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Mantle cell lymphomas with concomitant MYC and CCND1
breakpoints are recurrently TdT positive and frequently show
high-grade pathological and genetic features
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Abstract
Chromosomal breakpoints involving the MYC gene locus, frequently referred to as MYC rearrangements (MYC − R+), are a
diagnostic hallmark of Burkitt lymphoma and recurrent in many other subtypes of B-cell lymphomas including follicular
lymphoma, diffuse large B-cell lymphoma and other high-grade B-cell lymphomas and are associated with an aggressive clinical
course. In remarkable contrast, in MCL, only few MYC − R+ cases have yet been described. In the current study, we have
retrospectively analysed 16 samples (MYC − R+, n = 15, MYC − R−, n = 1) from 13 patients and describe their morphological,
immunophenotypic and (molecular) genetic features and clonal evolution patterns. Thirteen out of fifteen MYC − R+ samples
showed a non-classical cytology including pleomorphic (centroblastic, immunoblastic), anaplastic or blastoid.MYC translocation
partners were IG-loci in 4/11 and non-IG loci in 7/11 analysed cases. The involved IG-loci included IGH in 3 cases and IGL in
one case. PAX5was the non-IG partner in 2/7 patients. TheMYC − R+MCL reported herein frequently displayed characteristics
associated with an aggressive clinical course including high genomic-complexity (6/7 samples), frequent deletions involving the
CDKN2A locus (7/10 samples), high Ki-67 proliferation index (12/13 samples) and frequent P53 expression (13/13 samples). Of
note, in 4/14 samples, SOX11 was not or only focally expressed and 3/13 samples showed focal or diffuse TdT-positivity
presenting a diagnostic challenge as these features could point to a differential diagnosis of diffuse large B-cell lymphoma
and/or lymphoblastic lymphoma/leukaemia.

Keywords MYC .Mantle cell lymphoma .MCL .Blastoid .Terminal deoxynucleotidyl transferase .TdT .SOX11 .CDKN2A .

TP53 . P53 . Clonal evolution

Introduction

In the diagnostic work-up of lymphoid neoplasms, especially
those with pleomorphic or blastic morphology, expression of
cyclin D1, SOX11 and terminal deoxynucleotidyl transferase
(TdT), as well as CCND1-, MYC- and BCL2-chromosomal
breakpoints, are diagnostic hallmarks of disease. Mantle cell
lymphoma (MCL) typically presents as a lymphoid prolifera-
tion of medium-sized cells with centrocyte-like morphology
and overexpression of cyclin-D1 as a result of an IG-CCND1
juxtaposition. A subset of MCL presents with a pleomorphic
or blastoid morphology resembling diffuse large B-cell lym-
phoma (DLBCL) or lymphoblastic lymphoma [1, 2].
Chromosomal translocation breakpoints involving the MYC
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gene locus, commonly referred to as MYC − rearrangements
(MYC-R+) and characteristic of Burkitt lymphoma [3], have
been occasionally detected in low-grade follicular lymphoma
[4–6] but are more frequent in DLBCL and other high-grade
B-cell lymphomas and are associated with an aggressive clin-
ical course [7]. Compared to other high-grade B-cell lympho-
mas, MYC − rearrangements in MCL seem to be rare with so
far only few cases being reported including a series of 17 cases
published by Hu et al. [8, 9] In another series, Wang et al.
reported the presence of aMYC − break to be an independent
prognostic factor. [10] MCL with aMYC − break may present
a diagnostic challenge since their morphology and
immunophenotype are often atypical. In line with this, in the
series published by Hu et al. [9], only 25% ofMCL withMYC
− rearrangement was unequivocally SOX11 positive. Along
the same lines, a case ofMCLwith bothCCND1− andMYC −
breaks published by Kallen et al. [11] expressed TdT, the
expression of which in the B-cell lineage is normally restricted
to precursor B-cells in the bone marrow, precursor B-cell neo-
plasms, AML-M0 and rare high-grade B-cell lymphomas
[12–14]. In the present study, we report on 15 MYC − R+
MCL samples from 13 patients and describe their morpholog-
ical, immunophenotypic, (molecular) cytogenetic and molec-
ular features and their clonal evolution patterns.

