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Abstract: Pregnancy is characterized by a delicate immune balance; therefore, infectious diseases
might increase the risk of adverse pregnancy outcomes (APOs). Here, we hypothesize that pyrop-
tosis, a unique cell death pathway mediated by the NLRP3 inflammasome, could link SARS-CoV-2
infection, inflammation, and APOs. Two blood samples were collected from 231 pregnant women
at 11–13 weeks of gestation and in the perinatal period. At each time point, SARS-CoV-2 antibodies
and neutralizing antibody titers were measured by ELISA and microneutralization (MN) assays,
respectively. Plasmatic NLRP3 was determined by ELISA. Fourteen miRNAs selected for their role in
inflammation and/or pregnancy were quantified by qPCR and further investigated by miRNA-gene
target analysis. NLRP3 levels were positively associated with nine circulating miRNAs, of which
miR-195-5p was increased only in MN+ women (p-value = 0.017). Pre-eclampsia was associated
with a decrease in miR-106a-5p (p-value = 0.050). miR-106a-5p (p-value = 0.026) and miR-210-3p
(p-value = 0.035) were increased in women with gestational diabetes. Women giving birth to small
for gestational age babies had lower miR-106a-5p and miR-21-5p (p-values = 0.001 and 0.036, re-
spectively), and higher miR-155-5p levels (p-value = 0.008). We also observed that neutralizing
antibodies and NLRP3 concentrations could affect the association between APOs and miRNAs. Our
findings suggest for the first time a possible link between COVID-19, NLRP3-mediated pyroptosis,
inflammation, and APOs. Circulating miRNAs might be suitable candidates to gain a comprehensive
view of this complex interplay.

Keywords: SARS-CoV-2; COVID-19; neutralizing antibodies; pregnancy; miRNA; NLRP3; pyroptosis;
pre-eclampsia; gestational diabetes; abnormal fetal growth

1. Introduction

Pregnancy is a unique immunological condition characterized by the alternation of
pro- and anti-inflammatory states throughout different gestational stages [1]. In addition,
immune responses must be finely tuned to guarantee protection against infections and
endogenous stressors while at the same time maintaining tolerance toward the fetus [2,3].
Such a delicate equilibrium is achieved through a series of complex adaptations in the
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maternal immune system [3], whose perturbation could result in an increased risk of
adverse pregnancy outcomes (APOs) in terms of maternal, fetal, and neonatal complications.
In particular, APOs such as pre-eclampsia, gestational diabetes mellitus, and abnormal
fetal growth have been reported to occur more frequently in women with autoimmune
disorders [4–6] or experiencing viral or bacterial infections during pregnancy [7–9].

In this scenario, the SARS-CoV-2 pandemic outbreak has raised concerns for expectant
mothers. Indeed, infectious diseases caused by other coronaviruses have been previously
associated with increased vulnerability to APOs [10]. Although the possible association
between COVID-19 and APOs remains controversial [10–12], these two conditions have
been hypothesized to share some biological processes such as endothelial dysfunction and
immune deregulation [13]; nevertheless, knowledge on this topic is still limited. One of
the mechanisms potentially linking SARS-CoV-2 infection, immune response, and APOs
is pyroptosis, a unique cell death mode that can be triggered by many pro-inflammatory
cues, resulting in the activation of pattern recognition receptors and the inflammasome
assembly [14]. In particular, the NLRP3 inflammasome/caspase-1 pathway promotes
the cleavage of gasdermins, a family of proteins that oligomerize and form pores on the
plasma membrane, causing cell swelling and osmotic lysis. Pyroptosis also results in the
extracellular leakage of many pro-inflammatory cytokines (e.g., IL-1β and IL-18), which
foster the spreading of inflammation [14]. Of note, the NLRP3 inflammasome itself can be
released in the extracellular space during the pyroptotic process [15].

Although pyroptosis is thought to be an intrinsically protective mechanism, its exacer-
bation can lead to excessive inflammation and tissue damage [16]. Such a “double-edged”
role has been reported both in patients with COVID-19 [17,18] and in pregnancy [19,20].
Nevertheless, the role of pyroptosis in pregnant women infected by SARS-CoV-2 remains
largely uninvestigated. Interestingly, many studies have reported that the NLRP3 signaling
cascade can be controlled by miRNAs, either originating in the cell itself or internalized
from the extracellular space [21–23]. In addition, miRNAs might be released as a conse-
quence of pyroptosis, posing as damage-associated molecular patterns (DAMPs) [24]. In
this scenario, the molecular phenotyping of circulating miRNAs could help shed light
on COVID-19 pathophysiology in pregnant women, especially for the identification of
biological factors underlying the increased risk of APOs.

In this study, we analyzed a population of 231 pregnant women who were followed up
from the first trimester of gestation until delivery. Blood samples collected between 11 and
13 weeks of gestation (T0) and in the perinatal period (T1) were used to measure SARS-
CoV2 immunoglobulins and neutralizing antibodies. We also quantified cell-free NLRP3
inflammasome and 14 miRNAs selected for their role in inflammation and pregnancy, as
reported in literature. All data collected were elaborated by statistical analysis to investigate
the possible correlation between SARS-CoV-2 infection, inflammation, and APOs.

