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Background and objective: The standard non-invasive imaging technique used to assess the severity and extent 
of Coronary Artery Disease (CAD) is Coronary Computed Tomography Angiography (CCTA). However, manual 
grading of each patient’s CCTA according to the CAD-Reporting and Data System (CAD-RADS) scoring is time-

consuming and operator-dependent, especially in borderline cases. This work proposes a fully automated, and 
visually explainable, deep learning pipeline to be used as a decision support system for the CAD screening 
procedure. The pipeline performs two classification tasks: firstly, identifying patients who require further clinical 
investigations and secondly, classifying patients into subgroups based on the degree of stenosis, according to 
commonly used CAD-RADS thresholds.

Methods: The pipeline pre-processes multiplanar projections of the coronary arteries, extracted from the original 
CCTAs, and classifies them using a fine-tuned Multi-Axis Vision Transformer architecture. With the aim 
of emulating the current clinical practice, the model is trained to assign a per-patient score by stacking 
the bi-dimensional longitudinal cross-sections of the three main coronary arteries along channel dimension. 
Furthermore, it generates visually interpretable maps to assess the reliability of the predictions.

Results: When run on a database of 1873 three-channel images of 253 patients collected at the Monzino 
Cardiology Center in Milan, the pipeline obtained an AUC of 0.87 and 0.93 for the two classification tasks, 
respectively.

Conclusion: According to our knowledge, this is the first model trained to assign CAD-RADS scores learning 
solely from patient scores and not requiring finer imaging annotation steps that are not part of the clinical 
routine.
1. Introduction

Coronary artery disease (CAD) is the leading cause of cardiovascu-

lar mortality worldwide. It is caused by atherosclerosis, a phenomenon 
consisting in the formation of plaques that gradually narrow the diam-

eter of the arteries reducing the oxygen-rich blood supply to the heart. 
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The disruption of these plaques is the main cause of the acute coronary 
syndromes (i.e., unstable angina, myocardial infarction) [1]. Although 
the underlying causes for the development of atherosclerosis are not 
yet fully understood, there are numerous risk factors that can lead 
to accelerated plaque formation, such as high low-density lipoprotein 
cholesterol (LDL) level, high blood pressure, diabetes mellitus, smok-
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ing, obesity, advancing age and family predisposition. For these reasons, 
identification and monitoring of patients at high risk of CAD through 
noninvasive procedures are of utmost importance.

Cardiac computed tomography angiography (CCTA) allows nonin-

vasive identification of coronary stenosis and high-risk plaque features, 
which is useful for risk stratification. Recently, CCTA has been inte-

grated into the routine clinical management of patients with suspected 
CAD because of its value as an effective rule-out tool. Imaging soft-

ware included in the most commonly used CT scanners, usually includes 
multiplanar reconstruction (MPR) and straightened curved planar refor-

mation (CPR) methods [2] able to trace the blood vessels and generate 
2D longitudinal cross-sections from the CCTA scans. These represen-

tations are extremely useful to better visualize the vessel of inter-

est without surrounding structures that could make it harder for the 
physician to identify the plaque from the original three-dimensional 
scan.

With the aim of creating a standardized method to communicate 
imaging findings, CAD-Reporting And Data System (CAD-RADS) scor-

ing has been proposed and it is currently used in the clinical practice 
[3]. According to CAD-RADS classification system, each patient can be 
classified with a score ranging from 0 to 5. A score of 0 indicates ab-

sence of CAD; 1 corresponds to stenosis between 1-24%; 2 to stenosis 
between 25-49%; 3 to stenosis between 50-69%; 4 to stenosis between 
70-99% or >50% left main or three vessels >70%; 5 to total occlu-

sion. One of the main limitations associated with manual scoring of 
CCTA scans is its dependence on the physician expertise, which can 
be crucial in borderline cases. On the other hand, automating this pro-

cess is challenging because the CAD-RADS is a per-patient score and 
it is assigned on the basis of a visual assessment of the degree of oc-

clusion of the three major coronary arteries: left anterior descending 
artery (LAD), left circumflex artery (LCX) and right coronary artery 
(RCA).

In the last years, deep learning (DL) models have been widely ex-

plored in the medical field. If correctly designed and evaluated, these 
methods offer a chance to enhance healthcare accessibility, fairness, 
precision, and inclusivity [4]. In particular, convolutional neural net-

works (CNNs) have dominated the field of computer vision in the past 
years and are still the most widely used models for solving tasks ranging 
from segmentation to classification. By employing filters, these net-

works are able to learn feature maps that highlight the most relevant 
parts of the input images. Vision transformers have recently gained a 
great popularity in computer vision achieving state-of-the-art (SOTA) 
performance in many visual tasks [5]. The main advantage of trans-

former architectures is their attention mechanism. However, when com-

pared to classical CNNs, their reduced inductive bias can easily lead to 
overfitting. This is the reason why their superiority to convolutional 
models is generally appreciable when large data sets are available. In 
the medical context, this is almost never the case since several factors 
ranging from data privacy to heterogeneity and lack of standard qual-

ity, make it difficult to create large and consistent datasets. Therefore, 
simpler models to mitigate the risk of overfitting and to facilitate output 
interpretation are usually preferred. This can often lead to sub-optimal 
results, given the well-known limitations of many of the most popu-

lar convolutional models compared to the most recently proposed ones. 
Many improvements of standard convolutions have been recently pro-

posed to make them more efficient (e.g. [6,7]). On the other hand, many 
recent works have tried to improve scalability of attention mechanisms 
(e.g. [8]), or to propose hybrid methods such as [9,10]. In particular, 
Tu et al. [11] recently proposed MaxViT, a hybrid model combining the 
strengths of both approaches (efficient convolutions and sparse atten-

tion) in a new “base-block” able to significantly improve upon SOTA 
performance under all data regimes for many visual tasks, including im-

age classification. This new base-block consists of a MB-Conv block [6]

with a squeeze-and-excitation (SE) module [12] followed by a multi-

axis attention block appositely designed to capture both local and global 
2

pixels interactions.
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In the light of these considerations, this paper proposes a DL pipeline 
for the automatic classification of straightened MPR images obtained 
from CCTA scans, based on MaxVit architecture. The goal of the study is 
to automate the CAD-RADS scoring process with an explainable decision 
support system able to (1) rule-out patients needing for further inves-

tigations and (2) classify the patients into three main groups based on 
the degree of stenosis, according to commonly used CAD-RADS thresh-

olds. Our aim is to build a fully automated DL pipeline able to guide the 
physician in the clinical practice, providing a tool which is at the same 
time accurate and easy to interpret by the final user.