Methods

Case selection

All cases with CCND1 and MYC breaks were retrieved from
reference pathology and/or genetic laboratories, mostly in a
retrospective manner. Analysis ofMYC − break status was not
routinely performed in MCL but was limited to cases with
unusual morphological and/or immunophenotypical charac-
teristics or with a 8q24 breakpoint in the karyotype. This in-
cludes cases morphologically and/or immunophenotypically
favouring a diagnosis of DLBCL or high grade B-cell lym-
phoma during diagnostic workup (e.g. centroblastic,
immunoblastic, lymphoblastic or Burkitt-like morphology,
MYC positivity, SOX11 negativity and very high proliferative
index). Cases with MYC gain, amplification or 8q24
breakpoint in the karyotype but without a MYC − break as
determined by FISH with MYC break-apart and/or dual-/tri-
colour fusion assays were not included. To be confident about
the diagnoses of the cases and to avoid inclusion of plasma
cell dyscrasias harbouring CCND1 − rearrangements (e.g.
multiple myeloma, plasma cell leukaemia), we did not include
cases with only (conventional) cytogenetics but without any
accompanying clinical, histopathological, immunohistochem-
istry (IHC) and/or flow-cytometry (FCM) information. Unless
stated otherwise, the number of samples refers to MYC − R+
samples.

Immunohistochemistry and immunofluorescence

Immunohistochemistry was performed according to standard
protocols [15, 16]. Specifically, staining protocols for Ki-67,
SOX11, P53 and TdT have been published previously [12,
17–19]. With regard to scoring, SOX11 was scored as nega-
tive (0% positive lymphoma cells, score ‘0’), low (1–10%,
score ‘1’) or positive (> 10%, score ‘2’). P53 was scored as
negative (0% positive lymphoma cells, score ‘0’), low (1–
10%, score ‘1’), intermediate (10–50%, score ‘2’) or high (>
50%, score ‘3’) [18]. Immunofluorescence for 2-colour dou-
ble staining on formalin-fixed paraffin embedded (FFPE)
slides was performed with antibodies against TdT (1:10 dilut-
ed, clone SEN28, NovoCastra/ Leica, Wetzlar, Germany),
CCND1 (cyclin-D1: (1:10 diluted, rabbit, Clon SP4, Thermo
Scientific, Waltham, Massachussets, USA)), Alexa 488 and
Alexa 555 labelled secondary antibodies (Thermo Scientific,
Waltham, Massachussets, USA) on two TdT-positive cases
(cases 5 and 6-R) with available material.

Conventional cytogenetics and molecular
cytogenetics

Conventional and molecular genetic analyses were performed
as previously described [12, 15, 16] and karyotypes were re-
vised according to the ISCN 2016 nomenclature [20].
Complex karyotypes were defined as having ≥ 3 aberrations
(including the MYC − translocation) [21]. FISH was per-
formed using commercially probes: LSI BCL2 BAP
(18q21), LSI BCL6 BAP (3q27), LSI CCND1 BAP (11q13),
LSI MYC BAP (8q24) and LSI IGH/CCND1 (14q32/11q13),
LSI IGH/BCL2 (14q32/18q21) and LSI IGH/MYC (CEP8)
(14q32/8q24 (8cen)) (all Abbott-Vysis, Downers Grove, IL,
USA). In addition, non-commercial FISH assays for the de-
tection of far telomeric/centromeric MYC breakpoints and
IGK/MYC (2p12/8q24), IGL/MYC (22q11/8q24), BCL6/
MYC (3q27/8q24) and PAX5/MYC (9p13/8q24) were applied
[12, 15, 16, 22],

