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Abstract. Let (X,L) be a complex polarized n-fold with the structure of a classical scroll
over a smooth projective threefold Y . The Hilbert curve of such a pair (X,L) is a complex
affine plane curve of degree n, consisting of n − 3 evenly spaced parallel lines plus a cubic.
This paper is devoted to a detailed study of this cubic. In particular, existence of triple
points, behavior with respect to the line at infinity, and non-reducedness, are analyzed in
connection with the structure of (X,L). Special attention is reserved to the case n = 4,
where various examples are presented and the possibility that the cubic is itself the Hilbert
curve of the base threefold Y for a suitable polarization is discussed.

Introduction

The Hilbert curve of a polarized manifold (X,L) with dim(X) = n ≥ 2 is the complex affine
plane curve Γ = Γ(X,L), of degree n, defined by the Hilbert-like polynomial χ(xKX + yL),
where KX is the canonical bundle of X and x and y are regarded as complex variables.
This notion was introduced in [4] and extensively studied in [5]–[10], for varieties which are
special from the adjunction theoretic point of view. The natural expectation is that several
properties of the polarized manifold that one considers are encoded by its Hilbert curve, as
suggested by [4, Theorem 6.1]. In particular, if X is endowed with a fibration ϕ : X → Y
over a normal variety Y of dimension < n and KX + aL = ϕ∗A, for some positive integer a
and some Q-line bundle A on Y , then Γ contains a−1 parallel lines of prescribed equations as
components, and therefore it becomes important to understand the properties of the residual
curve of the union of such lines in Γ, which is a plane curve of degree n − a + 1. Up to
now the study of such residual curve has been done in some particular cases, like for scrolls
over a curve (where a = n) [8], or scrolls over a surface (a = n − 1) [9], in these cases the
residual curve is a line and a conic, respectively. The other class of varieties considered are
quadric fibrations over a surface (a = n − 2), where the residual curve is a cubic for which
some of the geometric properties can be described in terms of the base surface and of an
appropriate vector bundle, [6]. Our interest on scrolls over a 3-fold (a = n− 2) derives from
the evident analogy with the quadric fibration case, due to the fact that the nef value is the
same for both. Hence in this paper, inspired by [6] and [9], we investigate the Hilbert curves
of n-dimensional pairs (X,L) with n ≥ 4, which are scrolls over a smooth threefold Y .

In this setting Γ = `1+ · · ·+`n−3+C, where the `i’s are certain n−3 evenly spaced parallel
lines and C is the residual cubic; moreover, both Γ and C are Serre-invariant, that is they
are invariant under the involution induced on the affine plane containing Γ by Serre duality
on X. As a first thing we determine the explicit equation of C in terms of the numerical
invariants of (X,L) (Proposition 1.2). If we let π : X → Y denote the scroll projection, then
X ∼= P(E), where E := π∗L is an ample vector bundle on Y of rank n − 2, and L is the
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tautological line bundle on X. Our purpose is achieved through computations involving the
Chern classes ci = ci(E) (i = 1, 2, 3) and appropriate intersection numbers on Y , by taking
advantage of the special feature of the equation of Γ, which derives from [4, Theorem 6.1].

As to the first properties of C, we make explicit the conditions for the existence of a
triple point as well as that of a singular point at infinity (Proposition 3.1), and putting them
together we characterize when C is non-reduced (Corollary 3.2). In Section 2 we focus on
the subclass of scrolls for which KY + det E is not an ample line bundle (namely, scrolls
which fail to be adjunction theoretic one’s). The precise list of them is given in Proposition
2.1, where for the convenience of the reader we have collected results due to several authors
([2], [7], [20], [13], [19]). In particular, every scroll over a smooth projective threefold is an
adjunction theoretic one for n ≥ 7. We also characterize those pairs in Proposition 2.1 for
which (KY + c1)

2c1 = 0 and (KY + c1)
3 = 0 (Lemma 2.2), since such intersection numbers

come up in studying the properties of C. The corresponding pairs (X,L) are characterized in
Section 3, by the property that the projective closure C of the residual cubic C of their Hilbert
curve contains the point at infinity of the remaining n − 3 lines constituting Γ (Corollary
3.4). This follows from a precise analysis of the intersection multiplicity of C with the line
at infinity at that point in terms of the properties of KY + det E (Theorem 3.3).

In the case n = 4 the equation of C simplifies considerably and therefore one can provide a
more detailed specification of the above result. This is done in Section 4, where, in particular,
we obtain the precise list of pairs (Y, E) for which C = 3`0, where `0 is the line through the
point representing 1

2
KX and parallel to the `i’s (i = 1, . . . , n− 3) (Corollary 4.2). Moreover,

letting T denote the 1-cycle of Y given by K2
Y − 2c2(Y ) + c21− 4c2, we see that the vanishing

of T implies that C has a triple point. Looking for special situations in which this condition
is satisfied leads to nontrivial examples.

In Section 5, still remaining with n = 4, we address for our scrolls (X,L) the problem
of when the cubic C itself is the Hilbert curve of the base threefold Y with the average
polarization 1

2
det E , [4, Problem 6.6]. If this happens, we show that either c1(c

2
1 − 4c2) =

KY (c21 − 4c2) = 0, or χ(OY ) = 0 and KY (KY + c1)
2 = 0 (Proposition 5.2). This fact

highlights pairs (Y, E) for which c21 − 4c2 = 0. We emphasize the analogy with the condition
of Bogomolov proper semistability of the vector bundle E , which was found in [9] while
discussing the same problem for scrolls over surfaces. In some instances we show that the
condition c21 − 4c2 = 0 implies that E = M⊕2 for some ample line bundle M on Y , hence
X ∼= Y × P1. This happens in particular, when Y is either P3, the quadric Q3, a del Pezzo
3-fold of degree d = 3, 4, 5, 8, or a prime Fano 3-fold with Picard number one (Proposition
5.4). The paper ends with several examples, including the discussion of the cases in which Y
is a del Pezzo 3-fold of degree 6 or 7 and the vector bundle E is decomposable.

1. Hilbert curve and residual cubic

Let (X,L) be a scroll (in the classical sense) with dim(X) = n ≥ 4 over a smooth projective
threefold Y , with scroll projection π : X → Y . Then X = P(E), where E := π∗L is an
ample vector bundle of rank n − 2 on Y , L is the tautological line bundle of E on X, and
KX + (n − 2)L = π∗(KY + det E), by the canonical bundle formula. Moreover, if (X,L) is
a scroll also in the adjunction theoretic sense, then, according to the definition [3, p. 81],
A := KY + det E is ample.

In the following we denote by ci the i-th Chern class of E , hence c1 = det E .
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Let p(x, y) = 0 be the equation of the Hilbert curve of (X,L). Recall that p(x, y) =
χ(xKX + yL) is the polynomial expressing the Euler–Poincaré characteristic of xKX + yL,
when x and y are regarded as complex variables. According to [4, Theorem 6.1], we have
that

p(x, y) =
n−3∏
i=1

(
(n− 2)x− y − i

)
R(x, y),(1)

where R(x, y) is a polynomial of degree 3. From the qualitative point of view, this means
that the Hilbert curve Γ of (X,L) can be written as

Γ = `1 + · · ·+ `n−3 + C,(2)

i.e., it consists of n−3 evenly spaced parallel lines with slope (n−2) (the nef value of (X,L))
plus a cubic C, which we call the residual cubic.

