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Abstract

We extend the existing leading (LO), next-to-leading (NLO), and next-to-next-to-leading order (NNLO)
NNPDF4.0 sets of parton distribution functions (PDFs) to approximate next-to-next-to-next-to-leading
order (aN3LO). We construct an approximation to the N3LO splitting functions that includes all available
partial information from both fixed-order computations and from small and large x resummation, and
estimate the uncertainty on this approximation by varying the set of basis functions used to construct
the approximation. We include known N3LO corrections to deep-inelastic scattering structure functions
and extend the FONLL general-mass scheme to O

(
α3
s

)
accuracy. We determine a set of aN3LO PDFs by

accounting both for the uncertainty on splitting functions due to the incomplete knowledge of N3LO terms,
and to the uncertainty related to missing higher corrections (MHOU), estimated by scale variation, through
a theory covariance matrix formalism. We assess the perturbative stability of the resulting PDFs, we study
the impact of MHOUs on them, and we compare our results to the aN3LO PDFs from the MSHT group.
We examine the phenomenological impact of aN3LO corrections on parton luminosities at the LHC, and
give a first assessment of the impact of aN3LO PDFs on the Higgs and Drell-Yan total production cross-
sections. We find that the aN3LO NNPDF4.0 PDFs are consistent within uncertainties with their NNLO
counterparts, that they improve the description of the global dataset and the perturbative convergence of
Higgs and Drell-Yan cross-sections, and that MHOUs on PDFs decrease substantially with the increase of
perturbative order.
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1 Introduction

Calculations of hard-scattering cross-sections at fourth perturbative order in the strong coupling, i.e. at
next-to-next-to-next-to-leading order (N3LO), have been available for a long time for massless deep-inelastic
scattering (DIS) [1–4], and have more recently become available for a rapidly growing set of hadron collider
processes. These include inclusive Higgs production in gluon-fusion [5, 6], bottom-fusion [7], in association
with vector bosons [8], and in vector-boson-fusion [9], Higgs pair production [10], inclusive Drell-Yan pro-
duction [11,12], differential Higgs production [13–17], and differential Drell-Yan distributions [18,19], see [20]
for an overview.

In order to obtain predictions for hadronic observables with this accuracy, these partonic cross-sections
must be combined with parton distribution functions (PDFs) determined at the same perturbative order.
These, in turn, must be determined by comparing to experimental data theory predictions computed at the
same accuracy. The main bottleneck in carrying out this programme is the lack of exact expressions for the
N3LO splitting functions that govern the scale dependence of the PDFs: for these only partial information
is available [21–31]. This information includes a set of integer N -Mellin moments, terms proportional to nk

f

with k ≥ 1, and the large- and small-x limits. By combining these partial results it is possible to attempt
an approximate determination of the N3LO splitting functions [30,32], as was successfully done in the past
at NNLO [33].

At present a global PDF determination at N3LO must consequently be based on incomplete information:
the approximate knowledge of splitting functions, and full knowledge of partonic cross-sections only for a
subset of processes. A first attempt towards achieving this was recently made in Ref. [32], where the missing
theoretical information on N3LO calculations was parametrized in terms of a set of nuisance parameters,
which were determined together with the PDFs from a fit to experimental data.
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Here we adopt a somewhat different strategy. Namely, we use a theory covariance matrix formalism in
order to account for the missing perturbative information. It was shown in Ref. [34] that nuclear uncertainties
can be included through a theory covariance matrix, and it was further shown in Refs. [35, 36] how such a
theory covariance matrix can be constructed to account for missing higher-order uncertainties (MHOUs),
estimated through renormalization and factorization scale variation. Here we will use the same formalism
in order to also construct a theory covariance matrix for incomplete higher-order uncertainties (IHOUs),
namely, those related to incomplete knowledge of the N3LO theory, specifically for the splitting functions and
for the massive DIS coefficient functions. Equipped with such theory covariance matrices, we can perform a
determination of PDFs at “approximate N3LO” (hereafter denoted aN3LO), in which the theory covariance
matrix accounts both for incomplete knowledge of N3LO splitting functions and massive coefficient functions
(IHOUs), and for missing N3LO corrections to the partonic cross-sections for hadronic processes (MHOUs).

We will thus present the aN3LO NNPDF4.0 PDF determination, to be added to the existing LO, NLO
and NNLO sets [37], as well as the more recent NNPDF4.0 MHOU PDFs [38] that also include MHOUs in
the PDF uncertainty. Besides using a different methodology to the MSHT20 study [32], here we are also able
to include more recent exact results [28–31] that stabilize the N3LO splitting function parametrisation. Our
construction is implemented in the open-source NNPDF framework [39]. Specifically, our aN3LO evolution
is implemented in EKO [40] and the N3LO DIS coefficient functions, including the FONLL general-mass
scheme, in YADISM [41]. With PDFs determined from the same global dataset and using the same
methodology at four consecutive perturbative orders it is now possible to assess carefully perturbative
stability and provide a reliable uncertainty estimation.

The outline of this paper is as follows. In Sect. 2 we construct an approximation to the N3LO splitting
functions based on all known exact results and limits. We compare it with the MSHT approximation [32] as
well as with the more recent approximation of Refs. [28–30]. In Sect. 3 we discuss available and approximate
N3LO corrections to hard cross-sections: specifically, DIS coefficient functions, including a generalization to
this order of the FONLL [42–44] method for the inclusion of heavy quark mass effects, and the Drell-Yan
cross-section. In Sect. 4 we present the main results of this work, namely the aN3LO NNPDF4.0 PDF set,
based on the results of Sects. 2 and 3. Perturbative convergence before and after the inclusion of MHOUs
is discussed in detail, and results are compared to those of the MSHT group [32]. A first assessment of the
impact of aN3LO PDFs on Drell-Yan and Higgs production is presented in Sect. 5. Finally, a summary
and outlook on future developments are presented in Sect. 6. Expressions for the anomalous dimensions
parametrized in Sects. 2.3-2.4 are given in Appendix A.

2 Approximate N3LO evolution

We proceed to the construction and implementation of aN3LO evolution. We first describe our strategy to
approximate the N3LO evolution equations, the way this is used to construct aN3LO anomalous dimensions
and splitting functions, and to estimate the uncertainty in the approximation and its impact on theory
predictions. We then use this strategy to construct an approximation in the nonsinglet sector, where
accurate results have been available for a while [22], and benchmark it against these results. We then
present our construction of aN3LO singlet splitting functions, examine our results, their uncertainties and
their perturbative behavior, and also how they relate to NLL small-x resummation. We next describe our
implementation of aN3LO evolution and study the impact of aN3LO on the perturbative evolution of PDFs.
Finally, we compare our aN3LO singlet splitting functions to those of the MSHT group and to the recent
results of [28–30].

2.1 Construction of the approximation

We write the QCD evolution equations as

µ2∂fi(x, µ
2)

∂µ2
=

∫ 1

x

dz

z
Pij(x/z, as(µ

2))fj(z, µ
2) , (2.1)

where fi(x, µ
2) is a vector of PDFs and, with nf active quark flavors, the (2nf + 1) × (2nf + 1) splitting

function matrix Pij(x, as(µ
2)) is expanded perturbatively as

Pij(x, as(µ
2)) = asP

(0)
ij (x) + a2sP

(1)
ij (x) + a3sP

(2)
ij (x) + a4sP

(3)
ij (x) +O

(
a5s
)
. (2.2)
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in powers of the strong coupling as(µ
2) = αs(µ

2)/4π.
Defining Mellin space PDFs fi(N,µ2) (denoted in a slight abuse of notation by the same symbol as

the x-space PDFs), and anomalous dimensions γij(N, as(µ
2)) as minus the Mellin transforms of splitting

functions,

fi(N,µ2) = M[fi(x, µ
2)](N) =

1∫

0

dxxN−1fi(x, µ
2) (2.3)

γij(N, as(µ
2)) = −M[Pij(x, as(µ

2))](N) = −
1∫

0

dxxN−1Pij(x, as(µ
2)) (2.4)

the evolution equations become

µ2∂fi(N,µ2)

∂µ2
= −γij(N, as(µ

2))fj(N,µ2) , (2.5)

where the perturbative expansion of the anomalous dimensions is

γij(N, as(µ
2)) = asγ

(0)
ij (N) + a2sγ

(1)
ij (N) + a3sγ

(2)
ij (N) + a4sγ

(3)
ij (N) +O

(
a5s
)
. (2.6)

The (2nf + 1)× (2nf + 1) matrix of anomalous dimensions has seven independent entries (see e.g. [45]),
driving the evolution of various PDF combinations as follows:

• All nonsinglet combinations

q±ij = q±i − q̄±j , (2.7)

q±i = qi ± q̄i (2.8)

satisfy decoupled evolution equations with the same two anomalous dimension γns,±; note that the
plus and minus variants of γns,± start differing from each other already at NLO.

• The total valence combination

V =

nf∑

i=1

q−i (2.9)

satisfies a decoupled evolution equation with an anomalous dimension

γns,v = γns,s + γns,− ; (2.10)

note that the flavor-independent “sea” contribution γns,s starts being nonzero only at NNLO.

• The singlet combination

Σ =

nf∑

i=1

q+i (2.11)

mixes with the gluon

µ2 ∂

∂µ2

(
Σ(N,µ2)
g(N,µ2)

)
= −

(
γqq(N, as(µ

2)) γqg(N, as(µ
2))

γgq(N, as(µ
2)) γgg(N, as(µ

2))

)(
Σ(N,µ2)
g(N,µ2)

)
. (2.12)

The quark-quark entry of the anomalous dimension matrix can be further decomposed into nonsinglet
and pure singlet contributions according to

γqq = γns,+ + γqq,ps , (2.13)

where the pure singlet contribution γqq,ps starts at NLO.
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There are thus seven independent contributions: three in the nonsinglet sector, γns,± and γns,s, and four
in the singlet sector, γqq,ps, γqg, γgq, and γgg. In turn, each of these anomalous dimensions can be expanded
according to Eq. (2.6). Our goal is to determine an approximate expression for the corresponding seven

γ
(3)
ij (N) N3LO terms.

The information that can be exploited in order to achieve this goal comes from three different sources:
(1) full analytic knowledge of contributions to the anomalous dimensions proportional to the highest powers
of the number of flavors nf ; (2) large-x and small-x resummations provide all-order information on terms
that are logarithmically enhanced by powers of ln(1− x) and lnx respectively; (3) analytic knowledge of a
finite set of integer moments. We construct an approximation based on this information by first separating
off the analytically known terms (1-2), then expanding the remainder on a set of basis functions and using
the known moments to determine the expansion coefficients. Finally, we vary the set of basis functions in
order to obtain an estimate of the uncertainties.

Schematically, we proceed as follows:

1. We include all terms in the expansion

γ
(3)
ij (N) = γ

(3,0)
ij (N) + nfγ

(3,1)
ij (N) + n2

fγ
(3,2)
ij (N) + n3

fγ
(3,3)
ij (N) , (2.14)

of the anomalous dimension in powers of nf that are fully or partially known analytically. We collec-

tively denote such terms as γ
(3)
ij,nf

(N).

2. We include all terms from large-x and small-x resummation, to the highest known logarithmic accuracy,

including all known subleading power corrections in both limits. We denote these terms as γ
(3)
ij,N→∞(N)

and γ
(3)
ij,N→0(N), γ

(3)
ij,N→1(N) respectively. Possible double counting coming from the overlap of these

terms with γ
(3)
ij,nf

(N) is removed.

3. We write the approximate anomalous dimension matrix element γ
(3)
ij (N) as the sum of the terms which

are known exactly and a remainder γ̃
(3)
ij (N) according to

γ
(3)
ij (N) = γ

(3)
ij,nf

(N) + γ
(3)
ij,N→∞(N) + γ

(3)
ij,N→0(N) + γ

(3)
ij,N→1(N) + γ̃

(3)
ij (N) . (2.15)

We determine the remainder as a linear combination of a set of nij interpolating functions Gij
ℓ (N)

(kept fixed) and H ij
ℓ (N) (to be varied)

γ̃
(3)
ij (N) =

nij−nH∑

ℓ=1

bijℓ G
ij
ℓ (N) +

nH∑

ℓ=1

bij
nij−2+ℓ

H ij
ℓ (N) , (2.16)

with nij equal to the number of known Mellin moments of γ
(3)
ij (N). We determine the coefficients bijℓ

by equating the evaluation of γ̃
(3)
ij (N) to the known moments of the splitting functions.

4. In the singlet sector, we take nH = 2 and we make Ñij different choices for the two functions H ij
ℓ (N),

by selecting them out of a list of distinct basis functions (see Sect. 2.4 below). Thereby, we obtain

Ñij expressions for the remainder γ̃
(3)
ij (N) and accordingly for the N3LO anomalous dimension matrix

element γ
(3)
ij (N) through Eq. (2.15). These are used to construct the approximate anomalous dimension

matrix and the uncertainty on it, in the way discussed in Sect. 2.2 below. In the nonsinglet sector
instead, we take nH = 0, i.e. we take a unique answer as our approximation, and we neglect the
uncertainty on it, for reasons to be discussed in greater detail at the end of Sect. 2.3.

2.2 The approximate anomalous dimension matrix and its uncertainty

The procedure described in Sect. 2.1 provides us with an ensemble of Ñij different approximations to the

N3LO anomalous dimension, denoted γ
(3), (k)
ij (N), k = 1, . . . Ñij . Our best estimate for the approximate

anomalous dimension is then their average

γ
(3)
ij (N) =

1

Ñij

Ñij∑

k=1

γ
(3), (k)
ij (N). (2.17)
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We include the uncertainty on the approximation, and the ensuing uncertainty on N3LO theory pre-
dictions, using the general formalism for the treatment of theory uncertainties developed in Refs. [34–36].
Namely, we consider the uncertainty on each anomalous dimension matrix element due to its incomplete
knowledge as a source of uncertainty on theoretical predictions, uncorrelated from other sources of uncer-
tainty, and neglecting possible correlations between our incomplete knowledge of each individual matrix

element γ
(3)
ij . This uncertainty on the incomplete higher (N3LO) order terms (incomplete higher order un-

certainty, or IHOU) is then treated in the same way as the uncertainty due to missing higher order terms
(missing higher order uncertainty, or MHOU).

Namely, we construct the shift of theory prediction for the m-th data point due to replacing the central

anomalous dimension matrix element γ
(3)
ij (N), Eq. (2.17), with each of the instances γ

(3), (k)
ij (N), viewed as

an independent nuisance parameter:

∆m(ij, k) = Tm(ij, k)− T̄m, (2.18)

where T̄m is the prediction for the m-th datapoint obtained using the best estimate Eq. (2.17) for the full
anomalous dimension matrix, while Tm(ij, k) is the prediction obtained when the the ij matrix element of

our best estimate is replaced with the k-th instance γ
(3), (k)
ij (N).

We then construct the covariance matrix over theory predictions for individual datapoints due to the
IHOU on the ij N3LO matrix element as the covariance of the shifts ∆m(ij, k) over all Ñij instances:

cov(ij)mn =
1

Ñij − 1

Ñij∑

k=1

∆m(ij, k)∆n(ij, k). (2.19)

We recall that we do not associate an IHOU to the nonsinglet anomalous dimensions and we assume con-
servatively that there is no correlation between the different singlet anomalous dimension matrix elements.
Thus we can write the total contribution to the theory covariance matrix due to IHOU as

covIHOU
mn = cov(gg)mn + cov(gq)mn + cov(qg)mn + cov(qq)mn . (2.20)

The mean square uncertainty on the anomalous dimension matrix element itself is then determined, by
viewing it as a pseudo-observable, as the variance

(σij(N))2 =
1

Ñij − 1

Ñij∑

k=1

(
γ
(3), (k)
ij (N)− γ

(3)
ij (N)

)2
. (2.21)

2.3 aN3LO anomalous dimensions: the nonsinglet sector

Information on the Mellin moments of nonsinglet anomalous dimensions is especially abundant, in that

eight moments of γ
(3)
ns,± and nine moments of γ

(3)
ns,s are known. An approximation based on this knowledge

was given in Ref. [22]. More recently, further information on the small-x behavior of γ
(3)
ns,± was derived in

Ref. [23]. While for γ
(3)
ns,s we directly rely on the approximation of Ref. [22], which already includes all the

available information, we construct an approximation to γ
(3)
ns,± based on the procedure described in Sect. 2.1,

in order to include also this more recent information, and also as a warm-up for the construction of our
approximation to the singlet sector anomalous dimension that we present in the next section.