Copy number variant analysis

DNA extraction and copy number variant (CNV) analysis
using the OncoScanTM CNV FFPE assay and array-CGH
were performed on formalin-fixed paraffin embedded and fro-
zen sections as previously described [12, 15] with the modi-
fication that for visual inspection of CNV’s and regions of
LOH, the Chromosome Analysis Suite (ChAS) software
V4.0 was used (Affymetrix, Santa Clara, CA). For data visu-
alisation of Fig. 2, the ChAS plug-in Multi Sample Viewer
(MSV) was applied. Array-CGH data were already available
for case 1 [15] and the genome annotations were lifted-over
from hg17 to GRCh37/hg19 using the Lift Genome
Annotations Tool of the UCSC Genome Browser (GRCh37/
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hg19). OncoScanTM analysis was performed on the cases with
available material and multiple time points available (cases 2
and 6), with TdT-expression (cases 5 and 6R) and case 3. A
high chromosomal complexity was defined as having ≥ 6
aberrations by array-based CNV analysis [15].

Results

Epidemiological and clinical characteristics

The great majority of the patients were male 11/13 (85%).
Mean age at diagnosis was 68 years (range: 53–83 years). A

predominance of the samples was from extra-nodal sites (10/
15, 67%).

Histopathological and immunophenotypic
characteristics

Since the first sample of patient 2 was MYC-break negative,
this sample was only used for clonal evolution analysis. The
majority of MYC − R+ samples (13/15, 87%) presented with
non-classic cytology in particular blastoid (n = 8). The five
pleomorphic cases featured a cytology ranging from
centroblastic to immunoblastic and anaplastic (Fig. 1a, g,
j, m, Table 1). A small cell cytology was observed in case 7.
In two patients, sequential biopsies were available: in patient
2, the cytology was classic in the initial diagnostic (MYC − R
−) and first-relapse sample (MYC −R+) and blastoid at second
relapse (MYC − R+). Both biopsies of patient 6 had an aggres-
sive cytology (pleomorphic and blastoid). SOX11 was nega-
tive or only focally expressed in 4/14 samples (28%, Fig. 1c,
h, k and Table 1) while 10/15 (67%) samples displayed at least
minor expression of CD10 and/or BCL6 (Fig. 1d, e and
Table 1). Of note, foci or focal and in case 4 more diffuse
expression of TdT − positive cells (≥ 2–20%) was detected
in 3 out of 13 samples (23%) tested (Fig. 1i, l, n, Table 1). A
blastoid morphology was seen in 2/3 TdT+ cases (cases 4 and
6-R) while case 5 had a pleomorphic histology with anaplastic
cells. To determine the nature of these TdT-positive cells, we
performed cyclin-D1-TdT immunofluorescence double stain-
ing in cases 5 and 6-R which revealed that TdT was expressed

Fig. 2 Landscape of combined genomic copy number gains (dark blue),
losses (red) and loss-of-heterozygosity (LOH, purple) of cases 2 (initial
diagnosis, first- and second relapse), 3, 5 and 6 (initial diagnosis and
relapse). CNVs of case 1 (array-CGH) are not depicted in the figure.
The Y-axis depicts the absolute number of samples with the respective
aberration. Focal CN aberrations may not be visible in the figure.

Genomically distinct aberrations but within close proximity of each
other may not be visible as separate but instead as single genomic
event. LOH includes both LOH resulting from deletions and from copy
number neutral loss of heterozygosity. Not all deletions may be displayed
also in the LOH histograms and vice versa as for copy number loss and
LOH different calling algorithms are used

