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SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS AND

APPLICATIONS

FEDERICO BINDA, AMALENDU KRISHNA

Abstract. We show that for a smooth projective variety X over a field k and
a reduced effective Cartier divisor D ⊂ X, the Chow group of 0-cycles with
modulus CH0(X ∣D) coincides with the Suslin homology HS

0 (X ∖ D) under
some necessary conditions on k and D. We derive several consequences, and
we answer to a question of Barbieri-Viale and Kahn.
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1. Introduction

The theory of Chow groups with modulus is presently an active area of research whose
primary goal is to provide a cycle theoretic description of the relative K-theory of smooth
varieties and of the (ordinary) K-theory of singular varieties. As such, this is a non-A1-
homotopy invariant cohomology theory: this poses a major hurdle while dealing with Chow
groups with modulus. The question then arises whether one can isolate a number of special
cases in which the Chow groups with modulus behave like a homotopy invariant cohomology
theory. This note is an attempt to answer this question.

More specifically, we exhibit a phenomenon which justifies the belief that the Chow groups
with modulus associated to a normal crossing divisor on a smooth scheme over a field should
behave like a homotopy invariant theory. The precise result that we prove is the following.

1.1. Main result. Let k be a field and X a smooth projective scheme of pure dimension
d ≥ 0 over k. Let D ⊂ X be a reduced effective Cartier divisor (possibly empty) on X

with complement U . In this case, we shall say that (X,D) is a reduced modulus pair. Let
CH0(X ∣D) be the Chow group of 0-cycles on X with modulusD (see [32]). Let HS

0 (U) denote
the (zeroth) Suslin homology of U (see [43, Defn. 10.8], where it is called the algebraic singular
homology). If k admits resolution of singularities, then HS

0 (U) coincides with the Suslin-
Voevodsky motivic cohomology with compact support H2d

c (U,Z(d)). There is a canonical
surjection (e.g., using [50, Thm. 5.1])

(1.1) φX ∣D ∶CH0(X ∣D) ↠ HS
0 (U).
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This map is clearly an isomorphism if d ≤ 1. However, it is known (see [7, Thm. 1.1]) that
φX ∣D may not be an isomorphism if d ≥ 2 (even if k is algebraically closed). The goal of this
paper is to prove the following result.

Theorem 1.1. Assume that one of the following conditions holds.

(1) D is a simple normal crossing divisor on X.
(2) k is perfect, d ≤ 2 and D is seminormal.
(3) k is algebraically closed of positive characteristic.

(4) k ⊆ Q.

Then the map
φX ∣D ∶CH0(X ∣D) → HS

0 (U)

is an isomorphism.

The case (3) of Theorem 1.1 is known by [7, Thm. 1.1] (we included it in the theorem only
for completeness). Hence, the new results are (1), (2) and (4). We expect the condition d ≤ 2
in (2) to be unnecessary, but do not know how to show it. However, the condition on char(k)
in (3) and algebraicity of k over Q in (4) can not be relaxed (see [7, Thm. 4.4]). We also
remark that φX ∣D is almost never an isomorphism if D is not reduced.

1.2. Applications. As Theorem 1.1 identifies an a priori non-homotopy invariant theory
with a homotopy invariant one, we expect it to have many consequences. We list some in this
paper.

1.2.1. Class field theory of Kerz-Saito. The goal of geometric class field theory is to describe
the abelian fundamental group of a variety (say, defined over a finite field) in terms of certain
groups of algebraic cycles. The modern perspective on the problem is given by the work
of Kerz and Saito [32] (see also [8]), where the class groups used to describe the abelian
fundamental group of a variety X with bounded ramification along a divisor D is precisely
the Chow group of zero-cycles with modulus.

By a clever induction argument on the ramification index, the proof of the main theorem
of [32] uses as key ingredient the existence of a reciprocity isomorphism

(1.2) ρX ∣D ∶CH0(X ∣D)0
≅
Ð→ πab1 (X,D)0

for a reduced simple normal crossing divisor D on a smooth projective surface X over a finite
field, where πab1 (X,D)0 is (the degree zero part of) the abelian fundamental group of X with
modulus D, a quotient of the usual étale fundamental group πab1 (U), where U = X ∖D. For
the proof of this fact, Kerz and Saito refer to a result of Kerz-Schmidt (see [33, Thm. 8.3])
that, reformulated in an appropriate way, affirms the existence of an isomorphism

(1.3) ρtU ∶H
S
0 (U)0

≅
Ð→ π

t,ab
1 (U)0,

where πt,ab1 (U) is the tame fundamental group of U (classifying tame finite étale coverings of

U), a further quotient of πab1 (U). The comparison between (1.2) and (1.3) is very indirect,
and passes through non-trivial results in ramification theory.

An immediate application of Theorem 1.1 is that the isomorphism (1.2) is in fact a direct
corollary of (1.3), and holds in any dimension. It also follows immediately from Theorem 1.1
and Kerz-Schmidt theorem that for any smooth projective variety X over a finite field and a
reduced simple normal crossing divisor D ⊂X with complement U , the canonical map

πab1 (X,D) → π
t,ab
1 (U)

is an isomorphism of topological groups.
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1.2.2. Reciprocity for Russell’s relative Chow group. An independent theory of relative Chow
groups with modulus was introduced and extensively studied by Russell (see [48]). For D ⊂
X an effective Cartier divisor, let us denote Russell’s relative Chow group of 0-cycles by
CHRus

0 (X ∣D). It is clear from the definition of this group (see op. cit.) and [50, Thm. 5.1]
that it coincides with HS

0 (U) when D is reduced. We thus immediately get the following.

Corollary 1.2. Under the hypotheses of Theorem 1.1, the canonical map

(1.4) φX ∣D ∶CH0(X ∣D) → CHRus
0 (X ∣D)

is an isomorphism.

Combining (1.4) with the main results of [8], [32] and [23, Thm. 1.4], we obtain the following
reciprocity theorem for Russell’s relative Chow group. Let πabk1 (X,D) be the log version (see
[24, Defn. 9.6] or [4, Defn. 7.2]) of the non-log abelian fundamental group with modulus
πadiv1 (X,D) (see [22, Defn. 7.5]). The latter group coincides with the fundamental group with

modulus πab1 (X,D) used in [8] and [32].

Theorem 1.3. Assume that k is finite and (X,D) is a reduced modulus pair over k such that
one of the following conditions holds.

(1) D is a simple normal crossing divisor.
(2) d ≤ 2 and D is seminormal.

Then the Frobenius substitution at the closed points of X ∖D gives rise to a reciprocity iso-
morphism

ρX ∣D ∶CH
Rus
0 (X ∣D)0

≅
Ð→ πabk1 (X,D)0

of finite groups.

When char(k) ≠ 2 in case (1), the theorem was claimed by Barrientos (see [4, Thm. 7.3]).
For the proof, Barrientos only refers to the (highly intricate) arguments of Kerz-Saito [32] in
the non-log case. Note that the canonical map πadiv1 (X,D) → πabk1 (X,D) is an isomorphism
under the assumption of the corollary. This follows directly from definitions.

1.2.3. Roitman’s theorem for Suslin homology. Assume that k is algebraically closed. Let
(X,D) be a reduced modulus pair over k with U =X ∖D. Let Alb(U) denote the generalized
Albanese variety of U , introduced by Serre [52]. This is universal for morphisms from U

to semi-abelian varieties. There is an Albanese homomorphism albU ∶H
S
0 (U)0 → Alb(U)(k),

where HS
0 (U)0 is the kernel of the push-forward map HS

0 (U)0 →HS
0 (π0(U)). A famous theo-

rem of Roitman [47] says that if U is projective (i.e., D = ∅ in our set-up), then albU induces
an isomorphism between the torsion subgroups, away from char(k). The latter condition was
subsequently removed by Milne [41].

Spieß and Szamuely [53] showed that, away from char(k), albU induces an isomorphism
between the torsion subgroups even if D ≠ ∅. Geisser [16, Thm. 1.1] showed that the condi-
tion imposed by Spieß-Szamuely could be removed if one assumed resolution of singularities.
Recently, Ghosh-Krishna [19, Thm. 1.7] showed that Geisser’s condition could be eliminated.
But their proof is long and intricate. Using Theorem 1.1, we can give a very quick proof
(see § 3.6) of (the unconditional version of) the torsion theorem of Spieß-Szamuely in positive
characteristic. The result is the following.

Theorem 1.4. Let (X,D) be a reduced modulus pair over k and U = X ∖ D. Then the
Albanese map for U induces an isomorphism

albU ∶H
S
0 (U)tor

≅
Ð→ Alb(U)(k)tor.
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1.2.4. Motivic cohomology of normal crossing schemes. Let k be a field and let X be a reduced
quasi-projective k-scheme. Let Hm(X,Z(n)) denote the Friedlander-Voevodsky motivic co-
homology of X (see § 4.2). This is an abstractly defined cohomology theory for X which is
homotopy-invariant. If X is smooth over k of pure dimension d, then it is well known that

there is a canonical isomorphism CH0(X)
≅
Ð→ H2d(X,Z(d)). This is a special case of a more

general result of Voevodsky, that identifies the motivic cohomology groups of smooth schemes
over any field with the higher Chow groups as defined by Bloch. See [57, Corollary 2].

As one knows, the cohomological analogue of CH0(X) is the Levine-Weibel Chow group
CHLW0 (X) when X is singular. We let Λ be a commutative ring which is Z if k admits
resolution of singularities and is any Z[1

p
]-algebra if char(k) = p > 0. The following is an open

question in the theory of algebraic cycles.

Question 1.5. Let X be a seminormal1 quasi-projective k-scheme of pure dimension d. Is
there a canonical isomorphism

CHLW0 (X)Λ →H2d(X,Λ(d))?

We do not know if this question may have a positive answer. We can however prove the
following result using Theorem 1.1.

Let CHl.c.i.
0 (X) denote the lci version of the Levine-Weibel Chow group of X as defined in

[5, § 3] (see § 3.2). This is a modified form of CHLW0 (X) with better functorial properties.
As another application of Theorem 1.1, we can prove the following result with regard to the
above question.

Theorem 1.6. Let k be any field and X a reduced quasi-projective scheme of pure dimension
d over k. Then the following hold.