The main contributions of this study are:

• The development of a novel fully automated pipeline based on 
MaxViT architecture specifically trained to assign a patient-based 
CAD-RADS score. As far as we know this is the first approach 
tackling the CAD-RADS scoring problem emulating the clinical pro-

cedure.

• The design of a flexible approach not requiring vessel, segment or 
lesion-wise annotations and considering the three main coronary 
arteries.

• An extensive experimentation on a curated dataset of 253 patients 
presenting quantitative evaluations and visually explainable re-

sults.

Code is available at https://github .com /ales -git /DeepCADRADS.

2. Related works

Several different approaches have been proposed with the aim of au-

tomating the identification and grading of coronary stenosis. We report 
the most recently proposed works that exploit DL methods.

Huang et al. [13] showed that there is no significant difference be-

tween the DL-based (convolutional models in this case) and the expert-

based CAD-RADS grading of CCTAs (Kappa value of 0.77). This result 
is very interesting from a clinical perspective because it suggests the 
high potentiality of DL based decision support systems for this particu-

lar clinical task.

Li et al. [14] developed a coronary tree segmentation algorithm 
(Dice score 0.771) and proposed a binary classification algorithm 
(3DNet) taking as input the segmented tree and other relevant clini-

cal features, with the aim of predicting patient-wise CAD-RADS score 
achieving a diagnostic performance in terms of area under the ROC 
curve of 0.737.

Denzinger et al. [15] proposed a DL strategy that reaches a ROC AUC 
of 0.923 on the task of identifying patients with a CAD-RADS score > 2
that was then improved in a more recently proposed version to 0.950 
[16]. The proposed method is very promising and tested on a large 
cohort of patients, but requires segment-level annotations, a step that is 
not usually part of clinical routine.

Other works focused instead on single lesion or single vessel scoring 
automated systems. However, deriving patient scores based on individ-

ual lesions can lead to a significant number of potential errors, as it fails 
to take into account the overall context in making decisions. Paul et al. 
[17] for example, achieved a 96% accuracy in identifying significant 
stenosis from a huge dataset of curved multiplanar reformatted (cMPR) 
CCTA images originally classified by an expert radiologist. However, 
the single vessel grading strategy is time consuming, highly influenced 
by the radiologist expertise and not usually part of clinical routine.

Penso et al. [18] proposed a token-mixer architecture for CAD-RADS 
classification achieving 82% of accuracy in classifying significant steno-

sis and 72% in a multi-class experimental set-up predicting CAD-RADS 
0 vs. 1–2 vs. 3–4 vs. 5. Even in this case, each coronary artery was 
individually labelled.

Tejero-de Pablos et al. [19] proposed a model leveraging multiple 
feature extractors for texture classification using multiple CPR views 

of the coronary arteries. The method shows good performance in pre-
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dicting significant stenosis on a dataset of 57 patients. Although the 
limited dataset size and the need for manual ground-truth annotation 
of the stenosis, they achieved 80% of accuracy using a leave-one-out 
cross-validation strategy.

Candemir et al. [20] proposed a 3D-CNN obtaining good perfor-

mance for coronary artery atherosclerosis detection on MPR volumes. 
The algorithm uses pre-processing techniques and a 3D-CNN to iden-

tify atherosclerotic plaques and provides visual clues for location. The 
method obtains an accuracy of 90.9% in identifying patients with 
atherosclerosis. The authors proposed it as a method for assisting physi-

cians in excluding coronary atherosclerosis in patients with acute chest 
pain.

Muscogiuri et al. [21] demonstrated how DL methods for CAD-RADS 
scoring are significantly faster if compared to human on site reading of 
clinical scans. They proposed several small custom 2D-CNN models with 
the best one achieving an accuracy of 81% in classifying patients with 
CAD-RADS 0 vs. CAD-RADS >0. The models were trained using sin-

gle 2D slices from original CCTA scans without extracting the coronary 
arteries.

A recurrent CNN was proposed by Zreik et al. [22] for automatic 
detection and classification of coronary artery plaque and stenosis, 
achieving an accuracy of 0.77 and 0.80, respectively, on a test set of 
65 patients. In this last work the presence and the anatomical sig-

nificance of coronary stenosis were manually annotated on the MPR 
images.

Most of the discussed works present interesting different approaches 
from both technical and clinical perspective, however they all require 
vessel, segment, lesion annotations or derive patient-scores consider-

ing single lesions. While these approaches include more information if 
compared to a single patient-wise score, they require an additional ef-

fort in the clinical practice since segment or lesion-wise annotation is 
not a routine operation. Moreover, they are not able to take into ac-

count the global patient status. Several methods have been proposed 
to tackle the challenge of limited medical imaging annotations based 
on semi-supervised or weakly-supervised learning (e.g. [23,24]). How-

ever, in our case the greatest challenge lies in creating a system that 
can comprehensively analyze multiple MPR views of coronary arteries 
and assign patient-level scores without relying on finer annotations. To 
achieve this objective, unlike the previously mentioned methods, we 
developed an innovative pipeline based on a recently introduced neural 
architecture. Our intention is to mirror the real clinical approach, where 
an expert physician visually examines multiple MPR views of the three 
primary coronary arteries and assigns a patient-level score, bypassing 
additional annotation steps.

3. Materials and methods

We set up two different experiments following the same analysis 
pipeline. In the first one (named binary experiment) we binarized the 
CAD-RADS score with a threshold of 2 (0-1-2 vs. 3-4-5) with the aim of 
simply distinguishing patients in need for further examinations or direct 
intervention (CAD-RADS > 2). In the second experiment (named multi-

class experiment) we trained the model to predict 3 different classes: 
healthy subjects (CAD-RADS = 0), patients with minimal to moder-

ate stenosis (CAD-RADS = 1-2-3) and patients with severe stenosis or 
complete occlusion (CAD-RADS = 4-5). This second approach would 
be useful to quickly identify completely healthy subjects as well as pa-

tients with very severe stenosis, grouping the intermediate or borderline 
cases that could need a more accurate inspection from the physicians. 
The complete pipeline is illustrated in Fig. 1, each step is described in 
the following subsections.