�Fig. 1 Morphological and immunophenotypic characteristics. A
prototypical case (nr. 8) is shown in panels a–f, featuring a DLBCL-
like, immunoblastic cytologic appearance (a HE, × 40), a MCL
phenotype (b cyclin-D1, × 40 and c SOX11, × 40), co-expression of
CD10 (d × 40) and BCL6 (e × 40) and substantial positivity for MYC
(non-IG MYC rearrangement) (f × 40). TdT-expressing cases are further
depicted. Case 4 features a blastoid appearance (g HE, × 40) and a
lymphoblastic lymphoma-like phenotype, including SOX11 expression
(h × 40) and partial TdT-positivity (i × 40), but with IGH-CCND1, with
cyclin D1 overexpression (not shown), and IGH-MYC. Case 6-R which
harbours IGH-CCND1 andMYC-PAX5 fusion shows blastoid to Burkitt-
like cytology (j HE, × 40), scant SOX11 reactivity (k × 40) with a minor
component of TdT-positive cells (l × 40). Case 5 shows pleomorphic
morphology with occasionally anaplastic cells (m × 40) and
intermingled single TdT-positive cells (n × 40) which were shown to be
cyclin-D1/TdT double positive cells (o × 100, cyclin-D1 red, TdT green,
double-positive cells yellow)
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by a subset of cyclin-D1 positive cells (Fig. 1o). Using a cut-
off of ≥ 40% positive cells [6], MYC was expressed in 12/13
(92%) samples. P53 was expressed by allMYC − R+ samples
tested (13/13, 100%) with 6/13 (46%) showing high expres-
sion (> 50% of lymphoma cells). Ki-67 was high (≥ 30%) in
12/13 (92%) samples, ≥ 75% in 7/13 (54%) samples and in 3
patients ≥ 90%. In both patients with sequential biopsies avail-
able, there was an increase in the Ki-67 proliferation index
(18%, diagnostic MYC − R negative sample, 53% and 90%
for patient 2 and 54% and 77% for patient 6).

Conventional and molecular cytogenetics

In 11/13 patients, the MYC − translocation partner could be
investigated by conventional and/or molecular cytogenetics.
In 4/11 patients, the MYC − translocation partner was one of
the IG-loci (Table 1) as determined by karyotyping and FISH
(case 7, IGH-MYC ; case 13 IGL-MYC), FISH (case 4, IGH-
MYC) or karyotyping (case 3, der(8)t(8;14)(q24;q32)t(11;14)).
In 7/11 cases, the MYC − translocation partner was a non-IG
partner. In cases 1 and 6-R, there was a PAX5/MYC
(9p13/8q24) fusion by FISH while in cases 2-R2, 5, 8, 9 and
12, noMYC − partner could be identified with the applied FISH
assays (Table 1). All patients with conventional cytogenetics
available had karyotypes with ≥ 3 aberrations.

Array-based copy number variant analyses

Array-based copy number variant (CNV) analysis was avail-
able for eight samples from five patients including for two
patients at multiple time points. The copy number variants
for the individual cases are listed in Table 1 and visualised
in Fig. 2. The most common (subclonal) aberration (other than
those involving the IGH/IGK/TCR-Loci and sex-chromo-
somes) was loss of 9p21.3 involving CDKN2A/CDKN2B oc-
curring in 4 patients and 5 samples with a homozygous dele-
tion in sample 6-R. Other common aberrations included
(focal) gains of chromosome 3q including the BCL6 locus at
3q27.3 in samples 5, 6 and 6R, 7p (1, 5, 6 and 6R), 7q (1, 5
and 6R) and 8q including the 8q24.21/MYC-locus (1, 5, 6 and
6R). The ATM locus at 11q22.3 and TP53 locus at 17p13.1
were deleted in patient 2 (diagnosis and relapses) and 5
respectively.

