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Abstract Artificial Intelligence (AI) is now pervasive in the everyday life. AI is
quite often based on deep learning techniques. Deep learning continuosly shows to
be very effective but on the other side its inherent opacity is also well known: deep
learnig designers cannot always explain AI decisions that are not impossible to alter
or counterfeit. thus the need for eXplainable Artificial Intelligence (XAI).
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1 Introduction

Equivariant operators are proving to be increasingly important in deep learning, in
order to make neural networks more transparent and interpretable [2,7]. The use of
such operators corresponds to the rising interest in the so called “explainable ar-
tificial intelligence” [6,14], which looks for methods and techniques whose func-
tioning can be understood by humans. In accordance with this line of research,
Group Equivariant Non-Expansive Operators (GENEOs) have been recently pro-
posed as elementary components for building new kinds of networks [3-5].Their use
is grounded in Topological Data Analysis (TDA) and guarantees good mathemat-
ical properties, such as compactness, convexity, and finite approximability, under
suitable assumptions on the space of data and by choosing appropriate topologies.

More formally, a GENEO is a functional operator that transforms data into other
data. By definition, it is assumed to commute with the action of given groups of
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transformations (equivariance) and to make the distance between data decrease
(non-expansivity). The groups contain the transformations that preserve the “mean-
ing” of our data, while the non-expansivity condition means that the operator must
simplify the data metric structure. Both equivariance and non-expansivity are im-
portant: while equivariance reduces the computational complexity by exploiting
symmetries of data, non-expansivity guarantees that the space of GENEOs can be
finitely approximated.

In this paper we will introduce GENEOs and their main mathematical properties
and we will show promising results obtained in an industrial application, namely
protein pocket detection.

2 Basic definitions and properties of GENEO spaces

Let us now formalize the concept of GENEO, as was introduced in [3] . We assume
that a space Φ of functions from a set X to Rk is given, together with a group G
of transformations of X , such that if ϕ ∈ Φ and g ∈ G then ϕ ◦ g ∈ Φ . We call the
couple (Φ ,G) perception pair. We also assume that Φ is endowed with the topology
induced by the L∞-norm DΦ(ϕ1,ϕ2) = ||ϕ1 −ϕ2||∞, ϕ1,ϕ2 ∈ Φ . Let us assume that
another perception pair (Ψ ,H) is given, with Ψ endowed with the topology induced
by the analogous L∞-norm distance DΨ , and let’s fix a homomorphism T : G → H.

Definition 1. A map F : Φ →Ψ is called a group equivariant non-expansive oper-
ator (GENEO) if the following conditions hold:

1. F(ϕ ◦g) = F(ϕ)◦T (g) for every ϕ ∈ Φ , g ∈ G (equivariance);
2. ∥F(ϕ)−F(ϕ ′)∥∞ ≤ ∥ϕ −ϕ ′∥∞ for every ϕ,ϕ ′ ∈ Φ (non-expansivity).

If we denote by Fall the space of all GENEOs between (Φ ,G) and (Ψ ,H) and
we introduce the metric

DGENEO(F1,F2) = sup
ϕ∈Φ

||F1(ϕ)−F2(ϕ)||∞, ∀F1,F2 ∈ Fall

the following main properties of Fall can be proven (see [?] for the proofs).

Theorem 1. If Φ and Ψ are compact, then Fall is compact with respect to the topol-
ogy induced by DGENEO.

Theorem 2. If Ψ is convex, then Fall is convex.

Theorem 1 guarantee that if the spaces of data are compact, then also the space
of GENEOs is compact, thus it can be well approximated by a finite number of
representatives, reducing thus the complexity of the problem. Theorem 2 implies
that if the space of data is also convex, then any convex combination of GENEOs
is still a GENEO. Thus when both properties hold we have an easy instrument to
obtain new GENEOs starting from a finite number.
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3 GENEOnet

We used GENEOs to build GENEOnet [5] a geometrical explainable machine learn-
ing method to detect pockets on the surface of proteins which are likely to host ligans
(i.e. drugs quite often). Protein pockets detection is a key problem in the context of
drug development, since being able to identify only a small number of good sites,
allows a scientist to restrict the action of virtual screening procedures, saving thus
both computational resources and time. This research is ongoing, in collaboration
with the Italian pharmaceutical company Dompé Farmaucetici.

This problem is particularly suitable to be treated with GENEOs: on one side
there is some important empirical chemical-physical knowledge that can not be di-
rectly embedded in the usual machine learning techniques, but can be injected in a
GENEO architecture, and, on the other side, the problem shows a natural equivari-
ance property, since if we rotate or translate a protein, its pockets will be coherently
transformed in the same way. This suggest that pocket detection is equivariant with
respect to the group of spatial isometries.

For the application input data have been discretized by surrounding each molecule
with a bounded region divided into a 3D grid of voxels. In this way the data are mod-
elled as bounded functions from the Euclidean space R3 to Rd . We chose d = 8,
number of distinct geometrical, chemical and physical potential fields computed on
each molecule and took into account for the analysis1.