3.1. Dataset

We applied our novel pipeline to a dataset of 253 patients who un-
3

derwent CCTA for clinical purposes from 2016 to 2018 in the Monzino 
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Cardiology Center (Milan, Italy). The study protocol conformed to the 
principle of the Declaration of Helsinki and was approved by the “Ethics 
Committee of the IRCCS Istituto Europeo di Oncologia and Centro Car-

diologico Monzino” (protocol code R329/15 - CCM 341, date of ap-

proval 23/09/2015). All recruited patients signed the written informed 
consent and participants did agree to share their de-identified infor-

mation. The original population is fully described by Muscogiuri et al. 
[21]. Exclusion criteria for this study were heart rate ≥ 80 bpm de-

spite intravenous administration of beta blockers, atrial fibrillation, BMI 
≥ 35 kg/m2 [25] and presence of stent. Sublingual nitrates were ad-

ministered 5 minutes before the CCTA scan [26]. Two CT scanners, 
the Discovery CT 750 HD and Revolution CT (GE Healthcare, Milwau-

kee, IL), were used for CCTA acquisition. The CCTA protocol defines a 
64 ×0.625 mm and a 256 ×0.625 mm slice configuration for the Discov-

ery CT 750 HD and the Revolution CT, respectively. The tube current 
and voltage were adjusted based on the patient’s BMI [27]. In both 
protocols, 50–70 mL of contrast medium was given through the ante-

cubital vein at an infusion rate of 5 mL/s, followed by 50 mL of saline 
solution at the same rate. The bolus tracking technique was used for 
CCTA acquisition, and images were reconstructed using filtered back 
projection and in 75% or 40–80% of the cardiac cycle, depending on 
the ECG-triggering acquisition used [28]. In cases of poor image qual-

ity, intracycle motion correction was performed [29,28]. A consensus 
of five different random couples between ten radiologists and cardiolo-

gists was formed to score the pool of CCTA examinations. The cardiac 
imagers had experience ranging from 5 to 10 years. A CAD-RADS score 
was attributed for each examination, and in cases of disagreement, a 
cardiac imager with 10 years of experience in cardiovascular imaging 
adjudicated the final CAD-RADS score.

For each patient and each coronary artery (RCA, LCX, LAD) up to 
eight straightened MPR views were extracted from the original CCTA, 
with a 45° angle offset. In particular, if the subject was classified with 
CAD-RADS = 0 (0% stenosis), we always had exactly 8 images for each 
main coronary artery in our dataset. On the other hand, for patients 
with CAD-RADS > 0, only images from non-healthy coronaries were 
collected (e.g. if a patient has a CAD-RADS score of 3 and only the LAD 
and LCX arteries present with stenosis, we have up to 8 views for each 
of these two vessels, but no images for the healthy RCA). Therefore, in 
our dataset, completely healthy coronary arteries, which do not influ-

ence the CAD-RADS score when this is greater than 0, were discarded 
a priori by the clinicians at the data acquisition stage. Our aim is to 
fully automate the process and train an algorithm to predict the CAD-

RADS score from the three main coronary arteries without any prior 
knowledge. For this reason, the missing healthy vessels were imputed 
before the classification step as fully described in Section 3.3. In Fig. 2

we can see an example CCTA for a patient included in our dataset. We 
show two slices of the original 3D DICOM scan where it is possible to 
notice the 3 main coronary arteries in a bi-dimensional space and, on 
the right, we can see the LAD, LCX and RCA images resulting from the 
straightened curved planar reconstruction.

3.2. Preprocessing

The first step of our pipeline is image preprocessing. Our input data 
is composed by 2D images representing different views of the straight-

ened MPR volume for each patient. In the first step we removed artifacts 
on digital scans by binarizing each image, sorting white objects by size 
and keeping just the largest one (representing the vessel). Therefore, 
we made sure to delete all annotations and small artifacts derived from 
image reconstruction. Finally, we applied Contrast Limited Adaptive 
Histogram Equalization (CLAHE) to enhance the local contrast of the 
image [30]. As a final step we automatically cropped the images to re-

duce background black pixels on the 4 sides. A sample image before 

and after the preprocessing steps is showed in Fig. 3.
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Fig. 1. (a) Schematic representation of the main pipeline steps. All the MPR projections are first of all preprocessed to enhance the image contrast. Afterwards, 
for each patient, an imputing step is performed in order to always have three 2D images representing LAD, LCX and RCA for each of the 𝑛 different views (where 
𝑛 = 2...8 is the number of possible views for each vessel). For each view, the 3 images are then resized (224x224) and stack along channel dimension in order 
to obtain a single input image ready for the network. The images thus created are used to fine-tune a MaxViT-T architecture to solve two different tasks (binary 
and multi-class). Finally, SOTA eXplainable AI (XAI) models are used to create qualitative maps to visually inspect the reliability of network’s predictions. (b) 
Max-ViT-Tiny architecture used in the proposed pipeline. It is composed by two convolutional blocks, followed by several MaxViT blocks and a final pooling layer 
that precedes the MLP head. The architecture of each MaxViT block is schematized in the figure: there is an initial MBCov block followed by a block-attention and 
a grid-attention block.

Fig. 2. Example of CCTA scan for a random patient included in the study population. From the 3D DICOM scan we extracted two slices where the three main coronary 
4

arteries are indicated in red. On the right we can see the 2D representation of LAD, LCX and RCA obtained through straightened curved planar reconstruction.
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Fig. 3. Sample image before and after the preprocessing steps: (1) Annota-

tion/artifacts removal, (2) Contrast enhancement (CLAHE), (3) Background 
crop.

Algorithm 1 Data preparation.

1: Input: patient_ids, dataset ⊳ Dataset represents the whole set of straightened MPR 
images.

2: Support functions:

3: remove_artifacts(𝑥): Binarize image and keep largest white object representing the 
vessel.

4: CLAHE(𝑥): Split the image into small tiles and apply Contrast Limited Adaptive His-

togram Equalization.

