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Abstract

We provide a new version of the Tikhonov theorem for both two-scale forward systems and also two-scale
forward-backward systems of stochastic differential equations, which also covers the McKean-Vlasov case. Dif-
ferently from what is usually done in the literature, we prove a type of convergence for the “fast” variable, which
allows the limiting process to be discontinuous. This is relevant for the second part of the paper, where we
present a new application of this theory to the approximation of the solution of mean field control problems.
Towards this aim, we construct a two-scale system whose “fast” component converges to the optimal control
process, while the “slow” component converges to the optimal state process. The interest in such a procedure is
that it allows to approximate the solution of the control problem avoiding the usual step of the minimization of
the Hamiltonian.

Keywords: stochastic Tikhonov theorem, two-scale stochastic systems, McKean-Vlasov stochastic differential
equations, mean field optimal control problems.
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1 Introduction
We present a new version of the stochastic Tikhonov theorem in the framework of McKean-Vlasov stochastic
differential equations (SDEs), formulated for two-scale forward systems (Theorem 2.8) and also for two-scale
forward-backward systems (Theorem 2.10). Besides its own mathematical interest, we are motivated by a novel
application of such a result to optimal control problems as we discuss below. We first recall some classical results
on Tikhonov theorem and we outline our contribution. In his seminal paper [24], Tikhonov considered systems
of ordinary differential equations (ODEs) on [0, T ], of the following form:{

dxε
t = b(t, xε

t , a
ε
t )dt,

εdaε
t = B(t, xε

t , a
ε
t )dt,

(1.1)

with ε ∈ (0, 1) and initial conditions xε
0 = x0, aε

0 = a0. Systems of ODEs as in (1.1) are sometimes called two-
scale systems, with “x” being referred to as the slow variable and “a” as the fast variable. By keeping in mind
that ε is supposed to be small, one can heuristically interpret (1.1) as follows. For small values of t, we expect the
slow variable to be close to its initial point x0; on the other hand, by performing the change of variable s = t/ε
in the second equation, we expect the fast variable to be close to its limit point a∞. Continuing heuristically,
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∗∗Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, via Trieste 63, 35121 Padova, Italy;
alekos.cecchin@unipd.it
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sending ε to zero in the second equation of (1.1) yields the equation B = 0. To make this more rigorous, the
idea is to consider the ODE {

dxt = b(t, xt, â(t, xt))dt,

x0 = x0,
(1.2)

together with the condition
B(t, xt, â(t, xt)) = 0, ∀t ∈ [0, T ], (1.3)

where the function â = â(t, x), satisfies â(0, x0) = a∞. Under suitable assumptions, the Tikhonov theorem
asserts that system (1.1) approximates indeed system (1.2)–(1.3), in the following sense:

lim
ε→0

sup
0≤t≤T

|xε
t − xt| = 0, lim

ε→0
sup

S≤t≤T
|aε

t − â(t, xt)| = 0,

for every 0 < S ≤ T . Kabanov and Pergamenshchikov [16] studied a stochastic version of the above theorem
by introducing the stochastic counterpart of (1.1):{

dXε
t = b(t,Xε

t , A
ε
t )dt+ σ(t,Xε

t , A
ε
t )dW

x
t ,

εdAε
t = B(t,Xε

t , A
ε
t )dt+ βεΣ(t,Xε

t , A
ε
t )dW

a
t ,

(1.4)

together with the initial conditions Xε
0 = x0 , Aε

0 = a0, and βε = o(ε). Here W x and W a are two independent
Brownian motions (see Remark 2.3). The stochastic counterpart of (1.2) reads as{

dXt = b(t,Xt, α̂(t,Xt))dt+ σ(t,Xt, α̂(t,Xt))dW
x
t ,

X0 = x0,
(1.5)

with α̂ satisfying (1.3). They prove, under suitable conditions, that

P − lim
ε→0

sup
0≤t≤T

|Xε
t −Xt| = 0, P − lim

ε→0
sup

S≤t≤T
|Aε

t − α̂(t,Xt)| = 0,

where the limits are understood in the sense of convergence in probability. The proof consists of two steps. First,
the result is established on a short time interval, using the continuous dependence of the solution of a system of
SDEs on the parameter ε. Second, a stability result is proven in the sense that if the solutions of (1.4) and (1.5) are
close on a short time interval, they remain close on [0, T ]. We refer to the monograph [16] for a thorough analysis
of two-scale stochastic systems. Along the same lines, the result has been generalized to the infinite-dimensional
case in [8], see also [23]. A different strand of literature, which has its origin in Bogoliubov’s averaging principle,
studies the case of βε =