Contributions to γ
(3)
ns,± proportional to n2

f and n3
f are known exactly [21] (in particular the n3

f contribu-

tions to γ
(3)
ns,± coincide), while O(n0

f ) and O(nf ) terms1 are known in the large-Nc limit [22] and we include

these in γ
(3)
ns,±,nf

(N).

Small-x contributions to γns,± are double logarithmic, i.e. of the form an+1
s ln2n−k(x), corresponding in

Mellin space to poles of order 2n− k + 1 in N = 0, i.e. 1
N2n−k+1 , so at N3LO we have n = 3 and thus

P
(3)
ns,±(x) =

6∑

k=1

ckns, N→0 ln
k(1/x) +O(x) . (2.22)

1The nfC
3
F terms have also been published very recently [46], but we do not include them yet.
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Gns,±
1 (N) 1

Gns,±
2 (N) M[(1− x) ln(1− x)](N)

Gns,±
3 (N) M[(1− x) ln2(1− x)](N)

Gns,±
4 (N) M[(1− x) ln3(1− x)](N)

Gns,±
5 (N) S1(N)

N2

Gns,±
6 (N) 1

(N+1)2

Gns,±
7 (N) 1

(N+1)3

Gns,+
8 (N), Gns,−

8 (N) 1
(N+2) ,

1
(N+3)

Table 2.1. The Mellin space interpolating functions Gns,±
ℓ (N) entering the parametrisation of the remainder term

γ̃
(3)
ns±(N) for the nonsinglet anomalous dimension expansion of Eq. (2.16).

The coefficients ckns, N→0 are known [23] exactly up to NNLL accuracy (k = 4, 5, 6), and approximately up

to N6LL (k = 1, 2, 3). Hence, we let

γ
(3)
ns,±, N→0(N) =

6∑

k=1

ckns, N→0(−1)k
k!

Nk+1
. (2.23)

Large-x logarithmic contributions in the MS scheme only appear in coefficient functions [47], and so the
x → 1 behaviour of splitting functions is provided by the cusp anomalous dimension ∼ 1

(1−x)+
, corresponding

to a single ln(N) behavior in Mellin space as N → ∞. This behavior is common to the pair of anomalous

dimensions γ
(3)
ns,±(N). Furthermore, several subleading power corrections as N → ∞ can also be determined

and we set

γ
(3)
ns,±, N→∞(N) = Aq

4S1(N) +Bq
4 + Cq

4

S1(N)

N
+Dq

4

1

N
, (2.24)

where S1 denotes the harmonic sum (see Eqs. A.18-A.19). The coefficient of the ln(N) term Aq
4, is the quark

cusp anomalous dimension [24]. The constant coefficient Bq is determined by the integral of the nonsinglet
splitting function, which was originally computed in [22] in the large-Nc limit and recently updated to
the full color expansion [25] as a result of computing different N3LO cross-sections in the soft limit. The
coefficients of the terms suppressed by 1/N in the large-N limit, Cq and Dq, can be obtained directly
from lower-order anomalous dimensions by exploiting large-x resummation techniques [21]. The explicit

expressions of γ
(3)
ns±, N→∞(N) and γ

(3)
ns±, N→0(N) are given in Appendix A.

The remainder terms, γ̃
(3)
ns,±(N), are expanded over the set of eight functions Gns,±

ℓ (N) listed in Table 2.1.

The coefficients bns,±ℓ (defined in Eq.(2.16)) are determined by imposing that the values of the eight moments

given in Ref. [22] be reproduced. The set of functions Gns,±
ℓ (N) is chosen to adjust the overall constant

(ℓ = 1), model the large-N behavior (2 ≤ ℓ ≤ 5) and model the small-N behavior (ℓ = 6, 7), consistent with
the general analytic structure of fixed order anomalous dimensions [48]. Specifically, the large-N functions
are chosen as the logarithmically enhanced next-to-next-to-leading power terms (lnk(N)/N2, ℓ = 2, 3, 4, 5)
and the small-N functions are chosen as logarithmically enhanced subleading poles (1/(N + 1)k, ℓ = 6, 7)
and sub-subleading poles (1/(N + 2) or 1/(N + 3), ℓ = 8). The last element, ℓ = 8, is chosen at a fixed

distance from the lowest known moment, N = 2 for γ
(3)
ns,+(N) and N = 1 for γ

(3)
ns,−(N).

In Fig. 2.1 we plot the resulting splitting functions P
(3)
ns,±(x), obtained by Mellin inversion of the anoma-

lous dimension. We compare our approximation to the approximation of Ref. [22], for αs = 0.2 and nf = 4,
and also show the (exact) NNLO result for reference. Because the splitting function is a distribution at
x = 1 we plot (1 − x)P (x). The result of Ref. [22] also provides an estimate of the uncertainty related to
the approximation, shown in the figure as a band, and we observe that this uncertainty is negligible except
at very small x. As we include further constraints on the small-x behavior, the uncertainty on the approx-
imation becomes negligible, as it can be checked by comparing results obtained by including increasingly
more information in the construction of the approximation. Consequently, as mentioned in Sect. 2.1 above,
we take nH = 0 in Eq. (2.16).
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Figure 2.1. The aN3LO nonsinglet splitting functions (1 − x)Pns,+(x, αs) and (1 − x)Pns,−(x, αs), evaluated as a
function of x for nf = 4 and αs = 0.2 in our approximation compared to the previous approximation of Ref. [22]
(denoted FHMRUVV), for which the approximation uncertainty, as estimated by its authors, is also displayed. For
comparison, the (exact) NNLO result is also shown.

2.4 aN3LO anomalous dimensions: singlet sector

In order to determine the singlet-sector anomalous dimension matrix entering Eq. (2.12), we must determine
γqq,ps that, together with the previously determined nonsinglet anomalous dimension, contributes to the qq
entry, Eq. (2.13), and then also the three remaining matrix elements γqg, γgq, and γgg.

For all matrix elements, the leading large-nf O(n3
f ) contributions in Eq. (2.14) are known analyti-

cally [21], while for γqq,ps [49] and γgq [31] the O(n2
f ) contributions are also known and we include all of

them in γ
(3)
ij,nf

(N).
Small-x contributions in the singlet sector include, on top of the double-logarithmic contributions

an+1
s ln2n−k(x) that are present in the nonsinglet case, also single-logarithmic contributions an+1

s
1
x ln

n(x).
In Mellin space, this means that on top of order 2n−k+1 subleading poles in N = 0, there are also leading
poles in N = 1 of order n − k + 1, i.e. 1

(N−1)n−k+1 . The leading-power single logarithmic contributions can

be extracted from the leading [50–54] and next-to-leading [55–59] high-energy resummation at LLx [60] and
NLLx [61–63] accuracy. This allows for a determination of the coefficients of the leading 1

(N−1)4
and next-to-

leading 1
(N−1)3

contributions to γ
(3)
gg and of the next-to-leading 1

(N−1)3
contributions to γ

(3)
qg . The remaining

entries can be obtained from these by using the color-charge (or Casimir scaling) relation γiq =
CF
CA

γig [63,64].
Hence, we set

γ
(3)
gg,N→1(N) = c4gg,N→1

1

(N − 1)4
+ c3gg,N→1

1

(N − 1)3
; (2.25)

γ
(3)
qg,N→1(N) = c3qg,N→1

1

(N − 1)3
; (2.26)

γ
(3)
iq,N→1(N) =

CF

CA
γ
(3)
ig,N→1(N), i = q, g. (2.27)

Although only the leading pole of γgq satisfies Eq. (2.27) exactly, at NNLO this relation is only violated
at the sub-percent level [65], so this is likely to be an adequate approximation also at this order: this ap-
proximation is also adopted in Ref. [30]. An important observation is that both NLO and NNLO coefficients
of the leading poles, 1

(N−1)2
and 1

(N−1)3
respectively, vanish accidentally. Hence, at N3LO the leading poles

contribute for the first time beyond leading order. The subleading poles can be determined up to NNLL
accuracy [23] and, thus, fix the coefficients of the 1

N7 ,
1
N6 and 1

N5 subleading poles for all entries of the

singlet anomalous dimension matrix. All these contributions are included in γ
(3)
ij,N→1(N) and γ

(3)
ij,N→0(N).

In the singlet sector, large-x contributions whose Mellin transform is not suppressed in the large-N limit
only appear in the diagonal qq and gg channels. In the quark channel these are already included, through

Eq. (2.13) in γ
(3)
ns,+, N→∞(N), according to Eq. (2.24), while γ

(3)
qq,ps is suppressed in this limit. In the gluon-to-

gluon channel they take the same form as in the nonsinglet and diagonal quark channel. Hence, we expand,
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as in Eq. (2.24),

γ
(3)
gg,N→∞(N) = Ag

4S1(N) +Bg
4 + Cg

4

S1(N)

N
+Dg

4

1

N
. (2.28)

The coefficients Ag
4, B

g
4 , C

g
4 and Dg

4 are the counterparts of those of Eq. (2.24): the gluon cusp anomalous
dimension was determined in Ref. [24] and the constant in Ref. [25], while the Cg

4 and Dg
4 coefficients can

be determined using results from Refs. [30, 66].
Off-diagonal qg and qg splitting functions have logarithmically enhanced next-to-leading power behavior

at large-x:

P
(3)
ij (x) =

6∑

k=0

∞∑

l=0

ck,lij,N→∞(1− x)l lnk(1− x). (2.29)

For l = 0 the coefficients of the higher logs k = 4, 5, 6 can be determined from N3LO coefficient functions,
based on a conjecture [27, 67] on the large-x behavior of the physical evolution kernels that give the scale
dependence of structure functions. The coefficient with the highest power k = 6 cancels and thus we let

γ
(3)
gq,N→∞(N) =

5∑

k=4

ck,0gq,N→∞M
[
lnk(1− x)

]
(N), (2.30)

γ
(3)
qg,N→∞(N) =

5∑

k=4

ck,0qg,N→∞M
[
lnk(1− x)

]
(N) + ck,1qg,N→∞M

[
(1− x) lnk(1− x)

]
(N), (2.31)

where in γ
(3)
qg,N→∞ we have retained also the l = 1 terms [29].

Finally, the pure singlet quark-to-quark splitting function starts at next-to-next-to-leading power as
x → 1, i.e. it behaves as (1 − x) lnk(1 − x), with k ≤ 4. The coefficients of the higher logs k = 3, 4 can be
extracted by expanding the x = 1 expressions from Refs. [27, 28]. Hence, we let

γ
(3)
qq,ps, N→∞(N) =

4∑

k=3

[
ck,1qq,ps, N→∞M

[
(1− x) lnk(1− x)

]
(N) + ck,2qq,ps, N→∞M

[
(1− x)2 lnk(1− x)

]
(N)

]

(2.32)
Note that for the qq and qg entries we also include the (known) next-to-leading power contributions, while
we do not include them for gq and gg because for these anomalous dimension matrix elements a significantly
larger number of higher Mellin moments is known, hence there is no risk that the inclusion of these contri-
butions could contaminate the intermediate x region where they are not necessarily dominant. The explicit

expressions of γ
(3)
ij N→∞(N), γ

(3)
ij N→0(N) and γ

(3)
ij N→1(N) are all given in Appendix A.

As discussed in Sect. 2.1, the remainder contribution γ̃
(3)
ij (N), Eq. (2.16), is determined by expanding each

of its matrix elements over a set of nij basis functions, where nij is the number of known Mellin moments, and
determining the expansion coefficients by demanding that the known moments be reproduced. Specifically,
the known moments are the four moments computed in Ref. [26], the six additional moments for γqq,ps and
γqg computed in Ref. [28] and Ref. [29] respectively, and the additional moment N = 10 for γgg and γgq
evaluated in Ref. [30]. These constraints automatically implement momentum conservation:

γqg(N = 2) + γgg(N = 2) = 0 ,

γqq(N = 2) + γgq(N = 2) = 0 .
(2.33)

The set of basis functions is chosen based on the idea of constructing an approximation that reproduces
the singularity structure of the Mellin transform of the anomalous dimension viewed as analytic functions in
N space [48], hence corresponding to the leading and subleading (i.e. rightmost)N -space poles with unknown
coefficients as well as the leading unknown large-N behavior. As mentioned in Sect. 2.1, the uncertainty on
the answer is then estimated by varying the set of basis functions, specifically by varying two out of the nij

basis functions. The way the basis functions are partitioned between the fixed functions Gij and the varying
functions H ij is by always including in the fixed set the most leading unknown contributions, and in the
H ij further subleading ones. The number of varying H ij is chosen to be larger when less exact information
is known.

Specifically, the functions Gij are chosen as follows.

1. The function Gij
1 (N) reproduces the leading unknown contribution in the large-N limit, i.e. the un-

known term in Eq. (2.29) with highest k and lowest l.
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γ
(3)
gg (N)

Ggg
1 (N) M[(1− x) ln3(1− x)](N)

Ggg
2 (N) 1

(N−1)2

Ggg
3 (N) 1

N−1

{Hgg
1 (N), Hgg

2 (N)} 1
N4 ,

1
N3 ,

1
N2 ,

1
N+1 ,

1
N+2 , M[(1− x) ln2(1− x)](N), M[(1− x) ln(1− x)](N)

γ
(3)
gq (N)

Ggq
1 (N) M[ln3(1− x)](N)

Ggg
2 (N) 1

(N−1)2

Ggq
3 (N) 1

N−1

{Hgq
1 (N), Hgq

2 (N)} 1
N4 ,

1
N3 ,

1
N2 ,

1
N+1 ,

1
N+2 , M[ln2(1− x)](N), M[ln(1− x)](N)

γ
(3)
qg (N)

Gqg
1 (N) M[ln3(1− x)](N)

Gqg
2 (N) 1

(N−1)2

Gqg
3 (N) 1

N−1 − 1
N

Gqg
4,...,8(N) 1

N4 ,
1

N3 ,
1

N2 ,
1
N , M[ln2(1− x)](N)

{Hqg
1 (N), Hqg

2 (N)}
M[ln(x) ln(1− x)](N), M[ln(1− x)](N), M[(1− x) ln3(1− x)](N)

M[(1− x) ln2(1− x)](N), M[(1− x) ln(1− x)](N), 1
1+N

γ
(3)
qq,ps(N)

Gqq,ps
1 (N) M[(1− x) ln2(1− x)](N)

Gqq,ps
2 (N) − 1

(N−1)2 + 1
N2

Gqq,ps
3 (N) − 1

(N−1) +
1
N

Gqq,ps
4,...,8(N)

1
N4 ,

1
N3 , M[(1− x) ln(1− x)](N)

M[(1− x)2 ln(1− x)2](N), M[(1− x) ln(x)](N)

{Hqq,ps
1 (N), Hqq,ps

2 (N)}
M[(1− x)(1 + 2x)](N), M[(1− x)x2](N),

M[(1− x)x(1 + x)](N), M[(1− x)](N)

Table 2.2. The set of basis functions Gij
ℓ (N) and Hij

ℓ (N) used to parametrize the singlet sector remainder anomalous

dimensions matrix elements γ̃
(3)
ij (N) according to Eq. (2.16).

2. The functions Gij
2 (N) and Gij

3 (N) reproduce the first two leading unknown contributions in the small-
N limit, i.e. the unknown 1

(N−1)k
leading poles with highest and next-to-highest values of k, i.e. k = 2

and k = 1. For γqq,ps and γqg a subleading small-x pole with the same power and opposite sign is
added to the leading pole with respectively k = 1, 2 and k = 1, so as to leave unaffected the respective
large-x leading power behavior Eqs. (2.31-2.32).