(1) There exists a canonical homomorphism

λX ∶CH
l.c.i.
0 (X)→ H2d(X,Z(d)).

(2) λX is surjective with Λ-coefficients if X is projective and the regular locus of X is
smooth over k.

(3) λX is an isomorphism with Λ-coefficients if X is a projective normal crossing scheme
over k.

The last part of Theorem 1.6 was earlier shown in [7, Thm. 1.6] if one assumes that

CHLW0 (X)Λ ≅ CHl.c.i.
0 (X)Λ and one of the following holds.

(1) k is infinite and perfect of positive characteristic.
(2) char(k) = 0 and Λ = Z/m,m ≠ 0.

The assumption CHLW0 (X)Λ ≅ CHl.c.i.
0 (X)Λ is usually very hard to check, even though it

is unavoidable in [7]. Note that it is automatically satisfied if e.g. char(k) = 0 and k is
algebraically closed. We refer the reader to [7, Lemma 8.1] and the references in loc. cit. for
a more detailed comparison.

1.2.5. A question of Barbieri-Viale and Kahn. Let k be an algebraically closed field of char-
acteristic zero. As an application of the comparison between the Levine-Weibel Chow group
of zero cycles and the (2d, d) motivic cohomology group, we can give a positive answer to a
question posed by Barbieri-Viale and Kahn in [3]. This can be interpreted as a comparison
between the Roitman theorem for the cdh-motivic cohomology, proved in [3], and the more
classical Roitman theorem for singular projective varieties in characteristic zero, proved in [9].

1If one wants to replace Λ by Z, then one should replace seminormal by weakly normal.
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Theorem 1.7. Let k be an algebraically closed field of characteristic zero and let X be a
reduced projective k-scheme of pure dimension d. Then the morphism

λX ∶CH
LW
0 (X) →H2d(X,Z(d))

is surjective with uniquely divisible kernel, and there is a commutative diagram

CHLW0 (X)tors H2d(X,Z(d))tors

Alb+(X)(k)tors L1Alb
∗(X)(k)tors,

λX

a+ u

where all the arrows are isomorphisms. Here, Alb+(X)(k) is the universal semi-abelian

regular quotient of CHl.c.i.
0 (X), and L1Alb

∗(X)(k) is the semi-abelian part of the 1-motive
LAlb(M(X)∗(d)[2d]).

We end the discussion of our main result and its application with the following larger
question. Let Λ be as in § 1.2.4.

Question 1.8. Let k be any field. Let X be a smooth projective k-scheme of pure dimension
d and let D ⊂ X be a reduced simple normal crossing divisor. Let U = X ∖D. Is there a
canonical isomorphism

CHm(X ∣D,n)Λ
≅
Ð→H2m−n

c (U,Λ(m))?

1.3. Overview of proofs. We prove Theorem 1.1 by induction on dim(X). This reduces
the proof to the case when X is a surface. The case of surfaces is the most delicate one and
the main work goes into proving this case. The main steps are as follows.

We use the decomposition theorem of [25] as first of the key tools. This result provides an

injective homomorphism p∗∶CH0(X ∣D)→ CHl.c.i.
0 (SX), where SX is the double of X along D.

The proof of Theorem 1.1 is then essentially equivalent to showing that p∗ factors through the
quotient CH0(X ∣D) ↠ HS

0 (U). The second step is to show that if we compose p∗ with the

pull-back CHl.c.i.
0 (SX) → CHl.c.i.

0 (SsnX ), then p∗ does factor through HS
0 (U), where S

sn
X is the

seminormalization of SX . The third step is to show that this pull-back map is an isomorphism
(under the given assumptions on k and D). To show the latter, we prove some results that
compare Quillen’s algebraic K-theory and Weibel’s homotopy KH-theory for certain types
of curves and surfaces.

Most of the applications given above are immediate consequences of Theorem 1.1, with the
exception of Theorem 1.6. To prove Theorem 1.6, we proceed as follows. We first construct
the map λX using the Gysin maps for Chow group and motivic cohomology. This reduces
the construction to dimension one case which we deduce using the slice spectral sequence
for singular schemes from [37]. The key idea then is to replace CHl.c.i.

0 (X) with a cycle

group CHEKW0 (X), introduced by Esnault-Kerz-Wittenberg [13]. This is possible, thanks to
Theorem 1.1. We then use a result of Cisinski-Déglise [11] on the perfection properties of
various cycle groups to pass to a perfect base field. Theorem 1.6 then follows.

In § 2, we collect the K-theoretic results that we need to prove Theorem 1.1 for surfaces.
In § 3, we prove the key factorization lemma which allows us to conclude the proof. We also
prove Theorem 1.4 in this section. We prove Theorem 1.6 in § 4. Finally, § 5 is dedicated to
the proof of Theorem 1.7.
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1.4. Notations. Throughout this note, we fix a field k. A k-scheme will mean a separated
and essentially of finite type k-scheme. We shall denote the category of such schemes by Schk.
We shall let Smk be the subcategory of Schk consisting of smooth schemes over k. IfX ∈ Schk
is reduced, we shall let Xn (resp. Xsn) denote the normalization (resp. seminormalization)
of X.

Recall that for A a reduced commutative Noetherian ring and B a subring of the integral
closure of A in its ring of total quotients, which is finite as A-module, we say that an ideal
I ⊂ A is a conducting ideal for the inclusion A ⊂ B if I = IB. More generally, if f ∶X ′ → X

is a finite birational map, a closed subscheme Y of X is called a conducting subscheme for
f if the sheaf of ideals IY ⊂ OX is a sheaf of conducting ideals for the inclusion of sheaves
of rings OX → f∗(OX′). We shall let k(X) denote the total ring of quotients of X. For a
morphism f ∶X ′ → X of k-schemes and D ⊂X a subscheme, we shall write D×XX

′ as f∗(D).
If Y,Z ⊂X are two closed subschemes, then Y ∩Z will mean the scheme theoretic intersection
Y ×X Z unless we say otherwise. We shall let Z0(X) denote the free abelian group on the set
of closed points on X.

Acknowledgements. The authors would like to thank Bruno Kahn for providing some com-
ments on a preliminary version of this manuscript. They would also like to thank the referee
for reading the manuscript carefully and providing helpful suggestions.

2. Algebraic and homotopy K-groups of a double

The goal of this section is to show that if SX is the double of a regular surface X over a
field along a reduced Cartier divisor, then SK0(SX) coincides with an analogous subgroup
of KH0(SX) under some necessary conditions on k and D. We shall begin by recollecting
necessary concepts. We shall then prove some preliminary K-theoretic results before reaching
the goal. We fix a field k throughout this section.

2.1. Review of double along a divisor. Let X ∈ Schk be a regular scheme and let D ⊂X
be an effective Cartier divisor. Recall from [5, § 2.1] that the double of X along D is the
push-out SX ∶=X ∐D X. One knows that

(2.1) D
ι
//

ι

��

X+

ι+

��

X−
ι−
// SX

is a bi-Cartesian square. Moreover, there is a finite and flat morphism ∆∶SX → X whose
composition with ι± are identity. SX is a reduced Cohen-Macaulay scheme with two irreducible
components X± and its normalization SnX is canonically isomorphic to X+ ∐X− (see again [5,
Prop. 2.4]). For the normalization morphism π∶SnX → SX , the smallest conductor subscheme
inside SX is D whose inverse image in SnX is D∐D. It follows that SX is a seminormal scheme
if D is reduced (see [35, Prop. 4.2]).

If C± are two closed subschemes of X not contained in D such that C+ ∩D = C− ∩D as
closed subschemes, then the join C+ ∐D C− along D ∩ C± is canonically a closed subscheme
of SX . If ν ∶C ↪ X is a regular closed immersion whose image is not contained in D, then
the double of C along C ∩D (which we shall also denote by SC) has the property that the
inclusion ν′∶SC ↪ SX is also a regular closed immersion (again by [5, Prop. 2.4(5)]). We shall
use this fact often in this paper.
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2.2. Review of homotopy K-theory. Recall (e.g., see [38, § 5]) that the homotopy K-
theory spectrum (introduced by Weibel [59]) of a k-scheme is defined as the homotopy colimit
spectrum KH(X) = hocolimnK(X × ∆n), where ∆● is the standard cosimplicial scheme
defined by setting ∆n = Spec (k[t0, . . . , tn]/(∑i ti − 1)). There is a natural transformation
between the presheaves of S1-spectra K(X) →KH(X) on Schk, which is a weak equivalence
if X is regular. Furthermore, if f ∶X ′ → X is a proper local complete intersection morphism
(or, more generally, a morphism of finite Tor-dimension), then so is f × id∶X ′ ×∆● →X ×∆●.
It follows from [56, Prop. 3.18] that there is a push-forward map between the simplicial
spectra f∗∶K(X ′ ×∆●) → K(X ×∆●). Taking the homotopy colimits, we see that there is a
push-forward map f∗∶KH(X ′) → KH(X). This map satisfies usual properties such as the
composition law and commutativity with pull-back.

Let τ ∶ (Schk)cdh → (Schk)zar be the canonical morphism of sites, where (Schk)cdh denotes
the category Schk equipped with the cdh topology (e.g., see [43, Chap. 12]). Since KH(X)
is homotopy equivalent to the cdh-fibrant replacement of the spectrum K(X) (see [10], [26]),
there is a commutative diagram of strongly convergent spectral sequences

(2.2) E
p,q
2 =H

p
zar(X,Kq,X)

��

⇒ Kq−p(X)

��
′E

p,q
2 =H

p
cdh
(X,Kq,X) ⇒ KHq−p(X),

where the top one is the Zariski descent spectral sequence due to Thomason-Trobaugh [56,
Thm. 10.3].

Let us describe the edge homomorphisms of these spectral sequences in low degrees. First,
there is a natural map rk∶KH0(X) →H0(X,Z) whose composition withK0(X)→KH0(X) is
the (classically defined) rank map. We let K̃0(X) and K̃H0(X) denote the respective kernels.
Using the above spectral sequences again, we get a natural map det∶ K̃H0(X) →H1

cdh(X,O
×
X),

which is surjective if dim(X) ≤ 2. We let SKH0(X) denote its kernel. We let SK0(X) be the
kernel of the (surjective) determinant map det∶ K̃0(X) ↠ H1

zar(X,O
×
X) = Pic(X) ([58, Thm.