We call Serre involution the map s : A2 → A2 sending (x, y) to (1 − x,−y), induced by
Serre duality. Note that Γ is Serre-invariant, i.e., invariant under s. Moreover, s exchanges
the line `i of equation (n − 2)x − y − i = 0 with `n−2−i (i = 1, . . . , n − 3), hence the set
consisting of the n − 3 lines `1, . . . , `n−3 is globally Serre-invariant. It thus follows that the
cubic C itself is also Serre-invariant. We use coordinates (u, v) in place of (x = 1

2
+ u, y = v)

in order to make this invariance more evident. Since the degree of C is odd, its equation in u
and v does not contain terms of even degree, hence R(1

2
+u, v) is the sum of two homogeneous

polynomials in u and v of degrees 3 and 1 respectively [4, Claim 7.1]. Thus we can write

R

(
1

2
+ u, v

)
= R3(u, v) +R1(u, v).(3)

where

R3(u, v) = αu3 + βu2v + γuv2 + δv3(4)

with (α, β, γ, δ) 6= (0, 0, 0, 0), because degC = 3, and

R1(u, v) = σu+ τv.(5)

Note that the property of having an equation of this type characterizes any Serre-invariant
plane cubic, which is not necessarily the residual cubic of a Hilbert curve.

Our aim it to obtain the explicit expression of R
(
1
2

+ u, v
)

in our specific case, which in
particular describes our cubic C. To do that, first recall that for any divisor D on X,

χ(D) =
1

n!
Dn + . . . ,

where the dots stand for lower degree terms. So, by using homogeneous coordinates (x : y :
z), where z is the homogenizing coordinate, and letting p0(x, y, z) denote the homogeneous
polynomial associated to p, we have:

p0(x, 1, 0) =
1

n!
(xKX + L)n(6)

=
1

n!

[
dnx

n +

(
n

1

)
dn−1x

n−1 +

(
n

2

)
dn−2x

n−2 + . . .

· · ·+
(

n

n− 3

)
d3x

3 +

(
n

n− 2

)
d2x

2 +

(
n

n− 1

)
d1x+ d

]
,
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where di := Ki
XL

n−i for i = 0, 1, . . . , n (d0 = d being the degree of (X,L)). On the other

hand, from (1) and (3) we see that p0(x, y, 0) = R3(x, y)
(
(n− 2)x− y

)n−3
. Hence (4) gives

p0(x, 1, 0) = (αx3 + βx2 + γx+ δ)
(
(n− 2)x− 1

)n−3
.(7)

By comparing (6) with (7), easy manipulations lead to the following expressions:

(8) α =
1

n!(n− 2)(n−3)
dn,

(9) β = (−1)n−1
1

2(n− 1)!

(
(n− 2)3(n− 3)

n
d+ 2(n− 2)(n− 3)d1 + (n− 1)d2

)
,

(10) γ = (−1)n−1
1

n!

(
(n− 2)(n− 3)d+ nd1

)
,

(11) δ = (−1)n−1
1

n!
d.

Lemma 1.1. We have:

d = c31 − 2c1c2 + c3,(12)

d1 = (3− n)c31 + (2n− 5)c1c2 + (2− n)c3 +KY c
2
1 −KY c2,(13)

d2 = (n− 3)2c31 − 2(n− 2)(n− 3)c1c2 + (n− 2)2c3(14)

−2(n− 3)KY c
2
1 + 2(n− 2)KY c2 +K2

Y c1,

dn = (−1)n(n− 2)n−2
[1

3
(n− 3)(n− 4)c31 − (n− 2)(n− 4)c1c2 + (n− 2)2c3(15)

−1

2
n(n− 3)KY c

2
1 + n(n− 2)KY c2 −

1

6
n(n− 1)K3

Y

]
.

Proof. Clearly Ln−3π∗D1π
∗D2π

∗D3 = D1D2D3 for any divisors D1, D2, D3 on Y ; moreover,
recalling the Chern–Wu relation

(16) Ln−2 = π∗c1L
n−3 − π∗c2Ln−4 + π∗c3L

n−5,

we see that Ln−2π∗D1π
∗D2 = c1D1D2 and Ln−1π∗D1 = D1(c

2
1 − c2). Thus, recalling that

d = Ln and KX = −(n − 2)L + π∗(KY + c1), by an iterated application of (16) we get the
above expressions of d, d1, d2 and dn. �

Lemma 1.1 along with the relations (8)–(11) allows us to get the explicit expressions of
α, β, γ and δ in terms of the natural invariants of (X,L). Next, recalling that π∗OX = OY

and that the higher direct images are zero, we get hi(OX) = hi(OY ) for every i, by the Leray
spectral sequence, hence

p(0, 0) = χ(OX) = χ(OY ).(17)

On the other hand, from (1) and (3) we get

p(0, 0) =
n−3∏
i=1

(−i)
(
− α

8
− σ

2

)
= (−1)n

(n− 3)!

8
(α + 4σ).(18)

Thus the equation obtained by comparing (17) with (18) allows us to get the expression of
σ. To determine τ , recall that KX + (n − 2)L = π∗A = π∗(KY + c1). It thus follows that
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π∗
(
KX +(n−2)L

)
= KY + c1 by projection formula, the higher direct images are zero, hence

hi(KX + (n− 2)L) = hi(KY + c1) for every i. Therefore

(19) p(1, n− 2) = χ
(
KX + (n− 2)L

)
= χ(KY + c1),

and thus it can be computed by using the Riemann–Roch theorem on Y . On the other hand,
from (1) and (3) we get

p(1, n− 2) =
n−3∏
i=1

(
n− 2− (n− 2)− i

)
R(1, n− 2)(20)

= (−1)n−3(n− 3)!
(α

8
+
β

4
(n− 2) +

γ

2
(n− 2)2

+δ(n− 2)3 +
σ

2
+ τ(n− 2)

)
.

So (19) and (20) give another equation, which, added to the previous ones, allows us to
determine τ .

With the help of the Maple package we were able to compute the coefficients of the residual
cubic of the Hilbert curve of (X,L).

α =
(−1)n−1(n− 2)

6n!

{
n(n− 1)K3

Y + 3nKY [(n− 3)c21 − 2(n− 2)c2](21)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3

}

β =
(−1)n−1

2n!

{
n(n− 1)K2

Y c1 − 2nKY [(n− 3)c21 − 2(n− 2)c2](22)

+(3n− 8)(n− 3)c31 − 8(n− 2)(n− 3)c1c2 + 6(n− 2)2c3

}

γ =
(−1)n−1

n!

[
nKY (c21 − c2)− 2(n− 3)c31 + (5n− 12)c1c2 − 3(n− 2)c3

}
(23)

δ =
(−1)n−1

n!
(c31 − 2c1c2 + c3)(24)

σ =
(−1)n(n− 2)

24n!

{
n(n− 1)K3

Y + nKY

[
3(n− 3)c21 − 6(n− 2)c2 − 2(n− 1)c2(Y )

]
(25)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3

}

τ =
(−1)n

24n!

[
n(n− 1)K2

Y c1 + (5n− 8)(n− 3)c31 − 12(n− 2)2c1c2(26)

−2n(n− 1)c1c2(Y ) + 6(n− 2)2c3

]
.
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Proposition 1.2. Let (X,L) be a scroll over a smooth threefold Y , as in Section 1. Then
the residual cubic of its Hilbert curve is defined by (3), where the homogeneous part of degree
3 is

R3(u, v) =
(−1)n−1(n− 2)

6n!

{
n(n− 1)K3

Y + 3nKY [(n− 3)c21 − 2(n− 2)c2](27)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3

}
u3

(−1)n−1

2n!

{
n(n− 1)K2

Y c1 − 2nKY [(n− 3)c21 − 2(n− 2)c2]

+(3n− 8)(n− 3)c31 − 8(n− 2)(n− 3)c1c2 + 6(n− 2)2c3

}
u2v

+
(−1)n−1

n!

[
nKY (c21 − c2)− 2(n− 3)c31 + (5n− 12)c1c2 − 3(n− 2)c3

]
uv2

+
(−1)n−1

n!
(c31 − 2c1c2 + c3) v

3,

while the homogenous part of degree 1 is

R1(u, v) =
(−1)n(n− 2)

24n!