5: crop_background(𝑥): Reduce black pixels on the four image sides.

6: imputing(𝑣): Impute missing image with average healthy coronary computed from 
control patients in the training set.

7:

8: for all 𝑥 in dataset do

9: 𝑥 = remove_artifacts(𝑥)
10: 𝑥 = CLAHE(𝑥)
11: 𝑥 = crop_background(𝑥)
12: end for

13:

14: for all 𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑 in patient_ids do

15: 𝑣𝑖𝑒𝑤_𝑝𝑎𝑡 = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑]
16: for all 𝑣 in 𝑣𝑖𝑒𝑤_𝑝𝑎𝑡 do ⊳ v=[LAD,LCX,RCA] where one or two may be None if 

completely healthy

17: if len(𝑣) < 3 then

18: 𝑣 = imputing(𝑣)
19: end if

20: 𝑣 = resize(stack(𝑣)) ⊳ 𝑣 ∈ℝ3×224×224

21: end for

22: end for

3.3. Dataset split and imputing

After the preprocessing, data was randomly split into training (80%) 
and test (20%) set. The training set was then further split into training 
and validation set using a 10-fold cross-validation strategy. All the splits 
were always done patient-wise and stratified by CAD-RADS score in or-

der to avoid any selection bias. Images from completely healthy vessels 
for patients with CAD-RADS > 0 were missing in our dataset as previ-

ously described in Section 3.1. Therefore, we averaged (separately for 
each view) the images of RCA, LCX and LAD coronaries of the healthy 
subjects (CAD-RADS = 0) included in the training set and used them to 
impute the missing data in our dataset. This step allowed us to always 
have three coronary arteries to evaluate, to simulate as closely as possi-
5

ble the decision-making process actually followed in clinical practice.
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3.4. Model architecture and training strategy

Given the limited size of our dataset we decided to fine-tune the 
MaxViT-T (where T stands for tiny) pretrained on ImageNet [31]. This 
recently proposed architecture combines the strengths of efficient con-

volutions and attention mechanism achieving SOTA classification per-

formance under all data regimes. The architecture details are shown in 
Fig. 1b. It is composed by 2 convolutional blocks followed by multiple 
groups of MaxViT blocks. A single MaxViT block is always composed by 
an initial MBConv block, also called inverted residual block, that follows 
a narrow → wide → narrow structure approach which greatly reduces 
the number of parameters if compared to a standard residual block [7]. 
As it is shown in the figure, between the 3 × 3 depthwise convolution 
and the final 1 ×1 convolution, there is a SE module [12] able to model 
interdependencies between channels. Following the MBConv block, we 
always have a block-attention and a grid-attention block which are used 
to capture local and global patterns respectively. Each group of MaxViT 
blocks differs from the other by the number of spatial filters in the con-

volutional layers. Finally, an average pooling layer precedes the MLP 
head used to classify the input into 2 (binary experiment) or 3 classes 
(multi-class experiment).

The relative attention function is defined as:

√
RelAttention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇

𝑑
+𝐵

)
𝑉 , (1)

where 𝑄, 𝐾 , 𝑉 ∈ℝ(𝐻×𝑊 )×𝐶 are the query, key, and value matrices, and 
𝑑 is the hidden dimension. Here, attention weights are determined by 
a learned static location-aware matrix 𝐵 and the scaled input-adaptive 
attention.

The Multi-Axis Attention includes operations such as Block, Un-

block, Grid, and Ungrid. The Block operation partitions the input image 
into non-overlapping blocks of a specified size. After this partitioning, 
the block dimensions are rearranged onto the spatial dimension. Un-

block is the inverse operation of the Block procedure. It reconstructs 
the original input from the partitioned blocks, essentially reversing the 
process of the Block operation. The Grid operation divides the input 
feature into a uniform grid structure. It arranges the input into a grid 
format, allowing for the processing of smaller grid cells or units within 
the larger feature space. Ungrid is the reverse operation of the Grid pro-

cedure. It reverts the gridded input back to the original feature space, 
enabling the continuation of computations in the standard feature for-

mat. Therefore given an input tensor 𝑥 ∈ℝ𝐻×𝑊 ×𝐶 local Block Attention 
is formulated as:

𝑥← 𝑥+Unblock (RelAttention(Block(𝐿𝑁(𝑥)))) (2)

𝑥← 𝑥+MLP(𝐿𝑁(𝑥))

and global, dilated Grid Attention as:

𝑥← 𝑥+Ungrid(RelAttention(Grid(𝐿𝑁(𝑥))) (3)

𝑥← 𝑥+MLP(𝐿𝑁(𝑥))

where, LN represents Layer Normalization and MLP is a standard Multi-

Layer Perceptron network [11].

To further reduce the risk of overfitting, we implemented online data 
augmentation on the training set with random rotation and horizon-

tal/vertical flip, learning rate and weight decay, and label smoothing. 
The optimal parameters were tuned with a grid search strategy based 
on average validation set accuracy. A complete list of the parameters 
used is available in Section 3.5. As showed in Fig. 1, after the prepro-

cessing and imputing steps previously described, for each view, the 3 
images (representing LAD, LCX and RCA respectively) are then resized 
(224x224 pixels) and stack along channel dimension in order to obtain 
a single input tensor ready for the network. This approach allows us 
to train the network to classify a sequence of three coronary arteries 

as belonging to one of the classes representing patient-wise CAD-RADS 
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Table 1

Set of model’s parameters leading to the best average validation accuracy.

Experiment Lr Lr decay epoch Drop-out L2 Label smoothing Epochs Batch size Optimizer Loss

Binary 1𝑒−4 → 1𝑒−5 30 0.5 0.1 0.1 50 8 AdamW BCE

Multi-class 1𝑒−4 → 1𝑒−5 30 0.3 0.1 0.2 50 8 AdamW wCE

Table 2

Results of the binary and multi-class experiment computed on the test set. For all the metrics 95% confidence interval is provided.