Clonal evolution

In patients 2 and 3, the clonal evolution of MYC − breaks
could be assessed. In both patients, subclones with and with-
out theMYC − break were present in the obtained karyotypes.
In addition, the MYC − break was absent in the diagnostic
biopsy of patient 2. From patients 2 and 6, biopsies from
multiple time-points could be analysed by OncoScanTM. The
individual CNV-profiles of the diagnostic and relapse samples

of patients 2 and 6 are shown in supplementary Figs. 1 and 2
respectively. In patient 2, a deletion of ≈ 13–14 Mb at
11q22.2-q23.3 involving the ATM locus was present in the
initial diagnostic and both relapse samples. Together with
the MYC-break, gains at 9p and losses at 4q and 8q were
acquired during disease progression indicative of a linear
clonal evolution pattern at the level of array-based CNV anal-
ysis. Both biopsies of patient 6, at initial diagnosis and relapse,
showed complex aberrations sharing various alterations but
each also having a set of unique ones. In the initial diagnostic
biopsy, there was a heterozygous deletion of chromosomal
locus 9p21.3 involving CDKN2A/CDKN2B while there was
a homozygous deletion of this locus at relapse. Overall, all
MYC − positive samples (except 2R1) showed complex geno-
mic landscapes as defined as having ≥ 6 aberrations by array-
based CNV analysis [15].

Discussion

In the present study, we performed a comprehensive histo-
pathological and molecular-(cyto)genetic characterization of
a (considering the rarity of these lymphomas) large series of
MCL with CCND1− and MYC − breaks. Unusual but previ-
ously reported findings were a DLBCL-like cytology with
expression of CD10 and/or BCL6 [10, 25, 26], relatively fre-
quent SOX11 negativity and recurrent (focal) positivity for
TdT, all features posing a diagnostic challenge. However, it
has to be taken into account that the cases included in the
present study were collected from reference pathology centres
and genetic laboratories and may therefore be enriched for
unusual clinical, morphological, immunophenotypic and/or
genetic features. The DLBCL−like cytology (ranging from
centroblastic to immunoblastic and including anaplastic) and
immunophenotypic features (i.e. expression of CD10 and/or
BCL6) may prompt an incorrect diagnosis of DLBCL or high
grade B-cell lymphoma unless cyclin-D1 staining and/or
FISH forCCND1 − break is performed [10, 25, 27]. This issue
could be particularly pertinent to cases 3, 6-R, 7 and 11 which
also showed negative to weak expression of SOX11 (see
below).

Approximately 30% of the cases in the present study—two
of which were diagnosed on bone marrow biopsies—were
SOX11 negative or only focally positive. This SOX11 nega-
tivity rate is markedly higher than reported by Nygren et al.
[28] and in a series of 344 (predominantly nodal) MCL from
clinical trials of the European Mantle Cell Lymphoma
Network (EMCL) in which only 9/344 (3%) and 16/344
(5%) were SOX11 expression negative and low, respectively
[18]. Importantly, in this latter study, no correlation between
negative/low SOX11 expression and Ki67 was found [18] and
amongst 250 patients from this study with both cytology in-
formation and SOX11 expression data, though not reaching
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statistical significance, a difference was observed in the per-
centage of patients with blastic cytology in the SOX11 IHC
negative, low and high groups. This was slightly higher in the
group with negative or low SOX11 IHC than in those with
SOX11 > 10% (17% and 18% versus 10%, p value for 3-
group comparison p = 0.31, data not shown). Whether these
differences really exist needs to be investigated in larger
cohorts.