3. For γqq,ps and γqg, for which an additional five moments are known, the functions Gqj
4,...,8(N) reproduce

subleading small- and large-N terms.

Note that a larger number of basis functions is chosen to describe the small-N poles rather than the large-N
behavior because less exact information is available in the former case: so for instance only the leading pole

Eq. (2.26) is known for γ
(3)
qg (N), while the first two logarithmically enhanced large-N contributions to it

Eq. (2.31) are known.
As mentioned, the functions H ij are chosen to reproduce further subleading contributions:

1. The functions Hgj
1 (N), Hgj

2 (N) in the gluon sector, where only five moments are known exactly, are

chosen to reproduce subleading small- and large-N terms, i.e. similar to Gqj
4,...,8(N).

2. The functions Hqg
1 (N), Hqg

2 (N) are chosen as subleading and next-to-leading power large-x terms and
the remaining unknown leading small-N pole.
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Figure 2.2. The nonsinglet splitting functions at LO, NLO, NNLO, and aN3LO, normalized to the aN3LO central
value and with a linear scale on the x axis. In each case we shown also the uncertainty due to missing higher orders
(MHOU) estimated by scale variation according to Refs. [35, 36].
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Figure 2.3. The relative size of the uncertainty due to missing higher orders (MHOU) on the splitting functions of
Fig. 2.2.

3. The functions Hqq,ps
1 (N), Hqq,ps

2 (N) are chosen as low-order polynomials, i.e., sub-subleading small-x
poles.

Also as mentioned, the number of basis functions is greater for anomalous dimension matrix elements for
which less exact information is available: 7 in the gluon sector (i.e. gg and gq), 6 for the qg entry and 4 for
the pure singlet entry. For the gg entry two combinations are discarded as they lead to unstable (oscillating)
results and we thus end up with Ñgg = 19, Ñgq = 21, Ñqg = 15, and Ñqq = 6 different parametrizations.
The full set of basis functions Gij and H ij is listed in Table 2.2. We have checked that results are stable
upon variation of these choices, so for instance including a larger number of H ij functions does not lead to
significantly larger uncertainties.

Upon combining the exactly known contributions with the Ñij remainder terms according to Eq. (2.15)

we end up with an ensemble of Ñij instances of γ
(3), (k)
ij (N) for each singlet anomalous dimension matrix

element and the final matrix elements γ
(3)
ij (N) and their uncertainties σij(N) are computed using Eqs. (2.17)

and (2.21) respectively.

2.5 Results: aN3LO splitting functions

We now present the aN3LO splitting functions constructed following the procedure described in Sects. 2.1–
2.4. The nonsinglet result, already compared in Fig. 2.1 to the previous approximation of Ref. [22], is shown
in Fig. 2.2 at the first four perturbative orders as a ratio to the aN3LO result. For each order we include
the MHOU determined by scale variation according to Refs. [35, 36] and recall that there are no IHOU in
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Figure 2.4. The singlet matrix of splitting functions xPij at LO, NLO, NNLO and aN3LO. From left to right and
from top to bottom the gg, gq, qg and qq entries are shown. The MHOU estimated by scale variation is shown to all
orders. At aN3LO the dark blue band corresponds to IHOU only, while the light blue band is the sum in quadrature
of IHOU and MHOU.

the nonsinglet sector. As the nonsinglet splitting function are subdominant at small x we only show the
plot with a linear scale in x. The relative size of the MHOU is shown in Fig. 2.3.

Inspecting Figs. 2.2 and 2.3 reveals good perturbative convergence2 for all values of x. Specifically,
the differences between two subsequent perturbative orders are reduced as the accuracy of the calculation
increases, and, correspondingly, the MHOUs associated to factorization scale variations decrease with the
perturbative accuracy. Indeed, the MHOU appears to reproduce well the observed behaviour of the higher
orders, with overlapping uncertainty bands between subsequent orders except at LO at the smallest x values.
Hence, the behavior of the perturbative series suggests that the MHOU estimate based on scale variation
at N3LO is reliable.

Based on these results it is clear that in the nonsinglet sector the N3LO contribution to the splitting
function is essentially negligible except at the smallest x values, as shown in Fig. 2.1. Consequently, for all
practical purposes we can consider the current approximation to the nonsinglet anomalous dimension to be
essentially exact, and with negligible MHOU.

The situation in the singlet sector is more challenging. The singlet matrix of splitting functions is
shown in Figs. 2.4 and 2.5, respectively with a logarithmic or linear scale on the x axis. Because the
diagonal splitting functions are distributions at x = 1 in the linear scale plots we display x(1− x)Pii. The
corresponding relative size of the MHOU is shown in Fig. 2.6 for the first four perturbative orders, along
with the IHOU on the aN3LO result, determined using Eq. (2.21).

A different behaviour is observed for the quark sector Pqi and for the gluon sector Pgi. In the quark
sector, the MHOU decreases with perturbative order for all x, but it remains sizable at aN3LO for essentially
all x, of order 5% for 10−2 ≲ x ≲ 10−1. In the gluon sector instead for x ≳ 0.03 the MHOU is negligible,

2Here and henceforth by “convergence” we mean that the size of the missing N4LO corrections is negligible compared to the
target accuracy of theoretical predictions, i.e. at the sub-percent level.
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Figure 2.5. Same as Fig. 2.4 with a linear scale on the x axis, and plotting (1− x)xPii for diagonal entries.

but at smaller x it grows rapidly, and in fact at very small x it becomes larger than the NLO MHOU.
This is due to the presence of leading small-x logarithms, Eq. (2.25), which are absent at NLO. In fact the
true gluon-sector MHOU at very small x is likely to be underestimated by scale variation, because while
it generates the fourth-order leading pole present in the N4LO (the fifth-order pole vanishes), it fails to
generate the sixth-order pole known to be present in the N5LO splitting function.

We now turn to the IHOU and find again contrasting behaviour in the different sectors. In the quark
sector, thanks to the large number of known Mellin moments and the copious information on the large-x
limit, the IHOU are significantly smaller than the MHOU, by about a factor three, and become negligible
for x ≳ 10−2. In the gluon sector instead the IHOU, while still essentially negligible for x ≳ 0.1, is larger
than the MHOU except at very small x ≲ 10−4 where the MHOU dominates.

Consequently, for all matrix elements at large x ≳ 0.1 the behaviour of the singlet is similar to the be-
haviour of the nonsinglet: IHOU and MHOU are both negligible, meaning that aN3LO results are essentially
exact, and the perturbative expansion has essentially converged, see Fig. 2.5. At smaller x, while the aN3LO
and NNLO results agree within uncertainties, the uncertainties on the aN3LO are sizable, dominated by
MHOUs in the quark channel and by IHOUs in the gluon channel.

In the singlet sector the most dramatic impact of the aN3LO correction is at small x. It is thus interesting
to compare the aN3LO singlet splitting functions with those obtained by the resummation of leading and
next-to-leading order small-x logarithms of Ref. [68], namely the two highest powers of lnx contained in
the N3LO result; this comparison is shown in Fig. 2.7. The agreement of all four entries xPgg, xPgq, xPqg

and xPqq is remarkably good and well within the uncertainties in the two approaches. In particular the dip
in xPgg at intermediate x at aN3LO (albeit with significant IHOU) is also a feature of the resummation.
This is nontrivial, as the resummation includes only the asymptotic LLx and NLLx singularities at N = 1,
but none of the subleading results incorporated at aN3LO. Instead, it uses a symmetrization which resums
collinear and anti-collinear logarithms in the small-x expansion, and the effects of running coupling which
change the nature of the small-x singularity (from a fourth order pole at N = 1 in the fixed order N3LO
result to a simple pole a little further to the right on the real axis).
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Figure 2.6. Same as Fig. 2.3 for the singlet splitting function matrix elements. At NLO and NNLO we show the
MHOU, while at aN3LO we also show the IHOU.

That both the resummed and fixed order approaches converge to very similar results, at least in the range
of x relevant for HERA and LHC, is very reassuring. It shows that in a global fit with current data, while
NLLx resummation significantly improves the quality of a fixed order NNLO fit [69], the same improvement
should also be seen by adding aN3LO corrections. Thus to find evidence for small-x resummation at aN3LO,
it will probably be necessary to go to yet smaller values of x, e.g. below 10−5, where the fixed order and
resummed results will eventually diverge again.

2.6 Results: aN3LO evolution

The aN3LO anomalous dimensions discussed in the previous sections have been implemented in the Mellin-
space open-source evolution code EKO [40] which enters the new pipeline [70] adopted by NNPDF in order
to produce theory predictions used for PDF determination. The parametrization is expressed in terms of a
basis of Mellin space functions which are numerically efficient to evaluate. In order to achieve full aN3LO
accuracy, in addition to the anomalous dimensions, the four-loop running of the strong coupling constant
αs(Q) and the N3LO matching conditions dictating the transitions between schemes with different numbers
of active quark flavor have also been implemented.

The N3LO matching conditions have been presented in Ref. [71] and subsequently computed analytically

in Refs. [72–81]. The exception is the a
(3)
Hg entry of the matching condition matrix, which is still unknown3

and which instead is parametrized using the first 5 known moments [71] and the LLx contribution as done
in Ref. [83]. Also these matching conditions are implemented in EKO and thus it is possible to assess the
impact of the inclusion of aN3LO terms on perturbative evolution.

In Fig. 2.8 we compare the result of evolving a fixed set of PDFs from Q0 = 1.65 GeV up to Q = 100 GeV
at NLO, NNLO, and aN3LO. We take as input the NNPDF4.0NNLO PDF set, and show results normalized
to the aN3LO evolution. Results are shown for all the combinations that evolve differently, as discussed in

3The terms recently computed in Ref. [82] are not yet included and left for future updates.
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Figure 2.7. Comparison of the NLO, NNLO, and aN3LO splitting functions (same as in Fig. 2.4) to the small-x
resummed NLO+NLL result of Ref. [68]. Only the IHOU on the aN3LO result is shown.

Sect. 2.1, namely the singlet, gluon, total valence and nonsinglet ± combinations, with a logarithmic scale on
the x axis for the singlet sector and a linear scale for the valence and nonsinglet combinations. The relative
uncertainty on the gluon and singlet are shown in Fig. 2.9, with MHOU and IHOU separately displayed at
N3LO.

In all cases the perturbative expansion appears to have converged everywhere, with almost no difference
between NNLO and aN3LO except at small x ≲ 10−3, where singlet evolution is weaker at aN3LO than at
NNLO due to the characteristic dip seen in the gluon sector splitting functions of Fig. 2.4. Because the
gluon-driven small-x rise dominates small-x evolution this is a generic feature of all quark and gluon PDFs
in this small-x region. It is interesting to observe that this is an all-order feature that persists upon small-x
resummation, as already discussed at the end of Sect. 2.5 and seen in Fig. 2.7. In fact, the total theory
uncertainty at aN3LO is at the sub-percent level for all x ≳ 10−3. Hence, not only has the MHOU become
negligible, but also the effect of IHOU on PDF evolution is only significant at small x.

2.7 Comparison to other groups

We finally compare our approximation of the N3LO splitting functions to other recent results from Refs. [28–
30, 32]. While the approach of Refs. [28–30] (FHMRUVV, henceforth) is very similar to our own, with
differences only due to details of the choice of basis functions, a rather different approach is adopted in
Ref. [32] (MSHT20, henceforth). There, the approximation is constructed from similar theoretical constraints
(small-x, large-x coefficients and Mellin moments), but supplementing the parametrization with additional
nuisance parameters, which control the uncertainties arising from unknown N3LO terms. However, these
approximations are taken as a prior, and the nuisance parameters are fitted to the data along with the
PDF parameters. The best-fit values of the parameters determine the posterior for the splitting function,
and their uncertainties are interpreted as the final IHOU on it. A consequence of this procedure is that
the posterior can reabsorb not only N3LO corrections, but any other missing contribution, of theoretical or
experimental origin.
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Figure 2.8. Comparison of the result obtained evolving from Q0 = 1.65 GeV to Q = 100 GeV at NLO, NNLO, and
aN3LO using NNPDF4.0 NNLO as fixed starting PDF. Results are shown as ratio to the aN3LO (from left to right
and from top to bottom) for the gluon and singlet Σ, and for the V , V3 and T3 quark eigenstates of perturbative
evolution (see Sect. 2.1). The total theory uncertainty is shown in all cases, i.e. the MHOU at NLO and NNLO, and
the sum in quadrature of MHOU and IHOU at aN3LO.

The comparison is presented in Fig. 2.10, for all the four singlet splitting functions. For the MSHT20
results both prior and posterior are displayed. It should be noticed that even though the uncertainty
bands on the NNPDF4.0, DHMRUVV and MSHT20 prior are all obtained by varying the set of basis
functions, they are found using somewhat different procedures, and their meaning is accordingly somewhat
different. Indeed, for NNPDF4.0 the is constructed out of the covariance matrix according to Eq. (2.21).
For FHMRUVV is instead the band between an upper and lower estimates which are representative of the
envelope of all variations. Finally for the MSHT20 prior it is the variance of the probability distribution
obtained assuming a multigaussian distribution of suitable nuisance parameters.

As expected, excellent agreement is found with the FHMRUVV result, for all splitting functions and for
all x, especially for the Pqg and Pqq splitting functions, for which the highest number of Mellin moments
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Figure 2.9. The relative size of the uncertainty on the gluon and singlet PDFs shown in Fig. 2.8. The MHOU is
shown in all cases, and at aN3LO the IHOU is also shown.
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Figure 2.10. Same as Fig. 2.4, now comparing our aN3LO result to those of Ref. [32] (MSHT20) and Refs. [28–30]
(FHMRUVV). In all cases the uncertainty band correspond to the IHOU as estimated by the various groups. For the
MSHT20 results, we display both the prior and the posterior parametrizations (see text).

is known. Good qualitative agreement is also found for Pgq and Pgg, although at small x IHOUs are
larger and consequently central values differ somewhat more, though still in agreement within uncertainties.
Uncertainties are qualitatively similar, except at small x, where less exact information is available and both
central values and uncertainties are less constrained. In this region the NNPDF4.0 is generally somewhat
more conservative, possibly due to the fact that it is obtained by adding individual shifts in quadrature,
rather than taking their envelope.

Coming now to MSHT20 results, good agreement is found with the prior, except for Pgq, for which
MSHT20 shows a small-x dip accompanied by a large-x bump. The different small-x behaviour is likely
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Figure 3.1. Comparison of the exact NNLO massive gluon-initiated coefficient function xC
(2)
2,g (η) to the approximation

Eq. (3.3) from Ref. [87], plotted as a function of η, Eq. (3.5), for fixed Q2. Results are shown for two different values
of Q2, one close to threshold Q2 = 2m2

h (left) and one at high scales Q2 = 16m2
h (right). The uncertainty on the

approximate result is obtained by varying the interpolating functions f1(x) and f2(x) in Eq. (3.3).

due to the fact that MSHT20 do not enforce the color-charge relation Eq. (2.27) at NLLx, with the large-x
bump then following from the constraints Eq. (2.33). Also, in the quark sector the MSHT20 prior has
significantly larger IHOUs due to the fact that it does not include the more recent information on Mellin
moments from Refs. [23, 28–31], which were not available at the time of the MSHT20 analysis [32]. At the
level of posterior, however, significant differences appear also for Pgg, while persisting for Pgq. This means
that the gluon evolution at aN3LO is being significantly modified by the data entering the global fit, and it
is not fully determined by the perturbative computation. Further benchmarks of aN3LO splitting functions
will be presented in Ref. [84].

3 N3LO partonic cross-sections

A PDF determination at N3LO requires, in addition to the splitting functions discussed in Sect. 2, hard cross-
sections at the same perturbative order. Exact N3LO massless DIS coefficient functions have been known for
several years [1–4,85,86], while massive coefficient functions are only available in various approximations [83,
87, 88]. For hadronic processes, N3LO results are available for inclusive Drell-Yan production for the total
cross-section [8,11,12] as well as for rapidity [18] and transverse momentum distributions [19], though neither
of these is publicly available.