2. Results
2.1. Characteristics of the Study Population

Study participants (Supplementary Table S1) are a subgroup of a larger population
recruited in previous research (n = 528), from which 104 women were selected for their
positivity to SARS-CoV2 antibodies and 127 as matched negative controls. The majority
of positive women were asymptomatic or had mild symptoms. Among the 231 pregnant
women enrolled in this study, the average maternal age was 33.6 years (SD = 4.7 years),
with no significant difference between SARS-CoV2 Ig-negative and positive ones. Instead, a
slight difference was observed regarding maternal weight (p-value = 0.049), with Ig-positive
women having higher Body Mass Index (BMI) values than negative ones. Only a minority
of women were smokers (4.3%), while 89.6% never smoked and 6.1% quit smoking at
the beginning of pregnancy. About two-thirds of study participants (64.1%) were in their
first pregnancy.

Most women (86.1%) had a pregnancy without complications, with both the mean ges-
tational age at delivery (39.3 ± 1.3 weeks) and the mean neonatal weight (3312.0 ± 432.9 g)
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being in normal ranges. However, 32 women (13.9%) experienced one or more adverse
pregnancy outcomes, the most frequent being abnormal fetal growth (17 cases), with
6 small for gestational age (SGA) and 11 large for gestational age (LGA) newborns. Besides,
11 cases of gestational diabetes, 5 cases of pre-eclampsia, and 1 case of premature delivery
(<34 weeks) were reported. Four newborns were also hospitalized in Neonatal Intensive
Care Unit (NICU).

2.2. Immunoglobulin Assessment and NLRP3 Quantification

Blood samples collected at T0 and T1 were used to determine IgG, IgM, and IgA
plasma concentrations by ELISA. For all the participants with a positive IgG result, a
plasma aliquot was used to carry out a microneutralization (MN) assay.

As shown in Table 1, during the first trimester of pregnancy, 40 women were IgG-
positive, with 27 of them (67.5%) having neutralizing anti-SARS-CoV-2 antibodies. For
women showing a positive MN assay, the neutralization titer was calculated by testing
six different plasma dilutions (1/10-20-40-80-160-320). All of them had an MN assay titer
ranging from 1/10 to 1/80. Among the 40 IgG-positive women, 12 (30.0%) also tested
positive for IgM and 3 (7.5%) for IgA.

Table 1. IgG, Microneutralization Assay titers, IgM, and IgA in the first trimester of pregnancy (T0)
and peripartum (T1).

Test
First Trimester (T0) 1 Peripartum (T1)

n (%) n (%)

Any Positivity (IgG, IgM, IgA) 40 97
Positive IgG antibodies 40 (100%) 97 (100%)

High Positive 4 (10.0%) 9 (9.3%)
Positive 22 (55.0%) 51 (52.6%)
Low Positive 14 (35.0%) 37 (38.1%)

Microneutralization (n = 137) 27 (67.5%) 79 (81.4%)
Microneutralization assay titers

10 13 (32.5%) 28 (35.4%)
20 8 (29.6%) 22 (27.8%)
40 5 (18.5%) 16 (20.3%)
80 1 (3.7%) 9 (11.4%)
160 0 (0.0%) 2 (2.5%)
320 0 (0%) 2 (2.5%)

Positive IgM antibodies 12 (30.0%) 52 (53.6%)
High Positive 0 (0%) 1 (1.0%)
Positive 3 (7.5%) 20 (20.6%)
Low Positive 9 (22.5%) 31 (32.0%)

Positive IgA antibodies 3 (7.5%) 23 (10.0%)
High Positive 0 (0%) 1 (4.3%)
Positive 0 (0%) 5 (21.7%)
Low Positive 3 (7.5%) 17 (23.7%)

1 Data at T0 for two subjects are missing.

An Ig measure carried out on peripartum samples revealed that the number of par-
ticipants that were Ig-positive rose to 97, while 127 remained negative (55.0%). Among
the former, 64 women (27.7%) were infected by SARS-CoV-2 between T0 and T1 (“posi-
tivized”). Instead, seven women (3.0%) that were Ig-positive at T0 became negative at T1
(“negativized”).

Considering women with anti-SARS-CoV-2 antibodies at T1, 79 (81.4%) tested positive
for the MN assay, with the great majority (95.0%) having an MN assay titer between 1/10
and 1/80. 52 out of the 97 IgG-positive women (53.6%) were also positive for IgM, while
IgA positivity was detected in 23 (10.0%) of them.

Plasma samples were also used to measure the concentration of the NLRP3 inflamma-
some. There was no significant difference between the mean concentration value measured
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at T0 and at T1 (p-value = 0.288), for women with and without APOs (p-value = 0.615),
for women with and without any positivity for IgG, IgA, or IgM (p-value = 0.938), and for
women with and without positive MN assays (p-value = 0.814) (Supplementary Table S2).
Instead, we observed a significant difference regarding plasmatic miRNA levels between
cases and controls. Women with any Ig positivity at T0 and/or T1 had lower mean miRNA
levels of miR-155-5p (log2(RQ) = 0.9 vs. 1.1; p = 0.047) and miR-221-3p (log2(RQ) = 3.07 vs.
3.82, p = 0.037) if compared to controls (Supplementary Table S3).

2.3. Association of NLRP3, Ig, and MN with miRNA Expression

In order to determine if plasma NLRP3, immunoglobulins, and MN titers were asso-
ciated with the expression levels of the 14 miRNAs assayed, we applied a multivariable
mixed model for repeated measures adjusted for time, gestational age at sampling, and ma-
ternal age. miR-137 was excluded from statistical analysis as it was expressed at detectable
levels in a very low proportion of plasma samples (2.6%).