{
n(n− 1)K3

Y + nKY

[
3(n− 3)c21 − 6(n− 2)c2(28)

−2(n− 1)c2(Y )
]
− 2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2

−6(n− 2)2c3

}
u+

(−1)n

24n!

[
n(n− 1)K2

Y c1 + (5n− 8)(n− 3)c31 − 12(n− 2)2c1c2

−2n(n− 1)c1c2(Y ) + 6(n− 2)2c3

]
v.

Here are some examples which show various possibilities for the residual cubic C, for
different values of n.

Example 1.1. Let (Y, E) = (P3, TP3 ⊕N (2)), where TP3 and N are the tangent bundle and
the null correlation bundle, respectively. Let H ∈ |OP3(1)|. In this case KY = −4H and
Hc2(Y ) = 6 c1 = 8H, c2 = 27H2, c3 = 48H3 = 48. Plugging these values and n = 7 in (27)
and (28) we get that C is defined by

− 65

252
u3 +

241

630
u2v − 221

1260
uv2 +

8

315
v3 − 19

1008
u+

1

126
v = 0.

Here C is an irreducible smooth cubic.

Example 1.2. Let (Y, E) = (P3,N (2)⊕2), and let H ∈ |OP3(1)|. In this case KY = −4H
and Hc2(Y ) = 6 again; moreover, c1 = 8H, c2 = 26H2, c3 = 40. Plugging these values and
n = 6 in (27) and (28) we get that C is defined by

1

90
(2u− v)(32u2 − 56uv + 17v2 + 7) = 0.

Thus C consists of a line and an irreducible conic.
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Example 1.3. Let (Y, E) = (Q3,S(2)⊕2), where S is the spinor bundle [14]. Let H ∈
|OQ3(1)|. In this case KY = −3H,Hc2(Y ) = 8, c1 = 6H, c2 = 14H2, c3 = 27, and thus,
plugging these values and n = 6 in (27) and (28) we get that C is defined by

5

6
u3 − 33

20
u2v +

19

20
uv2 − 41

240
v3 +

1

8
u− 11

240
v = 0.

Here C is an irreducible smooth cubic.

Example 1.4. Let (Y, E) = (P3, TP3), and letH ∈ |OP3(1)|. In this caseKY = −4H,Hc2(Y ) =
6, c1 = 4H, c2 = 6H2, c3 = 4, and thus, plugging these values and n = 5 in (27) and (28) one
can see that C is defined by

− 1

24
(3u− v)(6u− 2v − 1)(6u− 2v + 1) = 0.

Here C consists of three parallel lines.

Example 1.5. Let (Y, E) = (P3,N (2)⊕OP3(1)), let H ∈ |OP3(1)|. We have KY = −4H and
Hc2(Y ) = 6 again; moreover, c1 = 5H, c2 = 9H2, c3 = 5, and thus, plugging these values and
n = 5 in (27) and (28) we get that C is defined by

− 1

48
(2u− v)(10u− 4v − 1)(10u− 4v + 1) = 0.

Here C consists of two parallel lines plus a third line transverse to them.

Example 1.6. Let (Y, E) = (P3,OP3(1) ⊕ OP3(2) ⊕ OP3(3)), let H ∈ |OP3(1)|. In this case
c1 = 6H, c2 = 11H2, c3 = 6, and thus, plugging these values and n = 5 in (27) and (28) we
get that C is defined by

− 1

48
(2u− v)(164u2 − 152uv + 36v2 − 17) = 0.

Here C consists of a line and an irreducible conic.

Example 1.7. Let (Y, E) = (P3,OP3(1)⊕2 ⊕ OP3(3)), let H ∈ |OP3(1)|. In this case c1 =
5H, c2 = 7H2, c3 = 3, and thus, plugging these values and n = 5 in (27) and (28) we get that
C is defined by

−112

15
u3 +

269

30
u2v − 18

5
uv2 +

29

60
v3 +

13

15
u− 43

120
v = 0.

Here C is a smooth irreducible cubic.

For an example with C irreducible and its projective closure singular at a point at infinity,
see Example 5.2.

2. Classical and adjunction theoretic scrolls

Let (X,L) be as in Section 1. It is useful to recall that (X,L) is also a scroll in the
adjunction theoretic sense unless KY + det E is not ample. By combining [2, Corollary 2.5
and Theorem 3.1], with [7], [20, Theorem 3], and [19] (see also [15, Theorem 0.4], [13, Theorem
1.3], and [18, Proposition 3.1]), we can state the following result.

Proposition 2.1. Let (X,L) be a classical scroll over a smooth threefold Y , with dim(X) =
n ≥ 4 and let E be the ample vector bundle on Y of rank n − 2 defined by π∗L, where
π : X → Y is the scroll projection. Then KY +det E fails to be ample exactly in the following
cases:
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A) n = 6 and (Y, E) =
(
P3,OP3(1)⊕4

)
;

B) n = 5 and (Y, E) is one of the following pairs:
(B1) Y = P3 and E = OP3(1)⊕3, OP3(2)⊕OP3(1)⊕2, or the tangent bundle TP3;
(B2)

(
Q3,OQ3(1)⊕3

)
;

(B3) Y is a P2-bundle over a smooth curve B and EF = OP2(1)⊕3 for every fiber
F = P2 of the bundle projection Y → B;

C) n = 4 and (Y, E) is one of the following pairs:
(C1) Y = P3 and E = OP3(1)⊕2, OP3(2) ⊕ OP3(1), OP3(3) ⊕ OP3(1), or N (2), where

N is a null correlation bundle;
(C2) Y = Q3 and E = OQ3(1)⊕2, OQ3(2) ⊕ OQ3(1), or S(2), where S is the spinor

bundle;
(C3) (Y,H) is a del Pezzo threefold and E = H⊕2 (this includes

(
P3,OP3(2)⊕2

)
;

(C4) Y is a quadric fibration over a smooth curve B and EF = OQ2(1)⊕2 for the general
fiber F = Q2 of the fibration Y → B;

(C5) Y is a P2-bundle over a smooth curve B and EF = OP2(1)⊕2, OP2(2)⊕OP2(1), or
the tangent bundle TP2 for every fiber F = P2 of the bundle projection Y → B (the
former case includes the possibility that Y = P2 × P1 with E = O(2, 1)⊕O(1, 1)
or p∗1TP2 ⊗O(0, 1), where p1 stands for the first projection);

(C6) Y is a P1-fibration over a smooth surface S and Ef = OP1(1)⊕2 for the general
fiber f = P1 of the fibration Y → S;

(C7) there exist a birational morphism η : Y → Y ′ expressing Y as a smooth threefold
Y ′ blown-up at a finite set and an ample vector bundle E ′ of rank 2 on Y ′ such
that E = η∗E ′ ⊗ OY (−E), where E is the exceptional divisor of η; moreover,
either KY ′ + det E ′ is ample, or (Y ′, E ′) =

(
P3,OP3(2)⊕2

)
.

In particular, KY + det E is always ample if n ≥ 7.

We recall that the two pairs
(
P3,N (2)

)
and

(
Q3,S(2)

)
define the same scroll (X,L) (with

respect to two distinct projections) [17, Proposition 2.6 and Proposition 3.4]. The intersection
properties of the adjoint bundle KY +det E will be relevant in Theorem 3.3, especially when it
is not ample. So let us look in some detail at the exceptional pairs (Y, E) listed in Proposition
2.1.

Remark 2.1. i) In case A), KY + det E is trivial.
ii) For (Y, E) as in B), it follows from [20, Theorem 2] that KY + det E is nef except in the

case of (B1) with E = OP3(1)⊕3 (for which KY + det E = OP3(−1)): moreover it is trivial in
the other cases of (B1) and in (B2).

iii) Finally, for pairs (Y, E) as in C), KY + det E is nef except in the following situations.