We now describe the implementation of these corrections. First, we review available results on DIS
coefficient functions and summarize the main features of the approximation that we will use for massive co-
efficient functions [87,88]. Next we discuss how massless and massive DIS coefficient functions are combined
to extend the FONLL general-mass variable-flavor number scheme to O

(
α3
s

)
. Finally, we discuss N3LO

corrections for hadronic processes and different options for their inclusion in PDF determination.

3.1 N3LO corrections to DIS structure functions

The DIS structure functions Fi are evaluated from the convolution of PDFs and coefficient functions

Fi(x,Q
2) =

nf∑

k=1

Ci,k(x, αs)⊗ xq+k (x,Q
2) + Ci,g(x, αs)⊗ xg(x,Q2) , i = {2, L} ,

xF3(x,Q
2) =

nf∑

k=1

C3,k(x, αs)⊗ xq−k (x,Q
2) ,

(3.1)

with the coefficient functions evaluated in a perturbative QCD expansion

Ci,k(x, αs(Q
2)) =

∑

n=0

αn
s (Q

2)C
(n)
i,k (x) . (3.2)
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Figure 3.2. The approximate N3LO massive gluon (left) and quark singlet (right) coefficient functions as a function
of η for fixed Q2 = 2m2

h. Our result based on the approximation of Ref. [87] is compared to the approximation of
Ref. [83] (KLMV).
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Figure 3.3. Square root of the diagonal entries of the IHOU covariance matrix for the DIS datasets normalized to
the experimental central value Di. We show the IHOU before and after adding to the covariance matrix Eq. (2.20)
that accounts for uncertainty on anomalous dimensions the extra component Eq. (3.6) due to the massive coefficient
function. The experimental uncertainty is also shown for comparison.

Coefficient functions with all quarks assumed to be massless were evaluated at N3LO in [1, 2] for neutral-
current charged-lepton scattering and recently independently benchmarked in [86]. The corresponding re-
sults for charged-current scattering were presented in [3, 4, 85].

For sufficiently low scale, some or all of the heavy quark masses cannot be neglected. Heavy quark
contributions to structure functions may be treated in a decoupling scheme [89], in which heavy quarks do
not contribute to the running of αs and to PDF evolution, and coefficient functions acquire a dependence on
the heavy quark mass mh [90]: Ci,k = Ci,k(x, αs,m

2
h/Q

2) (massive coefficient functions, henceforth). The
massive coefficient functions are known exactly up to NNLO for photon [91,92], Z [93,94] andW [95] exchange
(for massless to massive transitions only) while at N3LO only partial results are available [83, 88, 96, 97] or
in the Q2 ≫ m2

h limit [71,72,74,75,77,98].

We adopt an approximation for the N3LO contribution C
(3)
i,k (x, αs,m

2
h/Q

2) to massive coefficient func-
tions for photon-induced DIS and neglect the axial-vector coupling of the Z boson, while we treat heavy
quarks in the massless approximation for the W boson exchange. Such an approximation, based on known
partial results, has been presented in Ref. [83], and recently revisited in Ref. [87]. The approaches of these
references rely on the same known exact results, and differ in the details of the way they are combined and
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interpolated. Here we will follow Ref. [87], see also Ref. [88], to which we refer for further details. Exact
results come from threshold resummation and high-energy resummation, and are further combined with the
asymptotic large-Q2 limit, thereby ensuring that the approximate massive coefficient function reproduces
the exact massless result in the Q2/m2

h → ∞ limit. In the approach of Refs. [87, 88] the massive coefficient
functions are written as

C
(3)
i,k (x,m

2
h/Q

2) = C
(3),thr
i,k (x,m2

h/Q
2)f1(x) + C

(3),asy
i,k (x,m2

h/Q
2)f2(x) , (3.3)

where C
(3),thr
i,k and C

(3),asy
i,k correspond to the contributions coming from differently resummations, and f1(x)

and f2(x) are two suitable matching functions.

For massive quarks the threshold limit is x → xmax with xmax = Q2

4m2
h+Q2 or β → 0, with β ≡

√
1− 4m2

h
s

and s = Q2 1−x
x the center-of-mass energy of the partonic cross-section. In this limit, the coefficient function

contains logarithmically enhanced terms of the form αn
s ln

m β with m ≤ 2n due to soft gluon emission, which
are predicted by threshold resummation [99]. Further contributions of the form αn

sβ
−m lnl β, with m ≤ n,

arise from Coulomb exchange between the heavy quark and antiquark, and can also be resummed using
non-relativistic QCD methods [100]. At N3LO all these contributions are known and can be extracted from

available resummed results [83]; they are included in C
(3),thr
i,k .

In the high-energy limit, the coefficient function contains logarithmically enhanced terms of the form
αn
s ln

m x with m ≤ n − 2, which are determined at all orders through small-x resummation at the LL
level [97], from which the N3LO expansion can be extracted [83]. This result can be further improved [87,88]
by including a particular class of NLL terms related to NLL perturbative evolution and the running of the

coupling. In the approach of Refs. [87,88] the high-energy contributions are combined into C
(3),asy
i,k with the

asymptotic Q2 ≫ m2
h limit of the coefficient function in the decoupling scheme [71, 72, 74, 75, 77, 98], while

subtracting overlap terms. This ensures that in the Q2 ≫ m2
h limit, the structure function, computed from

C
(3),asy
i,k combined with decoupling-scheme PDFs, coincides with the structure function computed in the limit

in which the heavy quark mass is neglected and the heavy quark is treated as a massless parton. However, the
asymptotic limit can only be determined approximately since in particular some of the matching conditions
are not fully known.

The interpolating functions, used to combine the two contributions in Eq. (3.3), are chosen to satisfy
the requirements

f1(x) −−−→
x→0

0, f1(x) −−−−−→
x→xmax

1 ,

f2(x) −−−→
x→0

1, f1(x) −−−−−→
x→xmax

0 ,
(3.4)

which ensure that the threshold contribution vanishes in the small-x limit and conversely. This guarantees

that the approximation Eq. (3.3) is reliable in a broad kinematic range in the (x,Q2) plane: C
(3),asy
i,k repro-

duces the massless limit for large Q2 values and for all values of x, including the small-x limit, while C
(3),thr
i,k

describes the threshold limit, with x close to xmax. An uncertainty on the approximate coefficient function
can be constructed varying the functional form of the interpolating functions, as well as that of terms which
are not fully known. This includes the NLL small-x resummation and the matching functions that enter the
asymptotic high Q2 limit. This uncertainty vanishes in the x → xmax limit, for which the exact known limit
is reproduced (with a fixed choice for the unknown constant β-independent terms), and becomes larger in
the intermediate η region. The interpolating functions and their uncertainties are optimized by using the
same methodology at NNLO, where the full result is known. We refer to Ref. [87] for a detailed discussion
of this construction.

This optimized approximation at NNLO is shown in Fig. 3.1, where we compare it to the exact result

for the massive gluon-initiated coefficient function xC
(2)
2,g (η), expressed in terms of the variable

η =
Q2(1− x)

4m2
hx

− 1 . (3.5)

Results are shown for two different values of the Q2/m2
h ratio, close to threshold and at higher scales. Note

that η → 0 corresponds to x → xmax (threshold limit), while η → ∞ corresponds to either Q2/m2
h → ∞ for

fixed x (asymptotic limit), or x → 0 for fixed Q2 (high-energy limit). In this case the uncertainty band is
obtained by varying the interpolating functions only.
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Figure 3.4. The charm structure function F
(c)
2 (x,Q2,m2

c) in the FONLL-E scheme, compared to the massive and
massless scheme results (see text). Results are shown as a function of Q2 for x = 2 × 10−4 (top left), x = 2 × 10−3

(top right), x = 2× 10−2 (bottom left), and x = 2× 10−1 (bottom right). The uncertainty shown on the FONLL and
massive curves is the IHOU on the heavy quark coefficient functions Eq. (3.6).

The results found using the same procedure for the gluon and quark singlet coefficient functions at
N3LO are displayed in Fig. 3.2, compared to the approximation of Ref. [83], each shown with the respective
uncertainty estimate. Good agreement between the different approximations is found, especially for the
dominant gluon coefficient function. The approximations agree in the asymptotic η → 0 and η → ∞ limits
and in most of the η range, but differ somewhat in the subasymptotic large η region at fixed Q2, which
corresponds to the small x limit at fixed Q2. These differences can be traced to the aforementioned inclusion
in the procedure of Ref. [87, 88] of a particular class of NLL terms related.

The uncertainty involved in the approximation can be included as a further IHOU, alongside that
discussed in Sect. 2.2, through an additional contribution to the theory covariance matrix. Namely, we
define

covCmn =
1

2
(∆m(+)∆n(+) + ∆m(−)∆n(−)) . (3.6)

Here ∆m(±) is the shift in the prediction for the m-th DIS data point obtained by replacing the central
approximation to the massive coefficient function with the upper or lower edge of the uncertainty range
determined in Ref. [87] and shown as an uncertainty band in Fig. 3.2. Note that unlike in Eq. (2.20), we
divide by the number of independent variations, without decreasing it by one, because the central value is
not the average of the variations, and thus is independent. The contribution Eq. (3.6) is then added to the
IHOU covariance matrix as a further term on the right-hand side of Eq. (2.20).

The impact of this contribution to the IHOU is assessed in Fig. 3.3, where the square root of the
diagonal component of the covariance matrix is shown for all the DIS data points in our dataset, comparing
the IHOU before and after adding to Eq. (2.20) the extra component Eq. (3.6) due to the IHOU on the
massive coefficient function. It is clear that the impact of IHOUs due to perturbative evolution is generally
negligible, in agreement with the results discussed in Sect. 2.6 and shown in Fig. 2.8: IHOUs on splitting
functions are only significant at small x, but available small-x data are at relatively low scale where the
evolution length is small. The impact of IHOUs on massive coefficient functions is relevant for data on
tagged bottom and charm structure functions, but otherwise moderate and only significant for structure
function data close to the heavy quark production thresholds.

3.2 A general-mass variable flavor number scheme at N3LO

The N3LO DIS coefficients functions described in the previous section enable the extension to O
(
α3
s

)
of the

FONLL [101] general-mass variable flavor number scheme for DIS [42–44]. The goal of the FONLL strategy
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Figure 3.5. Same as Fig. 3.4, now comparing the FONLL-A (used at NLO O (αs)), FONLL-C (used at NNLO
O
(
α2
s

)
), and FONLL-E (used at N3LO O

(
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)
), all shown as a ratio to FONLL-E. The FONLL-E result includes the

IHOU on the heavy quark coefficient functions Eq. (3.6).

is results that are accurate and reliable for all values of Q2 from the production threshold Q2 ∼ m2
h to the

asymptotic limit Q2 ≫ m2
h.

Assuming a single heavy quark, calculations performed in a decoupling scheme with nℓ light quarks
retain the full dependence on the heavy quark mass and include the contribution of heavy quarks at a
fixed perturbative order (massive scheme, henceforth). Calculations performed in a scheme in which the
heavy quark is treated as massless (massless scheme, henceforth), and endowed with a PDF that satisfies
perturbative matching conditions, resums logarithms of Q2/m2

h to all orders through the running of the

coupling and the evolution of PDFs, but does not include terms that are suppressed as powers of
m2

h
Q2 and

thus become relevant when Q2 ∼> m2
h. The FONLL prescription matches the two calculations by defining

FFONLL
i = F

(n)
i (x,Q2,m2

h) + F
(n+1)
i (x,Q)− F

(n,0)
i (x, ln(Q2/m2

h)) , i = 2, L, 3 , (3.7)

where F
(n)
i denotes the massive computation in which the (n + 1)-th (heavy) flavor decouples, F

(n+1)
i the

one in which it is treated as massless, and F
(n,0)
i is the asymptotic large-Q2 limit of the massive scheme

calculation, which depends only logarithmically on the heavy quark mass. This construction reduces to the
decoupling calculation for Q2 ≈ m2

h and to the massless one for Q2 ≫ m2
h.

The FONLL prescription of Eq. (3.7) was implemented in Ref. [42–44] for DIS to NNLO, by expressing
all terms on the right-hand side in terms of αs and PDFs all defined in the massless scheme. This has
the advantage of providing an expression that can used with externally provided PDFs, that are typically
available only in a single factorization scheme for each value of the scale Q.

However, the recent EKO code [40] allows, at any given scale, the coexistence of PDFs defined in schemes
with a different number of massless flavors. Furthermore, the recent YADISM program [41] implements DIS
coefficient functions corresponding to all three contributions on the right-hand side of Eq. (3.7). It is then
possible to implement the FONLL prescription Eq. (3.7) by simply combining expressions computed in
different schemes [102]. This formalism is especially advantageous at higher perturbative orders, where the
analytic expressions relating PDFs in different scheme grow in complexity, and also above bottom threshold,
where the iteration of Eq. (3.7) on charm and bottom heavy quarks leads to coexisting nf = 3, 4, 5 PDFs,
while the method of Ref. [42–44] would require re-expressing the massive scheme PDFs into massless scheme
PDFs twice.

In the FONLL method, Eq. (3.7), the first two terms on the right-hand side may be computed at
different perturbative orders, provided one ensures that the third term correctly includes only their common
contributions. In Ref. [42] some natural choices were discussed, based on the observation that in the
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Figure 3.6. Same as Fig. 3.5 for the inclusive structure function F
(tot)
2 (x,Q2). Note the different scale on the y axis.

massive scheme, the heavy quark contributes to the structure functions only at O (αs) and beyond, while
in the massless scheme it already contributes at O

(
α0
s

)
. Hence natural choices are to combine both the

massive and massless contributions at O (αs) (FONLL-A), or else the massive contribution at O
(
α2
s

)
and

the massless contribution at O (αs), i.e. both at second nontrivial order (FONLL-B). The corresponding two
options at the next order are called FONLL-C and -D.

Here, we will consider FONLL-E, in which both the massless and massive contributions are determined

at O
(
α3
s

)
. The charm structure function F

(c)
2 (x,Q2), computed in this scheme, is displayed in Fig. 3.4 as a

function of Q2 for four values of x (with mc = 1.51 GeV), and compared to the massive and massless scheme
results, with the IHOU on the massive coefficient function shown for the first two cases. The structure
functions are computed using the NNPDF4.0 aN3LO PDF set (to be discussed in Sect. 4 below) which
satisfies aN3LO evolution equations, as is necessary for consistency with the massless scheme result at high
scale. It is clear that the FONLL results interpolate between the massive and massless calculations as the
scale grows. The Q2 value at which either of the massive or massless results dominate depend strongly on
x. Except for the lowest Q2 values, the IHOUs associated with the calculation remain moderate.

The perturbative convergence of the charm structure function is assessed in Fig. 3.5, where we compare
the FONLL-A, FONLL-C and FONLL-E results, all shown as a ratio to FONLL-E, the latter also including
the IHOU as in Fig. 3.4. Clearly, convergence is faster at higher scales due to asymptotic freedom, and it
appears that the perturbative expansion has essentially converged for Q2 ≳ 10 GeV2. On the other hand,
the impact of aN3LO at low scale is sizable, up to 50% for small Q2 and x = 2 × 10−3. The IHOUs are
correspondingly sizable at low scale, and in fact always larger than the difference between the NNLO and
aN3LO results except at the highest x values and the lowest scales, implying that for the charm structure
function aN3LO may be more accurate, but possibly not more precise than NNLO.

An analogous study of perturbative convergence of the inclusive structure function is shown in Fig. 3.6
(note the different scale on the y axis). Interestingly, the effect of the aN3LO corrections changes sign when
going from x = 2 × 10−4 to larger values of x. In general, N3LO corrections are smaller at the inclusive
level: specifically, aN3LO corrections to the inclusive structure function are below 2% for Q2 ∼> 10 GeV2,
and at most of order 10% around the charm mass scale. The impact of the IHOUs on the heavy coefficient
is further reduced due to the fact that charm contributes at most one quarter of the total structure function.
Consequently, the aN3LO correction to the NNLO result is now larger than the IHOU in a significant
kinematic region. This, together with the fact that aN3LO corrections are comparable or larger than
typical experimental uncertainties on structure function data, motivates their inclusion in a global PDF
determination.
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calculations for the inclusive NC Drell-Yan cross-section in bins of mℓℓ, the invariant mass of the final-state dilepton
pair, using the n3loxs code, integrated over all other kinematic variables. The mℓℓ binning is chosen to be that of
the ATLAS 7 TeV high-mass DY measurement [103]. The same PDF set is used in the numerator and denominator,
namely NNPDF4.0 NNLO (for NNLO/NLO) and aN3LO (for N3LO/NNLO). The vertical bands show the MHOU on
the K-factors computed from scale variations.