The percentage changes in miRNA expression levels associated with NLRP3 unitary
increments are shown in Figure 1.
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Figure 1. Percentage changes in miRNA expression levels associated with NLRP3 inflammasome
increments. Multivariable linear mixed model for repeated measures adjusted for time, gestational age
at sampling, and maternal age. miRNAs are expressed as log2(RQ). Percentage change is calculated
as (2(β) − 1) × 100 and corresponds to the percentage change in miRNA expression level associated
with one unit increase in the NLRP3 inflammasome. The asterisk indicates a significant p-value
(p = 0.018) of the interaction between NLRP3 and MN when we added the interaction to the previous
model. CI, confidence interval.

As reported in Table 2, plasma NLRP3 inflammasome increments were associated
with increased expression of eight miRNAs, i.e., miR-34a-5p (p-value < 0.001), miR-101-3p
(p-value = 0.001), miR-125a-5p (p-value < 0.001), miR-126-3p (p-value = 0.002), miR-146a-5p
(p-value = 0.001), miR-155-5p (p-value < 0.001), miR-221-3p (p-value = 0.001), and miR-
223-5p (p-value = 0.039). Interestingly, none of the selected miRNAs were found to be
downregulated in response to NLRP3 increases.
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Table 2. Association between NLRP3 inflammasome and miRNA expression levels. Estimates of
miRNA expression level from a multivariable linear mixed model for repeated measures adjusted
for time, gestational age at sampling, and maternal age as a fixed effect. The intercept was regarded
as a random effect. BNLRP3 is the change in miRNA expression level (calculated as log2(RQ)) as-
sociated with one unit increase in the NLRP3 inflammasome. Percentage change is calculated as
(2(β) − 1) × 100; * p-value of the interaction (NLRP3 × MN) for miR-195-5p, obtained from the previ-
ous model plus an interaction term between inflammasome and MN, and is p = 0.018. SE, standard
error; LCI, lower confidence interval; UCI, upper confidence interval; MN, microneutralization; FDR,
false discovery rate.

miRNA βNLRP3 (SE) Percentage
Change 95% LCI 95% UCI p-Value FDR p-Value

miR-21-5p −0.002 (0.031) −0.1 −4.3 4.2 0.945 0.945
miR-34a-5p 0.135 (0.037) 9.8 4.4 15.5 <0.001 0.002
miR-101-3p 0.097 (0.029) 7 2.8 11.3 0.001 0.002
miR-106a-5p −0.008 (0.055) −0.6 −7.8 7.2 0.881 0.945
miR-125a-5p 0.132 (0.031) 9.6 5 14.4 <0.001 <0.001
miR-126-3p 0.093 (0.030) 6.7 2.4 11.2 0.002 0.004
miR-132-3p 0.046 (0.032) 3.2 −1.1 7.8 0.147 0.187
miR-146a-5p 0.095 (0.028) 6.8 2.8 11 0.001 0.002
miR-155-5p 0.103 (0.029) 7.4 3.2 11.7 <0.001 0.002
miR-195-5p 0.045 (0.048) 3.2 −3.4 10.2 0.346 * 0.404
miR-210-3p 0.052 (0.03) 3.6 −0.5 7.9 0.083 0.116
miR-221-3p 0.108 (0.031) 7.8 3.3 12.4 0.001 0.002
miR-223-5p 0.059 (0.028) 4.2 0.2 8.3 0.039 0.061

Although NLRP3 increments alone were not associated with changes in miR-195-5p
expression levels, we observed that the interaction product between NLRP3 and MN was
associated with miR-195-5p (p-value of the interaction = 0.018). In particular, increasing
plasma NLRP3 concentrations were found to be positively associated with miR-195-5p
levels (p-value = 0.017) in women with neutralizing antibodies (MN+), whereas no trend
(p-value = 0.803) was observed for MN-study participants (Figure 2).
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Figure 2. Interaction of the NLRP3 inflammasome with microneutralization at the miR-195-5p
expression level. Estimates from a multivariable linear mixed model for repeated measures are
adjusted for time, gestational age at the sample, MN, the interaction between NLRP3 inflammasome
and MN, and maternal age. miR-195-5p is expressed as log2(RQ). Estimates for plot purposes were
calculated at the mean age of 33.6 and the mean gestational age of 24.2 during peripartum.

No significant association was found between IgG, IgM, and IgA and selected miRNAs
(see Supplementary Tables S4–S6), nor between MN titer and miRNAs (Supplementary
Table S7).
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2.4. Effect of Adverse Pregnancy Outcomes on miRNA Expression

We then evaluated whether women who experienced adverse pregnancy outcomes
(APOs) had different plasmatic miRNA levels compared to women without pregnancy
complications. APOs were considered either as single maternal/neonatal complications or
as combined outcomes (composite adverse outcomes). As shown in Figure 3, pre-eclampsia
was associated with a borderline decrease in miR-106a-5p (p-value = 0.050). On the contrary,
the same miRNA (p-value = 0.026) and miR-210-3p (p-value = 0.035) were increased in
women with gestational diabetes. In addition, three miRNAs were found to be differentially
expressed in women giving birth to SGA babies: while miR-106a-5p and miR-21-5p were
found to be decreased (p-values = 0.001 and 0.036, respectively), this neonatal condition
was associated with higher miR-155-5p levels (p-value = 0.008).
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Figure 3. Percentage change of miRNA expression level in women having an adverse outcome
during pregnancy. The X-axis represents the percentage change of miRNA in women having an
adverse outcome during pregnancy (gestational diabetes, small for gestational age, pre-eclampsia)
versus women not experiencing it. Multivariable linear mixed models for repeated measures were
adjusted for time, gestational age at the sample, and maternal age. miRNAs are expressed as
log2(RQ). Percentage change is calculated as (2(β) − 1) × 100. Solid-colored dots represent significant
percentage changes.