E−1) KY + det E is not nef in cases: (C1) with E = OP3(1)⊕2 and OP3(2) ⊕ OP3(1), (C2)
with E = OQ3(1)⊕2, and (C5) with EF = OP2(1)⊕2 (see [20, Theorem 3]); in all these
cases, except the last one, KY + det E is the opposite of an ample line bundle, hence
(KY + c1)

3 < 0. The remaining case is settled by Lemma 2.2 below.
E0) KY + det E = OY in cases: (C1) with E = OP3(3) ⊕ OP3(1) and N (2), (C2) with
E = OQ3(2) ⊕ OQ3(1), or S(2), (C3), and (C5) with (Y, E) being one of the two
possibilities mentioned in the brackets (see [19]);

E1) the morphism defined by a multiple of KY + det E has a 1-dimensional image, hence
(KY + c1)

2 = 0 in H4(Y ), in case (C4) and in case (C5) with EF = OP2(2)⊕OP2(1),
except the subcases mentioned in E0;
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E2) the morphism defined by a multiple of KY + det E has a 2-dimensional image, hence
(KY + c1)

3 = 0, in case (C6).

Lemma 2.2. Let (Y, E) be as in case (C5) of Proposition 2.1, with EF = OP1(1)⊕2 for any
fiber F of Y . Then

(i) the equality (KY + c1)
2c1 = 0 occurs if and only if Y = P

(
O⊕2P1 ⊕ OP1(1)

)
, i.e. Y is

isomorphic to P3 blown-up along a line, and E = [ζ+F ]⊕2, where ζ is the tautological
line bundle on Y ;

(ii) we have (KY + c1)
3 = 0 if and only if (Y, E) =

(
P2 × P1,O(1, 1)⊕2

)
.

Proof. Write Y = P(V), where V is an ample vector bundle of rank 3 on the base curve B.
Let ξ denote the tautological line bundle of V and q : Y → B the bundle projection; then
E = ξ ⊗ q∗G, where G is a rank-2 vector bundle on B. So c1 = det E = 2ξ + q∗ detG and
c2 = c2(E) = ξ2 + ξq∗ detG. Moreover, KY = −3ξ + q∗(KB + detV). Then KY + c1 =
−ξ + q∗(KB + detV + detG) ≡ −ξ + (2g − 2 + degV + deg G)F , where g is the genus of B.
Recall that ξ3 = ξ2q∗ detV = degV , due to the Chern–Wu relation. Recalling (12) we get

0 < d = c31 − 2c1c2 = (2ξ + deg G F )3 − 2(2ξ + q∗ detG)(ξ2 + ξq∗ detG)(29)

= 2(2 degV + 3 deg G).

This shows that 2 degV + 3 deg G ≥ 1. Now, suppose that (KY + c1)
2c1 = 0. Then we get

(30) 0 = (KY + c1)
2c1 = −4(2g − 2)− (2 degV + 3 deg G).

Recalling (29) this implies that 0 ≤ 7−8g, hence g = 0, i.e. B = P1. Rewrite Y as Y = P(U)
where U is normalized as in [3, Lemma 3.2.4, p. 74]. So, U = OP1⊕OP1(a1)⊕OP1(a2), where
0 ≤ a1 ≤ a2. In particular, degU = a1 + a2 ≥ 0. Denote by ζ the tautological line bundle of
U . Then ζ3 = degU ≥ 0, by Chern–Wu. Moreover, E = ζ ⊗ q∗F , where F is a vector bundle
of rank 2 on P1, hence of the form F = OP1(b1)⊕OP1(b2). Thus E = [ζ+b1F ]⊕ [ζ+b2F ], and
the ampleness of E implies that of the two summands [ζ + bi F ], which is expressed by the
condition bi > 0 for i = 1, 2, since U is normalized. Thus degF = b1 + b2 ≥ 2. In this setting
c1 = 2ζ+degF F and KY = −3ζ+(degU−2) F , hence KY +c1 = −ζ+(degU+degF−2) F .
So (30) becomes

(31) 0 = (KY + c1)
2c1 = 8− 2 degU − 3 degF ≤ 2(1− degU).

Thus degU ≤ 1; on the other hand, if degU = 0 then (31) gives 3 degF = 8, but this is
clearly impossible. Therefore degU = 1, hence U = O⊕2P1 ⊕ OP1(1) and degF = 2, which in
turn implies that F = OP1(1)⊕2. In particular, Y = P(U) is isomorphic to P3 blown-up along
a line. This proves (i). To prove (ii), come back to the description of (Y, E) in terms of V
and G and suppose that

(32) 0 = (KY + c1)
3 = 3(2g − 2) + 2 degV + 3 deg G.

The same argument used in the proof of (i) shows that B = P1. So we can use the description
of (Y, E) in terms of the vector bundles U and F once more. In these terms the expression
in (32) can be rewritten in the form

(33) (KY + c1)
3 = (−ζ)3 + 3(degU + degF − 2)ζ F = 2 degU + 3 degF − 6.

Recalling that degF ≥ 2, we thus see that 2 degU ≤ 0, hence degU = 0 and thus U is the
trivial bundle and E = [ζ+F ]⊕2. This means exactly that Y = P2×P1 and E = O(1, 1)⊕2. �

By the way, note that for the pair (Y, E) in (i) we have (KY + c1)
3 = 2.
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3. First properties of the residual cubic

In this Section we discuss some properties of the residual cubic C of the Hilbert curve of
a scroll over a threefold Y as in Section 1 and of its projective closure C. As we will see, the
behavior of C with respect to the line at infinity of the (u, v)-plane is strictly related to the
properties of the adjoint bundle KY + det E .

As a first thing, note that when C is irreducible, then it cannot have a singular point in A2.
In fact, if it did, due to the symmetry of C, the origin itself would be a singular point and
then, necessarily, a triple point, in view of the equation (3). But then C would be reducible, a
contradiction. On the other hand, it can happen that the projective closure of an irreducible
C is singular at a point at infinity, as Example 5.2 shows. We have the following basic result.

Proposition 3.1. Let (X,L) be a scroll over a smooth threefold Y as in Section 1, and let
C be the residual cubic of its Hilbert curve. Then

(i) C has a triple point if and only if σ = τ = 0,
(ii) C has a singular point at infinity if and only if

27α2δ2 − 18αβγδ + 4αγ3 + 4β3δ − β2γ2 = 0.(34)

In this case the singular point at infinity is Q∞ = (1 : m : 0), where either m = 0 or

(35) m =
9αδ − βγ

2(γ2 − 3βδ)
.

Proof. To prove (i) note that C has a triple point, if and only the origin O of the (u, v)-plane
is a triple point of C, and this happens if and only if σ = τ = 0. To prove (ii), consider the
homogeneous equation of C:

αu3 + βu2v + γuv2 + δv3 + σuw2 + τvw2 = 0,

where w = 0 represents the line at infinity. Recall that δ 6= 0, since δ is the degree of
(X,L) up to a non zero factor, by (11). Therefore C cannot be singular at (0 : 1 : 0). So
if it is singular at some point at infinity, this point must be Q∞ = (1 : m : 0), for some
m ∈ C. In particular, m = 0 if and only if α = β = 0. Suppose that this is not the case.
Looking for the singular points via the Jacobian criterion and imposing that one of them is
at Q∞ = (1 : m : 0) we obtain

(36)

{
γ m2 + 2β m+ 3α = 0
3δ m2 + 2γ m+ β = 0.