The input data are fed to a layer of GENEOs chosen from a set of parametric
families of operators, each one parametrized by one shape parameter σi, i = 1, . . . ,8.
These families were designed in order to include the a priori knowledge of the ex-
perts of medicinal chemistry. We opted for convolutional operators with L1 normal-
ized kernels: Fk(ϕ) =

∫
R3 ϕ(x)k(x− y)dy. The behavior of such operators is deter-

mined by their kernels, thus by making the i-th kernel dependent only on one shape
parameter σi, we have direct control on the action of each operator. We mainly used
Gaussian kernels2. Nonetheless all the kernels are rotationally invariant functions,
this fact, together with the properties of convolution, guarantees that the correspond-
ing operators satisfy the key requirement to be equivariant with respect to the group
of isometries of R3.

In the second step the d operators are combined through a convex combination,
with weights α1, . . . ,αd , with αi ∈ [0,1],∀i and ∑

d
i=1 αi = 1. The output of the con-

vex combination operator is normalized to a function ψ from R3 to [0,1]. Here ψ(x)
can be read as the probability that a point x ∈R3 belongs to a pocket. Finally, given
a probability threshold θ ∈ [0,1], we get the different predicted pockets by taking
the connected components of the superlevel set {ψ ≥ θ} ⊆ R3. The entire model
pipeline is depicted in Figure 1. The model that was described so far has a total of 17

1 See [5] for further details on the specific channels.
2 k(x) = C exp

(
− ||x||2

2σi

)
. Or kernels having shapes of spheres or of spherical crowns, assuming

alternatively positive and negative values in different parts of the interior of the sphere or crown,
and zero outside. See [5] for further details about the kernels.
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Fig. 1 Model workflow: input
channels ϕ1, . . . ,ϕ8 are fed
to the GENEOs F1, . . . ,F8
dependent on the shape pa-
rameters σ1, . . . ,σ8. The in-
termediate outputs ψ1, . . . ,ψ8
are combined through convex
combination with weights
α1, . . . ,α8 to get the final re-
sult ψ . To get predictions a
thresholding operation with a
parameter θ is applied obtain-
ing the binary function ψ̂
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parameters. The fact that the model only employs convolutional operators, and their
linear combinations, allowed us to set up an optimization pipeline quite similar to
a 3D Convolutional Neural Network (CNN), but with two fundamental differences.
First of all GENEOnet has a really tiny set of parameters3. Additionally the convo-
lutional kernels of the GENEOs are not learned entry by entry as in classical CNNs
(in this way equivariance would not be preserved), instead the kernels are computed
at each step from the shape parameters that are updated during the optimization.

In order to identify the unknown parameters, we chose to optimize a cost function
that evaluates the goodness of our predictions4. Eventually, after training, pockets
are found as the connected components of the thresholded output of the model,
resulting in a set of unranked pockets. Actually this representation is not much in-
formative, since it is usually desirable to compute also the “druggability” of the
identified cavities, that is a ranking score of the pockets on the basis of their fitness
to host a ligand. Thus we devised a procedure to score pockets so that the output of
the model consists in a list of pockets ranked by their corresponding scores5.

That said, in order to identify the optimal model, we opted for a two-step opti-
mization procedure: in the first step we generated m = 200 models (M )m

k=1 opti-
mized from (Tk, ICk)

m
k=1, where Tk is a training set of size 200 subsampled from the

whole dataset and ICk are the randomly generated initial values of the parameters.
In the second step each model was evaluated for it’s scoring capabilities computing
H1 (see next paragraph) on a validation set in order to select the one with highest
H1. This final model was evaluated on an independent (both from the training and

3 For comparison DeepPocket [1] , a recent approach that uses a 3D CNN to rescore fPocket [12]
predictions, has 665122 parameters.
4 See [5] for further details about parameters optimization.
5 See [5] for further details regarding pockets scoring.
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the validation sets) test set to produce the results of next section.6

We compared the results of GENEOnet with other recent methods for protein
pocket detection some of those based on ML techniques. We decided to base our
comparison on the scores assigned by the different methods to the pockets. In this
way performed a comparison based on the ability of the model to assign the highest
scores to pockets that match the true ones. Given a dataset of proteins having only
one ligand, and thus one “true pocket” each, we can compute the fraction of proteins
whose true pocket is hit by the predicted one with highest score, by the one with
second highest score and so on, obtaining coefficients7 H j =

1
n ∑

n
k=1 ∆ j(τk,M (Pk)).

Finally we computed the cumulative sum of these fractions Tj =∑
j
i=1 Hi. In this way

different methods can be compared directly: if a model M is such that T M
j ≥ T M ′

j
for every j ≥ 1 then M is better than M ′. The results reported in Table 1 show that
GENEOnet has a better performance than all the other methods considered.

Table 1 Tj values for a subset
of the methods in the com-
parison. See [5] for the full
analysis.

Method T1 T2 T3 T4 ∑ j≥1 H j
GENEOnet [5] 0.792 0.905 0.941 0.955 0.975
P2Rank [10] 0.728 0.846 0.891 0.915 0.949
DeepPocket [1] 0.653 0.798 0.860 0.895 0.975
CAVIAR [13] 0.620 0.743 0.779 0.797 0.841
SiteMap [9] 0.475 0.533 0.549 0.556 0.562
Fpocket [12] 0.332 0.464 0.535 0.586 0.975
CavVis [15] 0.223 0.374 0.482 0.566 0.843

Acknowledgements Funding from Dompè Farmaceutici S.p.A. to run this project is acknowl-
edged by the authors.
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