II.8.1]).
Applying the above spectral sequences to KH1(X), we get an edge map KH1(X) →

H0
cdh(X,O

×
X). We let SKH1(X) denote its kernel. Similarly, we let SK1(X) denote the

kernel of the edge map K1(X) → H0
zar(X,O

×
X). Let Xsn → X denote the seminormalization

morphism when X is reduced (see [35, § 4.1]).

Lemma 2.1. Let X ∈ Schk be a reduced scheme. Then we have the following.

(1) The canonical map H0
zar(X,O

×
X)→H0

cdh(X,O
×
X) has a factorization

H0
zar(X,O

×
X) //

��

H0
zar(X

sn,O×Xsn)

≅

��vv

H0
cdh(X,O

×
X)

≅
// H0

cdh(X
sn,O×Xsn),

where the horizontal arrows are induced by the projection Xsn → X and the vertical
arrows are induced by the change of topology. Moreover, the bottom horizontal and
the right vertical arrows are isomorphisms.
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(2) There is a commutative diagram of short exact sequences

(2.3) 0 // SK1(X)

��

// K1(X) //

��

H0
zar(X,O

×
X) //

��

0

0 // SKH1(X) // KH1(X) // H0
cdh(X,O

×
X) // 0,

which split functorially in X.

Proof. The first part is well known (e.g., apply [28, Prop. 6.14] with Y = Gm). It is shown in
[34, Lem. 2.1] that the top sequence is split exact such that the splitting is functorial in X.
The bottom sequence is left exact by definition. We now show that it is actually split exact.

Using [59, Prop. 3.2] and Zariski descent for KH-theory, it follows that the canonical map
KH(X) → KH(Xsn) is a weak equivalence. Hence, we can assume X to be seminormal to
prove the split exactness of the bottom sequence in (2.3). Using the split exact property of the
top sequence, it suffices to show that the change of topology mapH0

zar(X,O
×
X)→H0

cdh(X,O
×
X)

is an isomorphism. But this is the first part of the lemma. �

The spectral sequences of (2.2) imply that there is a commutative diagram of short exact
sequences

(2.4) 0 // H1
zar(X,Ki+1,X) //

��

Ki(X) //

��

H0
zar(X,Ki,X) //

��

0

0 // H1
cdh(X,Ki+1,X)

// KHi(X) // H0
cdh(X,Ki,X)

// 0

for every i ≥ 0 if dim(X) ≤ 1. Combining Lemma 2.1 and (2.4), we get

(2.5) SK1(X) ≅H
1
zar(X,K2,X) and SKH1(X) ≅H

1
cdh(X,K2,X)

if dim(X) ≤ 1.
For a closed immersionW ⊂ Z in Schk, we let K(Z,W ) be the relative homotopy K-theory

spectrum of the pair (Z,W ). It is defined as the homotopy fiber of the restriction map of
spectra K(Z)→K(W ). If f ∶Z ′ → Z is a morphism of k-schemes such that W ′

=W ×Z Z
′, we

let K(Z,Z ′,W ) (the double relative K-theory spectrum) denote the homotopy fiber of the
canonical pull-back map f∗∶K(Z,W ) →K(Z ′,W ′). We defineKH(Z,W ) andKH(Z,Z ′,W )
in analogous fashion.

2.3. Algebraic and homotopy K2-groups of normal crossing curves. We shall now
compareK2(X) andKH2(X) whenX is a normal crossing curve. We first recall the definition
of normal crossing schemes that we shall use in this paper.

Let X ∈ Schk be a reduced scheme of pure dimension d ≥ 0. Let {X1, . . . ,Xn} be the set of
irreducible components of X. We shall say that X is a normal crossing k-scheme if for every
nonempty subset J ⊂ [1, n], the scheme theoretic intersection XJ ∶= ⋂

i∈J
Xi is either empty or

a smooth k-scheme of pure dimension d + 1 − ∣J ∣. Recall that X ∈ Schk is called Ki-regular if
the map Ki(X)→Ki(X ×∆n), induced by the projection, is an isomorphism for all n ≥ 0.

Lemma 2.2. Let X ∈ Schk be a normal crossing curve. Then X is Ki-regular for i ≤ 1.

Proof. It is well known (e.g., use the Bass fundamental exact sequence) that the lemma is
equivalent to the assertion that X is K1-regular. We first assume that X is affine. We let
µ(X) denote the number of irreducible components of X and write X(n) =X ×∆n. We shall
prove K1-regularity of X by induction on µ(X). The case µ(X) = 1 is trivial because X is
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then smooth, and one knows that smooth (more generally, regular) schemes are Ki-regular
for all i. Let us now assume that µ(X) > 1. We let X1 be an irreducible component of X and
let X2 be the scheme theoretic closure of X ∖X1 in X. We let Y = X1 ∩X2. Then X2 is a
normal crossing curve such that µ(X2) = µ(X)−1 and Y is a 0-dimensional smooth k-scheme.
We have a commutative square

(2.6) Y (n) //

��

X1(n)

��

X2(n) // X(n)

of affine schemes for every n ≥ 0, which is Cartesian as well as co-Cartesian and in which all
arrows are closed immersions.

By [42, Thm. 6.4], there exists a commutative diagram of exact sequences

(2.7) K2(Y ) //

��

K1(X) //

p∗
X

��

K1(X1) ⊕K1(X2) //

��

K1(Y )

��

K2(Y (n)) // K1(X(n)) // K1(X1(n)) ⊕K1(X2(n)) // K1(Y (n)),

in which the vertical arrows are induced by the projection maps. The left-most and the right-
most vertical arrows are isomorphisms because Y is smooth. The vertical arrow involving X1

and X2 is an isomorphism by induction on µ(X). It follows via a diagram chase that p∗X is
surjective. As this map is always (split) injective, the affine case of the lemma follows.

If X is not necessarily affine, we choose a dense open affine subscheme U ⊂ X such that
Xsing ⊂ U and let Y = X ∖ U with the reduced induced closed subscheme structure. Then Y
is a regular k-scheme. Using the Thomason-Trobaugh localization sequence ([56, Thm. 7.4])

KY (n)(X(n)) →K(X(n)) →K(U(n))

and the weak equivalence K(Y (n))
∼
Ð→ KY (n)(X(n)) (this uses excision and the fact that

Y = Yreg ⊂Xreg), we get a commutative diagram of exact sequence of homotopy groups

(2.8) K1(Y ) //

��

K1(X) //

p∗
X

��

K1(U) //

p∗
U

��

K0(Y )

��

K1(Y (n)) // K1(X(n)) // K1(U(n)) // K0(Y (n)).

The left-most and the right-most vertical arrows are isomorphisms because Y is regular.
The arrow p∗U is an isomorphism because U is affine. It follows via a diagram chase that p∗X
is surjective. As this map is always (split) injective, the lemma follows. �

Lemma 2.3. Let X ∈ Schk be a normal crossing curve. Then the canonical map K2(X) →
KH2(X) is surjective. In particular, the map H0

zar(X,K2,X)→H0
cdh(X,K2,X) is surjective.

Proof. It follows from the spectral sequences (2.2) that the edge mapsK2(X) →H0
zar(X,K2,X)

and KH2(X)→ H0
cdh(X,K2,X) are surjective. Hence, we only need to prove the first assertion

of the lemma. In view of Lemma 2.2, the spectral sequence

E
p,q
1 =Kq(X ×∆p)⇒KHp+q(X),

degenerates to an exact sequence

(2.9) K2(X ×∆1)
∂∗1−∂

∗
0

ÐÐÐ→K2(X) →KH2(X)→ 0.

This finishes the proof. �
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2.4. Algebraic and homotopy K1-groups of curves. For the rest of § 2, we shall work
with the following set-up. We let X be a regular integral quasi-projective surface over k and
D ⊂ X a reduced effective Cartier divisor. Recall that SX denotes the double of X along D.
The goal of this subsection is to prove the following two lemmas.

Lemma 2.4. The map SK1(D)→ SKH1(D) is an isomorphism under any of the following
conditions.

(1) k is perfect and D is seminormal.

(2) k ⊆ Q.

Proof. Let π∶Dn → D be the normalization morphism. Let E ⊂ D be a conducting closed
subscheme for π and let E′ = π∗(E). We then have an exact sequence of relative and double
relative K-groups:

(2.10) ⋯→Ki(D,D
n,E) →Ki(D,E) →Ki(D

n,E′)→Ki−1(D,D
n,E) → ⋯.

Since dim(D) = 1 andD is reduced, the conducting subscheme E is supported on a finite set of
closed points (hence it is affine). It follows from [17, Thm. 0.2] and the Thomason-Trobaugh
descent spectral sequence [56] that K0(D,Dn,E) = 0 and K1(D,Dn,E) ≅ IE/I2E ⊗E′ Ω

1
E′/E ,

where IE is the Zariski sheaf of ideals on D defining E.
Assume that (1) holds. Since D is seminormal, we can choose our conducting subschemes

E and E′ to be reduced (in fact, E can be chosen to be V (I) where I is the largest conducting
ideal for the map OD ⊂ π∗ODn , see [35, Prop. 4.2(1)]). It follows that the coordinate rings of
E and E′ are finite products of finite and separable extensions of k, and that the extension
E′/E is separable (this uses the perfectness hypothesis). It follows that Ω1

E′/E = 0, hence

K1(D,Dn,E) = 0. This gives a Mayer-Vietoris exact sequence

(2.11) K2(D
n) ⊕K2(E)→K2(E

′)→ SK1(D)→ SK1(D
n)→ 0,

where E′ is reduced (note that SK1(E) = SK1(E′) = 0 since E and E′ are semilocal).
If D is not seminormal, the conducting subscheme E cannot be chosen to be reduced.

However, for m sufficiently large, we have that E ⊂ mEred and E′ ⊂ mE′red. It follows from
the above expression of K1(D,Dn,E) that there is some conducting closed subscheme E ⊂D,
having the same support as that of the maximal conducting subscheme such that one has an
exact Mayer-Vietoris sequence

(2.12) K2(D
n) ⊕K2(E)→K2(E

′)→ SK1(D)→ SK1(D
n)→ 0.