Thus the assertion follows from the fact that the resultant of the two polynomials in (36) is
the expression appearing in (34), up to a constant factor. Finally, by equating the expressions
of m2 deriving from the two above equations we immediately get (35). �

Clearly the two conditions in (i) and (ii) of Proposition 3.1 are independent. For example,
for the curve C in Example 5.2 condition (34) is satisfied and m = 0, whereas (σ, τ) =
(−2, 2 + d

2
). However, by combining the two conditions together we obtain the following

characterization.

Corollary 3.2. Let (X,L) be a scroll over a smooth threefold Y as in Section 1, and let C
be the residual cubic of its Hilbert curve. Then C is non-reduced if and only if σ = τ = 0
and (34) is satisfied.
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Proof. Claiming that C is non-reduced is equivalent to writing that C = 2`1 + `2, where both
`1 and `2 are lines (possibly coinciding) passing through O. This, in turn, means that O is
a triple point of C and that the point at infinity of `1 is a singular point of C. Then the
assertion follows from Proposition 3.1 �

Remark 3.1. (i) Let C = 2`1 + `2 be as above. As already observed in the proof of
Proposition 3.1, δ 6= 0, hence we can describe both `1 and `2 by equations of the form
mu − v = 0 and m′u − v = 0, for some m,m′ ∈ C, respectively. Then letting t = v/u we
see that R3(u, v) = u3 f(t), where f(t) = δt3 + γt2 + βt + α. By imposing that f(t) =
δ(t−m)2(t−m′), we thus get

α = −δm2m′, β = δm(m+ 2m′), γ = −δ(2m+m′).

By the way, note that eliminating m and m′ from these equations we directly obtain the
expression in (34).

(ii) Clearly, if C = 3`1, the above equations specialize to

α = −δm3, β = 3δm2, γ = −3δm,

which are equivalent to γ2 − 3βδ = β2 − 3αγ = 0.

Now, let `∞ be the line at infinity of the (u, v)-plane. We denote by `0 the line of equation
(n−2)u−v = 0, whose point at infinity is P∞ := (1 : n−2 : 0). Observe that `0 =< O,P∞ >,
where O is the origin.

Theorem 3.3. Let (X,L) be a scroll over a smooth threefold Y , as in Section 1, and let C
be the residual cubic of its Hilbert curve. Then C intersects `∞ at P∞ with multiplicity ν,
where,

j) ν ≥ 1 if and only if (KY + c1)
3 = 0;

jj) ν ≥ 2 if and only if, in addition, c1(KY + c1)
2 = 0 (in view of j) this is equivalent to

the two single conditions (KY + c1)
2c1 = (KY + c1)

2KY = 0);
jjj) ν = 3 if and only if, in addition to the above, (KY + c1)(c

2
1 − c2) = 0 (in view of jj)

this is equivalent to the two conditions (KY + c1)(c
2
1 − c2) = (KY + c1)(c

2
1 −K2

Y ) = 0,
the latter summarizing jj)).

Proof. From (11) and (12) we know that δ 6= 0. So, letting t = v/u we can consider again the
degree 3 polynomial f(t) = δt3 + γt2 + βt+ α and then ν turns out to be the multiplicity of
n− 2 as a root of f . In particular, C ∩ `∞ 3 P∞ if and only if n− 2 is a root of f . Plugging
the values of α, β, γ, δ given by (21), (22), (23), and (24) respectively in f(n− 2) we get

f(n− 2) = α + (n− 2)β + (n− 2)2γ + (n− 2)3δ =
(−1)n−1(KY + c1)

3

6(n− 3)!
.

This proves j). We have ν ≥ 2 if and only if n − 2 is a root of f and of its first derivative
f ′(t) = 3δt2 + 2γt+ β. Taking into account (24), (23) and (22) we see that

(37) f ′(n− 2) = 3(n− 2)2δ + 2(n− 2)γ + β =
(−1)n−1

2(n− 2)!
c1(KY + c1)

2.

This proves jj). Finally, condition ν = 3 is equivalent to imposing that n−2 is a triple root of
f . To do that, in addition to the previous conditions of being a root of f and of f ′, we have
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to require that n− 2 is also a root of the second derivative f ′′(t) = 6δt+ 2γ. A computation
taking into account (24) and (23) gives

(38) 2γ + 6δ(n− 2) =
2(−1)n−1

(n− 1)!
(KY + c1)(c

2
1 − c2),

and this proves jjj). �

Clearly, we have the following consequence.

Corollary 3.4. Let (X,L) and C be as in Theorem 3.3. If (X,L) is also an adjunction
theoretic scroll, then C does not contain P∞. In particular, this happens for every scroll, if
n ≥ 7.

More generally, the same is true if (Y, E) is as in (C7) of Proposition 2.1, in which case
KY +det E is nef and big. Now consider the line `0. Since C is defined by R3(u, v)+R1(u, v) =
0, with R3 and R1 given by Proposition 1.2, imposing that C contains `0 is equivalent to
requiring that R3(u, (n − 2)u) = R1(u, (n − 2)u) = 0, identically. The first of these two
conditions is equivalent to f(n − 2) = 0, hence to (KY + c1)

3 = 0, as shown in the proof of
Theorem 3.3. On the other hand, the second condition, namely σ + (n− 2)τ = 0, becomes

(−1)n(n− 2)(KY + c1)
[
3(n− 3)c21 + (n− 1)K2

Y − 6(n− 2)c2 − 2(n− 1)c2(Y )
]

24(n− 1)!
= 0,

after replacing σ and τ with the values appearing in (28). In particular, this shows that if
KY + c1 ≡ 0, then C contains `0. In fact, a slightly weaker condition is enough.

Corollary 3.5. Let (X,L) and C be as in Theorem 3.3. If (KY + c1)
3 = (KY + c1)

2c1 =
(KY + c1)(c

2
1 − c2) = 0, then C contains `0.

Proof. The three conditions above are equivalent to ν = 3 by Theorem 3.3. This implies
that C consists of three parallel lines with slope n− 2 and then, due to the symmetry of C,
necessarily one of them has to be `0. �

We finally note that if σ = τ = 0 in addition to the three conditions above, then O is a
triple point of C, as well as P∞. Therefore C = 3`0, a situation fitting with Remark 3.1 (ii).

4. The case n = 4

In this Section we specialize the situation to the case n = 4. So, let (X,L) be a 4-
dimensional scroll over a smooth threefold Y , as in Section 1, and let C be the residual
cubic of its Hilbert curve. First of all, from Proposition 1.2, letting n = 4, we see that the
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polynomial R3(u, v) +R1(u, v) defining C becomes

R3(u, v) +R1(u, v) = −1

6

(
K3

Y +KY (c21 − 4c2)
)
u3(39)

− 1

12

(
c1(c

2
1 − 4c2)− 2KY (c21 − 4c2) + 3K2

Y c1
)
u2v

+
1

48

(
4c1(c

2
1 − 4c2)− 8KY (c21 − c2)

)
uv2

− 1

24
c1(c

2
1 − 2c2)v

3

+
1

48
2KY

(
K2

Y − 2c2(Y ) + c21 − 4c2
)
u

+
1

48
c1
(
K2

Y − 2c2(Y ) + c21 − 4c2
)
v.

Here is a non trivial example.

Example 4.1. Let Y be either an abelian 3-fold or a Calabi-Yau 3-fold of Type A, according
to [12] (we recall that such varieties arise as quotients of an abelian threefold by a finite group
acting freely in codimension one, e.g. see [16]). Then KY = 0 and c2(Y ) = 0 in both cases.
Thus, letting h := c1(c

2
1 − 4c2), according to the above expression, the equation of C takes

the form

(40) − 1

48

(
4hu2 − 4huv + 2(h+ 2c1c2)v

2 − h
)
v = 0.