Experiment Class Type of metric AUC [95% CI] Accuracy [95% CI] Precison [95% CI] Recall [95% CI] F1-score [95% CI] n

Binary 1
per image 0.89 [0.86, 0.93] 0.82 [0.78, 0.86] 0.88 [0.83, 0.93] 0.75 [0.68, 0.80] 0.81 [0.76, 0.84] 374

per patient 0.87 [0.76, 0.95] 0.82 [0.72, 0.93] 0.89 [0.75, 1.00] 0.71 [0.55, 0.89] 0.79 [0.69, 0.90] 51

Multi-class

0
per image 0.93 [0.84, 0.96] 0.94 [0.92, 0.96] 0.90 [0.83, 0.97] 0.82 [0.75, 0.90] 0.86 [0.82, 0.90] 80

per patient 0.94 [0.81, 0.99] 0.96 [0.91, 1.00] 1.00 [1.00, 1.00] 0.80 [0.60, 1.00] 0.89 [0.80, 0.98] 10

1
per image 0.87 [0.84, 0.95] 0.82 [0.78, 0.86] 0.79 [0.73, 0.85] 0.86 [0.81, 0.91] 0.82 [0.78, 0.86] 182

per patient 0.91 [0.83, 0.98] 0.84 [0.74, 0.94] 0.81 [0.67, 0.95] 0.93 [0.83, 1.00] 0.87 [0.78, 0.96] 27

2
per image 0.91 [0.84, 0.96] 0.87 [0.84, 0.90] 0.82 [0.75, 0.89] 0.75 [0.67, 0.83] 0.78 [0.74, 0.82] 112

per patient 0.93 [0.84, 0.99] 0.88 [0.79, 0.97] 0.83 [0.62, 1.00] 0.72 [0.51, 0.95] 0.77 [0.68, 0.97] 14

Weighted avg
per image 0.90 [0.86, 0.92] 0.86 [0.83, 0.89] 0.82 [0.78, 0.86] 0.82 [0.78, 0.86] 0.82 [0.78, 0.86] 374

per patient 0.93 [0.84, 0.99] 0.88 [0.79, 0.95] 0.85 [0.76, 0.93] 0.84 [0.74, 0.92] 0.84 [0.73, 0.92] 51
scores and thus simulating the classification process followed in clinical 
practice.

All the operations described thus far, performed on the data before 
the model training, are summarized in Algorithm 1.

3.5. Experimental setup

After the preprocessing steps we obtain a total number of 5619 one-

channel images, and consequently 1873 three-channel images for 253 
patients. Models were trained for 50 epochs with a batch size of 8 using 
AdamW optimizer [32] for both the experiments, while binary cross-

entropy (BCE) and weighted cross-entropy (wCE) loss were used for the 
binary and multi-class experiment, respectively.

Table 1 summarizes the aforementioned settings along with the best 
hyperparameters resulting from the grid-search according to the av-

erage validation accuracy during the cross-validation procedure. The 
tuned hyperparameters are: learning rate (LR) ∈ {1𝑒−3, 1𝑒−4, 1𝑒−5}, 
Drop-out ∈ {0.1, 0.3, 0.5}, weight decay (L2) ∈ {1𝑒−1, 1𝑒−2}, LR decay 
epoch ∈ {20, 30}, label smoothing ∈ {0.1, 0.2}.

The best hyperparameters are then used to train the models on the 
whole training set and evaluate the performance on the test set.

3.6. Statistical comparisons

The performance of the selected architecture was compared against 
several other fully convolutional (ResNet18, ResNet50 [33]; Vgg16, 
Vgg19 [34]), attention-based (ViT-T [5]) or hybrid models (ConvNeXt-T 
[35], CoAtNet-T [9]). To rigorously assess these models, pairwise com-

parisons were conducted using the De Long test for ROC AUC with 
a significance threshold set at 0.05. This method aids in evaluating 
whether the proposed model statistically outperforms the others. All 
the results are detailed in Section 4, providing valuable insights into 
the relative performance of the models in handling the specific task at 
hand.

3.7. Hardware and software

All the models were trained using an NVIDIA 3070 Ti GPU. The 
whole pipeline is developed in Python 3.10. Pytorch [36] is the frame-

work used for implementing the models. Open-CV implementation of 
CLAHE algorithm was used for enhancing the contrast in the prepro-

cessing step [37] and DeepSHAP [38] library for the final explainability 
6

maps.
3.8. Visual interpretation

One of the main drawbacks of DL models is their difficult in-

terpretability, which has been tackled with explainability approaches 
[39,40]. Furthermore, it is of foremost importance to evaluate models 
reliability and assure systems trust [41], especially in the medical field, 
where final users might not be aware of the methodological implemen-

tation of the supporting system. The reliability of a decision support 
system strongly increases when it becomes easily interpretable by the 
final user, who, based on his experience, could simply detect edge cases 
in which the algorithm results may not be trustable. With this aim in 
mind, we added three levels of visual explainability of the results:

• t-SNE [42] plot to project the last layer features down to a 2D space 
in order to evaluate the semantic understanding of the network.

• maximally activated patches [43] representing the most respon-

sive areas of an image, which are identified through a forward pass 
with that image that is partially “occluded”. This is accomplished 
by masking portions of the image (patches) and evaluating the im-

pact on the predicted scores for the top class. The patches that 
cause the greatest change in the scores are prioritized and the top-

k of these patches are then visualized.

• Deep SHAP [38] explainability maps. This algorithm is a fast ap-

proximation method for computing SHAP (SHapley Additive ex-

Planations) values in DL models. It is a game theoretic approach 
that generates visual maps for each image where pink pixels indi-

cate the image values that contributed to the model’s prediction 
of a specific output class, while blue pixels represent the values 
that pushed the prediction towards the alternative class. This vi-

sual representation allows for inspection of pixels that were most 
significant in determining the final classification, according to the 
model. This approach is particularly interesting since it has been 
shown to align better with human intuition compared to other ex-

plainability methods.

4. Results

Final results on the test set for both experiments are provided in Ta-

ble 2. Algorithms performance was measured in terms of area under the 
ROC curve (AUC), accuracy, precision, recall, F1 score. All the results 
are presented both image-level and patient-level. In the second case, we 

considered all the images from the same patient (representing different 
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Fig. 4. t-SNE plots showing a 2D representation of the 256 features representing the average patient embeddings. Results for the binary and multi-class experiment 
are reported in the first (a, b) and second (c, d) row, respectively. Each dot represents a patient of the test set. On the left side we colored the dots based on the 
labels used for training the network (a, c), on the right side instead, they are colored according to the original CAD-RADS classification (b, d).
views of the same vessels) and we assigned as final class the one with 
higher average predicted probability.