We are interested in estimating the term K2(E′). We claim that if (2) holds then K2(E′) =
K2(E′red). Since Dn is a normal curve, the coordinate ring A of E′ is a finite product A =

∏ri=1Ai of Artinian k-algebras Ai, each of which is isomorphic to a truncated polynomial ring
of the form Ai = ki[t]/(tni), where ki/k is a finite field extension and ni ≥ 1 is an integer (this
follows, for example, from Cohen’s structure theorem). In order to prove the claim, we can
clearly assume that r = 1. Let k′ be the residue field of A.

Let J be the kernel of the augmentation ideal A → k′ and write Ω1
(A,J) for the kernel of the

map Ω1
A/Z → Ω1

k′/Z. If k is a Q-algebra, a result of Bloch (see, e.g., [39, Thm. 4.1]) gives an

isomorphism

K2(A,J) ≅HC1(A,J) ≅ Ω
1
(A,J)/d(J).

By computing these groups for truncated polynomial rings, we conclude that if k ⊂ Q, then
K2(A,J) = 0. Since the map K2(A) → K2(A/J) = K2(k′) is anyway surjective, we conclude
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that K2(A) =K2(A/J) =K2(k′) in this case. This proves the claim. It follows from the claim
that (2.12) is of the form

(2.13) K2(D
n) ⊕K2(E) →K2(E

′
red)→ SK1(D)→ SK1(D

n)→ 0.

We now compare the sequences (2.11) and (2.13) with the corresponding ones for KH.
Since KH-theory satisfies cdh-descent (see [10], [26]), we always have an exact sequence (see
[58, Cor. IV. 12.6])

(2.14) KH2(D
n) ⊕KH2(Ered)→KH2(E

′
red)→ SKH1(D)→ SKH1(D

n)→ 0.

Putting things together, we get a commutative diagram (in both cases (1) and (2)) with exact
rows

(2.15) K2(Dn) ⊕K2(E) //

��

K2(E′red) //

��

SK1(D) //

��

SK1(Dn) //

��

0

KH2(Dn) ⊕KH2(Ered) // KH2(E′red)
// SKH1(D) // SKH1(Dn) // 0.

The left vertical arrow is surjective, since K2(Dn) =KH2(Dn) (because Dn is regular) and
K2(E) → K2(Ered) = KH2(Ered) is surjective because E is semi-local. The second vertical
arrow (from left) is an isomorphism, since E′red is regular. Similarly, the right vertical arrow
is an isomorphism. A diagram chase now finishes the proof. �

Lemma 2.5. The map SK1(D) → SKH1(D) is an isomorphism if k is infinite and D is a
normal crossing curve.

Proof. By (2.5), the lemma is equivalent to showing that the map

(2.16) H1
zar(D,K2,D)→H1

cdh(D,K2,D)

is an isomorphism. Let µ(D) denote the number of irreducible components of D. We shall
prove the above isomorphism of cohomology groups by induction on µ(D). If µ(D) = 1, then
D is regular in which case (2.16) is clear, since K1(D) =KH1(D). Otherwise, we let D1 be an
irreducible component of D and let D2 be the scheme theoretic closure of D ∖D1 in D. Then
D2 is a normal crossing curve such that µ(D2) < µ(D) and D3 ∶= D1 ∩D2 is a 0-dimensional
smooth k-scheme.

We now consider the commutative diagram of Zariski sheaves

(2.17) 0 // K2,(D,D2)
//

��

K2,D
//

��

K2,D2
//

��

0

0 // K2,(D1,D3)
// K2,D1

// K2,D3
// 0,

where the terms K2,(D,D2) and K2,(D1,D3) in the first and the second row are defined to be
the kernels of the right horizontal arrows. Since k is infinite, the Quillen K2-sheaf coincides
with the Milnor KM2 -sheaf on the big Zariski site of Schk (see [31, Prop. 2]). In particular,
sections of K2 are given by symbols, thus the two right horizontal arrows of (2.17) are indeed
surjective and thus both rows in (2.17) are exact.

By [31, Prop. 2] again, the terms K2,(D,D2) and K2,(D1,D3) coincide with the relative Milnor

K-sheaves of Kato-Saito [29, 1.3]. In particular, the map KM
2,(D,D2)

→ KM
2,(D1,D3)

is surjective

by [29, Lem. 1.3.1]. Furthermore, the kernel of this map is supported on D3. It follows that
the left vertical arrow in the above diagram is surjective whose kernel is supported on D3. In
particular, the induced map between the first Zariski cohomology groups is an isomorphism.
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Using a diagram chase of the cohomology groups induced by (2.17), we therefore get a
Mayer-Vietoris exact sequence for the Zariski cohomology in low degrees:

(2.18)
H0

zar(D1,K2,D1
)

⊕
H0

zar(D2,K2,D2
)
→H0

zar(D3,K2,D3
)→ H1

zar(D,K2,D)→
H1

zar(D1,K2,D1
)

⊕
H1

zar(D2,K2,D2
)
→ 0.

We next observe that the square

(2.19) D3
//

��

D1

��

D2
// D

defines a cdh cover {D1 ∐D2 →D} of D, so that we have an associated exact sequence of cdh
cohomology groups similar to (2.18). Comparing these two sequences, we get a commutative
diagram of exact sequences

(2.20)
H0

zar(D1,K2,D1
)

⊕
H0

zar(D2,K2,D2
)

//

��

H0
zar(D3,K2,D3

) //

��

H1
zar(D,K2,D) //

��

H1
zar(D1,K2,D1

)
⊕

H1
zar(D2,K2,D2

)

//

��

0

H0
cdh(D1,K2,D1

)
⊕

H0
cdh(D2,K2,D2

)

// H0
cdh(D3,K2,D3

) // H1
cdh(D,K2,D) //

H1
cdh(D1,K2,D1

)
⊕

H1
cdh(D2,K2,D2

)

// 0.

The left vertical arrow is surjective by Lemma 2.3. The second vertical arrow (from left)
is an isomorphism because D3 is smooth. The right vertical arrow is an isomorphism by
induction on µ(D). By a diagram chase, it follows that (2.16) is an isomorphism. This
concludes the proof of the lemma. �

2.5. Algebraic and homotopy K0-groups of the double. We continue with the set-up
described in § 2.4. In this subsection, we shall compare SK0(SX) with the analogous subgroup
of KH0(SX). Let π∶SnX → SX denote the normalization map.

Lemma 2.6. There exists an exact sequence

0→
SK1(SnX)

SK1(SX)
→ SK1(D)→ SK0(SX)

π∗

Ð→ SK0(S
n
X)→ 0.

Proof. This is a consequence of (the proof of) [2, Thm. 3.3] or [23, Prop. 2.7], noting that
we can choose Y (in the notation of op. cit.) to be D. The claimed exact sequence exists if
excision holds for the K0. The obstruction for this excision is controlled by ID/I2D⊗D′Ω

1
D′/D.

As D′ =D ∐D, this term vanishes. �

Remark 2.7. It is worth noting that the proof of Lemma 2.6 did not use our assumption that
D is reduced. Hence, the lemma remains valid for any effective Cartier divisor D.
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The analogue of Lemma 2.6 also holds for the KH-groups by the cdh-descent, as we show
now. We consider the abstract blow-up square

(2.21) D ∐D //

��

SnX

π

��

≅
// X+ ∐X−

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

D // SX

Applying the spectral sequence (2.2) and the cdh-excision [58, IV.12.6] to this abstract blow-
up square, we get a commutative diagram of exact sequences
(2.22)

KH1(SX) //

��

KH1(SnX) //

��

KH1(D) //

��

K̃H0(SX) //

��

K̃H0(SnX)

��

H0
cdh(SX ,O

×
SX
) // H0

cdh(S
n
X ,O

×
Sn

X

) // H0
cdh(D,O

×
D) // H1

cdh(SX ,O
×
SX
) // H1

cdh(S
n
X ,O

×
Sn

X

).

It follows from Lemma 2.1 that the first three vertical arrows from left in (2.22) are sur-
jective. The map H0

cdh(SX ,O
×
SX
)→H0

cdh(S
n
X ,O

×
Sn

X

) is clearly injective because SX is reduced

and SnX → SX is a cdh cover. Using a diagram chase and taking the kernels of the vertical
arrows, we get an exact sequence

(2.23) 0→
SKH1(SnX)

SKH1(SX)
→ SKH1(D)→ SKH0(SX)→ SKH0(S

n
X).

The main result of § 2 is the following.

Proposition 2.8. The map SK0(SX) → SKH0(SX) is an isomorphism under any of the
following conditions.

(1) k is perfect and D is seminormal.

(2) k ⊆ Q.
(3) k is infinite and D is a normal crossing curve.

Proof. A comparison of (2.23) with the exact sequence of Lemma 2.6 gives rise to a commu-
tative diagram of exact sequences

(2.24) 0 //
SK1(Sn

X
)

SK1(SX)
//

����

SK1(D) //

≅

��

SK0(SX)
π∗

//

��

SK0(SnX) //

≅

��

0

0 //
SKH1(S

n

X
)

SKH1(SX)
// SKH1(D) // SKH0(SX)

π∗
// SKH0(SnX) // 0.

Note that π∗ on the bottom is surjective because the same holds for the corresponding
arrow on the top and the right vertical arrow is an isomorphism by the regularity of the
scheme SnX . The latter also implies that the left vertical arrow is surjective. The vertical
arrow involving D is an isomorphism by Lemmas 2.4 and 2.5. The desired assertion now
follows by a diagram chase. �

3. Proof of the main result

In this section, we shall prove our main result Theorem 1.1. We shall also give proofs of
some of its applications. We begin by recalling the definitions of the Chow group of 0-cycles
with modulus and Suslin homology. To prove Theorem 1.1, we shall use two other 0-cycle
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groups, namely, the Levine-Weibel Chow group and its modified version called the lci Chow
group of the double. We shall recall these too. We fix a field k.

3.1. Review of Chow group with modulus and Suslin homology. Let X be an integral
quasi-projective k-scheme of dimension d ≥ 1 and let D ⊂ X be an effective Cartier divisor.
Let j∶U ↪X be the inclusion of the complement of D in X. Assume that U is regular. Recall
from [32, § 1] that the Chow group of 0-cycles on X with modulus D is the quotient of Z0(U)
by the subgroupR0(X ∣D) generated by ν∗(div(f)), where ν ∶C →X is a finite (and birational
to its image) morphism from an integral normal curve C whose image is not contained in D
and f ∈ Ker(O×

C,ν−1(D)↠ O
×
ν∗(D)). This group is denoted by CH0(X ∣D).