3.3 N3LO corrections to hadronic processes

N3LO corrections to the total cross-section for inclusive neutral- (NC) and charged-current (CC) Drell-Yan
production [11, 12] are available through the n3loxs public code [8], both for on-shell W and Z and as a
function of the dilepton invariant mass mℓℓ. Differential distributions at the level of leptonic observables for
the same processes have also been computed [18, 19], but are not publicly available. No N3LO calculations
are available for other processes included in the NNPDF4.0 dataset.

The ratio of the NC total cross-section evaluated at two subsequent perturbative orders with a fixed set
of PDFs, chosen as NNPDF4.0 NNLO when comparing NNLO to NLO results, and aN3LO when comparing
N3LO to NNLO results, is shown in Fig. 3.7. Results are shown in the high-mass region, as a function of
mℓℓ, with the same binning as the ATLAS 7 TeV measurement [103]. Perturbative convergence is apparent,
with the N3LO/NNLO ratio closer to unity and smoother than its NNLO/NLO counterpart: while NNLO
corrections range between +0.5% and +4%, at N3LO they are reduced to −1.2% and +0.5%.

Total cross-section data are obtained by extrapolating measurements performed in a fiducial region.
Whereas for NC Drell-Yan production in the central rapidity region and for dilepton invariant masses around
the Z-peak, the N3LO/NNLO cross-section ratio depends only mildly on the dilepton rapidity yℓℓ [18, 19],
it is unclear whether this is the case also off-peak or at very large and very small rapidities. Hence, the
inclusion of N3LO corrections for hadronic processes is, at present, not fully reliable. We have consequently
not included them in our default determination, but only in a dedicated variant, with the goal of assessing
their impact.

The datasets for which N3LO corrections have been included in this variant are listed in Table 3.1.
We include the high-mass NC cross-section, the Z rapidity distribution in the central rapidity region for
on-shell Z-production, and the total W and Z cross-sections. For all these processes the N3LO cross-
section is determined by multiplying the NNLO result by a K-factor determined using a fixed underlying
PDF set, namely the aN3LO NNPDF4.0 PDF set to be discussed in Sect. 4 below. Specifically, for the
rapidity distribution we take the same fixed K-factor as for the total cross-section. We do not include off-
shell or double-differential rapidity distributions (specifically from CMS), off-forward rapidity distributions
(specifically from LHCb) and low-mass total cross-sections, for all of which the approximation of assuming
the K-factor to be independent of rapidity and/or amenable to fiducial extrapolation is even less reliable.
The datasets are labeled as in Table 2.4 of Ref. [37] 4.

Despite the fact that we are not yet able to determine reliably N3LO corrections for currently available

4The number of datapoints for the rapidity distributions differs from the numbers in this table because here we only include
Z distributions
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Dataset Ref. ndat Kin1 Kin2 [GeV] C-factor N3LO/NNLO

ATLAS high-mass DY 7 TeV [103] 13 |ηℓ| ≤ 2.1 116 ≤ mℓℓ ≤ 1500 dσ/dmℓℓ

ATLAS Z 7 TeV (L = 35 pb−1) [104] 8 |ηℓ, yZ | ≤ 3.2 Q = mZ dσ/dmℓℓ (66 < mℓℓ < 150)

ATLAS Z 7 TeV (L = 4.6 fb−1) CC [105] 24 |ηℓ, yZ | ≤ 2.5, 3.6 Q = mZ dσ/dmℓℓ (46 < mℓℓ < 116)

ATLAS σtot
W,Z 13 TeV [106] 3 — Q = mW ,mZ σ

Table 3.1. The LHC NC DY production datasets in NNPDF4.0 for which an N3LO K-factor has been included in a
variant of the default aN3LO PDF determination (see Sect. 4). For each dataset we indicate the published references,
the number of datapoints and the kinematic variables.

LHC measurements, we wish to include the full NNPDF4.0 dataset in our aN3LO PDF determination. To
this purpose, we endow all data for which N3LO are not included with an extra uncertainty that accounts
for the missing N3LO terms. This is estimated using the methodology of Refs. [35, 36], recently used in
Ref. [38] to produce a variant of the NNPDF4.0 PDF sets that includes MHOUs.

Thus, when not including N3LO corrections to the hard cross-section, the theory prediction is evaluated
by combining aN3LO evolution with the NNLO cross-sections. The prediction is then supplemented with
a theory covariance matrix, computed varying the renormalization scale µR using a three-point prescrip-
tion [35,36]:

covNNLO
mn =

1

2
(∆m(+)∆n(+) + ∆m(−)∆n(−)) , (3.8)

analogous to Eq. (3.6), but now with ∆m(±) the shift in the prediction for the m-th data point obtained by
replacing the coefficient functions with those obtained by performing upper or lower renormalization scale
variation using the methodology of Ref. [36] (as implemented and discussed in Ref. [38], Eq. (2.9)). This
MHOU covariance matrix is then added to the IHOU covariance matrix as a further term on the right-hand
side of Eq. (2.20).

The impact of this uncertainty is shown in Fig. 3.8, where we show for all hadronic datasets the square
root of the diagonal entries of the MHOU covariance matrix Eq. (3.8), compared to those of the IHOU
covariance matrix Eq. (2.20), and to the experimental uncertainties, all normalized to the central theory
prediction. The MHOU is generally larger than the IHOU, indicating that the missing N3LO terms in the
hard cross-sections are larger than the IHOU uncertainty in N3LO perturbative evolution. The experimental
uncertainties are generally larger still.

In addition to the NNPDF4.0 aN3LO baseline PDF set obtained in this manner, we will also produce
a NNPDF4.0 MHOU aN3LO set, in analogy to the NLO and NNLO MHOU sets recently presented in
Ref. [38]. For this set, MHOUs on both perturbative evolution and on the hard matrix elements are included
using the methodology of Refs. [35, 36] with a theory covariance matrix determined performing combined
correlated renormalization and factorization scale variations with a 7-point prescription, as discussed in
detail in Ref. [38]. In this case, we simply perform scale variation on the expressions at the order at
which they are being computed, namely aN3LO for anomalous dimensions and DIS coefficient functions
and NNLO for hadronic processes. The scale variation then is automatically larger and suitable deweights
processes for which N3LO corrections are not available. The possibility of simultaneously including in a PDF
determination processes for which theory predictions are only available at different perturbative orders is an
advantage of the inclusion of MHOUs in the PDF determination, as already pointed out in Refs. [107,108].

4 NNPDF4.0 at aN3LO

We now present the aN3LO NNPDF4.0 PDF sets. They have been obtained by using the dataset and
methodology discussed in [37] and used for the construction of the LO, NLO, and NNLO NNPDF4.0 pre-
sented there, now extended to aN3LO. The aN3LO results are obtained using the approximate N3LO splitting
functions of Sect. 2, the exact massless and approximate massive N3LO coefficient functions of Sect. 3.1,
and NNLO hadronic cross-sections supplemented by an extra uncertainty as per Sect. 3.3.

Theoretical predictions are obtained using the new theory pipeline of Ref. [70], which relies on the EKO

evolution code [40] and on the YADISM DIS module [41]. As discussed in Sect. 3.2, this pipeline in particular
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Figure 3.8. Same as Fig. 3.3 now comparing the IHOU from Eq. (2.20) with the MHOU from Eq. (3.8) due to the
missing N3LO correction to the matrix element. Results are shown for all hadronic data in the NNPDF4.0 dataset:
specifically Drell-Yan (top) and top pair, single top, single-inclusive jet, prompt photon and dijet production (bottom).

includes a new FONLL implementation, that differs from the previous one by subleading terms. A further
small difference in comparison to Ref. [37] is the correction of a few minor bugs in the data implementation.
The overall impact of all these changes was assessed in Appendix A of Ref. [109], and was found to be very
limited, so that the new and old implementations can be considered equivalent, and the PDF sets presented
here can be considered the extension to aN3LO of the NNPDF4.0 PDF sets of Ref. [37].

In addition to the default NNPDF4.0 aN3LO PDF determination, we also present an aN3LO PDF
determination that includes MHOUs on all the theory predictions used in the PDF determination. This is
constructed using the same methodology recently used to produce the NNPDF4.0MHOU NNLO PDF set
in Ref. [38]. In order to be able to discuss perturbative convergence and the impact of MHOUs we will also
present a NNPDF4.0MHOU NLO PDF set constructed using the same methodology, and exactly the same
dataset as the default NNPDF4.0 NLO PDF set (which differs from the NNPDF4.0 NNLO dataset).

We finally construct two variants of the aN3LO PDF sets (both with and without MHOUs) with modified
N3LO theory. In a first variant, we replace our own approximation to the N3LO anomalous dimensions,
discussed in Sect. 2, with that of Refs. [28–30]. In the second variant, we will also include N3LO corrections
for the processes listed in Tab. 3.1, as discussed in Sect. 3.3.

We first assess the fit quality, then present the PDFs and their uncertainties, and study perturbative
convergence and the effect on it of the inclusion of MHOUs. We then specifically study the impact of aN3LO
corrections on intrinsic charm. We then turn to the variants, and finally compare our results to the recent
MSHT20 aN3LO PDFs.
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NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

DIS NC 1980 1.30 1.22 2100 1.22 1.20 2100 1.22 1.20

DIS CC 988 0.92 0.87 989 0.90 0.90 989 0.91 0.92

DY NC 667 1.49 1.32 736 1.20 1.15 736 1.17 1.16

DY CC 193 1.31 1.27 157 1.45 1.37 157 1.37 1.36

Top pairs 64 1.90 1.24 64 1.27 1.43 64 1.23 1.41

Single-inclusive jets 356 0.86 0.82 356 0.94 0.81 356 0.84 0.83

Dijets 144 1.55 1.81 144 2.01 1.71 144 1.78 1.67

Prompt photons 53 0.58 0.47 53 0.76 0.67 53 0.72 0.68

Single top 17 0.35 0.34 17 0.36 0.38 17 0.35 0.36

Total 4462 1.24 1.16 4616 1.17 1.13 4616 1.15 1.14

Table 4.1. The number of data points and the χ2 per data point obtained in the NLO, NNLO, and aN3LO NNPDF4.0
fits without and with MHOUs, see text for details. The datasets are grouped according to the same process catego-
rization as that used in Ref. [38].
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Figure 4.1. The values of the total χ2 per data point in the NNPDF4.0 NLO, NNLO, and aN3LO fits without and
with MHOUs.

4.1 Fit quality

Tables 4.1-4.4 display the number of data points and the χ2 per data point obtained in the NLO, NNLO,
and aN3LO NNPDF4.0 fits with and without MHOUs. In Table 4.1 the datasets are grouped according
to the process categorization used in Ref. [38]. Results for individual datasets are displayed in Table 4.2,
(NC and CC DIS), in Table 4.3 (NC and CC DY), and in Table 4.4 (top pairs, single-inclusive jets, dijets,
isolated photons, and single top). The naming of the datasets follows Ref. [37]. The value of the total χ2

per data point is also shown as a function of the perturbative order in Fig. 4.1.
The NLO and NNLO results without MHOUs are obtained using the NLO and NNLO NNPDF4.0 PDF

sets [37]. The NNLO result with MHOUs is obtained using the NNPDF4.0MHOU NNLO set from Ref. [38],
while, as already mentioned, the NNPDF4.0MHOU NLO presented here for the first time uses an identical
methodology to NNPDF4.0MHOU NNLO [38], but the same dataset as NNPDF4.0 NLO [37]. Hence, the
datasets with and without MHOU are always the same, but the NLO and NNLO datasets are not the same
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NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

NMC F d
2 /F

p
2 121 0.87 0.86 121 0.87 0.88 121 0.88 0.88

NMC σNC,p 203 1.82 1.30 204 1.57 1.33 204 1.57 1.36

SLAC F p
2 33 1.64 0.74 33 0.91 0.68 33 0.93 0.72

SLAC F d
2 34 0.90 0.68 34 0.61 0.54 34 0.62 0.58

BCDMS F p
2 333 1.62 1.24 333 1.40 1.29 333 1.39 1.40

BCDMS F d
2 248 1.05 1.00 248 1.01 0.99 248 1.04 1.03

HERA I+II σNC e−p 159 1.44 1.40 159 1.40 1.39 159 1.45 1.40

HERA I+II σNC e+p (Ep = 460 GeV) 192 1.12 1.05 204 1.09 1.04 204 1.07 1.05

HERA I+II σNC e+p (Ep = 575 GeV) 236 0.85 0.84 254 0.93 0.88 254 0.87 0.88

HERA I+II σNC e+p (Ep = 820 GeV) 54 1.15 0.85 70 1.12 0.95 70 0.96 0.86

HERA I+II σNC e+p (Ep = 920 GeV) 317 1.30 1.21 377 1.31 1.25 377 1.27 1.24

HERA I+II σc
NC 24 2.18 1.40 37 1.96 1.75 37 1.86 1.57

HERA I+II σb
NC 26 1.42 1.05 26 1.44 1.11 26 1.26 1.07

CHORUS σν
CC 416 0.96 0.95 416 0.96 0.97 416 0.97 0.98

CHORUS σν̄
CC 416 0.90 0.88 416 0.88 0.87 416 0.88 0.88

NuTeV σν
CC (dimuon) 39 0.24 0.22 39 0.33 0.33 39 1.27 1.28

NuTeV σν̄
CC (dimuon) 36 0.43 0.35 37 0.56 0.64 37 0.63 0.59

HERA I+II σCC e−p 42 1.34 1.19 42 1.25 1.29 42 1.29 1.34

HERA I+II σCC e+p 39 1.26 1.22 39 1.23 1.25 39 1.27 1.28

Table 4.2. Same as Table 4.1 for DIS NC (top) and DIS CC (bottom) datasets.

but rather follow Ref. [37]. The N3LO dataset is the same as NNLO. In all cases, the theoretical predictions
entering the computation of the χ2 are obtained with the new theory pipeline. The covariance matrix,
whenever needed, is computed as described in Sect. 4.1 of Ref. [38]. The N3LO predictions are computed
with the aforementioned aN3LO PDF sets. These are based on the same datasets and kinematic cuts as the
NNPDF4.0 NNLO PDF sets, use the theoretical predictions discussed in Sects. 2-3, and are supplemented
with a IHOU covariance matrix as discussed in Sects. 2.2-3.1 and a MHOU for hadronic processes for which
N3LO hard cross-sections are not available as discussed in Sect. 3.3.

Table 4.1 and Fig. 4.1 show that without MHOUs fit quality improves as the perturbative order increases.
Note that this also happens when going from NNLO to N3LO, despite the fact that N3LO corrections are
only partially included, with hadronic matrix elements still computed at NNLO. This shows that the impact
of N3LO corrections to evolution and DIS coefficient functions is significant enough to affect fit quality in a
way that is qualitatively compatible with what one would expect when adding an extra perturbative order
to the improvement already seen when going from NLO to NNLO.

On the other hand, when MHOUs are included, fit quality becomes independent of perturbative order
within uncertainties (note that, with Ndat = 4462, σχ2 = 0.03). This suggests that the MHOU covariance
matrix estimated through scale variation is correctly reproducing the observed shift between perturbative
orders, i.e. the true MHOU. Note that if true this also means that at aN3LO the missing N3LO corrections to
hadronic processes are correctly accounted for by the corresponding MHOU which is always included. Also,
at aN3LO the fit quality is the same within uncertainties irrespective of whether MHOUs are included or
not. This strongly suggests that inclusion of higher order terms in perturbative evolution and DIS coefficient
function would not lead to further improvements, i.e. that in this respect, with experimental uncertainties,
current methodology and current dataset the perturbative expansion has converged.