Instead, no association was found between composite adverse outcomes, abnormal
growth, or LGA and miRNA expression levels (Supplementary Table S8).

When testing the possible effect of the interaction between MN and APOs on miRNA
levels, we observed changes in three miRNAs, i.e., miR-125a-5p, miR-155-5p, and miR-195-
5p (Figure 4). In detail, miR-125a-5p levels were higher in MN+ women that experienced
composite adverse outcomes (p-value of the interaction = 0.015). Differences for single
adverse outcomes are also reported for miR-125a-5p and miR-155-5p (pre-eclampsia×MN)
and for miR-195-5p (SGA×MN). For complete data, see Supplementary Table S9.
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Figure 4. Interaction of MN with selected APOs in the expression levels of miR-125a-5p (A), miR-
155-5p (B), and miR-195-5p (C). Estimates from a multivariable mixed model for repeated measures
adjusted for time, gestational age at the sample, MN, adverse outcome, interaction between APOs
and MN, and maternal age miRNAs are expressed as log2(RQ). The p-value refers to the difference
between MN+ and MN− women experiencing the APOs. Estimates for plot purposes were calculated
at the mean age of 33.6 and the mean gestational age of 24.2 during peripartum.

Finally, we evaluated the effect of the interaction between plasma NLRP3 concentra-
tions and APOs on miRNA levels. We observed that two miRNAs, i.e., miR-101-3p and miR-
132-3p, were differentially expressed in women with single APOs in response to NLRP3
increments (Figure 5). Specifically, NLRP3 concentration was associated with miR-101-3p
expression only in women giving birth to newborns with normal growth (p-value < 0.001)
and in non-SGA pregnancies (p-value < 0.001). Instead, NLRP3 increments were asso-
ciated with decreased miR-132-3p expression in abnormal growth (p-value = 0.007) and
SGA cases (p-value = 0.012). miR-132-3p followed the opposite trend in normal growth
(p-value = 0.039) and non-SGA pregnancies (p-value = 0.049). For complete data, see
Supplementary Table S10.

2.5. Bioinformatic Analysis

In order to investigate the potential impact of miRNA changes on gene expression,
we performed a bioinformatics analysis to identify the target genes of the eight miRNAs
that we found to be associated with plasma NLRP3 increments (as shown in Figure 2 and
Table 2; i.e., miR-101-3p, miR-125a-5p, miR-126-3p, miR-146a-5p, miR-155-5p, miR-221-3p,
miR-223-5p, and miR-34a-5p). We also included miR-195-5p since NLRP3 increments were
positively associated with this miRNA in MN+ women. Target genes of these nine miRNAs
are reported in Supplementary Table S11.
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Figure 5. Interaction of the NLRP3 inflammasome with APOs on the expression levels of miR-101-
3p and miR-132-3p. Upper panels show the interaction between NLRP3 and abnormal growth in
affecting miR-101-3p (A) and miR-132-3p (B); lower panels show the interaction between NLRP3
and SGA in affecting miR-101-3p (C) and miR-132-3p (D). Estimates from a multivariable linear
mixed model for repeated measures are adjusted for time, gestational age at the sample, NLRP3
inflammasome, maternal age, and the interaction between NLRP3 inflammasome and adverse
outcome. miRNAs are expressed as log2(RQ). Percentage change is calculated as (2(β) − 1) × 100.
Estimates for plot purposes were calculated at the mean age of 33.6 years and the mean gestational
age of 24.2 weeks during peripartum.

The target genes reported in Supplementary Table S11 were then compared with genes
associated with inflammation (n = 467), as reported in the DisGeNET database. We found
that eight out of the nine miRNAs of interest target genes are associated with inflammation.
The only exception was miR-126-3p, which did not target any inflammation-related genes.
In total, we found 47 genes associated with inflammation and targeted by at least one of
the eight miRNAs (Supplementary Table S12).

Then, we used data obtained from the gene target prediction analysis (Supplemen-
tary Table S11) to further analyze the three miRNAs that we found to be associated with
MN*APOs, i.e., miR-125a-5p, miR-155-5p, and miR-195-5p. We compared the genes tar-
geted by these three miRNAs with genes related to gestational diabetes (n = 649), premature
birth (n = 192), and pre-eclampsia (n = 166), as reported in DisGeNET (v7.0) datasets. We
found that 47 gene targets were associated with gestational diabetes, 22 with premature
birth, and 11 with pre-eclampsia (Supplementary Table S13). Among these genes, some
were shared between the three disease datasets (Figure 6).

Finally, we compared the 26 inflammation genes targeted by miR-125a-5p, miR-155-5p,
and miR-195-5p with the 69 genes associated with pregnancy complications (i.e., gestational
diabetes, premature birth, and pre-eclampsia). We found that nine genes (Supplementary
Table S14, Figure 7) targeted by the three miRNAs were involved in either inflammatory
processes or APOs.
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3. Discussion

In the present study, conducted on 231 pregnant women, we aimed to gain a compre-
hensive view of the complex interplay between SARS-CoV-2 infection, inflammation, and
pregnancy outcomes.