Therefore C is reducible, consisting of the u-axis plus a conic G whose matrix is

(41) A =

 4h −2h 0
−2h 2(h+ 2c1c2) 0

0 0 −h

 .
In particular, we see that detA = −4h2c31, hence G is irreducible if and only if h 6= 0.

Again with regard to the equation of C, the expression of the last two coefficients allows
us to explore the condition σ = τ = 0 (or equivalently that C has a triple point at O) at
least in the special case n = 4. Examples 5.2–5.5 fit in this case. Actually, if we consider the
1-cycle T := K2

Y − 2c2(Y ) + c21 − 4c2, then we can write

(42) σ = 2KY T and τ = c1T.

In particular this shows that if T = 0 then C has a triple point. Certainly this happens when
each of the two 1-cycles K2

Y − 2c2(Y ) and c21− 4c2, summands of T , is trivial (e.g. the first of
these two conditions, namely K2

Y − 2c2(Y ) = 0, holds if KY ≡ 0 and c2(Y ) = 0, for example
if Y is an abelian 3-fold or a Calabi-Yau 3-fold of Type A, as observed in Example 4.1). On
the other hand, if (σ, τ) 6= (0, 0), then O is a smooth point of C, and then (42) allows us to
express the equation of the tangent line to C at O in the form: (2KY T )u+ (c1T )v = 0.

Now we revisit the three assertions in Theorem 3.3 in connection with Proposition 2.1 C).
By Corollary 3.4, condition ν ≥ 1 implies that (X,L) cannot be an adjunction theoretic
scroll. In fact we can add that it cannot even be as in the first two cases of (C1), in the
first case of (C2), and as in (C7). As to the first case in (C5) Lemma 2.2 (ii) says that
(KY + c1)

3 = 0 occurs only for the pair (P2 × P1,O(1, 1)⊕2).
For instance we have
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Example 4.2. Let (Y, E) = (P3,OP3(1)⊕2). In this case (40) easily shows that C is defined
by

1

6
(4u− v)(4u− v − 1)(4u− v + 1) = 0.

Here C does not contain P∞, since (KY + c1)
3 6= 0. However, it intersects `∞ at Q∞ with

multiplicity 3, where Q∞ = (1 : 4 : 0). Moreover, the Hilbert curve of the corresponding
scroll (X,L) has equation

p(X,L)

(
1

2
+ u, v

)
=

1

6
(2u− v)(4u− v)(4u− v − 1)(4u− v + 1) = 0.

This is in accordance with [9, Theorem 4.1], since (X,L) = (P3 × P1,O(1, 1)) can also be
regarded as a scroll over P1.

As to condition ν = 2, note that pairs (Y, E) as in case (C5) of Proposition 2.1, obviously
satisfy the equality (KY + c1)

2c1 = 0, since (KY + c1)
2 is the trivial 1-cycle. In case (C6) we

have that (KY +c1)
2c1 6= 0. Moreover, this is the only possibility when KY +c1 is nef. On the

other hand, when KY + c1 is not nef, Lemma 2.2 (i) shows that the equality (KY + c1)
2c1 = 0

occurs only in a special subcase of the first case of (C5), in which, however, (KY + c1)
3 6= 0.

So we have

Corollary 4.1. Let (X,L) be a scroll over a smooth threefold Y , as in Section 1, with n = 4,
and let C be the residual cubic of its Hilbert curve. Then

1) C intersects `∞ at P∞ transversally if and only if (KY +c1)
3 = 0 and (KY +c1)

2c1 6= 0.
This happens exactly in the following cases:
1-1) KY + det E is nef and (Y, E) is as in (C6) of Proposition 2.1;
1-2) KY + det E is not nef and (Y, E) is as in Lemma 2.2, (ii).

2) Suppose that (X,L) is not an adjunction theoretic scroll. Then C intersects `∞ at
P∞ with multiplicity ν = 2 if and only if (KY + c1)

3 = (KY + c1)
2c1 = 0 and

(KY + c1)(c
2
1− c2) 6= 0. This happens exactly when KY + det E is nef and (Y, E) is as

in (C5) of Proposition 2.1.

Finally, condition ν = 3 is certainly satisfied when KY + c1 ≡ 0, which means that (X,L)
is a “Fano-bundle” of index 2 (recalling that rk(E) = n − 2 = 2). In particular Y is a
Fano threefold, and c1 = −KY . In this case the equation of C can be made explicit since
the coefficients displayed in (39) simplify considerably. Set Z := K2

Y − 2c2. Recalling that
the pairs (Y, E) of this type are listed in E0 of Remark 2.1 iii), a direct check shows that
KYZ 6= 0 for all pairs in the list. Recalling also that KY c2(Y ) = −24, since Y is Fano, a
straightforward check shows that the equation R3(u, v) +R1(u, v) = 0 becomes

(43) − 1

24
KYZ (2u− v)

(
(2u− v)2 −

(
1 +

24

KYZ

))
= 0.

In particular, we see that C = 3`0 if and only if KYZ = −24 and a quick inspection shows
when this is the case. So we have

Corollary 4.2. Suppose that KY + c1 ≡ 0. Then C = 3`0 if and only if K3
Y = 2(KY c2− 12);

this occurs exactly for the following pairs (Y, E):
(
P3,N (2)

)
,
(
Q3,S(2)

)
, (Y,H⊕2), where

(Y,H) is any of the two del Pezzo threefolds of degree 6, and
(
P2 × P1, p∗1TP2 ⊗O(0, 1)

)
.
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5. The case n = 4: C as a Hilbert curve

Let (X,L) be a 4-dimensional scroll over a smooth threefold Y , as in Section 1 and let C be
the residual cubic of its Hilbert curve. Referring to [4, Problem 6.6], and stimulated by what
[8, Remark 4.1] and [9, Theorem 4.1] suggest, we ask under what conditions the cubic C will
be the Hilbert curve of Y polarized by the ampleQ-line bundle 1

2
det E , induced by E , which we

call “average” polarization, since rk(E) = n−2 = 2. To motivate this question we recall that
if (V,M) and (W,N ) are two polarized manifolds, then p(V×W,M�N ) = p(V,M) p(W,N ) [4, 2.5].
In particular, if n = 4 and (X ∼= Y ×P1, L) is the product scroll, namely (PY (E),M�OP1(1)),
where E = M⊕2 for some ample line bundle M on Y , then

(44) p(X,L) = −p(Y,M) (2u− v),

hence the residual cubic of the Hilbert curve of (X,L) is itself the Hilbert curve of Y polarized
by the average polarization M = (1/2) det E . First of all, as a consequence of this fact we
can produce explicit examples of scrolls (X,L) as in Section 1, with n = 4, for which the
residual cubic C is either irreducible and smooth or irreducible with projective closure having
a singular point.

Example 5.1. Choose as Y a general element in |OP2×P2(2, 3)|, and let M =
(
OP2×P2(1, 1)

)
Y

.
According to [4, Example 4.11], the projective closure of Γ(Y,M) is a smooth cubic. Then
X := P(M⊕2), polarized by the tautological line bundle, is a scroll over Y and, according
to (44), its Hilbert curve consists of Γ(Y,M) plus the line 2u − v = 0. Thus C = Γ(Y,M) is a
smooth cubic. The same conclusion holds, if we take as (Y,M) a 3-dimensional geometric
conic fibration in P6 as in [5, Remark 6.4].

Example 5.2. Let (Y,M) be a geometric conic fibration over a del Pezzo surface of degree
d ≥ 3, constructed as in [5, p. 559], and consider X := P(M⊕2) ∼= Y × P1. Here the
tautological line bundle is L = M � OP1(1). Then, according to (44), the residual cubic C
of the Hilbert curve of the 4 dimensional scroll (X,L) is the Hilbert curve Γ(Y,M), hence C is
defined by

dv2(v − u)− 2u+

(
2 +

d

2

)
v = 0

[5, Example 6.3]. Therefore C is irreducible and its projective closure is singular at the point
at infinity of the u axis.