In Fig. 4 we reported per patient t-SNE plots of the binary and the 
multi-class experiment in the first (a, b) and second row (c, d), respec-

tively. The dots are colored by the labels used by the algorithm on the 
left (a, c) and the original CAD-RADS scores on the right (b, d), to visu-

ally inspect the extent of the errors.

Finally, Fig. 5 shows an example of maximally activated patches and 
Deep SHAP maps generated for a random patient from the test set of the 
multi-class experiment. The selected patient has an original CAD-RADS 
score of 5, therefore it belongs to class 2 in our multi-class experiment. 
In the figure we reported LAD, LCX and RCA for one of the 8 views 
available for this patient. These three images actually compose a single 
input image for our network that was correctly classified as represent-

ing a patient of class 2 with a probability of 0.88. For each vessel, we 
can see on the left the top-3 maximally activated patches in order of 
importance. The yellow dashed areas highlight the regions of the ves-

sel represented by the patches that have a 80x80 pixels dimension and 
are extracted from the resized image given as input to the network dur-

ing the forward pass. On the right of each vessel instead, we can see the 
map produced by Deep SHAP algorithm for the correctly predicted class 
(class 2 in this case). The output of the model is influenced by pink pix-

els in a positive way and by blue pixels in a negative way. The input 
images are shown as nearly transparent grayscale backings behind each 
of the explanations. On the right of each map, we can see a zoom of the 
most relevant pixels (red dashed areas).

We also reported in Table 3 the resulting per-image AUC and accu-

racy for both the experiments comparing the performance of the most 
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common convolutional, attention-based and hybrid architectures. De-
Long’s test p-values for pairwise AUC comparisons (𝛼 = 0.05), with the 
highest AUC as a reference, are provided. For each model the number 
of parameters and multiply-accumulate operations (MACs) is reported. 
ROC curves for each experiment and each model are provided in Fig. 6.

4.1. Ablation studies

Two ablation studies were conducted to assess the impact of (I) using 
multiple straightened CPR from different angles and (II) the number of 
MaxViT blocks at each stage on the overall performance. Both studies 
were specifically performed in the multi-class setting.

In the first experiment, we aimed to significantly reduce the max-

imum number of per-patient projections included, exploring configu-

rations with 8 down to 4 and then 3 projections. These different con-

figurations are summarized in Fig. 7. This experiment was designed to 
explore the model’s capacity to learn general characteristics even when 
exposed to a limited number of view angles. To ensure comparable sam-

ple sizes, the per-patient AUC and accuracy on the test set (n=51) are 
reported (Table 4).

The second experiment focused on evaluating how the final per-

formance is influenced by the specific configuration of MaxViT blocks 
used. Initially, we reduced the number of blocks in the central stages 
(stages 1 and 2), while maintaining a constant number of blocks in the 
two external stages (stages 0 and 3). Subsequently, we explored the 
opposite approach. Finally, a configuration with reduced blocks in all 
stages was also examined. The results, expressed in terms of AUC and 
accuracy with 95% CI, are presented in Table 5, alongside the num-

ber of parameters for each novel architectural configuration. A detailed 

discussion of these results is provided in Section 5.
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Fig. 5. The figure shows the three main coronary arteries of a patient from the test set with a CAD-RADS score of 5 and correctly classified as belonging to class 2 
(CAD-RADS = 4-5) by the multi-class algorithm. The three vessels (LAD, LCX, RCA) represent the three channels of the input tensor pre-processed by the network 
as a single input image. For each vessel, we can see the original pre-processed scan with the top-3 maximally activated patches in order of importance on the left 
and the Deep SHAP map on the right, with a zoom on the most relevant part of the images. Deep SHAP maps are reported for the correctly predicted output class 
(class 2). The input images are shown as nearly transparent grayscale backings behind each of the explanations. Pink pixels increase the model’s output while blue 
pixels decrease it.

Fig. 6. ROC curves of the compared models for the binary (a) and multi-class experiment (b).
5. Discussion

The proposed pipeline achieved high performance in all the re-

ported metrics for both the binary and multi-class experiment, showing 
a per-patient AUC [95% CI] of 0.87 [0.76, 0.95] and 0.93 [0.84, 0.99], 
respectively. To the best of our knowledge, this is the first work clas-

sifying the sequence of the three main coronary arteries relying only 
on patient-wise CAD-RADS scores during the training procedure. None 
of the previous works are directly comparable to our method as most 
of them rely on vessel, segment, lesion-wise annotations. We were able 
to achieve highly accurate results without the need of any additional 
8

annotation step. This demonstrates that it is possible to train a model 
to assign an overall score to a patient’s three main coronary arteries 
without requiring additional clinical annotations, which are not part of 
the screening routine. The work conceptually most similar to ours is 
that presented by Li et al. [14]. Although they used a completely differ-

ent methodological approach, their aim was similar to ours since they 
trained a model to assign patient-wise CAD-RADS scores based on the 
whole coronary tree obtaining an AUC of 0.737 for a binary classifi-

cation task. Compared with works that used finer annotation steps, we 
might expect our performance to be poorer due to the smaller amount 
of information used during the learning procedure. Nonetheless, we 
achieved very high performance in both tasks, often outperforming pre-
vious works that used finer annotations. It must be noted, however, that 
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Table 3

Comparison between different architectures: convolutional (ResNet18, ResNet50, Vgg16, Vgg19), transformer (ViT-

T) and hybrid (ConvNeXt-T, CAtNet-T, MaxViT-T) models. For each architecture, per-image AUC and Accuracy with 
95% CI are reported. DeLong’s test p-values for pairwise AUC comparisons, with the highest AUC as a reference, are 
also provided. Finally, in the last two columns we reported the number of parameters and MACs of the compared 
models.