Pyroptosis is a peculiar lytic cell death mode was been first described in the 1990s as
a process occurring in macrophages after infection by Gram-negative Shigella flexneri [25].
According to our initial hypothesis that pyroptosis could be a potential mechanism me-
diating the effect of SARS-CoV-2 infection on pregnancy, we measured the plasmatic
concentration of the NLRP3 inflammasome, a multi-protein complex mainly expressed
in monocytes/macrophages [26]. Within the cell, NLRP3 inflammasome assembly is trig-
gered by the oligomerization of NLRP3, a cytoplasmic pattern-recognition receptor, upon a
variety of stress signals (both endogenous and exogenous), including viral infections; once
assembled, the NLRP3 inflammasome recruits and promotes the autocatalytic activation of
caspase-1, which in turn starts a signaling cascade eventually culminating in pyroptotic
cell death [27]. NLRP3-mediated pyroptosis poses as a crucial component of the innate
immune response, not only does it cause the ejection of viral particles/components, thus
blocking their intracellular replication and promoting their recognition by immune cells,
but it also fosters the recruitment and activation of immune cells through the release of
many pro-inflammatory factors [18]. During this process, the NLRP3 inflammasome itself
can be released outside the cell to propagate inflammation [28], probably through an active
mechanism mediated by extracellular vesicles (EVs) [15].

First, we selected 14 candidate miRNAs already known to participate in inflam-
mation and/or pregnancy, and we observed that NLRP3 increments were associated
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with increased expression levels of plasmatic miR-101-3p (p-value = 0.001), miR-125a-5p
(p-value < 0.001), miR-126-3p (p-value = 0.002), miR-146a-5p (p-value = 0.001), miR-155-5p
(p-value < 0.001), miR-221-3p (p-value = 0.001), miR-223-5p (p-value = 0.039), and miR-
34a-5p (p-value < 0.001). According to bioinformatic analysis, all these miRNAs target
genes involved in different stages of the inflammatory process, from sensing inflammatory
cues to signal transduction and response. Notably, some of these miRNAs (i.e., miR-34a,
miR-146a-5p, and miR-125a-5p) are known to suppress pyroptosis by targeting the NLRP3
gene [29–31]; on the contrary, miR-155-5p exerts the opposite effect, as its inhibition has
been associated with NLRP3 downregulation [32]. Since there is growing evidence sup-
porting that inflammasome activation correlates with increased shedding of EVs [33], it
is possible that the general increase in circulating miRNAs we observed was a result of
their role in EV molecular cargo. Nevertheless, miRNAs are likely to be loaded within EVs
through specific sorting mechanisms [34], thus suggesting that their release could be part
of a specific response to inflammasome activation.

Regarding miR-195-5p, we observed that its expression levels were positively associ-
ated with NLRP3 concentration only in women with neutralizing antibodies (MN+). The
presence of neutralizing antibodies is often regarded as an indicator of an effective and
robust immune response against viral infections. However, they have also been associated
with COVID-19 severity [35]. miR-195-5p is already known for its role in SARS-CoV-2
infection; indeed, it has been proposed as part of a three-miRNA signature capable of
discriminating with 99.9% accuracy between COVID-19 patients and healthy controls [36].
Besides, this miRNA has been predicted to directly bind to the viral RNA of human coron-
aviruses [37,38] and was found to be strongly upregulated in the lungs of hamsters after
SARS-CoV-2 infection [38]. Although miR-195-5p has never been linked to pyroptosis,
its overexpression is known to induce apoptosis, thus preventing excessive proliferation
of infected cells and hampering the spreading of the infection [38]. In this context, it is
possible that the increased expression levels of this plasma miRNA observed in response
to NLRP3 increments might be part of an anti-viral defense mechanism occurring only in
women with a robust immune response (MN+); however, extensive cell death could also
lead to tissue damage, thus exacerbating disease severity. Further experimental studies are
needed to explore these hypotheses.

The profile of circulating miRNAs was also found to be altered in women experiencing
APOs. In this regard, we observed that pre-eclampsia was associated with decreased
miR-106a-5p levels (p-value = 0.050). As miR-106a-5p is highly expressed in villous tissues
and plays a role in regulating trophoblastic angiogenesis [39], it is likely that it might
be implied in the etiology of this hypertensive disorder, as also suggested by a previous
transcriptomic study [40]. Moreover, we also found the same miRNA to be increased
in women with gestational diabetes, along with miR-210-3p (p-values = 0.035 and 0.026,
respectively). Although the role of miR-106a-5p in gestational diabetes has never been
investigated, there is evidence of its implication in glucose homeostasis as it targets FOXO1,
a key regulator of insulin signaling [41]. Instead, a case-control study found an association
between increased levels of miR-210-3p and gestational diabetes, but only in women
with overweight/obesity [42]. We also observed a decrease in miR-106a-5p levels in SGA
pregnancies (p-value = 0.001), as well as miR-21-5p (p-value = 0.036); on the contrary, miR-
155-5p was increased (p-value = 0.008). These findings are partly in accordance with existing
literature, as increased blood miR-155-5p has been recently reported in women giving birth
to SGA babies [43]. Instead, other considered APOs (composite adverse outcome, abnormal
growth, and LGA) were not associated with plasmatic miRNA levels.