Although previously reported in three individual cases [11,
14, 29], we observed recurrent TdT positivity in 3/13 samples
with pleomorphic/blastoid morphology ranging from focally
positive cells (cases 5 and 6-R) to more pronounced staining
(20%, case 4). As assessed by cyclin-D1 and TdT immuno-
fluorescence, double staining in two cases TdT was expressed
by a subpopulation of the lymphoma cells themselves, thus
excluding the possibility of homing of benign precursors [30].
In case 4, no material was available for double-staining but in
this case, the percentage of TdT-positive cells (20%) far
outnumbered a possible small non-neoplastic cell population.
Aberrant expression of TdT, which is usually only expressed
in precursor B- and T-cells and neoplasms derived from these
cells and also in AML-M0 [12–14], has been occasionally
reported in high-grade B-cell lymphomas and only in three
other MCL [11, 14, 29]. The case published by Kallen et al.
[11] had a component with conventional morphology lacking
both anMYC − rearrangement and TdT expression as well as a
blastic component with a MYC − rearrangement and TdT ex-
pression. In the series of 17MCLwith a dual rearrangement of
CCND1 andMYC, all three cases that had been tested for TdT
expression were negative [9]. The mechanism by which TdT
is (re-)expressed is unknown but it may be similar to the phe-
nomenon in rare cases of (transformed) follicular lymphoma
with a dual rearrangement of BCL2 and MYC [31]. Likely,
it is a secondary phenomenon, also supported by our obser-
vations in case 6, where the first sample did not show any
TdT expression whereas the second sample showed posi-
tivity in less than 5% of the cells. In addition, in case 4,
there was a history of a (unspecified) haematological dis-
ease. This is in line with the case published by Ok et al. [14]
which also had a history of MCL and in the case reported by
Cantu et al. [29], there was in addition to the TdT positive
nodal blastic MCL a typical MCL involving the bone mar-
row. Independent of this, TdT expression in MCL seems to
be uncommon as 0/15 blastoid/pleomorphic MCLs (previ-
ously assessed for MYC expression [8]) showed TdT pos-
itivity and in a series of 112 MCL published by Zhou et al.,
all were TdT negative [32].

The acquisition ofMYC − break likely occurs secondary to
theCCND1 − rearrangement (as exemplified by patients num-
ber 2 and 3) and parallels the observation in transformed fol-
licular lymphomas [6, 31, 33]. In addition, this sequence of
events is supported by the observation that the t(11;14)/IGH-
CCND1 occurs mostly at pre-B-cell stage ([34] and reviewed

in [35]) while MYC − rearrangements occur (with very rare
exceptions[12]) in the germinal centre [3]. Although the ret-
rospective nature and the aforementioned referral bias of this
study hinder a ‘true’ estimate about the frequency of MYC −
breaks in MCL, MYC − breaks in this entity seem to be rare:
approximately 5% of MCL with published conventional cy-
togenetic data harbour an additional 8q24/MYC breakpoint
[7]—this relatively high frequency is likely influenced by re-
ferral and publication bias—while the frequency seems lower
in our previously published series of tissue micro-arrays com-
posed of unselected cases (0/55 for classical MCL) but com-
parable for pleomorphic/blastic MCL (1/19, 5%) [8]. In the
series by Hu et al., MYC − rearrangements were detected in
17/1162 cases (1.5%) of MCL [9] and in 4/126 (3,2%) by
Malarikova [36].

An interesting observation was the high frequency of
(focal) copy number (CN) deletions of the CDKN2A locus
(9p21.3) in 4/5 patients evaluated by array-based CNV anal-
ysis and 2/2 by FISH. This incidence is markedly higher than
previously reported (20% in [37], 7–30%, reviewed in [38]
and 18–41%, reviewed in [39], 33% in [36]) but in line with
the recently reported hetero- and homozygous CN loss of
CDKN2A/B in 12/13 (92%) of pleomorphic/blastoid MCL
[40]. Other CN abnormalities which were detected by array-
based CNV analysis have been reported as recurrent previous-
ly [38]. The current study showed a high frequency of ‘high-
grade’ pathological features in MCL with concomitant MYC
and CCDN1 breaks including pleomorphic/blastoid morphol-
ogy, frequent P53 expression, CDKN2A deletions, high Ki-67
proliferation index and a high genomic complexity, all biolog-
ical features associated with aggressive disease and poor prog-
nosis [18, 36, 39–41]. These findings challenge the develop-
ment of innovative therapeutic approaches for the (mostly
elderly) patients with MCL and MYC − breaks [1, 42] as the
presence of a MYC − break may have, even amongst already
aggressive blastoid MCL, additional unfavourable prognostic
impact [10].
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