Model Experiment AUC [95% CI] Accuracy [95% CI] DeLong’s p-value Params(M) MACs(G)

ResNet18
binary 0.81 [0.77, 0.85] 0.74 [0.69, 0.79] < 0.001

11.18 1.82
multi-class 0.85 [0.82, 0.88] 0.82 [0.78, 0.85] < 0.001

ResNet50
binary 0.83 [0.79, 0.86] 0.76 [0.71, 0.81] < 0.001

23.51 4.13
multi-class 0.85 [0.82, 0.89] 0.81 [0.77, 0.84] 0.01

Vgg16
binary 0.79 [0.75, 0.84] 0.72 [0.68, 0.77] < 0.001

134.27 15.47
multi-class 0.80 [0.76, 0.84] 0.78 [0.75, 0.82] < 0.001

Vgg19
binary 0.47 [0.42, 0.54] 0.51 [0.46, 0.56] < 0.005

139.58 19.63
multi-class 0.77 [0.73, 0.81] 0.76 [0.73, 0.80] < 0.001

ViT-T
binary 0.79 [0.74, 0.83] 0.72 [0.68, 0.76] < 0.001

5.49 1.08
multi-class 0.69 [0.65, 0.73] 0.71 [0.67, 0.74] < 0.001

ConvNeXt-T
binary 0.80 [0.75, 0.84] 0.76 [0.72, 0.81] < 0.001

27.80 4.45
multi-class 0.88 [0.85, 0.91] 0.83 [0.80, 0.86] 0.44

CoAtNet-T
binary 0.79 [0.75, 0.83] 0.72 [0.75, 0.83] < 0.001

5.48 7.64
multi-class 0.78 [0.74, 0.82] 0.77 [0.74, 0.81] < 0.001

MaxViT-T
binary 0.89 [0.86, 0.93] 0.82 [0.78, 0.86]

- 28.45 4.89
multi-class 0.90 [0.86, 0.92] 0.86 [0.83, 0.89]
Fig. 7. Projections included in the ablation study. We compared the network 
trained using maximum 8 available views for each patient, with different ver-

sions trained on 4 and 3 views respectively. The projections included in each 
experiment are highlighted in red.

direct comparison is challenging as the datasets used are not publicly 
available. The strength of our work primarily relies on the network’s 
ability to autonomously learn complex features, while taking the entire 
context into account, rather than considering single vessels, segments, 
or lesions.

From the results shown in Table 3, it is evident that the chosen 
architecture clearly outperformed all the other methods included in 
the comparison. In particular, Vgg19, which is the deepest fully con-

volutional architecture, and ViT-T which is the only vision transformer 
model, were the worst performing algorithms, showing poor general-

ization capabilities in both the experiments. The MaxViT architecture 
excels by leveraging a fusion of global and local receptive fields span-

ning across the network’s entire depth. This integration at every stage 
of the model’s architecture enhances its overall ability to generalize, 
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resulting in superior performance.
Table 4

Ablation study on the number of projections included 
in the pipeline. We repeated the multi-class experiment 
several times, including up to 4 or 3 projections for 
each patient. In this table we provide per-patient multi 
classification results on the test set (n=51).

Projections AUC [95% CI] Accuracy [95% CI]

0 - 7 0.93 [0.84, 0.99] 0.88 [0.79, 0.95]

0, 2, 4, 6 0.91 [0.83, 0.98] 0.88 [0.79, 0.94]

1, 3, 5, 7 0.92 [0.88, 0.99] 0.88 [0.80, 0.96]

0, 3, 5 0.89 [0.81, 0.97] 0.85 [0.77, 0.92]

1, 4, 6 0.91 [0.83, 0.97] 0.86 [0.77, 0.94]

2, 5, 7 0.93 [0.86, 0.98] 0.87 [0.79, 0.95]

3, 0, 6 0.91 [0.82, 0.98] 0.88 [0.79, 0.95]

4, 1, 7 0.91 [0.83, 0.97] 0.86 [0.77, 0.94]

5, 2, 0 0.93 [0.89, 0.99] 0.87 [0.79, 0.95]

6, 1, 3 0.93 [0.86, 0.98] 0.84 [0.75, 0.92]

7, 4, 2 0.92 [0.86, 0.98] 0.88 [0.81, 0.95]

For the binary experiment, we can recognize two areas from the 
t-SNE plots in Fig. 4 (a, b) with the patients in the lower left corner 
representing subjects with higher CAD-RADS score. For the multi-class 
experiment (c, d), instead, we can recognize three main groups basically 
representing patients with zero, mild and severe stenosis. It is interest-

ing to notice that the separation between healthy subjects (green) and 
patients with high CAD-RADS scores (red) is clear-cut. Interestingly, 
most of the errors occurred in the intermediate group. This finding re-

flects the fact that misclassifications in the test set were always off by 
only one class (e.g., a patient classified as belonging to class 1 when he 
was actually in class 0, but never misclassified as belonging to class 2). 
Furthermore, when we examine the plot colored by the original CAD-

RADS scores (d), we can observe that misclassifications in class 2 only 
occurred in patients with CAD-RADS scores lower than 5. This finding is 
particularly interesting because t-SNE is an unsupervised technique, yet 
the distribution of patients in the 2D space reflects the expected clusters 
based on domain knowledge.

In Fig. 5, we can observe both maximally activated patches and 
higher absolute SHAP values in the most critical regions of the ves-

sels. Regarding the LAD vessel, we can see that most of the pixels are 

blue in the central part, indicating that, based on those pixels, the pre-
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Table 5

Ablation study assessing the impact of individual MaxViT blocks within the model architecture. 
The results for the original MaxViT-T configuration are presented in the first row. Reduced blocks 
are highlighted in bold within the first column for all other configurations.