When evaluating the effect of the interaction between APOs and neutralizing anti-
bodies on the pattern of plasmatic miRNAs, we observed that miR-125a-5p levels were
higher in MN+ women that experienced pregnancy complications (p-value = 0.040). Dif-
ferences for single adverse outcomes were also found for miR-125a-5p and miR-155-5p
(pre-eclampsia×MN) and for miR-195-5p (SGA×MN). According to our bioinformatic anal-
ysis, these three miRNAs were predicted to target nine genes (APLN, BDNF, DLL4, FGF2,
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CD163, HIF1A, VEGFA, STAT3, and NAMPT) involved in both inflammation and APOs;
of note, most of these genes (APLN [44], BDNF [45], FGF2 [46], HIF1A [47], VEGFA [48],
STAT3 [49], and NAMPT [50]) have been previously implied in NLRP3-mediated pyroptosis.
Therefore, our findings could suggest that miR-125a-5p, miR-155-5p, and miR-195-5p might
be involved in a complex immune regulatory network that might influence the trajectory
of gestation; nevertheless, since the number of MN- and MN+ women experiencing APOs
is very small, these findings should be validated on a larger population before drawing
firm conclusions. In addition, we tested whether NLRP3 and APOs could interact to deter-
mine miRNA levels. In this regard, NLRP3 increments were associated with miR-101-3p
in women giving birth to children with normal growth (p-value < 0.001) and without
SGA pregnancies (p-value < 0.001). miR-101-3p has been recently found to modulate the
PTEN/Akt pathway, which plays a role in placental development, and to be downregulated
in women with recurrent miscarriage [51]. A similar trend was observed for miR-132-3p,
whose plasmatic levels were associated with NLRP3 increments only in normal growth
(p-value = 0.039) and in non-SGA pregnancies (p-value = 0.049). On the contrary, as NLRP3
concentration increased, the expression of this miRNA decreased in abnormal growth and
SGA pregnancies (p-values = 0.007 and 0.012, respectively). Mainly known for its role in
inflammation, miR-132-3p has been recently implicated in APOs such as pre-term birth [52],
pre-eclampsia [53], and gestational diabetes [54]. Besides, LPS-induced upregulation of this
miRNA was found to promote NLRP3 activation and pyroptosis [55].

Our study has many strengths. First, pregnancies were followed up from the first
trimester to postpartum, thus allowing us to thoroughly monitor the clinical status of
both study participants and their children. Second, we assessed not only the presence
of anti-SARS-CoV-2 immunoglobulins but also their neutralization potency, thus gaining
additional information about the robustness of the antiviral humoral response. Third, we
measured the circulating NLRP3 inflammasome as a proxy for the pyroptotic process,
whose role in pregnant women with anti-SARS-CoV-2 immunoglobulins has never been
studied before. Nevertheless, we should also account for some limitations, principally
concerning the choice of miRNAs, which were selected a priori for their involvement in
inflammation and/or pregnancy, and the limited incidence of APOs in our population
(32 cases). Given the small number of women with APOs, additional research performed
on larger populations will be required to test if there are significant differences between
specific APOs regarding the associations presented in this study.

Also, here we focused on SARS-CoV-2 infection as a prototypical pro-inflammatory
stimulus that might alter the normal trajectory of pregnancy; nevertheless, it is possible that
the observed changes in circulating miRNAs and NLRP3 levels might be generic to other
infections during pregnancy. Further studies will be necessary to address this hypothesis as
well as verify whether such changes might occur in non-pregnant individuals (both males
and females).

To exclude the possibility that the observed changes could be related to other pro-
inflammatory conditions, exclusion criteria included:

Overall, our findings suggest that circulating miRNAs might be suitable candidate
markers to gain a comprehensive picture of immune alterations occurring in pregnant
women who have been infected by SARS-CoV-2. However, untargeted studies are needed
to identify additional plasmatic miRNAs that might play a role in maternal immune
regulation as well. Besides, our study suggests for the first time that NLRP3-mediated
pyroptosis could be a new piece in the complex puzzle of immunological regulation in
pregnant women, whose alteration can lead to impaired antiviral defense and gestational
complications. Future studies are needed to collect experimental evidence about the role of
pyroptosis at the interface between COVID-19 and APOs.
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4. Materials and Methods
4.1. Subject Enrollment and Blood Sample Collection

The study included 231 pregnant women who were recruited at the Fetal Medicine
Unit of the Policlinico Hospital in Milan (Italy), between April and September 2020. The
study is a nested case-control study embedded in a larger investigation that has been
previously described [56].

“Cases” were selected as all the women who were positive for antibodies to SARS-CoV-2
(at least one of IgG, IgM, or IgA) at T0 and/or T1 (n = 104). 127 “Controls” (negative for
SARS-CoV-2 IgG, IgM, or IgA at T0 and T1) were matched to cases for maternal age.

Briefly, after signing a written informed consent, all the participants agreed to provide
information about demographics, age, ethnicity, weight, method of conception, smoking
status, and parity. Each woman was interviewed about the presence of COVID-19-like
symptoms at the time of enrollment, at 20–22 weeks of gestation, and during the perinatal
period. Data on pregnancy outcomes and neonatal parameters were collected from the
hospital medical records if delivery occurred at our hospital, or by telephone interview
otherwise. The diagnosis of adverse pregnancy outcomes (i.e., pre-eclampsia, gestational
diabetes mellitus, abnormal growth, and delivery < 34 weeks) was made according to
guidelines and as reported in [56].