Recall that the Suslin-Voevodsky singular homology HS
n (U) of U (also called Suslin ho-

mology in the literature) is defined as the n-th homology of a certain explicit complex of
algebraic cycles, introduced by Suslin and Voevodsky [54]. We do not need to recall this
complex. Instead, we shall use the following equivalent definition of HS

0 (U) in this paper.
This equivalence was shown by Schmidt [50, Thm. 5.1].

Lemma 3.1. Assume that X is projective. Then HS
0 (U) is canonically isomorphic to the

quotient of Z0(U) by the subgroup RS0 (U) generated by ν∗(div(f)), where ν ∶C →X is a finite
(and birational to its image) morphism from an integral normal curve C whose image is not
contained in D and f ∈ Ker(O×

C,ν−1(D)↠ O
×
ν∗(D)red

).

It is clear that there is a canonical surjection

(3.1) φX ∣D ∶CH0(X ∣D)↠ HS
0 (U).

From the definition one gets immediately that φX ∣D is an isomorphism if X is of dimension 1
and D is reduced. It was shown in [7, Thm. 4.4] that φX ∣D may have a non-trivial kernel, even
if D is reduced and k is algebraically closed as soon as dim(X) ≥ 2, so that the relationship
between the two objects is quite subtle. This relationship is the main object of study in this
paper.

3.2. Review of Levine-Weibel and lci Chow groups. Let X be an equidimensional
reduced quasi-projective k-scheme of dimension d ≥ 1. Let Xsing denote the singular locus of
X with reduced closed subscheme structure and let Xreg denote the complement of Xsing in
X. Let C ⊂X be a curve (i.e., an equidimensional one-dimensional k-scheme). Recall (see [40,
§ 1]) that C is called a Cartier curve on X if no component of C lies in Xsing, no embedded

point of C lies away from Xsing, OC,η is a field if {η} is a component of C disjoint from Xsing

and, C is defined by a regular sequence at every point of C ∩Xsing. We let k(C,C ∩Xsing)× be

the image of the natural map O×C,S →
s
⊕
i=1
O×C,ηi , where {η1, . . . , ηs} is the set of generic points

of C and S is the union of the closed subset C ∩Xsing and the set of generic points ηi of C

such that {ηi} is disjoint from Xsing.

For f ∈ k(C,C∩Xsing)×, we let div(f) =
s

∑
i=1

div(fi), where fi is the projection of f ontoO×C,ηi ,

and div(fi) is the divisor of the restriction of fi to the maximal Cohen-Macaulay subscheme
Ci of C supporting ηi. If C is reduced, then k(C,C ∩Xsing)× = O×C,S and for f ∈O×C,S , div(f)
is the sum of div(fi), where the sum runs through the divisors (in the classical sense, see [15,
Chap. 1]) of the restrictions of f to the components of C. The Levine-Weibel Chow group
CHLW0 (X) is the quotient of Z0(Xreg) by the subgroup RLW0 (X) generated by div(f), where
f ∈ k(C,C ∩X)sing)× for a Cartier curve C on X.

One says that C a good curve (relative to Xsing) if it is reduced and there is a finite
local complete intersection (lci) morphism ν ∶C →X such that ν−1(Xsing) is nowhere dense in



SUSLIN HOMOLOGY VIA CYCLES WITH MODULUS AND APPLICATIONS 15

C. The lci Chow group of 0-cycles CHl.c.i.
0 (X) is the quotient of Z0(Xreg) by the subgroup

Rl.c.i.
0 (X) generated by ν∗(div(f)), where ν ∶C →X is a good curve and f ∈ k(C,ν−1(Xsing))×.

We let CHF0 (X) denote the classical homological Chow group of 0-cycles on X as defined in

[15, Chap. 1]. Clearly, there are canonical maps CHLW0 (X)↠ CHl.c.i.
0 (X)→ CHF0 (X).

3.3. The fundamental exact sequence. Assume that X is a regular quasi-projective
scheme and D ⊂ X is an effective Cartier divisor with complement U . To prove Theorem
1.1, we shall use the following fundamental exact sequence (see [5, Thm. 1.9] when k is per-
fect, [8, Thm. 2.11] if dim(X) = 2 and [25, Thm. 1.1] in the general case).

Theorem 3.2. There is a split short exact sequence

0→ CH0(X ∣D)
p∗
Ð→ CHl.c.i.

0 (SX)
ι∗

Ð→ CHF0 (X) → 0.

In this sequence, p∗ takes a 0-cycle on U identically onto U+ and ι∗ takes a 0-cycle on
U+ ∐U− onto U− via projection.

In order to prove our main result, we shall modify slightly the set of relations used to
define the Kerz-Saito Chow group of zero-cycles with modulus in the spirit of the Levine-
Weibel Chow group. We proceed as follows. We let CHLW0 (X ∣D) be the quotient of Z0(U)
by the subgroup RLW0 (X ∣D) generated by div(f), where

(1) C ⊂X is an integral curve with the property that C /⊂D;
(2) C is regular at every point of E ∶= C ∩D;
(3) f ∈ Ker(O×C,E ↠ O

×
E).

Clearly, the difference between CHLW0 (X ∣D) and CH0(X ∣D) is in the requirement that the
the curves giving the rational equivalence (that we see here as embedded in X) are regular in
a neighborhood of every point of intersection with the divisor D. By taking normalizations,
each such curve gives rise to a curve allowed in the definition of R0(X ∣D), hence there is a
canonical surjection

CHLW0 (X ∣D)↠ CH0(X ∣D).

Note also that the inclusion Z0(U+)↪ Z0((SX)reg) = Z0(U+)⊕Z0(U−) induces a push-forward
map p∗∶CHLW0 (X ∣D)→ CHLW0 (SX) (see the proof of [5, Prop. 5.9]).

3.4. The factorization lemma. We now fix an integral and smooth projective k-scheme
X of dimension d ≥ 1. Let D ⊂ X be a reduced effective Cartier divisor. Let U denote the
complement of D. The key step in the proof of Theorem 1.1 is the following factorization
lemma.

Lemma 3.3. Assume that k is infinite and one of the conditions (1), (2) and (4) of Theorem

1.1 holds. Then the (injective) map CH0(X ∣D)
p∗
Ð→ CHl.c.i.

0 (SX) has a factorization

CH0(X ∣D)
φX ∣D
ÐÐÐ→HS

0 (U)
p̃∗
Ð→ CHl.c.i.

0 (SX).

Proof. We let C be an integral normal curve and let ν ∶C → X be a finite morphism whose
image is not contained in D such that ν is birational to its image. We let E = ν∗(D) and let
f ∈ Ker(O×C,E ↠ O

×
Ered
). We need to show that p∗(ν∗(div(f))) = 0. We do it in few steps.

We write V = C ∖E.
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Step 1. We can factorize ν as

(3.2) C
ν′
//

ν
��
✺✺

✺✺
✺✺

✺ PnX

π

��

X

for some n ≥ 0 such that ν′ is a regular closed immersion and π is the canonical projection.
We let X ′ = PnX . Then note that SX′ ≅ P

n
SX

by [5, Prop. 2.3(7)]. We let D′ = π∗(D) = PnD and

U ′ =X ′∖D′ = PnU . Note that D
′ is a reduced divisor on X ′. Furthermore, if D satisfies any of

the conditions given in the statement of Theorem 1.1, then so does D′. This is a consequence
of the smoothness of π. Let π′∶SX′ → SX be the projection map.

Suppose that the image of div(f) under the composite map

(3.3) Z0(V )
ν′∗
Ð→ Z0(U

′)↠ CHLW0 (X ′∣D′)
p∗
Ð→ CHLW0 (SX′)

is zero. By composing further with the canonical surjection CHLW0 (SX′) ↠ CHl.c.i.
0 (SX′),

we see that div(f) dies in CHl.c.i.
0 (SX′) under p∗. Let π′∗∶CH

l.c.i.
0 (SX′) → CHl.c.i.

0 (SX) be the
push-forward map, which exists by [5, Prop. 3.18]. It is then clear that

p∗ ○ ν∗(div(f)) = π
′
∗ ○ p∗ ○ ν

′
∗(div(f)) = 0.

We thus need to show that if ν ∶C ↪X is a regular closed immersion, then the image of div(f)

under the composite map Z0(V )↪ Z0(U)↠ CHLW0 (X ∣D)
p∗
Ð→ CHLW0 (SX) is zero.

Step 2. If X is a curve, then CHLW0 (X ∣D) = HS
0 (U) and there is nothing to prove. We

now assume that X is a surface. Let cycSX
∶CHLW

0 (SX) → K0(SX) denote the cycle class
map which takes the class [x] of a closed point x ∈ (SX)reg to the class [Ox] ∈K0(SX) (see [5,
Lem. 3.13]). It is shown in [8, Thm. 7.7] (based on the original result due to Levine) that cycSX

is injective and its image is SK0(SX). It suffices therefore to show that cycSX
○p∗(div(f)) = 0

in K0(SX). By Proposition 2.8 (which can be applied if one of the conditions (1), (2) or (4)
of Theorem 1.1 hold), it suffices to show that cycSX

○ p∗(ν∗div(f)) dies in KH0(SX).
We let SC and SsnC be the doubles of C along E and Ered, respectively. It is then easy to

see that the canonical map ψ∶SsnC → SC is the seminormalization morphism (for example, one
can use [35, Prop. 4.2(1)] noting that the conductor subscheme of SnC = C∐C → SsnX is reduced
and that SsnC is Cohen-Macaulay, hence S2). We let h ∈ O×Ssn

C
,E be the rational function on

SsnC such that h∣C+ = f and h∣C− = 1. Note that the condition f ∈ Ker(O×C,E ↠ O
×
Ered
) and the

exact sequence (e.g., see the proof of [5, Lem. 2.2])

0→ O×Ssn

C
,E → O

×
C,E ×O

×
C,E → O

×
Ered
→ 0

imply that h is well defined. Note that h is also a rational function on SC but may not lie in
O×SC ,E

.

