 109.2 108.6 108.6
Ukkonen (thr.) 0.1 5.0 21.9 52.7 93.7 71.0 70.4 70.9
Ukkonen (gen.) 0.1 4.8 20.9 50.6 90.2 67.4 67.7 68.6

2015). EMP-toolkit also provides a 127-bit compu-
tational security (κ). For the purpose of this work
a semi-honest model and two-party computation was
chosen. All algorithms were developed in C/C++.

3.2 Benchmark Settings

In computer science there is no common consensus
regarding benchmark measurement. Many variables
can distort the effective result of a process execu-
tion, mainly due to I/O operations, task switches, time
spent on other processes, interrupt handling, etc. run-
ning in the same time span. Generally, two methods
are taken into account to measure how much time has
passed: Wall time and CPU time.

In this work we decided to mainly adopt the CPU
time, using the clock gettime function with the
CLOCK PROCESS CPUTIME ID option, available in the
GNU C Library. However some comparisons have
been carried out using also the wall time. To obtain
a significant value, each test has been executed 10
times, and the arithmetic mean among all the results
has been calculated.

3.3 Experimental Results

For the experimental results, we considered strings of
approximately 3000-4000 characters, as done in most
of the related works on the secure computation of
the exact edit distance of genomic strings (Zhu and
Huang, 2020) (Zhu and Huang, 2017) (Kaghazgaran,
2017) (Aziz et al., 2017) (Huang et al., 2011). These
lengths are already useful for many types of applica-
tions and comparisons on DNA and RNA strings. Of
course, the provided code can manage longer strings,
comparable to the human DNA lenghts (human chro-
mosomes range in size from about 50 million to 300
million base pairs).

In particular, the proposed algorithms were eval-
uated using two datasets of DNA data. The first
dataset consists of randomly generated strings of var-

ious lenghts containing {A,C,G,T} elements. The
considered lengths were 200, 1000, 2000, 3000, and
4000 elements. The second dataset consists of real
DNA strings from a genome database released by
“iDASH Security and Privacy Workshop 2016” (Tang
et al., 2016). The database includes 50 strings of ap-
proximately 3400−3500 characters each.

Table 1 reports the performance of the four
privacy-preserving algorithms that have been imple-
mented: the Wagner-Fischer algorithm, using the
entire dynamic programming matrix; the Wagner-
Fischer algorithm, optimized to use the minimum
needed columns; the Ukkonen’s algorithm, consider-
ing a threshold of about 60% of the longest string;
the Ukkonen’s algorithm, using the generalized cut-
off technique. The source code is available publicly
at GitHub (Migliore, 2021) for interested readers.

The symbol “-” means that the algorithm was ter-
minated by Linux Out of Memory Killer process
before it ended.

In Table 2 we compared the results obtained in
this work with the best prior results found in liter-
ature (Zhu and Huang, 2020) (without considering
particular and specific customization to the garbling
scheme with the EMP-Toolkit), revealing a significant
increase in performance with a 36% speedup.

Table 2: Performance comparison. Computation inputs are
two 4000-nucleotide genomes.

CPU time (s) Wall time (s)

Best Prior N/A 286
This Work 999000...222 111888333

4 CONCLUSIONS

The computation of the edit distance between human
genomes has become a very important task in medical
domain. In this paper we have proposed some novel
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techniques to securely compute the edit distance on
human genomes and proposed an efficient implemen-
tation reporting some experimental results on both ar-
tificial and public datasets.

Our techniques show improved efficiency over
state of the art, reducing the overall time needed and
providing a 36% speedup over best prior result found
in literature.

Some more optimizations, on both the computa-
tion of the distance and the usage of secure computa-
tion frameworks can be pursued.
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