For each participant, venous blood samples (7.5 mL) were drawn in EDTA tubes at
two different time points (T0 and T1). T0 blood samples were collected at the time of
recruitment, i.e., during the first trimester of pregnancy (11–13 gestational weeks). T1 blood
samples were collected in the perinatal period (between peripartum and puerperium),
between October 2020 and May 2021. Blood samples were processed by centrifugation at
1200× g for 15 min within 4 h of withdrawal to obtain a cell-free plasma fraction. Plasma
aliquots were stored at −80 ◦C until use.

4.2. Enzyme-Linked Immunosorbent Assay (ELISA)

Immunoglobulin (Ig)G, IgM, and IgA quantification in human plasma samples was
performed using an in-house ELISA RBD assay, as described in [56]. Briefly, 96-well ELISA
plate coating was performed using 1 µg/mL of purified recombinant Wuhan/Ancestral
SARS-CoV-2 Spike-RBD protein (Arg319-Phe541) (Sino Biological, Beijing, China). Detec-
tion of Ig was carried out by adding appropriate dilutions of goat anti-human IgG-Fc Horse
Radish Peroxidase (HRP)-conjugated antibody or IgM (µ-chain) and IgA (α-chain) (Bethyl
Laboratories, Montgomery, AL, USA), followed by incubation with TMB substrate (Bethyl
Laboratories, Montgomery, AL, USA). Plates were read within 20 min at 450 nm with a
SpectraMax ELISA plate reader (Molecular Devices, San Jose, CA, USA). The cut-off value
was defined as three times the average of OD values from negative control wells (a pool of
three pre-pandemic human plasma samples). Samples with ODs above the cut-off at the
lowest dilution were considered Ig-positive.

Quantification of plasmatic NLRP3 was carried out using a commercial ELISA kit
(cat. MBS3802246, MyBioSource, San Diego, CA, USA) according to the manufacturer’s
instructions. Briefly, plasma samples diluted 1:5 were added to a 96-well ELISA plate
pre-coated with an anti-human NLRP3 antibody. NLRP3 detection was carried out by
incubation for 1h at 37 ◦C with a HRP-conjugate reagent, followed by the addition of a
chromogen solution. OD values were read within 20 min using a Synergy HT microplate
reader (BioTek® Instruments, Winooski, VT, USA).

4.3. Micro Neutralization CPE-Based Assay

The Micro Neutralization (MN) assay performed in this study has been extensively
described in previous publications [56,57]. Briefly, plasma samples were subjected to 2-fold
serial dilutions in DMEM with 2% FBS (from 1:10 to 1:320, in duplicate) and added to two
different 96-well plates. Following 1 h incubation at 37 ◦C with a viral solution containing
100 TCID50 of SARS-CoV-2, the virus-sample mixture was added to Vero E6 cells to assess
whether the virus had retained its infectious capacity. After a 72 hour incubation, cells
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were inspected for signs of cytopathic effect to identify the highest sample dilution able to
completely inhibit viral growth, i.e., the neutralization titer. Suitable negative and positive
controls were also added to monitor the execution of the assay as well as the status of the
plated cells and the virus itself.

4.4. miRNA Extraction and Analysis

Total RNAs were isolated from plasma samples using the miRNeasy Serum/Plasma
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Briefly, 200 uL
of thawed plasma were incubated with 1000 µL of QIAzol Lysis Reagent; then, samples
were added with 200 µL of chloroform and 5 µL of ath-miR159a (6 pg of Spike-in). At the
end of the procedure, miRNAs were eluted in 22 µL of nuclease-free water and stored at
−80 ◦C until use. miRNA quality and integrity were assessed using the 2100 Bioanalyzer
RNA system with the Pico Kit (Agilent Technologies, Santa Clara, CA, USA).

After miRNAs were converted to cDNA by reverse transcription using the TaqMan®

MicroRNA Reverse Transcription Kit (ThermoFisher Scientific, Waltham, MA, USA) and a
specific custom RT pool, they were subjected to a 16-cycle pre-amplification step with a
specific custom Preamp pool according to User Bulletin Publication Part Number 4,465,407
(Applied Biosystems, Waltham, MA, USA). The custom pool was made for the analysis of
14 target miRNAs (hsa-miR-101-3p, hsa-miR-106a-5p, hsa-miR-125a-5p, hsa-miR-126-3p,
hsa-miR-132-3p, hsa-miR-137, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-195-5p, hsa-
miR-210-3p, hsa-miR-21-5p, hsa-miR-221-3p, hsa-miR-223-5p, and hsa-miR-34a-5p), 2 en-
dogenous controls (RNU48 and U6-RNA), and 1 exogenous control (ath-miR159a). These
miRNAs were selected on the basis of the existing literature [52,58–63] and of previous
studies conducted in our lab [64–66], showing their responsiveness to pro-inflammatory
stimuli, and validated through the Non-coding RNAs in Inflammation (ncRI) database [67].

Then, samples were tested in triplicate on a customized OpenArray PCR miRNA Plate
(Applied Biosystems, Waltham, MA, USA) to analyze miRNA expression levels by qPCR
with the QuantStudio™ 12K Flex OpenArray® Platform (Applied Biosystems Waltham,
MA, USA). Briefly, the preamplification product of each sample was diluted 1/20 and
mixed with 2X Open Array RT-PCR Master Mix (ThermoFisher Scientific, Waltham, MA,
USA). The RT-PCR reaction mix was plated on an OpenArray PCR miRNA Plate using
Accufill Systems (Applied Biosystems, Waltham, MA, USA) and run on QuantStudio™ 12K
Flex PCR.