Now consider the base Y of our scroll (X,L), endowed with the average polarization. We
compute p(Y, 1

2
c1)

(1
2

+ u, v) using Riemann–Roch theorem and we get that

p(Y, 1
2
c1)

(
1

2
+ u, v

)
=

K3
Y

6
u3 +

K2
Y c1
4

u2v +
KY c

2
1

8
uv2 +

c31
48

v3(45)

+
2KY c2(Y )−K3

Y

24
u+

−K2
Y c1 + 2c1c2(Y )

48
v.

In particular, if KY + c1 ≡ 0, then c1 = −KY and KY c2(Y ) = −24 since Y is Fano. Then
(45) takes the form

(46) p(Y, 1
2
c1)

(
1

2
+ u, v

)
=

1

48
K3

Y (2u− v)

(
(2u− v)2 −

(
1 +

48

K3
Y

))
= 0.
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This says that the Hilbert curve of (X,L) consists of three parallel lines one of which is
`0, and they collapse to `0 exactly in case K3

Y = −48. Moreover, comparing (46) with the
equation of C given by (43), we see that Γ(Y, 1

2
c1)

= C if and only if the two equations are

proportional, hence if and only if K3
Y = 2KYZ. Since Z = K2

Y −2c2, this is in turn equivalent
to K3

Y = 4KY c2. A direct check for all pairs (Y, E) in E0 of Remark 2.1 iii) shows that this
condition if fulfilled only in case (C3) of Proposition 2.1, i.e. when Y is a del Pezzo threefold
and E = H⊕2. So, we have

Proposition 5.1. Let (X,L) be a scroll over a smooth threefold Y , as in Section 1, with
n = 4, and let C be the residual cubic of its Hilbert curve. Suppose that KY + c1 ≡ 0. Then
Γ(Y, 1

2
c1)

= C if and only if (Y,H = −1
2
KY ) is a del Pezzo threefold of degree d. In particular,

Γ(Y, 1
2
c1)

= 3`0 if and only if d = 6.

Comparing Proposition 5.1 with Corollary 4.2, we deduce that for the three pairs (Y, E) =
(P3,N (2)), (Q3,S(2)), and (P2 × P1, p∗1TP2 ⊗O(0, 1)), C is not the Hilbert curve of (Y, 1

2
c1).

In fact a straightforward calculation shows that Γ(Y, 1
2
c1)

has equation

p(Y, 1
2
c1)

(
1

2
+ u, v

)
= −1

3
(2u− v)(4u− 2v + 1)(4u− 2v − 1) = 0

in the first of the above three cases, and

p(Y, 1
2
c1)

(
1

2
+ u, v

)
= −1

8
(2u− v)(6u− 3v + 1)(6u− 3v − 1) = 0,

in the last two cases, respectively.

Although this situation is outside the range of adjunction theoretic scrolls, this shows that
the question whether the residual cubic C is itself the Hilbert curve of (Y, 1

2
c1) is nontrivial.

Next, we come back to the general case. The polynomial defining C, displayed in (39), is
proportional to that in (45) if its coefficients are the same as the corresponding ones up to a
non-zero constant, say λ.

For simplicity we call K3
Y = x0, KY c

2
1 = x1, KY c2 = x2, c

3
1 = x3, K

2
Y c1 = x4, c1c2 = x5,

KY c2(Y ) = x6, c1c2(Y ) = x7. Hence we get a system of six homogeneous linear equations
in the unknown x0, . . . , x7, regarding λ as a parameter. Solving such system of equations we
get that either

i) λ = −1, x2 = 1
4
x1 and x5 = 1

4
x3, that is λ = −1, KY (c21−4c2) = 0 and c1(c

2
1−4c2) = 0,

or

ii) χ(OY ) = 0, x0 = −x3 − 3x7, x1 = −x3 − x7, x2 = −(1
4
λ + 1

2
)x3 − (3

4
λ − 1)x7,

x4 = x3 + 2x7, x5 = (1
4
λ+ 1

2
)x3.

A special case corresponding to i) is when c21 − 4c2 = 0. Some information on this case is
provided by Proposition 5.4 and the examples below when Y is a Fano threefold.

In case ii), we can assume that λ 6= −1, and then, solving the system gives in particular

c31 + 3c1c2(Y ) = −K3
Y ,

c31 + c1c2(Y ) = −KY c
2
1,

c31 + 2c1c2(Y ) = K2
Y c1.
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The second and third relations show that c1c2(Y ) = KY c1(KY + c1), while the first and the
third one imply c1c2(Y ) = −K2

Y (KY + c1). Combining these two relations gives KY (KY +
c1)

2 = 0. Now, if (X,L) is an adjunction theoretic scroll, from the ampleness of KY + c1
we conclude that no positive multiple of KY can be effective, hence Y has negative Kodaira
dimension. On the other hand, if (X,L) is not an adjunction theoretic scroll, then condition
χ(OY ) = 0 implies that (X,L) can only be as in cases (C5)–(C7) of Proposition 2.1. Moreover,
in case (C5) the base curve of Y turns out to be an elliptic curve. Summing up the above
discussion, we have

Proposition 5.2. Let (X,L) be a 4-dimensional scroll over a smooth threefold Y and suppose
that the residual cubic C of its Hilbert curve is the Hilbert curve of (Y, 1

2
det E), precisely

(47) p(X,L)

(
1

2
+ u, v

)
= λ (2u− v) p(Y, 1

2
det E)

(
1

2
+ u, v

)
for some proportionality factor λ 6= 0. Then either

i) λ = −1, and
c1(c

2
1 − 4c2) = KY (c21 − 4c2) = 0, or

ii) λ 6= −1, χ(OY ) = 0, and KY (KY + c1)
2 = 0. In particular, if (X,L) is also an

adjunction theoretic scroll, then Y has negative Kodaira dimension. If (X,L) is not
an adjunction theoretic scroll, then (X,L) is as in one of the cases (C5)–(C7) of
Proposition 2.1.

Case c21−4c2 = 0 provides an interesting situation for i). We stress that this condition is the
one characterizing the Bogomolov proper semistability of the rank two vector bundle, which
arises in the study of the same problem for scrolls over surfaces [9]. Note that this condition
is clearly fulfilled when (Y, E) is as in case (C3) of Proposition 2.1 (see also Proposition 5.1).
More generally, let us observe the following fact. Let (X,L) be a 4-dimensional scroll over
a smooth threefold Y and suppose that X ∼= Y × P1. Then X = P(E), where E = M⊕2 for
some ample line bundle M on Y . In this case, c1 = 2M and c2 = M2, hence c21 − 4c2 = 0. A
natural question is the converse: when does condition c21 − 4c2 = 0 imply that X ∼= Y × P1?
This is not always true as Example 5.5 will show. Here is a partial answer.

Proposition 5.3. Let X = P(E), where E is an ample vector bundle of rank 2 on a smooth
threefold Y with Picard number ρ(Y ) = 1. If E is decomposable and c21 − 4c2 = 0, then
necessarily X ∼= Y × P1.
Proof. Actually, lettingM denote the ample generator of NS(Y ) we can write E = [aM ]⊕[bM ]
for some positive integers a and b. Hence c1 = (a+b)M and c2 = abM2, and then the condition
0 = c21 − 4c2 = (a− b)2M2 shows that a = b. Therefore E = [aM ]⊕2, hence X ∼= Y × P1. �

For instance the cases in which Y is either a complete intersection or a general abelian
threefold fall into the above Proposition since for both the Picard group has rank 1. The
following result gives another partial answer to the above question.