To simplify the notation, let us write p∗ also for the (injective) maps

p∗∶CH0(C ∣E)→ CHl.c.i.
0 (SC), p∗∶CH0(C ∣Ered)→ CHl.c.i

0 (S
sn
C )

given by the fundamental sequence applied to the pairs (C,E) and (C,Ered) respectively.

It follows from the above discussion that p∗(divC(f)) = divSsn

C
(h) = 0 in CHl.c.i

0 (S
sn
C ) ≅

CHLW0 (SsnC ) (the latter isomorphism holds for any 1-dimensional reduced scheme [5, Lem. 3.12]).
By the same token, we get that cycSsn

C

(p∗(divC(f))) = 0 in K0(SsnC ), and a fortiori that

p∗(div(f)) dies inKH0(SsnC ). On the other hand, it easy to see using the excision sequence for

KH-theory [58, IV.12.6] that the canonical map KH0(SC)
ψ∗

Ð→KH0(SsnC ) is an isomorphism.
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We conclude that the image of div(f) under the composite map Z0(C ∖E)↠ CH0(C ∣E) →
K0(SC)→KH0(SC) is zero.

Since ν′∶SC ↪ SX is a regular closed immersion (see § 2.1), there is a push-forward map
ν′∗∶KH(SC)→KH(SX) (see § 2.2). We now consider the commutative diagram

Z0(C ∖E) // //

��

CH0(C ∣E)
cycSC

○p∗
//

ν∗

��

KH0(SC)

ν′∗
��

Z0(U) // // CH0(X ∣D)
cycSX

○p∗
// KH0(SX).

Using this, we get

cycSX
○ p∗ ○ ν∗(div(f)) = ν

′
∗ ○ cycSC

○ p∗(div(f)) = 0.

This concludes the proof of the lemma when X is a surface (in particular, this covers the case
where (2) holds).

Step 3. We now assume d ≥ 3 and fix a closed embeddingX ↪ Pnk . Let {D1, . . . ,Dr} be the
set of all irreducible components of D. Let {E1, . . . ,Es} be the set of irreducible components
of Dsing. We let ∆(X) ⊂ X be the set defined in such a way that x ∈ ∆(X) if and only if
x is a generic point of one of the schemes X,D and Dsing. We assume that we are in the
case (1), namely, D is a normal crossing k-scheme. In particular, each Di is smooth over k
of dimension d − 1 and each Ej is smooth over k of dimension d − 2 ≥ 1. Since C is regular
and not contained in any of the Di’s, it follows that the scheme theoretic intersection C ∩Di

is a finite closed subscheme of C. Since the dimension of the closure of each of the points of
∆(X) is at least one, it follows that ∆(X) ∩C = ∅.

Given the above arrangement of X,Di,Ej and C in Pnk , we can apply either the Bertini
theorem of Altman-Kleiman [1, Thm. 7] or of Ghosh-Krishna [18, Thm. 3.9]) to find a complete
intersection hypersurface H =H1 ∩⋯∩Hd−2 in Pnk of large enough degrees containing C such
that Y =X ∩H satisfies the following.

(1) Y is a smooth k-scheme of pure dimension two.
(2) Each Y ∩Di is a smooth k-scheme of dimension one.
(3) Each Y ∩Ej is a smooth k-scheme of dimension zero.
(4) Y ∩DJ = Y ∩ (⋂

i∈J
Di) = ∅ if ∣J ∣ ≥ 3.

Since dim(Di) ≥ 2, it follows (for instance, from [27, Cor. 6.2]) that Y and well as each
Y ∩Di is connected, hence integral. Furthermore, Y ∩D is a curve which is reduced away
from C by [18, Thm. 3.2]. Since C ∩D is finite, Y is regular and Y ∩D is a Cartier divisor on
Y , it follows that Y ∩D is a Cohen-Macaulay curve which is generically reduced. This implies
that Y ∩D must be reduced (see [21, Prop. 14.124]). We let F = Y ∩D. Then we conclude
from (1), (2) and (3) above that Y is a complete intersection smooth integral surface inside
X which contains C and F = Y ∩D is a normal crossing curve on Y .

If condition (4) holds, i.e., if k ⊂ Q, then we can repeat the above argument to find a
complete intersection smooth integral surface Y ⊂ X which contains C and F = Y ∩D is a
reduced Cartier divisor on Y . The only difference is that we can not no longer guarantee that
the irreducible components of F are regular.

In any case, let (Y,F ) be the pair constructed above, and let τ ∶Y ↪ X be the inclusion
map. Let W = Y ∖ F = U ∩ Y . Let τ ′∶SY ↪ SX denote the inclusion map, where SY is the
double of Y along F . Then τ ′ is a regular closed embedding by [5, Prop. 2.4] (see § 2.1). It
follows from Step 2 that the image of div(f) under the composite map Z0(V ) ↪ Z0(W )↠
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CHLW0 (Y ∣F )
p∗
Ð→ CHLW0 (SY ) is zero. We now consider the commutative diagram

(3.4) Z0(W ) // //

��

CHLW0 (Y ∣F )
p∗

//

τ∗

��

CHLW0 (SY )

τ ′∗
��

Z0(U) // // CHLW0 (X ∣D)
p∗

// CHLW0 (SX).

We note that τ ′∗ exists because τ
′ is a regular closed immersion and SY ∩(SX)reg = (SY )reg.

One easily checks that the push-forward map τ∗ also exists and the diagram commutes. We
thus get

p∗(div(f)) = p∗ ○ τ∗(div(f)) = τ
′
∗ ○ p∗(div(f)) = 0.

This concludes the proof of the lemma. �

To take care of the case when k is a finite field, we shall need the following result. For
any X ∈ Schk and k′/k a field extension, we let Xk′ = X ×Spec (k) Spec (k

′) with projection
v∶Xk′ →X.

Lemma 3.4 ([50], p.191). Let X be a smooth quasi-projective k-scheme and let k′/k be an
algebraic field extension. Then the flat pull-back on 0-cycles induces a homomorphism

v∗∶HS
0 (X) →HS

0 (Xk′).

If k′/k is finite, then the push-forward on 0-cycles induces a homomorphism

v∗∶H
S
0 (Xk′)→HS

0 (X)

such that v∗ ○ v
∗ is multiplication by [k′ ∶ k].

We remark that the pull-back map v∗ is defined in [50] for finite field extensions. But this
implies the case of arbitrary algebraic extensions by an easy limit argument.

3.5. Proof of Theorem 1.1. We let X,D and U be as in Theorem 1.1. We first assume
that k is infinite and one of the conditions (1), (2) and (4) of Theorem 1.1 holds. In this case,

the map p∗∶CH0(X ∣D) → CHl.c.i.
0 (SX) is injective by Theorem 3.2. Combining this injectivity

with Lemma 3.3, one immediately concludes that φX ∣D must be an isomorphism.
We now assume that k is finite and one of the conditions (1), (2) and (4) of Theorem 1.1

holds. We only have to show that φX ∣D is injective. Let α ∈ CH0(X ∣D) be a class such that
φX ∣D(α) = 0. Let ℓ1 ≠ ℓ2 be two primes different from char(k). Let ki/k be the pro-ℓi field
extension of k for i = 1,2.

Using [23, Prop. 8.5], we have a commutative diagram

CH0(X ∣D) //

��

HS
0 (U)

��

CH0(Xki ∣Dki) // HS
0 (Uki),

where the vertical arrows are the base change maps. The right vertical arrow exists by Lemma
3.4. Using the case of infinite fields, it follows that α dies in CH0(Xki ∣Dki). In particular, it
dies in CH0(Xk′

i
∣Dk′

i
) for a finite extension k′i whose degree is a power of ℓi for each i = 1,2.

Using the projection formula for Chow groups with modulus (see [23, Prop. 8.5]), we conclude
that ℓn1

1 α = ℓ
n2

2 α = 0 in CH0(X ∣D) for some n1, n2 ≥ 1. It follows that α = 0. This concludes
the proof of Theorem 1.1 under the conditions (1), (2) and (4). The remaining case (3) is
already shown in [7, Thm. 1.1]. This concludes the proof of Theorem 1.1. �
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3.6. Proofs of some applications. In this subsection, we shall give the proofs of the some
of the applications of Theorem 1.1 mentioned in § 1. Corollary 1.2 and Theorem 1.3 are
immediate from Theorem 1.1 using the references given before their statements. We shall
therefore prove Theorem 1.4.

Proof of Theorem 1.4: Since the theorem is already known for torsion away from the
characteristic by [53], we shall assume that k is algebraically closed of positive characteristic.
We consider the diagram

(3.5) CH0(X ∣D)0
φX ∣D

//

albX ∣D

��

HS
0 (U)0

albU

��

Jd(X ∣D)(k)
λX ∣D

// Alb(U)(k),

where Jd(X ∣D) is the semi-abelian Albanese variety with modulus, constructed in [5, § 11.1].
This diagram is commutative and the bottom horizontal arrow is an isomorphism by [7,
Thm. 3.2]. The left vertical arrow is an isomorphism on the torsion subgroups by [35,
Thm. 6.7]. The top horizontal arrow is an isomorphism by Theorem 1.1. The desired as-
sertion follows. �

4. Motivic cohomology of normal crossing schemes

The goal of this section is to prove Theorem 1.6. We shall need few ingredients in order to
achieve this. The first is a perfection property of the cycle groups which we recall below.

4.1. Perfection property of cycle groups. We let k be a field of exponential characteristic
p. We let Λ be a commutative ring which we assume to be Z if char(k) = 0 or any Z[1

p
]-algebra

if char(k) = p > 0. We begin with a short recap about motivic cohomology of k-schemes, and
related motivic invariants. Recall our notation that for a field extension k′/k and X ∈ Schk,
we write Xk′ for the base change of X by k′ over k and v∶Xk′ → X denotes the projection
map.

4.2. Motivic homology and cohomology of singular schemes. Let X ∈ Schk with the
structure map f ∶X → Spec (k) and let m,n ∈ Z.

Definition 4.1. The motivic cohomology groups of X are defined as

Hm(X,Λ(n)) = HomDM(k,Λ)(M(X),Λ(n)[m]),

where DM(k,Λ) is Voevodsky’s non-effective category of motives for the cdh-topology (also
known as the ‘big’ category of motives) with Λ-coefficients, Λ(n) is the motivic complex, and
M(X) is the motive of X (see [55] or [11, § 1]).