4.2 Parton distributions

We now examine the NNPDF4.0 aN3LO parton distributions. We compare the NLO, NNLO and aN3LO
NNPDF4.0 PDFs, obtained without and with inclusion of MHOUs, in Figs. 4.2-4.3 and in Figs. 4.4-4.5,
respectively. Specifically, we show the up, antiup, down, antidown, strange, antistrange, charm and gluon
PDFs at Q = 100 GeV, normalized to the aN3LO result, as a function of x in logarithmic and linear scale.
Error bands correspond to one sigma PDF uncertainties, which do (MHOU sets) or do not (no MHOU sets)

28



NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

E866 σd/2σp (NuSea) 15 0.59 0.47 15 0.52 0.51 15 0.53 0.51

E866 σp (NuSea) 89 1.33 0.86 89 1.59 1.00 89 1.08 1.03

E605 σd/2σp (NuSea) 85 0.43 0.42 85 0.46 0.45 85 0.45 0.45

E906 σd/2σp (SeaQuest) 6 1.47 0.74 6 0.97 0.90 6 0.82 0.88

CDF Z differential 28 1.23 1.24 28 1.23 1.18 28 1.23 1.22

D0 Z differential 28 0.69 0.71 28 0.64 0.64 28 0.64 0.63

ATLAS low-mass DY 7 TeV 4 0.69 0.66 6 0.88 0.78 6 0.78 0.76

ATLAS high-mass DY 7 TeV 5 1.74 1.66 5 1.60 1.67 5 1.64 1.68

ATLAS Z 7 TeV (L = 35 pb−1) 8 0.67 0.44 8 0.58 0.57 8 0.56 0.61

ATLAS Z 7 TeV (L = 4.6 fb−1) CC 16 3.82 2.99 24 1.80 1.68 24 1.66 1.69

ATLAS Z 7 TeV (L = 4.6 fb−1) CF 15 1.77 1.22 15 1.07 1.02 15 1.02 0.99

ATLAS low-mass DY 2D 8 TeV 47 1.38 0.94 60 1.23 1.08 60 1.17 1.13

ATLAS high-mass DY 2D 8 TeV 48 1.52 1.38 48 1.11 1.08 48 1.09 1.09

ATLAS σtot
Z 13 TeV 1 0.12 0.41 1 0.24 0.60 1 0.24 0.66

ATLAS Z pT 8 TeV (pT ,mℓℓ) 41 1.08 0.91 44 0.91 0.91 44 0.89 0.89

ATLAS Z pT 8 TeV (pT , yZ) 28 0.87 0.52 48 0.90 0.70 48 0.77 0.68

CMS DY 2D 7 TeV 88 1.29 1.11 110 1.34 1.32 110 1.34 1.36

CMS Z pT 8 TeV 28 1.66 1.47 28 1.40 1.41 28 1.35 1.39

LHCb Z → ee 7 TeV 9 1.47 1.18 9 1.65 1.53 9 1.48 1.46

LHCb Z → µ 7 TeV 15 1.03 0.87 15 0.80 0.73 15 0.77 0.73

LHCb Z → ee 8 TeV 17 1.58 1.38 17 1.24 1.26 17 1.31 1.27

LHCb Z → µ 8 TeV 15 1.25 1.06 15 1.44 1.59 15 1.60 1.60

LHCb Z → ee 13 TeV 15 1.68 1.60 15 1.72 1.80 15 1.78 1.76

LHCb Z → µµ 13 TeV 16 1.10 1.11 16 0.94 0.99 16 0.99 0.94

D0 W muon asymmetry 8 2.42 2.17 9 1.86 1.95 9 2.07 2.03

ATLAS W 7 TeV (L = 35 pb−1) 22 1.20 1.13 22 1.11 1.12 22 1.09 1.12

ATLAS W 7 TeV (L = 4.6 fb−1) 22 2.18 2.13 22 2.08 2.16 22 2.16 2.10

ATLAS σtot
W 13 TeV 2 0.16 0.54 2 1.21 1.60 2 1.38 1.67

ATLAS W++jet 8 TeV 15 0.26 0.28 15 0.79 0.79 15 0.73 0.73

ATLAS W−+jet 8 TeV 15 0.98 1.27 15 1.49 1.45 15 1.41 1.41

CMS W electron asymmetry 7 TeV 11 0.92 1.03 11 0.84 0.85 11 0.82 0.86

CMS W muon asymmetry 7 TeV 11 2.03 1.77 11 1.71 1.73 11 1.70 1.71

CMS W rapidity 8 TeV 22 0.93 0.74 22 1.33 1.03 22 1.11 1.08

LHCb W → µ 7 TeV 14 1.63 1.26 14 2.78 1.99 14 2.12 2.03

LHCb W → µ 8 TeV 14 0.60 0.44 14 0.97 0.92 14 0.80 0.84

Table 4.3. Same as Table 4.1 for DY NC (top) and DY CC (bottom) datasets.

include MHOUs on all theory predictions used in the fit. The PDF sets, with and without MHOUs, are the
same used to compute the values of the χ2 in Tables 4.1-4.4.

The excellent perturbative convergence seen in the fit quality is also manifest at the level of PDFs. In
particular, the NNLO PDFs are either very close to or indistinguishable from their aN3LO counterparts.
Inclusion of MHOUs further improves the consistency between NNLO and aN3LO PDFs, which lie almost
on top of each other. This means that the NNLO PDFs are made more accurate by the inclusion of MHOUs,
and that the aN3LO PDFs have converged, in the sense discussed above. Exceptions to this stability are the
charm and gluon PDFs, for which aN3LO corrections have a sizable impact. In the case of charm, they lead
to an enhancement of the central value of about 4% for x ∼ 0.05; in the case of gluon, to a suppression of
about 2-3% for x ∼ 0.005. In both cases, inclusion of MHOUs leads to an increase in PDF uncertainties by
about 1-2%. This makes the NNLO and aN3LO charm PDFs with MHOUs compatible within uncertainties,
and the NNLO and aN3LO gluon PDFs with MHOU almost compatible.

Figure 4.6 presents a comparison similar to that of Figs. 4.2-4.4 for the gluon-gluon, gluon-quark, quark-
quark, and quark-antiquark parton luminosities. These are shown integrated in rapidity as a function of
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Figure 4.2. The NLO, NNLO and aN3LO NNPDF4.0 PDFs at Q = 100 GeV. We display the up, antiup, down,
antidown, strange, antistrange, charm and gluon PDFs normalized to the aN3LO result. Error bands correspond to
one sigma PDF uncertainties, not including MHOUs on the theory predictions used in the fit.
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Figure 4.3. Same as Fig. 4.2 in linear scale.
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Figure 4.4. Same as Fig. 4.2 for NNPDF4.0MHOU PDF sets. Error bands correspond to one sigma PDF uncertainties
also including MHOUs on the theory predictions used in the fit.
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Figure 4.5. Same as Fig. 4.4 in linear scale.
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Figure 4.6. The gluon-gluon, gluon-quark, quark-quark, and quark-antiquark parton luminosities as a function of
mX at

√
s = 14 TeV, computed with NLO, NNLO and aN3LO NNPDF4.0 PDFs without MHOUs (left) and with

MHOUs (right), all shown as a ratio to the respective aN3LO results. Uncertainties are as in Figs. 4.2-4.4
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NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

ATLAS σtot
tt 7 TeV 1 10.4 0.96 1 4.50 2.40 1 2.78 2.05

ATLAS σtot
tt 8 TeV 1 1.74 0.59 1 0.02 0.03 1 0.04 0.08

ATLAS σtot
tt 13 TeV (L=139 fb−1) 1 3.82 0.96 1 0.49 0.41 1 0.51 0.44

ATLAS tt̄ ℓ+jets 8 TeV (1/σdσ/dyt) 4 4.16 1.79 4 3.13 3.70 4 2.98 3.64

ATLAS tt̄ ℓ+jets 8 TeV (1/σdσ/dytt̄) 4 8.93 3.73 4 4.50 5.80 4 4.26 4.92

ATLAS tt̄ 2ℓ 8 TeV (1/σdσ/dytt̄) 4 1.94 1.76 4 1.60 1.86 4 1.66 1.80

CMS σtot
tt 5 TeV 1 0.61 0.73 1 0.02 0.01 1 0.03 0.02

CMS σtot
tt 7 TeV 1 5.27 1.30 1 1.01 0.50 1 0.60 0.34

CMS σtot
tt 8 TeV 1 3.50 0.85 1 0.26 0.17 1 0.21 0.10

CMS σtot
tt 13 TeV 1 0.75 0.26 1 0.06 0.01 1 0.04 0.05

CMS tt̄ ℓ+jets 8 TeV (1/σdσ/dytt̄) 9 1.87 1.59 9 1.21 1.59 9 1.31 1.52

CMS tt̄ 2D 2ℓ 8 TeV (1/σdσ/dytdmtt̄) 15 2.03 1.89 15 1.30 1.25 15 1.28 1.37

CMS tt̄ 2ℓ 13 TeV (dσ/dyt) 10 0.78 0.69 10 0.51 0.59 10 0.55 0.60

CMS tt̄ ℓ+jet 13 TeV (dσ/dyt) 11 0.66 0.25 11 0.60 0.66 11 0.52 0.71

ATLAS incl. jets 8 TeV, R = 0.6 171 0.67 0.74 171 0.68 0.64 171 0.68 0.64

CMS incl. jets 8 TeV 185 0.95 0.83 185 1.19 0.95 185 0.97 0.99

ATLAS dijets 7 TeV, R = 0.6 90 1.47 1.72 90 2.14 1.69 90 1.76 1.63

CMS dijets 7 TeV 54 1.57 2.01 54 1.79 1.74 54 1.84 1.78

ATLAS isolated γ prod. 13 TeV 53 0.57 0.47 53 0.76 0.67 53 0.72 0.68

ATLAS single t Rt 7 TeV 1 0.43 0.29 1 0.50 0.57 1 0.51 0.58

ATLAS single t Rt 13 TeV 1 0.04 0.03 1 0.06 0.07 1 0.06 0.07

ATLAS single t 7 TeV (1/σdσ/dyt) 3 0.83 0.84 3 0.96 0.94 3 0.97 0.97

ATLAS single t 7 TeV (1/σdσ/dyt̄) 3 0.06 0.06 3 0.06 0.06 3 0.06 0.06

ATLAS single t 8 TeV (1/σdσ/dyt) 3 0.38 0.31 3 0.25 0.26 3 0.22 0.24

ATLAS single t 8 TeV (1/σdσ/dyt̄) 3 0.19 0.21 3 0.19 0.19 3 0.20 0.20

CMS single t σt + σt̄ 7 TeV 1 0.89 0.88 1 0.74 0.84 1 0.39 0.43

CMS single t Rt 8 TeV 1 0.15 0.08 1 0.18 0.20 1 0.18 0.21

CMS single t Rt 13 TeV 1 0.33 0.27 1 0.36 0.38 1 0.36 0.38

Table 4.4. Same as Table 4.1 for (from top to bottom) top pair, single-inclusive jet, isolated photon and single top
production datasets.

the invariant mass of the final state mX for a center-of-mass energy
√
s = 14 TeV. Their definition follows

Eqs. (1)-(4) of Ref. [110].
As already observed for PDFs, perturbative convergence is excellent, and improves upon inclusion of

MHOUs. The NNLO and aN3LO results are compatible within uncertainties for the gluon-quark, quark-
quark, and quark-antiquark luminosities. Some differences are seen for the gluon-gluon luminosity, consistent
with the differences seen in the gluon PDF. Specifically, the aN3LO corrections lead to a suppression of the
gluon-gluon luminosity of 2-3% for mX ∼ 100 GeV. This effect is somewhat compensated by an increase in
uncertainty of about 1% upon inclusion of MHOUs. Indeed, the NNLO and aN3LO gluon-gluon luminosities
for mX ∼ 100 GeV differ by about 2.5σ without MHOU, but become almost compatible within uncertainties
when MHOUs are included.

All in all, these results show that aN3LO corrections are generally small, except for the gluon PDF, and
that at aN3LO the perturbative expansion has all but converged, with NNLO and aN3LO PDFs very close
to each other, especially upon inclusion of MHOUs. They also show that MHOUs generally improve the
accuracy of PDFs, though at aN3LO they have a very small impact. The phenomenological consequences
of this state of affairs will be further discussed in Sect. 5.
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NLO NNLO N3LO

Dataset no MHOU MHOU no MHOU MHOU no MHOU MHOU

DIS NC 0.14 0.13 0.15 0.13 0.13 0.13

DIS CC 0.11 0.11 0.12 0.12 0.12 0.12

DY NC 0.19 0.17 0.18 0.17 0.17 0.18

DY CC 0.33 0.27 0.35 0.32 0.31 0.32

Top pairs 0.18 0.17 0.17 0.17 0.16 0.19

Single-inclusive jets 0.13 0.13 0.13 0.13 0.13 0.13

Dijets 0.10 0.10 0.11 0.10 0.10 0.10

Prompt photons 0.06 0.07 0.06 0.06 0.05 0.05

Single top 0.04 0.04 0.04 0.04 0.04 0.04

Total 0.18 0.15 0.16 0.15 0.15 0.15

Table 4.5. The ϕ uncertainty estimator for NNPDF4.0 PDFs at NLO, NNLO and aN3LO without and with MHOUs
for the process categories as in Table 4.1.

4.3 PDF uncertainties

We now take a closer look at PDF uncertainties. In Fig. 4.7 we display one sigma uncertainties for the
NNPDF4.0 NLO, NNLO, and aN3LO PDFs with and without MHOUs at Q = 100 GeV. All uncertainties
are normalized to the central value of the NNPDF4.0 aN3LO PDF set with MHOUs. The NLO uncertainty
is generally the largest of all in the absence of MHOUs, and for quark distributions the smallest once MHOUs
are included. All other uncertainties, at NNLO and aN3LO, with and without MHOUs, are quite similar
to each other, especially for quark PDFs. The fact that upon inclusion of an extra source of uncertainty,
namely the MHOU, PDF uncertainties are reduced (at NLO) or unchanged (at NNLO and aN3LO) may
look counter-intuitive. However, as already pointed out in Refs. [34, 38, 111], this can be understood to be
a consequence of the increased compatibility of the data due to inclusion of MHOUs and of higher-order
perturbative corrections.

The impact of MHOUs on NLO and NNLO PDFs was extensively assessed in Ref. [38]. In a similar
vein, here we focus on the impact of MHOUs on aN3LO PDFs. To this purpose, in Fig. 4.8 we compare
the NNPDF4.0 aN3LO PDFs with and without MHOUs. The related comparison for parton luminosities is
presented in Fig. 4.9. Again, aN3LO PDFs and luminosities with and without MHOU are very compatible
with each other. This evidence reinforces the expectation that perturbative corrections beyond N3LO will
not alter PDFs significantly, at least with current data and methodology.

In analogy with Ref. [38], we also compare the ϕ estimator introduced in Ref. [112] (see Eq. (4.6) there).
The estimator gives the ratio of the average correlated PDF uncertainty to the data uncertainty. As such, it
provides an estimate of the consistency of the data: consistent data are combined by the underlying theory
and lead to an uncertainty in the prediction which is smaller than that of the original data. The value of
ϕ obtained in the NLO, NNLO, and aN3LO NNPDF4.0 fits with and without MHOUs (as in Table 4.1) is
reported in Table 4.5. It is clear that ϕ converges to very similar values with the increase of the perturbative
order and/or with inclusion of MHOUs for both the total dataset and for most of the data categories. This
fact is further quantitative evidence of the excellent perturbative convergence of the PDF uncertainties.

4.4 Implications for intrinsic charm

The availability of the aN3LO PDFs discussed in Sects. 4.2-4.3 allows us to revisit and consolidate our
recent results on intrinsic charm. Specifically, based on the NNPDF4.0 NNLO PDF determination, we have
found evidence for intrinsic charm [113] and an indication for a non-vanishing valence charm component [?].
In these analyses, the dominant source of theory uncertainty was estimated to come from the matching
conditions that are used in order to obtain PDFs in a three-flavor charm decoupling scheme from high-scale
data, while MHOUs were assumed to be subdominant. The uncertainty in the matching conditions was in
turn estimated by comparing results obtained using NNLO matching and the best available aN3LO matching
conditions, both applied to NNLO PDFs.