Proposition 5.4. Let (X,L) be a 4-dimensional scroll over a smooth threefold Y . Assume
that Y is either P3, Q3, Vd, the del Pezzo threefold of degree d = 3, 4, 5, 8, or a prime Fano
threefold with Picard number ρ(Y ) = 1. Let E be a rank two vector bundle on Y such that
c21 − 4c2 = 0. Then X ∼= P1 × Y .

Proof. Because Y has Picard number ρ(Y ) = 1, let OY (H) be the ample generator of Pic(Y).
Let E ′ = E(−aH) be the normalized rank two vector bundle on Y , that is, whose determinant
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c1(E ′) equals OY (εH), with ε = 0 or −1. Since E is a rank two vector bundle on Y such
that c21 − 4c2 = 0, then also c1(E ′)2 − 4c2(E ′) = 0. By [1, Corollary 1] and [11, Lemma
2.5] the vector bundle E ′ is not semistable unless it is the trivial bundle. If E ′ = O⊕2Y then
E = OY (aH)⊕2, which implies the assertion. On the other hand, if E ′ is not semistable then
there exists a destabilizing line bundle A ⊂ E ′ and hence a short exact sequence

0→ A→ E ′ → B → 0 .

Since Pic(Y) ∼= Z it follows that A = OY (pH), B = OY (qH), for some p, q ∈ Z. From
c1(E ′)2 − 4c2(E ′) = 0, dotting with H we get ((p + q)2 − 4pq)H3 = 0, which implies that
p = q. If c1(E ′) = 0 then p = q = 0 and moreover because Ext1(A,B) ∼= H1(OY ) = 0 it
follows that E ′ is the trivial bundle, a contradiction. On the other hand, it cannot be that
c1(E ′) = −1, otherwise −1 = 2p, which is impossible because p ∈ Z. In conclusion, E ′ has to
be the trivial bundle and then our claim that X = PY (E) ∼= P1 × Y follows. �

Example 5.3. Consider over P3 the rank two bundle E = OP3(2)⊕2 and let X = P(E) ∼=
P1×P3. Because c1(E) = 4 = c2(E), it follows that c21− 4c2 = 0. The equation of the Hilbert
curve of (X,L) is

p(X,L)

(
1

2
+ u, v

)
=

1

6
(2u− v)2(4u− 2v + 1)(4u− 2v − 1) = 0,

and (47) holds with λ = −1. We like to point out that X = P(E) is a Fano bundle, [17,
Theorem 2.1].

Example 5.4. Consider over Q3 the rank two bundle E = OQ3(2)⊕2 and let X = P(E) ∼=
P1×Q3. Because c1(E) = 4H and c2(E) = 4H2, where H is the hyperplane bundle, it follows
that c21 − 4c2 = 0. In this case the equation of the Hilbert curve of (X,L) is

p(X,L)

(
1

2
+ u, v

)
=

1

12
(2u− v)(6u− 4v + 1)(3u− 2v)(6u− 4v − 1) = 0

and (47) holds with λ = −1.

We like to point out that if in Proposition 5.4 we drop the assumption ρ(Y ) = 1 it is not
anymore true that we always have X ∼= P1 × Y . The next two examples deal with the two
del Pezzo threefolds of degree six.

Example 5.5. Let Y = P1 × P1 × P1, let pi : P1 × P1 × P1 → P1, for i = 1, 2, 3, be the
projections onto each factor and let hi denote the pull back of the class of a point in the i-th
copy of P1. Consider over P1× P1× P1 the rank two bundle E = OP1×P1×P1(h1 + ph2 + h3)⊕
OP1×P1×P1(h1 + h2 + h3), for an integer p ≥ 2. In this case c1(E) = 2h1 + (1 + p)h2 + 2h3,
c2 = (E) = (1 + p)h2h3 + 2h1h3 + (1 + p)h1h2 and hence c21− 4c2 = 0. On the other hand, for
X = P(E) we have that X � P1 × Y .

The equation of the Hilbert curve of the polarized 4-fold (X,L) is

p(X,L)

(
1

2
+ u, v

)
=

1

2
(2u− v)3

(
4u− (1 + p)v

)
= 0,

and (47) holds with λ = −1. Note that KY + c1 = 0 only when p = 1 and in this case we see
that C = 3`0, in accordance with Corollary 4.2.
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In some instances, however, even droppping the assumption ρ(Y ) = 1 but assuming that
the rank two vector bundle E is decomposable, the condition c21−4c2 = 0 allows to prove that
E = M⊕2 for some ample line bundle M on Y , which in turn implies that X = P(E) ∼= P1×Y .
This is shown by the following example.

Example 5.6. Let Y = P(TP2) and let q : P(TP2) → P2 be the projection morphism.
Denote by ξ the tautological line bundle of P(TP2) and let h2 denote the pull back of the
class of h ∈ |OP2(1)|, h2 = q∗h. Let h1 = H − h2, with H ∈ |ξ| and consider h1, h2
as generators of Pic(Y). One has h31 = 0, h32 = 0; moreover, by using the Chern–Wu
relation we see that h21 + h22 − h1h2 = 0. On Y we consider the rank two vector bundle
E = OY (a h1 + b h2) ⊕ OY (c h1 + d h2), with a, b, c, d positive integers. In this case c1(E) =
OY

(
(a + c)h1 + (b + d)h2

)
, c2(E) = (ac)h21 + (ad + bc)h1h2 + (bd)h22. If we require that

c1(E)2 − 4c2(E) = 0 then

(a+ c)2h21 + (b+ d)2h22 + 2(a+ c)(b+ d)h1h2 − 4
[
(ac)h21 + (ad+ bc)h1h2 + (bd)h22

]
= 0.

Easy computations along with the fact that h1h2 = h21 + h22 give

(a− c)(a− c+ 2b− 2d)h21 + (b− d)(b− d+ 2a− 2c)h22 = 0.

Thus

(a− c)(a− c+ 2b− 2d) = 0(48)

and

(b− d)(b− d+ 2a− 2c) = 0 .(49)

If a − c = 0 then plugging this information in equation (49) we get (b − d)2 = 0 and thus
d = b and a = c, therefore E = OY (a h1 + b h2)

⊕2. Same conclusion holds if b− d = 0.
If a−c+2b−2d = 0 then a−c = 2d−2b and plugging this in equation (48) we get−3(b−d)2 = 0
and thus b = d from which it follows a = c and therefore E = OY (a h1 + b h2)

⊕2. Same
conclusion holds if b−d+2a−2c = 0. Thus the fourfold X = P(E) = P

(
OY (a h1+b h2)

⊕2) ∼=
P1 × Y .

In this case, the Hilbert curve of the polarized 4-fold (X,L) has equation

p(X,L)

(
1

2
+ u, v

)
=

1

2
(2u− v)(2u− bv)(2u− av)

(
4u− (a+ b)v

)
= 0,

and (47) holds with λ = −1. Note that here KY + c1 = 0 only when a = b = 1, and in this
case the above equation shows that C = 3`0, in accordance with Corollary 4.2.

Arguing in a similar way, the conclusion that X = Y × P1 can be obtained also for the
del Pezzo threefold Y of degree 7, recalling that Y = P

(
OP2 ⊕ OP2(1)

)
. In this case, as

in Example 5.6, we can see that if E is a rank two decomposable vector bundle on Y with
c21− 4c2 = 0 then E = M⊕2, where M = OY (ah1 + bh2), h1 is the tautological line bundle on
Y and h2 = q∗OP2(1), q : Y → P2 being the bundle projection. Then for the Hilbert curve of
(X,L) we get

p(X,L)

(
1

2
+ u, v

)
= −1

6
(2u− v)(2u− av)

(
28u2 − (10a+ 18b)uv + (a2 + 3ab+ 3b2)v2 − 1

)
,

and (47) holds with λ = −1. Note that here the residual cubic C has a conic as a component,
which is reducible if and only if a = b.
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