Let SH(X) be the monoidal stable homotopy category of smooth schemes over X and
SHcdh(k) the stable homotopy category of Schk with respect to the cdh topology (e.g., see
[37, § 2]). There is an adjoint pair of functors (ψX , φX)∶ SH(X) → DM(k,Λ). By [11,
Thm. 5.1] and [37, Thm. 2.14], these functors give rise to functorial isomorphisms

(4.1)
Hp(X,Λ(q))

≅
Ð→ HomSH(X)(SX ,Σ

p,q(HΛX))
≅
Ð→ HomSHcdh(k)(Σ

∞
T X+,Σ

p,qHΛ),

where SX is the sphere spectrum (the unit object) of SH(X), HΛ is the motivic Eilenberg-
MacLane spectrum in SH(k), and HΛX = Lf

∗(HΛ) for the structure map f ∶X → Spec (k).
We refer to, e.g., [37, § 2,3] for the definitions of the suspension operators Σ∞T and Σp,q.
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In a similar fashion, one can define motivic cohomology groups with compact support and
motivic homology as follows.

Hm
c (X,Λ(n)) = HomDM(k,Λ)(Mc(X),Λ(n)[m])

Hm(X,Λ(n)) = HomDM(k,Λ)(Λ(n)[m],M(X)),

where Mc(X) is the motive of X with compact support [43, Defn. 16.13]. In particular, there
is a canonical isomorphism [43, Prop. 14.18]:

Hn(X,Λ(0))
≃
Ð→ HS

n (X)Λ,

where the right-hand side is the n-th Suslin homology group of X recalled in 3.1.
We recall the following result of Cisinski-Déglise [11, Prop. 8.1].

Theorem 4.2. Let k′/k be a purely inseparable field extension and let v∶Spec (k′)→ Spec(k)
be the projection map. Then the pull-back functor

u∗∶DM(k,Λ) →DM(k′,Λ)

is an equivalence of triangulated categories.

Using Theorem 4.2 and the description of various groups above, we get the following result
which we shall use in our proofs.

Corollary 4.3. Let k′/k be a purely inseparable field extension and let u∶Spec (k′)→ Spec(k)
be the projection map. Then for any X ∈ Schk, the pull-back maps

v∗∶Hm(X,Λ(n)) Ð→Hm(Xk′ ,Λ(n))

v∗∶Hm
c (X,Λ(n)) Ð→Hm

c (Xk′ ,Λ(n))

are isomorphisms.

Assume now that X is smooth of pure dimension d over k. Duality in motivic homotopy
theory makes it possible to identify motivic cohomology and homology groups (as well as
their compactly supported version) with the appropriate twist and shift. We shall need an
explicit description, in the bi-degree (2d, d), of the map realizing such duality isomorphism
for later applications. We quickly recall its construction. For every closed point x ∈ X, the

inclusion Spec (k(x)) ↪X gives a Gysin mapMc(X) →M{x}(X)
≅
Ð→M(k(x))(d)[2d]. Taking

cohomology, we get

(4.2) Z
≃
Ð→H0(k(x),Z(0)) →H2d

c (X,Z(d)),

and extending (4.2) by linearity, we get φX ∶ Z0(X) →H2d
c (X,Z(d)).

Lemma 4.4. The map φX descends to an isomorphism

φX ∶H
S
0 (X)Λ

≅
Ð→H2d

c (X,Λ(d)).

Proof. Let k′ be a perfect closure of k and consider the commutative diagram

(4.3) HS
0 (X)Λ

φX
//

v∗

��

H2d
c (X,Λ(d))

v∗

��

HS
0 (Xk′)Λ

φX
k′
// H2d

c (Xk′ ,Λ(d)).

The left vertical arrow is an isomorphism by Lemma 3.4 using a limit argument and the
right vertical arrow is an isomorphism by Corollary 4.3. The bottom horizontal arrow is an
isomorphism (e.g., by [30, Thm. 5.5.14]). The lemma now follows. �
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4.3. The snc subcurves. We fix a normal crossing k-scheme X of dimension d ≥ 1 and let
{X1, . . . ,Xn} be the set of irreducible components of X. A snc subcurve C ⊂ X (see [13,
§ 2.1]) is a reduced closed subscheme of pure dimension one such that the scheme theoretic
intersection of C with each irreducible component Xi of X is either empty or smooth of pure
dimension one, its intersections with Xi ∩Xj (for all i ≠ j) are either empty or smooth and
0-dimensional, and its intersections with Xi ∩Xj ∩Xl (for all i ≠ j ≠ l ≠ i) are empty.

Remark 4.5. We note that the above definition of snc subcurves is more restrictive than the
one given in [13, § 2.1] because the latter only requires the intersections C ∩Xi∩Xj (for i ≠ j)
to be reduced (not necessarily smooth) and 0-dimensional. The stronger assumption allows
us to prove the following result. But this distinction disappears if k is perfect.

Lemma 4.6. Let X ∈ Schk be a normal crossing scheme and let C ⊂X be a snc subcurve. Let
k′/k be a finite purely inseparable field extension. Then Xk′ is a normal crossing k′-scheme
and Ck′ ⊂Xk′ is a snc subcurve.

Proof. Let v∶Xk′ → X be the base change morphism. Then v is a universal homeomorphism.
In particular, there is a bijective correspondence between the irreducible components of X
and Xk′. We let X ′i = (Xi)k′ for 1 ≤ i ≤ n. Since Xi ∈ Smk, it follows each X ′i is integral and
smooth over k′. In turn, this implies that Xk′ is generically reduced (i.e., Xk′ satisfies Serre’s
R0-condition). Since v is finite and flat, and X satisfies Serre’s S1-condition (because it is
reduced), it follows that Xk′ also satisfies Serre’s S1-condition. It follows that Xk′ is reduced.
By the same token, for every nonempty subset J ⊂ [1, n], the scheme theoretic intersection
X ′J ∶= ⋂

i∈J
X ′i is a smooth k′-scheme (unless empty) of pure dimension d + 1 − ∣J ∣. In other

words, Xk′ is a normal crossing k′-scheme. An identical proof shows that Ck′ ⊂ Xk′ is a snc
subcurve. �

4.4. The cycle group CHEKW0 (X). Let X ∈ Schk be a normal crossing scheme as above.

The cycle group CHEKW0 (X) is the quotient of Z0(Xreg) by the subgroup REKW0 (X) gener-
ated by div(f), where f ∈ k(C)× is a rational function on a curve C ⊂ X such that the pair
(C,f) satisfies either of the conditions (1) and (2) below.

(1) C is an integral curve not contained in Xsing with normalization ν ∶ Cn → C ↪X and
f ∈ O×

Cn,ν∗(Xsing)
such that f(x) = 1 for all x ∈ ν∗(Xsing).

(2) C ⊂X is a snc subcurve and f ∈ O×
C,(C∩Xsing)

.

Let Y = Xsing for the normal crossing scheme X. The inclusion Spec (k(x)) ↪ Yreg gives

a Gysin homomorphism k(x)×
≅
Ð→ H1(k(x),Z(1)) → H2d−1(Y,Z(d)) for every closed point

x ∈ Yreg. Note that Yreg ∈ Smk since X is a normal crossing k-scheme. Hence, we get the

global Gysin map ⊕
x∈Y

(d−1)
reg

k(x)× → H2d−1(Y,Z(d)), where Y (d−1)reg is the set of closed points of

Yreg.

Lemma 4.7. The map

αY ∶ ⊕
x∈Y

(d−1)
reg

k(x)× ⊗Z Λ →H2d−1(Y,Λ(d))

is surjective.

Proof. This is [13, Prop. 6.4] if k is perfect. The general case follows from the perfect one
using Corollary 4.3 in order to identify H2d−1(Y,Λ(d)) with H2d−1(Yk′ ,Λ(d)), where k′ is a
perfect closure of k. �
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Let us now assume that X is a projective normal crossing k-scheme. The next step for
proving Theorem 1.6 is the description of the motivic cohomology groups H2d(X,Λ(d)) for
normal crossing varieties discussed in [13]. We have seen in (4.2) that there is a canoni-
cal map φXreg ∶ Z0(Xreg) → H2d

c (Xreg,Z(d)). Composing with the map H2d
c (Xreg,Z(d)) →

H2d(X,Z(d)), we get λ̃X ∶ Z0(Xreg)→H2d(X,Z(d)).

Proposition 4.8. The map λ̃X induces an isomorphism

λ̃X ∶CH
EKW
0 (X)Λ

≅
Ð→H2d(X,Λ(d)).

Proof. This is [13, Thm. 7.1] when k is perfect. The same proof works in the general case,
using Lemma 4.7 instead of [13, Prop. 6.4] and passing to a perfect closure of k. The latter is
achieved using Corollary 4.3 and Lemma 4.6. The vanishing H2d(Y,Λ(d)) = 0 for Y = Xsing,
that is also used in the proof of [13, Thm. 7.1], can be deduced from [37, Thm. 5.1] using
again Corollary 4.3. �

4.5. Proof of Theorem 1.6(1). Let k be any field and let X ∈ Schk be as in part (1) of
Theorem 1.6. In other words, X is a reduced quasi-projective k-scheme of pure dimension d.
To construct the map λX ∶CH

l.c.i.
0 (X)→ H2d(X,Z(d)), we proceed as follows.

Using (4.1) and [45, Defn. 2.30, Thm. 2.31], we have a Gysin map τx∶Z ≅H
0(k(x),Z(0)) →

H2d(X,Z(d)) for any closed point x ∈Xreg. Extending this linearly, we get a homomorphism

λX ∶ Z0(Xreg)→H2d(X,Z(d)).
When d = 1, it is shown in the proof of [37, Lem. 7.12] that λX factors through the

Chow group (this uses the slice spectral sequence for singular schemes). For d ≥ 2, we let
ν ∶C → X be a good curve and let f ∈ O×C,S , where S = ν

−1(Xsing) ∪Csing. By [5, Lem. 3.4],
we can assume that ν is a lci morphism. In particular, there is a Gysin homomorphism
ν∗∶H

2(C,Z(1)) →H2d(X,Z(d)) by [45, Defn. 2.31, Thm. 2.31]. We now consider the diagram

(4.4) Z0(C ∖ S)
λC

//

ν∗

��

H2(C,Z(1))

ν∗

��

Z0(Xreg)
λX

// H2d(X,Z(d)).