It is now possible to improve these results on three counts. First, we can now fully include MHOUs.
Second, we can consistently combine aN3LOmatching conditions and aN3LO PDFs, and perform a consistent

36



10 4 10 3 10 2 10 1

x

0.00

0.01

0.02

0.03

0.04

0.05
(R

at
io

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U)

u at 100 GeV
NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

u at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.000

0.005

0.010

0.015

0.020

0.025

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

d at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

d at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.00

0.02

0.04

0.06

0.08

0.10

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

s at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.00

0.02

0.04

0.06

0.08

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

s at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

c at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

10 4 10 3 10 2 10 1

x

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(R
at

io
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U)

g at 100 GeV

NNPDF4.0 aN3LO no MHOU
NNPDF4.0 NNLO no MHOU
NNPDF4.0 NLO no MHOU
NNPDF4.0 aN3LO MHOU
NNPDF4.0 NNLO MHOU
NNPDF4.0 NLO MHOU

Figure 4.7. Relative one sigma uncertainties for the PDFs shown in Figs. 4.2-4.4. All uncertainties are normalized
to the central value of the NNPDF4.0 aN3LO set with MHOUs.
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Figure 4.8. Same as Figs. 4.2-4.4, now comparing NNPDF4.0 aN3LO PDFs without and with MHOUs.
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Figure 4.9. Same as Fig. 4.6, now comparing NNPDF4.0 aN3LO PDFs without and with MHOUs.

comparison of NNLO and aN3LO results. Finally, knowledge of aN3LO matching conditions themselves is
now improved thanks to recent results [81] that were not available at the time of the analysis of Ref. [113].
We will specifically discuss the determination of the total intrinsic charm component and we do not consider
the valence component, because effects of MHOUs and of the flavor scheme transformation are already very
small at NNLO [?].

To this purpose, in Fig. 4.10 we show the total charm PDF, xc+(x,Q2), in the 4FNS at Q = 1.65 GeV
and in the 3FNS, as obtained from using NNPDF4.0 NLO, NNLO and aN3LO without and with MHOUs.
Note that in the 3FNS the charm PDF does not depend on scale. Error bands correspond to one sigma
PDF uncertainties. The 4FNS results share the general features discussed in Sect. 4.2: the perturbative
expansion converges nicely, with the aN3LO result very close to the NNLO. The convergence is further
improved by the inclusion of MHOUs, which move the NNLO yet closer to the aN3LO. The 3FNS result is
especially remarkable: whereas the combination of aN3LO matching with NNLO PDFs, used in Ref. [113]
to conservatively estimate MHOUs, was somewhat unstable, now results display complete stability, and in
particular the NNLO and aN3LO results completely coincide.

In order to assess the impact of MHOUs more clearly, in Fig. 4.11 we compare the total charm PDF in
the 3FNS with and without MHOUs, respectively at NNLO and aN3LO. At NNLO MHOUs have a small
but non-negligible impact on central values, with almost unchanged uncertainty, but at aN3LO they have
essentially no impact, confirming the perturbative convergence of the result.

We thus proceed to a final re-assessment of the significance of intrinsic charm through the pull, defined
as the central value divided by total uncertainty, using NNPDF4.0MHOU NNLO and aN3LO PDFs. We
estimate the total uncertainty by adding in quadrature to the PDF uncertainty (which already includes the
MHOU from the theory predictions used in the fit) a further theory uncertainty, taken equal to the difference
between the central value at given perturbative order, and that at the previous perturbative order (so at
NNLO from the difference to NLO, and so on). This now also includes the MHOU due to change in the
matching from 4FNS to 3FNS, but also the shift in the 4FNS result that is in principle already accounted
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Figure 4.10. The total charm PDF, xc+(x,Q2), in the 4FNS at Q = 1.65 GeV (left) and 3FNS (right), as obtained
from the NNPDF4.0 NLO, NNLO, and aN3LO fits without (top) and with (bottom) MHOUs. Error bands correspond
to one sigma PDF uncertainties. Note that in the 3FNS the charm PDF does not depend on scale.
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Figure 4.11. Same as Fig. 4.10, now comparing the total charm PDF in the 3FNS with and without MHOUs,
respectively at NNLO (left) and aN3LO (right).

for by the MHOU. Also, it conservatively assumes that the shift between the current order and the next is
equal to that from the previous order, rather than smaller. Results obtained with this conservative error
estimate are shown in Fig. 4.12. It is clear that the significance of intrinsic charm is increased somewhat
when going from NNLO to aN3LO. It is now also somewhat increased already at NNLO in comparison to
the result of Ref. [113], despite the more conservative uncertainty estimate, thanks to the increased accuracy
of MHOU PDFs and the consistent and improved treatment of matching aN3LO conditions. Indeed, local
significance at the peak is now more than three sigma for the default fit.
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Figure 4.12. The pull (central value divided by total uncertainty) for the total charm PDF in the 3FNS obtained in
the NNPDF4.0 NNLO and aN3LO fits with MHOUs.

default with N3LO K-factors

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU

ATLAS high-mass DY 7 TeV 5 1.64 1.68 5 1.63 1.56

ATLAS Z 7 TeV (L = 35 pb−1) 8 0.56 0.61 8 0.47 0.52

ATLAS Z 7 TeV (L = 4.6 fb−1) CC 24 1.66 1.69 24 1.90 1.59

ATLAS σtot
Z 13 TeV 1 0.24 0.66 1 0.06 0.00

ATLAS σtot
W 13 TeV 2 1.38 1.67 2 1.33 1.59

Table 4.6. The number of data points and the χ2 per data point for the datasets of Table 3.1 comparing the default
fits (same as Table 4.3) to fits in which N3LO corrections are included following the methodology of Sect. 3.3, in both
cases with and without MHOUs.

4.5 Dependence on the treatment of aN3LO corrections.

We now discuss two variants in the treatment of aN3LO corrections: a different approximation to pertur-
bative evolution, and a different treatment of hadronic cross-sections.

The aN3LO PDF sets presented in Sect. 4.2 are based on our approximation to the full set of N3LO
splitting functions presented in Sect. 2. This approximation was compared in Sect. 2.7 to that recently
presented in Refs. [22,28–30] (FHMRUVV). In order to fully assess the impact of this different approxima-
tion to N3LO perturbative evolution we have repeated the aN3LO PDF determination, without and with
MHOUs, but now using the FHMRUVV approximation to N3LO perturbative evolution, with everything
else unchanged. PDFs obtained using the FHMRUVV approximation vs our own are compared in Fig. 4.13
without MHOUs and in Fig. 4.14 with MHOUs. PDFs are displayed at Q = 100 GeV, normalized to the
central value of our default result. Differences turn out to be completely negligible, as might have been
expected given the good agreement at the level of splitting functions seen in Fig. 2.10.

As discussed in Sect. 3.3 N3LO corrections to hadronic hard cross-sections are not included in our
default aN3LO PDF determination. We can however assess the impact of the inclusion of all the publicly
available corrections for all relevant data in the NNPDF4.0 dataset, listed in Tab. 3.1 and discussed in
Sect. 3.3, using the methodology discussed in that Section. To this purpose, we have repeated the aN3LO
PDF determination, with and without MHOUs, now with N3LO corrections for these datasets included.
Note that for these processes NNLO corrections are currently already included through K-factors, hence
this requires combining NNLO and N3LO K-factors, with ensuing loss of accuracy, which is one of the
reasons why these corrections are not included in our default aN3LO determination. MHOUs on these
N3LO predictions can be determined by scale variation as usual, given that renormalization scale variation
at N3LO only requires knowledge of the NNLO result.

The fit quality for the datasets of Table 3.1 both in the default determinations (with and without MHOU,
same as Table 4.3) and after the inclusion of N3LO corrections (also with and without MHOU) is shown in
Table 4.6. The ensuing PDFs are compared to the default NNPDF4.0 aN3LO in Fig. 4.15 without MHOUs
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Figure 4.13. Same as Fig. 4.2, now comparing the NNPDF4.0 aN3LO PDFs and PDFs obtained using the FHMRUVV
approximation to N3LO perturbative evolution.
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Figure 4.14. Same as Fig. 4.13 for aN3LO PDF sets with MHOUs.
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Figure 4.15. Same as Fig. 4.2, now comparing the NNPDF4.0 aN3LO baseline PDF set without MHOUs to a variant
obtained with inclusion of N3LO corrections for the hadronic processes of Tab. 3.1.

44



10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15
Ra

tio
 to

 N
NP

DF
4.

0 
aN

3L
O 

M
HO

U
u at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

u at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

d at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

d at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

s at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

s at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

c at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

10 4 10 3 10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0 

aN
3L

O 
M

HO
U

g at 100 GeV

NNPDF4.0 aN3LO MHOU
NNPDF4.0 aN3LO MHOU (hadronic)

Figure 4.16. Same as Fig. 4.15 for aN3LO PDF sets with MHOUs.
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and in Fig. 4.16 with MHOUs. In both cases, PDFs are displayed at Q = 100 GeV and are normalized to the
central value of the corresponding default NNPDF4.0 aN3LO set. The impact of these N3LO corrections on
fit quality is very moderate, though in all cases but one (and in all cases with MHOUs) it leads to improved
agreement. At the level of PDFs, however, the impact is only (barely) visible in the PDFs without MHOUs,
and even in this case it only significantly impacts the strange and antistrange PDFs, for which it leads to an
enhancement of 4-5% for x ∼ 0.1, though well within the PDF uncertainty. Even this small effect is absent
in the PDFs with MHOUs. We conclude that at present available N3LO corrections for hadronic processes
have no effect on PDF determination. On the other hand, the improvement in fit quality is reassuring, and
suggests that a more significant effect might be seen once N3LO corrections become available for a wider
set of processes.

4.6 Comparison with MSHT20

We compare the NNPDF4.0 aN3LO PDF set to the only other existing aN3LO PDF set, MSHT20 aN3LO [32].
As already discussed in Sect. 2.7, MSHT20 aN3LO PDFs are determined by fitting to the data the nuisance
parameters that parametrize the IHOU uncertainty on a prior approximation to splitting functions. It
follows that the ensuing central value is partly determined by the data, and the IHOU is entirely data-
driven. When comparing NNPDF4.0 and MSHT20 aN3LO PDF sets it should of course be borne in mind
that the sets already differ at NNLO due to differences in dataset and methodology. The NNLO MSHT20
and NNPDF4.0 PDF sets were compared in Fig. 21 and the corresponding parton luminosity in Fig. 60 of
Ref. [37], while a detailed benchmarking was presented in Ref. [115].

The comparison of the aN3LO sets is presented in Fig. 4.17, where we show the NNPDF4.0 no MHOU set
and the MSHT20 set recommended as baseline in Ref. [32] at Q = 100 GeV, normalized to the NNPDF4.0
central value. All error bands are one sigma uncertainties. The dominant differences between the PDF sets
are the same as already observed at NNLO, with the largest difference observed for the charm PDF, which
is independently parametrized in NNPDF4.0, but not in MSHT20, where it is determined by perturbative
matching conditions. However, the differences, while remaining qualitatively similar, are slightly reduced (by
1-2%) when moving from NNLO to aN3LO. Exceptions are the charm and especially the gluon PDF, which
differ more at aN3LO. Specifically, the gluon PDF, while reasonably compatible for x ≲ 0.07 at NNLO,
disagrees at aN3LO, with the MSHT20 result suppressed by 3-4% in the region 10−3 ≲ x ≲ 10−1, with a
PDF uncertainty of 1-2%. This suppression of the MSHT20 gluon can likely be traced to the behavior of
the Pgq splitting function seen in Fig. 2.10.

Parton luminosities are compared in Fig. 4.18. Again the pattern is similar to that seen at NNLO, but
now with a considerable suppression of the gluon-gluon and gluon-quark luminosities in the MX ∼ 100 GeV
region that can be traced to the behavior of the gluon PDF seen in Fig. 4.17. The quark-quark luminosity
remains similar in MSHT20 and NNPDF4.0 both at NNLO and aN3LO. The impact of these effects on the
computation of precision LHC cross-sections will be addressed in Sect. 5.

In order to understand better the comparative impact of aN3LO corrections, we compare for each set
the NNLO and aN3LO luminosities. Results are shown in Fig. 4.19, normalized to the aN3LO result. The
qualitative impact of the aN3LO corrections on either set is similar, but with a stronger aN3LO suppression
of gluon luminosities for MSHT20. In particular the gluon-gluon luminosity is suppressed for 102 ≲ mX ≲
103 GeV by about 3% in NNPDF4.0 and 6% in MSHT20 and the gluon-quark luminosity is suppressed in
the same region by about 1% in NNPDF4.0 and 3% in MSHT20. In the case of the gluon-gluon luminosity
the differences between NNLO and aN3LO are larger than the respective PDF uncertainties (that do not
include MHOUs in either case). As already mentioned in Sect. 2.7, a dedicated benchmark of aN3LO results
is ongoing and will be presented in Ref. [84].

5 LHC phenomenology at aN3LO accuracy

We present a first assessment of the implications of aN3LO PDFs for LHC phenomenology, by looking at
processes for which N3LO results are publicly available, namely the Drell-Yan and Higgs total inclusive
cross-sections. We present predictions at NLO, NNLO, and aN3LO using both NNPDF4.0 and MSHT20
PDFs, consistently matching the perturbative order of the PDF and matrix element. At N3LO we also
show results obtained with the currently common approximation of using NNLO PDFs with aN3LO matrix
elements.
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Figure 4.17. Same as Fig. 4.2, now comparing the NNPDF4.0 aN3LO baseline PDF set without MHOUs to the
MSHT20 set recommended as baseline in Ref. [32].
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Figure 4.18. Same as Fig. 4.17 for parton luminosities as in Fig. 4.6.

At each perturbative order, the uncertainty on the cross-section is determined by adding in quadrature
the PDF uncertainty to the MHOU on the hard matrix element determined performing 7-point renormal-
ization and factorization scale variation and taking the envelope of the results. This is the procedure that is
most commonly used for the estimation of the total uncertainty on hadron collider processes, and we follow
it here for ease of comparison with available results. In a more refined treatment, MHOUs on the hard
cross-section can be included through a theory covariance matrix for the hard cross-section itself, like the
MHOUs and IHOUs on the PDF. This would then make it possible to keep track of the correlation between
these different sources of uncertainty [116–118].