Data processing was carried out using the Expression Suite Software v.1.3 (Applied
Biosystems), as detailed in [64]. qPCR quantifies miRNA expression in terms of relative
threshold cycle (Crt) values and calculates (for each PCR reaction) an AmpScore as a
qualitative parameter. Amplification curves with a no Crt value or one >27.5, or with
an AmpScore <1.24 were set equal to the detection limit of 28. For statistical analysis,
miRNA relative expression was calculated as Log2(RQ) [68], where RQ = Relative Quantifi-
cation = 2−∆Crt, and ∆Crt = CrtmiRNA − Crtend. CrtmiRNA is the mean Crt of the triplicate
measure of each miRNA, while Crtend is the mean Crt of the three endogenous controls.
RNU48, U6-RNA, and ath-miR159a were chosen for normalization using the NormFinder
algorithm [69], with a stability value of 0.10.

4.5. Statistical Analysis

Standard descriptive statistics were performed on all variables, reporting means with
their standard deviation (SD) for continuous variables or frequencies with percentages
for categorical variables. Obstetric adverse outcomes were analyzed both as a single
event and combined into a composite adverse outcome. NLRP3 inflammasome, IgG,
Microneutralization Assay titers, IgM, and IgA were evaluated at T0 and T1 as potentially
associated with miRNA expression level. In addition, the miRNA expression level was
quantified at T0 and T1.

We compared women with any positivity (i.e., IgG, IgM, or IgA) and negative ones by
applying the t-test for continuous normally distributed clinical characteristics. Frequencies
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were compared with the Chi-Square or Fisher’s Exact test when the expected count was
less than 5.

Associations between independent variables (inflammasome and microneutralization
assay titers as continuous variables and IgA, IgM, IgG, and MN as categorical variables) and
miRNA expression levels were evaluated by applying multivariable linear mixed models
for repeated measures. The intercept was regarded as a random effect. Covariates were
selected for potential inclusion in the multivariable models if they were associated with
miRNAs in univariate analysis. Covariates associated with any miRNA in multivariable
models were included in the final models, regardless of their significance, to control for
confounding and obtain a unique model for all miRNAs. The final model was adjusted for
time (first trimester or peripartum), gestational age at sample collection, and maternal age
as fixed effects. The expression level of miRNA was obtained as log2(RQ). We estimated the
β coefficient of the relationship between the continuous independent variable and miRNA
and the percentage change (calculated as (2(β) – 1) × 100) associated with one unit increase
in the independent variable. For categorical independent variables (IgG, IgA, IgM, MN,
or adverse outcomes), the coefficients and the percentage changes indicate the expression
level of miRNA being in a category (positive or with an adverse outcome), versus the
reference category (negative or absence of the adverse outcome). To take multiple testing
into account, we performed multiple testing corrections, calculating the false discover rate
(FDR) p-values using the Benjamini-Hochberg procedure.

First, we evaluated the association between NLRP3 inflammasome and miRNA expres-
sion levels, applying multivariable linear mixed models for repeated measures adjusted for
time (T0, T1), gestational age at the sample, and maternal age. To investigate the modifying
role of MN in the inflammasome-miRNA relationship, we added an interaction term to the
previous model, and for miR-195-5p, which showed a significant interaction, we derived
specific inflammasome-miRNA estimates for positive and negative MN. Marginal estimates
were calculated at the mean level of continuous covariates (maternal age = 33.6 years, mean
gestational age = 24.2 weeks) and selected reference levels of categorical variables (e.g.,
during peripartum).

We evaluated the estimate and percentage change of miRNA expression level of
women who had an adverse outcome during pregnancy versus women who did not.
We then investigated the modifying role of microneutralization in the adverse outcome-
miRNA relationship, adding an interaction term to the previous model, and for miRNAs
showing a significant interaction, we derived marginal means of miRNA expression level
for positive and negative MN according to adverse outcome status, and we tested the
difference between positive and negative MN in the group of women experiencing the
adverse outcomes.

We also investigate the modifying role of the NLRP3 inflammasome in the adverse
outcome-miRNA relationship by adding an interaction term (NLRP3×adverse outcome)
and deriving specific inflammasome-miRNA estimates for women experiencing or not
experiencing the adverse outcomes.

Statistical analyses were performed with SAS software (version 9.4).

4.6. Bioinformatic Analysis

All the bioinformatic analysis was performed using R software (v 4.0.4). MiRNA target
analysis was conducted using the miRNAtap package by selecting genes that were present
in at least 3 of the 5 datasets of miRNAtap. Then, target genes were compared with genes
associated with inflammation/pregnancy outcomes (gestational diabetes, premature birth,
and pre-eclampsia) as reported in DisGeNET datasets (v7.0) [70].
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5. Conclusions

Pregnancy is often regarded as an immunological paradox, characterized by a delicate
equilibrium between tolerance towards the fetus and protection against exogenous threats
such as viral infections. In this study, we gained new insights into the complexity of
such a balance and proposed pyroptosis as a novel mechanism possibly modulating the
trajectory of pregnancy in women who have been infected by SARS-CoV-2 and healthy
controls. Although further studies are warranted to shed light on the precise biological
events underlying the link between COVID-19, pregnancy, and pyroptosis, we suggest that
circulating miRNAs might be good candidate markers for immune dysregulation and the
risk of APOs.
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