It is immediate from the construction of λX and Gysin maps that this diagram is commu-
tative. By the curve case, we have that λC(div(f)) = 0. It follows that

λX(div(f)) = λX ○ ν∗(div(f)) = ν∗ ○ λC(div(f)) = 0.

This shows that λX factors through a homomorphism λX ∶CH
l.c.i.
0 (X)→ H2d(X,Z(d)).

By construction, for a regular closed immersion f ∶X ′ ↪X of equidimensional schemes such
that dim(X ′) = d′ and f−1(Xsing) ⊂X ′sing, there is a commutative diagram

(4.5) CHl.c.i.
0 (X ′)

λX′
//

f∗
��

H2d′(X ′,Z(d′))

f∗
��

CHl.c.i.
0 (X)

λX
// H2d(X,Z(d)),

in which the left and the right vertical arrows are the Gysin homomorphisms of [5, Prop. 3.18]
and [45, Defn. 2.30, Thm. 2.31], respectively.
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4.6. A key lemma. We shall need the following key result about the lci Chow group of
normal crossing schemes. Let X be a normal crossing k-scheme of dimension d as above and
let Y be an irreducible component of X. We let Z ⊂ X be the scheme theoretic closure of
X ∖Y and let E = Y ∩Z. Then Xsing and E are normal crossing k-schemes of dimension d−1
and E is a simple normal crossing divisor on Y . We let V = Y ∖E so that there is an inclusion
of the 0-cycle groups ι∗∶ Z0(V )↪ Z0(Xreg), where ι∶Y ↪X is the inclusion.

Lemma 4.9. Assume that k is infinite. Then the map ι∗ descends to a homomorphism

ι∗∶CH0(Y ∣E) → CHl.c.i.
0 (X).

Proof. This is shown in [7, Thm. 8.3] when either k is algebraically closed or d ≤ 2. We shall
closely follow that proof. We can assume that d ≥ 3 and that the lemma holds in smaller
dimensions. We fix a locally closed embedding X ↪ PNk . Let C ⊂ Y be an integral curve not
contained in E and let f ∈ Ker(O×

Cn,ν∗(E) → O
×
ν∗(E)), where ν ∶ C

n → Y ↪ X is the canonical

map from the normalization of C. We need to show that div(f) dies in CHl.c.i.
0 (X).

We can write ν as the composition of two maps Cn
ν′

Ð→ PmX
π
Ð→ X for some integer m ≥ 0,

where ν′ is a regular closed immersion and π is the projection. Note that ν′ factors through
PmY . We now note that PmX is a normal crossing k-scheme of dimension d ≥ 3 and PmY is an

irreducible component of PmX . Using the push-forward map π∗∶CH
l.c.i.
0 (PmX)→ CHl.c.i.

0 (X) (see
[5, Prop. 3.18]) and the canonical map CHLW0 (PmX) → CHl.c.i.

0 (PmX), it suffices to show that

ν∗(div(f)) dies in CHLW0 (PmX). We can therefore replace CHl.c.i.
0 (X) with CHLW0 (X) and

assume that C is normal. Note that the map CHLW0 (X) → CHl.c.i.
0 (X) is an isomorphism

for d ≤ 2 by [8, Thm. 8.1] (see also [5]). Hence, the base case of the induction holds for the
modified problem too.

We can now repeat the argument of the proof of [7, Thm. 8.3] (without using any blow-up)
to find a hypersurface section X ′ ⊂ X inside PNk containing C such that X ′ is a (d − 1)-
dimensional normal crossing k-scheme, X ′reg =Xreg ∩H and Y ′ =X ′ ∩ Y =H ∩ Y is a smooth

irreducible component of X ′. It follows by induction that ν∗(div(f)) dies in CHLW0 (X ′). In
particular, it dies in CHLW0 (X) via the push-forward map CHLW0 (X ′)→ CHLW0 (X), induced
by the regular closed immersion X ′ ↪X. This concludes the proof. �

4.7. Proof of Theorem 1.6(2,3). If X is projective and Xreg is smooth over k, then

the surjectivity of λX (as asserted in part (2)) follows from the surjection H2d
c (U,Λ(d)) ↠

H2d(X,Λ(d)) and Lemma 4.4. We now prove the last part of the theorem. We are given that
X is a projective normal crossing k-scheme and need to show that λX is an isomorphism. To
prove this, we first assume that k is infinite and look at the diagram

(4.6) Z0(U) // //

$$ $$❏
❏❏

❏❏
❏❏

❏❏
CHEKW0 (X)Λ

ψX

��

λ̃X

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

CHl.c.i.
0 (X)Λ

λX
// H2d(X,Λ(d)).

It suffices to show that ψX exists such that the resulting left triangle commutes. This is shown
in the proof of [7, Thm. 8.4]. But we do not need Λ-coefficient for constructing ψX , thanks
to Theorem 1.1. We sketch the steps. We let Y =Xsing.

We let C ⊂X be a reduced curve and f ∈ k(C)× a rational function, where k(C) is the ring
of total quotients for C. We now observe that if the pair (C,f) is of type (1) in the definition of

CHEKW0 (X) in § 4.4, then C must be integral. In particular, it must be contained in one and
only one irreducible component X ′ of X. Moreover, for this component X ′, the intersection
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E = Z ∩ Y must be a simple normal crossing divisor on X ′, where Z is the scheme theoretic
closure of X∖X ′. We now conclude from Theorem 1.1 that div(f) dies in CH0(X ′∣E). Hence,
it dies in CHl.c.i.

0 (X) by Lemma 4.9. If (C,f) is of type (2) in the definition of CHEKW0 (X)
in § 4.4, then C ⊂ X is a Cartier curve (see § 3.2) by [7, Lem. 7.6] and hence, div(f) already
dies in CHLW0 (X). This concludes the proof of part (3) when k is infinite.

We now assume that k is finite. Since we already showed surjectivity of λX above, we only
need to show that it is injective. We let k′ be the pro-p-extension of k where char(k) = p. We
then get a commutative diagram

(4.7) CHl.c.i.
0 (X)Λ

λX
//

v∗

��

H2d(X,Λ(d))

v∗

��

CHl.c.i.
0 (Xk′)Λ

λX
k′
// H2d(Xk′ ,Λ(d)),

where v∶Xk′ → X is the base change map. The left vertical arrow exists and is injective by
[5, Prop. 6.1]. Since k′ is infinite, the bottom horizontal arrow is injective. It follows that λX
must be injective too. This concludes the proof of Theorem 1.6. �

5. A question of Barbieri-Viale and Kahn

Let k be an algebraically closed field of characteristic zero and let X be a projective and
reduced k-scheme of pure dimension d. We shall now prove our application of the existence
of the map λX given by Theorem 1.6.

In [3, 13.7.6], the authors refer that in a private correspondence, Marc Levine outlined the
construction of a cycle map cℓ from CHLW0 (X) to H2d(X,Z(d)) inducing, in particular, a
morphism

cℓtors∶CH
LW
0 (X)tors Ð→H2d(X,Z(d))tors

that they conjecture to satisfy a number of properties. We can now give a positive answer to
their conjecture.

We shall verify the expectations of Barbieri-Viale and Kahn by working with the modified
version CHl.c.i.

0 (X) instead of CHLW0 (X), keeping in mind that the two Chow groups actually
agree under the above assumption on k, by [5, Thm. 3.17].

First, let Jd(X) be the universal regular semi-abelian variety quotient of CHLW0 (X)deg 0,
constructed in [9]. This is universal for regular homomorphisms (see op. cit. for the defi-

nition of a regular homomorphism) from CHLW0 (X) to semi-abelian varieties. It was shown
in [5, Prop. 9.7] that Jd(X) is also the universal regular semi-abelian variety quotient of

CHl.c.i.
0 (X)deg 0.
Next, let L1Alb

∗(X) be the 1-motive

L1Alb
∗(X) =Ht

1(LAlb(M(X)
∗(d)[2d])),

where M(X)∗ is the dual of M(X) in DM(k), the homology Ht
1(−) denotes the H1(−)

homology with respect to the t-structure (introduced in [3, 3.1]) on Deligne’s category of 1-
motives Db(M1), and finally LAlb(−) denotes the integrally defined derived Albanese functor

LAlb∶DMeff
gm(k)Ð→Db(M1),

introduced in [3, Def. 2.1.1] (note thatM(X)∗(d)[2d] is effective, so that the definition makes
sense, and that we are working in characteristic zero). In particular, L1Alb

∗(X) is a semi-
abelian variety. By [3, (13.7.1)], there is a canonical map

(5.1) u∶H2d(X,Z(d)) Ð→ L1Alb
∗(X)(k)
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that is an isomorphism on the torsion subgroups by [3, Corollary 13.7.4].

We now have all the ingredients to state and prove the following result. This verifies all
expectations of Barbieri-Viale and Kahn.

Theorem 5.1. Let X and k be as above. Then the morphism

λX ∶CH
l.c.i.
0 (X) →H2d(X,Z(d))

is surjective with uniquely divisible kernel, and there is a commutative diagram

(5.2)

CHl.c.i.
0 (X)tors H2d(X,Z(d))tors

Alb+(X)(k)tors L1Alb
∗(X)(k)tors

λX

a+ u

where all the arrows are isomorphisms.

Proof. The existence and explicit construction of λX was shown in Theorem 1.6. To check
that (5.2) commutes, it suffices to check it for the cycle class of a closed point x ∈ Xreg. This
reduces to checking the commutativity for points where this is well known.

Now, the left vertical arrow in (5.2) is an isomorphism by the main result of [9]. The right
vertical arrow is an isomorphism by [3, 13.7.5]. The bottom horizontal arrow is an isomorphism
by [3, Thm. 12.12.6]. Thus every arrow in (5.2) is an isomorphism. Finally, recall (see, e.g.,

[6, Lemma 5.1]) that since k is algebraically closed, the subgroup CHl.c.i.
0 (X)deg 0 is divisible.

Since λX is an isomorphism on torsion by the above discussion, an easy diagram chase implies
that the kernel of λX is uniquely divisible, completing the proof of the theorem. �
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