MaxViT blocks 
(S1, S2, S3, S4)

Params(M) Type of metric AUC [95% CI] Accuracy [95% CI] n

2, 2, 5, 2 28.45 per image 0.90 [0.86, 0.92] 0.86 [0.83, 0.89] 374

per patient 0.93 [0.84, 0.99] 0.88 [0.79, 0.95] 51

2, 1, 4, 2 25.72 per image 0.88 [0.85, 0.92] 0.83 [0.80, 0.86] 374

per patient 0.92 [0.84, 0.98] 0.89 [0.81, 0.96] 51

2, 1, 3, 2 23.47
per image 0.89 [0.86, 0.92] 0.83 [0.80, 0.87] 374

per patient 0.92 [0.83, 0.97] 0.86 [0.78, 0.93] 51

2, 1, 2, 2 21.22
per image 0.86 [0.82, 0.89] 0.81 [0.77, 0.84] 374

per patient 0.90 [0.83, 0.97] 0.83 [0.73, 0.91] 51

1, 2, 5, 1 19.44
per image 0.89 [0.85, 0.92] 0.85 [0.82, 0.88] 374

per patient 0.92 [0.84, 0.98] 0.88 [0.79, 0.95] 51

1, 1, 2, 1 12.11
per image 0.88 [0.85, 0.91] 0.83 [0.79, 0.86] 374

per patient 0.92 [0.85, 0.98] 0.86 [0.78, 0.94] 51
dicted class could have been lower than 2. In the case of the LCX vessel, 
there are several clearly visible occlusions in the final part of the artery, 
and the SHAP values are higher in absolute value in this area, with pink 
pixels pushing the prediction towards the worst CAD class, while blue 
pixels attenuate this effect due to partially normal areas of the vessel. 
For the RCA, we can see two separate areas where the pixels are mostly 
blue and mostly pink, respectively. In the region occupied by the pink 
pixels, we can observe a slightly brighter area in the original image, 
which undoubtedly influenced the model output positively in predict-

ing the higher CAD class. However, the final class is assigned based on 
all three coronary vessels, that represent 3 channels of a single input 
image and, in this case, it led to the correct prediction of the patient’s 
outcome phenotype (class 2, i.e. CAD-RADS = 4-5).

This approach could be helpful in visually inspecting which part 
of the image the model gives more importance to, and to check for 
potential artifacts that may have erroneously influenced the final clas-

sification. This tool could be beneficial in better examining suspicious 
cases to quickly detect possible biases that could indicate that the algo-

rithm may not be trustworthy in those cases. These user-friendly maps 
offer to non-expert clinical users a transparent way to assess the relia-

bility of the prediction, avoiding a completely black-box approach.

Finally, the ablation studies showed that model’s performance is 
minimally affected by reductions in both per-patient projections and 
MaxViT block configurations in the multi-class setting. The results of 
the first experiment, reported in Table 4, indicate that the model’s per-

formance in terms of per-patient efficiency remains relatively consistent 
despite a reduction in the number of projections. Notably, the minimal 
loss in performance suggests that the model can maintain a competi-

tive level of accuracy and AUC, even when operating under reduced 
input information. This finding underscores the model’s adaptability 
and resilience in learning essential information even when exposed 
to a limited number of view angles. The adaptability to fewer input 
views not only maintains robust performance but also potentially ac-

celerates the process of extracting different projections, contributing 
to enhanced operational efficiency. The second experiment instead, fo-

cused on evaluating the impact of varying MaxViT block configurations 
on model performance. The results, detailed in Table 5, illustrate dif-

ferent combinations of MaxViT blocks and their respective performance 
metrics. Notably, among the tested configurations, the model exhib-

ited relatively minimal performance loss in the configuration 1-2-4-1. 
Remarkably, this configuration has a significantly lower number of pa-

rameters while retaining robust performance. This adaptability could 
be crucial in resource-constrained environments where computational 
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power is limited.
The strength of this work relies on the pipeline ability to achieve 
highly accurate CAD-RADS predictions without the need for any addi-

tional effort in the clinical practice, such as annotating single vessels, 
segments, or lesions. This could be advantageous in a real clinical set-

ting where any additional step, not included in the standard clinical 
routine, would be limited to specific research studies. Furthermore, in 
our pipeline, expert clinical user manual intervention is minimized, 
thereby avoiding time-consuming and operator-dependent steps. An-

other crucial aspect is the way we composed the input data for the 
network. By always using the three main coronary arteries together 
as a single input, we trained a network to associate the CAD-RADS 
score to a sequence of arteries rather than each single vessel, exactly 
as a radiologist would do when assigning a patient-wise CAD-RADS 
score.

This work has some limitations that need to be addressed. First, 
the overall dataset, although significant for a clinical task, is relatively 
small. To mitigate this issue, we used a SOTA architecture specifically 
designed to work under all data regimes, and employed several tech-

nical strategies, including pre-training, cross-validation, data augmen-

tation, weight and LR decay, and label-smoothing, to avoid overfitting. 
However, the performance of the proposed algorithms could be pos-

sibly further improved by training on a larger dataset. Additionally, 
using data from a single clinical center limits the generalization ability 
of our results. It is essential to test the models on independent pop-

ulations to assess their generalization capabilities before application in 
clinical practice. Although during screening procedures the goal is more 
to quickly identify macro-categories of patients needing further assess-

ment or to rule-out healthy subjects, a larger dataset could allow testing 
a multi-class classification approach that takes into account all CAD-

RADS scores separately. Moreover, to restrict our analysis, in this study 
we did not include modifiers to describe patients with stents (modi-

fier S), vulnerable plaque features (modifier V), or grafts (modifier G). 
From a clinical point of view, it would be interesting to evaluate the 
generalizability of the models to these sub-categories as well. From a 
technical perspective, potential future extensions of this work could in-

volve replacing the suggested imputing strategy with a deep generative 
algorithm, specifically trained to generate synthetic samples represent-

ing healthy vessels. Training generative models can be challenging due 
to the extensive need for a vast amount of high-quality data, complex 
algorithm architectures, and significant computational resources nec-

essary for their training. Although this approach would add a layer of 
complexity, requiring substantial computational resources, it would be 
interesting to assess whether there would be a substantial increase in 

the models’ performance.
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6. Conclusions

We proposed a fully automated pipeline able to classify images rep-

resenting 2D longitudinal cross-sections extracted from CCTA scans of 
the three main coronary arteries, based on a fine-tuned Multi-Axis Vi-

sion Transformer model. The highly accurate results obtained in the 
two explored tasks (identify patients in need for further investigations 
and classify the patients according to the severity of the occlusion) sug-

gest the great potential of the proposed approach. This is the first work 
that does not require any additional annotation step, which is not part 
of the clinical routine, and uses instead, a learning procedure that per-

fectly emulates the clinical screening process. Such a tool would be a 
useful decision support system in the clinical practice, able to help the 
radiologists in quickly identify severe patients as well as completely 
healthy subjects and better inspect borderline cases with the help of 
intuitive and visually explainable methods.
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