Here we plot results with a total uncertainty obtained combining these uncertainties in quadrature (both
with and without MHOUs in the fit), and we also tabulate this total uncertainty (without MHOUs in the
fit) along with the PDF uncertainty both with and without MHOUs. Also, in order to assess the impact
of the use of aN3LO PDFs, we plot N3LO results obtained using NNLO and aN3LO PDFs, we tabulate
the shift between the N3LO prediction obtained using NNLO and aN3LO PDFs, and we compare it to
previous estimate of this expected shift based on the differences between NNLO and NLO PDFs. Indeed,
predictions for processes computed at N3LO accuracy are commonly obtained using NNLO PDFs, with an
extra uncertainty assigned to the result dues to this mismatch in perturbative order between the PDF and
the matrix element. A commonly used prescription in order to estimate this uncertainty [8, 119] is to take
it equal to

∆app
NNLO ≡ 1

2

∣∣∣∣∣
σNNLO
NNLO−PDF − σNNLO

NLO−PDF

σNNLO
NNLO−PDF

∣∣∣∣∣, (5.1)

namely to assume that the same percentage shift, computed at one less perturbative order, would be twice
as large. This prescription can now be compared to the exact result

∆exact
NNLO ≡

∣∣∣∣∣
σN3LO
N3LO−PDF − σN3LO

NNLO−PDF

σN3LO
N3LO−PDF

∣∣∣∣∣ . (5.2)
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Figure 4.19. Same as Fig. 4.18, now comparing aN3LO and NNLO parton luminosities, separately for the NNPDF4.0
(left) and MSHT20 (right) PDF sets, normalized to the aN3LO result.
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Process
NNPDF4.0 MSHT20

σ (pb) δth δnoMHOU
PDF δMHOU

PDF ∆app
NNLO ∆exact

NNLO σ (pb) δthσ δPDF ∆app
NNLO ∆exact

NNLO

W+ (p) 1.2× 104 1.0 0.5 0.5 1.1 0.1 1.2× 104 1.9 1.7 2.3 0.8

W− (p) 8.8× 103 1.0 0.5 0.5 1.1 0.1 8.7× 103 1.9 1.6 2.1 0.0

Z (p) 1.9× 103 0.9 0.4 0.5 1.1 0.3 1.9× 103 1.8 1.6 2.6 0.3

W+ (hm) 4.7× 10−4 2.8 2.8 3.3 3.2 1.1 4.6× 10−4 4.0 3.9 2.0 1.3

W− (hm) 1.4× 10−4 2.9 2.9 3.3 3.3 0.1 1.5× 10−4 4.2 4.2 2.0 0.6

Z (hm) 2.1× 10−4 2.3 2.3 2.5 3.4 0.3 2.2× 10−4 3.6 3.6 2.7 0.2

Table 5.1. The N3LO cross-sections and uncertainties for the inclusive gauge boson production processes displayed
in Figs. 5.1-5.3 and evaluated using the NNPDF4.0 and MSHT20 aN3LO PDFs. We show the percentage total theory
uncertainty δth, obtained adding in quadrature the 7-point scale variation MHOUs and the PDF uncertainty δPDF

(not including MHOUs in the fit), which is also separately provided. In the case of NNPDF4.0 the value of δPDF with
MHOUs in the fit is also listed. All uncertainties are expressed as percentage of the cross-section. We finally show
the error ∆exact

NNLO Eq. (5.2) due to using NNLO PDFs at N3LO, and the estimate of this error ∆app
NNLO Eq. (5.1), also

expressed as a percentage.

5.1 Inclusive Drell-Yan production

We show results for inclusive charged-current and neutral-current gauge boson production cross-sections
followed by their decays into the dilepton final state. Cross-sections are evaluated using the n3loxs code [8]
for different ranges in the final-state dilepton invariant mass, Q = mℓℓ for neutral-current and Q = mℓν

for charged-current scattering. Fig. 5.1 displays the inclusive neutral-current Drell-Yan cross-section pp →
γ∗/Z → ℓ+ℓ− and Figs. 5.2-5.3 the charged-current cross-sections pp → W± → ℓ±νℓ. We consider one
low-mass bin (30 GeV ≤ Q ≤ 60 GeV), the mass peak bin (60 GeV ≤ Q ≤ 120 GeV), and two high-mass
bins (120 GeV ≤ Q ≤ 300 GeV and 2 TeV ≤ Q ≤ 3 TeV), relevant for high-mass new physics searches [120].
In all cases, we compare the NLO, NNLO, and aN3LO predictions using NNPDF4.0 and MSHT20 PDFs
determinations, with the same perturbative order in matrix element and PDFs, and also the aN3LO result
with NNLO PDFs, and then we compare the aN3LO with NNPDF4.0 aN3LO PDFs with and without
MHOUs. The values of cross-sections and uncertainties are collected in Table 5.1.

In general we observe a good perturbative convergence, with predictions at two subsequent orders in
agreement within uncertainties, and generally improved convergence upon including MHOUs on the PDF.
Predictions based on NNPDF4.0 and MSHT20 are always consistent with each other within uncertainties.
We can draw three main conclusions from Figs. 5.1-5.3 and Tab. 5.1. First, in many cases differences
between the NNLO and N3LO predictions tend to be reduced when using consistently the appropriate
PDFs at each order, rather than NNLO PDFs with N3LO matrix elements (though in some cases the results
are unchanged). For instance, for the two lowest mℓℓ bins for NC production aN3LO PDFs drive upwards
the N3LO prediction, making it closer to the NNLO result. Second, the difference between PDFs with and
without MHOUs, while moderate, remains non-negligible even at N3LO, where it starts being comparable
to the overall uncertainty, and thus it must be included in precision calculations. Third, the impact of using
aN3LO instead of NNLO PDFs is actually smaller than the guess based on the estimate Eq. (5.1).

5.2 Inclusive Higgs production

We now consider Higgs production in gluon fusion, in associated production with vector bosons, and via
vector-boson fusion (VBF). Predictions are obtained using the ggHiggs code [121] for gluon fusion, n3loxs
for associate production, and proVBFH code [122] for VBF. Results are shown in Fig. 5.4 and Table 5.2 for
gluon-fusion and VBF, and Fig. 5.5 for associate production with W+ and Z.

Here too we observe generally good perturbative convergence, even for gluon fusion, that notoriously has
a very slowly converging expansion. Also in this case, there is generally better agreement between NNPDF4.0
and MSHT20 as the perturbative order increases, except for gluon fusion where the agreement is similar
at all orders. Indeed, in all cases MSHT20 and NNPDF4.0 results agree within uncertainties at aN3LO,
while they do not at NLO for VBF, nor at NLO and NNLO for associated production. The impact of using
aN3LO PDFs instead of NNLO PDFs at N3LO for NNPDF4.0 is very moderate for gluon fusion, somewhat
more significant for associated production, and more significant for VBF, in which it is comparable to the
PDF uncertainty. For MSHT20 instead a significant change from using aN3LO instead of NNLO PDFs is
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Figure 5.1. The inclusive neutral-current Drell-Yan production cross-section, pp → γ∗/Z → ℓ+ℓ−, for different
ranges of the dilepton invariant mass Q = mℓℓ, from low to high invariant masses (top to bottom). Results are shown
(left) comparing NLO, NNLO and aN3LO with matched perturbative order in the matrix element and PDF, and also
at aN3LO with NNLO PDFs using NNPDF4.0 and MSHT20 PDFs and (right) at aN3LO with PDFs without and
with MHOUs.
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Figure 5.2. Same as Fig. 5.1 for the inclusive charged-current Drell-Yan production cross-section, pp → W+ → ℓ+νℓ.
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Figure 5.3. Same as Fig. 5.1 for the inclusive charged-current Drell-Yan production cross-section, pp → W− → ℓ−ν̄ℓ.
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Process
NNPDF4.0 MSHT20

σ (pb) δth δnoMHOU
PDF δMHOU

PDF ∆app
NNLO ∆exact

NNLO σ (pb) δthσ δPDF ∆app
NNLO ∆exact

NNLO

gg → h 43.8 4.8 0.6 0.7 0.2 2.2 42.3 5.1 1.7 1.4 5.3

h VBF 4.44 0.6 0.5 0.6 0.2 1.3 4.46 2.1 2.0 1.3 2.9

hW+ 0.97 0.6 0.5 0.6 0.2 0.5 0.95 1.5 1.4 0.8 0.9

hW− 0.61 0.6 0.6 0.6 0.2 0.3 0.60 1.6 1.5 0.9 1.0

hZ 0.87 0.5 0.4 0.5 0.1 0.3 0.85 1.4 1.4 1.1 0.8

Table 5.2. Same as Table 5.1 for the Higgs production processes displayed in Figs. 5.4-5.5
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Figure 5.4. Same as Fig. 5.1 for Higgs production in gluon-fusion and via vector-boson fusion.

also observed for gluon fusion, where suppression of the cross-sections is seen when replacing NNLO with
aN3LO PDFs. This follows from the behavior of the gluon luminosity seen in Fig. 4.19. The impact of
MHOUs on the PDFs is generally quite small on the scale of the PDF uncertainty at all perturbative orders,
and essentially absent for gluon fusion. For associated production it marginally improves perturbative
convergence. Interestingly, for NNPDF4.0, for all Higgs production processes considered, and especially
for gluon fusion, the estimate Eq. (5.1) is a substantial underestimate of the actual error which is made
using NNLO PDFs at N3LO. This follows from the fact that (see Fig. 4.6) for mX ∼ 100 GeV the NNLO
gluon-gluon luminosity is actually closer to the NLO than to the aN3LO, which in turn appears to be an
accidental consequence of the behavior of the gluon PDF for x ∼ 10−2.
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Figure 5.5. Same as Fig. 5.1 for Higgs production in association with W+ and Z gauge bosons: from top to bottom,
Zh, W+h, and W−h.
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6 Summary and outlook

We have presented the first aN3LO PDF sets within the NNPDF framework, by constructing a full set
of approximate N3LO splitting functions based on available partial results and known limits, approximate
massive DIS coefficient functions, and extending to this order the FONLL general-mass scheme for DIS
coefficient functions. We now summarize the new PDF sets that we are releasing, our main conclusions on
their features, and our plans for future developments.

The NNPDF4.0 aN3LO PDF sets are available via the LHAPDF6 interface,

http://lhapdf.hepforge.org/ .

Specifically, we provide an aN3LO NNPDF4.0 set

NNPDF40 an3lo as 01180

that supplements the LO, NLO and NNLO sets of Ref. [37].
We also provide NLO and aN3LO NNPDF4.0MHOU sets

NNPDF40 nlo as 01180 mhou

NNPDF40 an3lo as 01180 mhou

that supplement the NNLO NNPDF4.0MHOU PDF set of Ref. [38]. These sets include in the PDF un-
certainty the MHOU on the processes used for PDF determination, but in all other respects (including the
dataset) follow the default sets to which they can be directly compared.

For both aN3LO sets, we also release the corresponding sets including αs variations,

NNPDF40 an3lo as 01180 pdfas

NNPDF40 an3lo as 01180 mhou pdfas

in which replicas 101 and 102 correspond to fits with αs(mZ) = 0.117 and 0.119 respectively, in order to
evaluate the combined PDF+αs uncertainties following the prescription of [115,123,124].

All these sets are delivered as ensembles of Nrep = 100 Monte Carlo replicas.
However, we also make available Hessian variants following [125,126] and denoted

NNPDF40 an3lo as 01180 hessian

NNPDF40 an3lo as 01180 mhou hessian

NNPDF40 an3lo as 01180 pdfas hessian

NNPDF40 an3lo as 01180 mhou pdfas hessian

each set comprising Neig = 50 eigenvectors.
All these sets are also available on the NNPDF Collaboration website,

https://nnpdf.mi.infn.it/nnpdf4-0-n3lo/ .

where we also give the PDF sets discussed in Sect. 4.5 based on variant treatments of the aN3LO corrections.
In addition to the LHAPDF grids themselves, all the results obtained in this work are reproducible by means
of the open-source NNPDF code [39] and the related suite of theory tools.

We have provided a first assessment of these PDF sets by comparing them to their NLO and NNLO
counterparts with and without MHOUs. Our main conclusions are the following

• For all PDFs good perturbative convergence is observed, with differences decreasing as the perturbative
order increases, and the aN3LO result always compatible with the NNLO within uncertainties.

• For quark PDFs the difference between NNLO and aN3LO results is extremely small, suggesting that
with current data and methodology the effect of yet higher orders is negligible.

• For the gluon PDF a more significant shift is observed between NNLO and N3LO, thus making the
inclusion of N3LO important for precision phenomenology.

• The inclusion of MHOUs improves perturbative convergence, mostly by shifting central values at each
order towards the higher-order result, by an amount that decreases with increasing perturbative order.
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• Upon inclusion of MHOUs the fit quality becomes all but independent of perturbative order, and PDF
uncertainties generally decrease (or remain unchanged) due to the improved data compatibility.

• The effect of MHOUs at N3LO is very small for quarks but not negligible for the gluon PDF.

• Evidence for intrinsic charm is somewhat increased already at NNLO by the inclusion of MHOUs, and
somewhat increased again when going from NNLO to N3LO.

• The impact of N3LO corrections on the total cross-section for Higgs in gluon fusion is very small on
the scale of the PDF uncertainty.

All in all, these results underline the importance of the inclusion of N3LO corrections and MHOUs for
precision phenomenology at sub-percent accuracy.

Future NNPDF releases will include by default MHOUs, will be at all orders up to aN3LO, and will
include a photon PDF. Specifically, we aim to extend to aN3LO with MHOUs our recent construction
of NNPDF4.0QED PDFs [109]. Indeed, aN3LO PDFs including a photon PDF (such as those recently
released by MSHT20 [127]) will be a necessary ingredient for theory predictions based on state-of-the art
QCD and electroweak (EW) corrections. In fact, we are working towards the consistent inclusion of combined
QCD×EW corrections also in the theory predictions used for PDF determination.

Another important line of future development involves the all-order resummation of potentially large
perturbative contributions in the large x and small x regions [69,128]. This will involve matching resummed
and fixed-order cross-sections and (at small x) perturbative evolution in the new streamlined NNPDF theory
pipeline. Such resummed PDFs will be instrumental for precision phenomenology: specifically at small x,
forward neutrino production at the LHC and scattering processes for high-energy astroparticle physics, and
at large x, searches for new physics in high-mass final states at the LHC and future hadron colliders.
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A Explicit expressions of anomalous dimensions

We provide here explicit expressions for the γ
(3)
ns±, N→∞(N) and γ

(3)
ns±, N→0(N) anomalous dimension discussed

in Sect. 2.3 and the γ
(3)
ns±, N→∞(N), γ

(3)
ns±, N→0(N) and γ

(3)
ns±, N→1(N) discussed in Sect. 2.4.
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γ
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N6

+
−175455 + 9092.91nf + 778.535n2

f

N5

(A.6)

γ
(3)
gq,N→1(N) = − 22156.3

(N − 1)4
+

95032.9 + 885.674nf

(N − 1)3
(A.7)

γ
(3)
gq,N→∞(N) = (−13.4431 + 0.548697nf )L5,0(N)

+
(
−375.398 + 34.4947nf − 0.877915n2

f

)
L4,0(N)

(A.8)
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γ
(3)
qg (N):

γ
(3)
qg,N→0(N) =

14103.7nf − 1991.11n2
f

N7

+
2588.84nf + 2069.33n2

f

N6

+
68802.3nf − 7229.38n2

f − 99.1605n3
f

N5

(A.9)

γ
(3)
qg,N→1(N) = −7871.52nf

(N − 1)3
(A.10)

γ
(3)
qg,N→∞(N) =

(
−1.85185nf + 0.411523n2

f

)
L5,0(N)

+
(
−35.6878nf + 3.51166n2

f + 0.0823045n3
f

)
L4,0(N)

+
(
−2.88066nf − 0.823045n2

f

)
L5,1(N)

+
(
+40.5114nf − 5.54184n2

f − 0.164609n3
f

)
L4,1(N)

(A.11)

γ
(3)
qq,ps(N):

γ
(3)
qq,ps,N→0(N) =

5404.44nf − 568.889n2
f

N7

+
3425.98nf + 455.111n2

f

N6

+
20515.2nf − 1856.79n2

f + 4.74074n3
f

N5

(A.12)

γ
(3)
qq,ps,N→1(N) = −3498.45nf

(N − 1)3
, (A.13)

γ
(3)
qq,ps,N→∞(N) =

(
+56.4609nf − 3.6214n2

f

)
L4,1(N)

+
(
+247.551nf − 40.5597n2

f + 1.58025n3
f

)
L3,1(N)

+ 13.1687nfL4,2(N)

+
(
+199.111nf − 13.6955n2

f

)
L3,2(N).

(A.14)

The functions Lk,j(N) are defined as the Mellin transform of (1− x)j lnk(1− x):

Lk,0(N) = M
[
lnk(1− x)

]
(N) = (−1)kk!

S1k,...,11(N)

N
(A.15)

Lk,1(N) = M
[
(1− x) lnk(1− x)

]
= Lk,0(N)− Lk,0(N + 1) (A.16)

Lk,2(N) = M
[
(1− x)2 lnk(1− x)

]
= Lk,0(N)− 2Lk,0(N + 1) + Lk,0(N + 2) (A.17)

with the multi-index harmonics of weight-k defined recursively as

S1k,...,11(N) =

N∑

j=1

S1k−1,...,11(j)

j
(A.18)

and the termination condition
S∅ = 1. (A.19)
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