√
ε. Unlike the present setting, the formal limit as ε → 0 in the second equation of

(1.4) does not correspond to B = 0, but to an ergodic SDE for the fast variable. This case requires completely
different techniques and we refer to [10, 12] for classical references, as well as to [7, 13, 14, 22] for more recent
results.

Our first main results are Theorems 2.8 and 2.10, which correspond to our two formulations of the Tikhonov
theorem. In particular, Theorem 2.8 applies to the McKean-Vlasov version of (1.4) (see system 2.4). On the
other hand, Theorem 2.10 applies to a class of coupled forward-backward systems which arise in the study of
mean field control problems, as described in Section 3. In both theorems we prove a stronger convergence on the
slow variable and a weaker convergence on the fast variable. The latter allows to get a possibly discontinuous
process in the limit, which is relevant for our application to optimal control problems. The second novelty is that
our proof is based on a completely different approach with respect to the classical literature and this allows us to
easily include the McKean-Vlasov case. We stress however that this result is new even in the classical setup.

In the second part of the paper we use two-scale systems to approximate stochastic optimal control problems.
In particular, as explained below, we rely on the Pontryagin stochastic maximum principle, even though it is
worth mentioning that another approach could be investigated relying on Bellman’s optimality principle and on
the representation of the value function in terms of a suitable forward-backward system of stochastic differential
equations (see for instance [19, 2, 3, 4, 5, 6]).

It is well known that the Pontryagin stochastic maximum principle reduces the problem to solving a system
of forward-backward stochastic differential equations (FBSDEs) of the following form:

dXt = b(t,Xt,PXt , α̂(t,Θt,PΘt),Pα̂t)dt+ σ(t,Xt,PXt , α̂(t,Θt,PΘt),Pα̂t)dW
x
t ,

dYt = F (t,Xt,PXt , α̂(t,Θt,PΘt),Pα̂t , Yt, Zt)dt+ ZtdW
x
t ,

X0 = ξ, YT = G(XT ,PXT ),

(1.6)

where Θt := (Xt, Yt, Zt) and α̂, F , G are suitable functions. A crucial role is played by the function α̂,
representing the minimizer of the Hamiltonian of the system. In very simple cases such a function can be
explicitly calculated and the solution of (1.6) yields the solution to the control problem. However, even if it is
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explicit, when the dimension of the problem is large, calculating α̂ at each time step may be computationally
quite expensive (as a matter of fact, it may require solving a large system of linear equations, as it happens in the
linear quadratic problem). Similarly, when α̂ is not explicit, it needs to be approximated numerically and this
minimization step becomes a non-trivial part of the algorithm for solving (1.6) (see, e.g., the introduction of [15]
for a discussion).

In our last main result (Theorem 3.4) we prove that the solution of a suitable two-scale system of FBSDEs,
see (3.7), converges to the solution of (1.6). In particular, the “fast” component Aε of (3.7) converges towards the
optimal control process given by α̂(t,Θt,PΘt), while the “slow” component Xε converges towards the optimal
state process. The advantage is that such a procedure avoids the usual minimization step. As a matter of fact, the
problem of finding the minimizer of the Hamiltonian is delegated to the equation for Aε, which runs on a fast
time scale. Following the above heuristic discussion on the Tikhonov theorem, the equation for Aε is chosen in
such a way that in the limit equation we end up with the equation ∂aH = 0, which corresponds to finding the
critical points of the Hamiltonian (see also Remark 3.2). A (strict) convexity assumption, typical of the stochastic
maximum principle, ensures that critical points are unique and they give indeed the unique minimizer of H (and
in turn the optimal control). We point out that we also consider the so-called extended mean field control setting,
namely we allow H to depend on the law of the control itself, therefore the equation for the critical points is
more complicated, see (3.5). Finally, we emphasize that the approximation procedure is new even for classical
(non mean field) control problems.

We end the paper by illustrating our method in the case of McKean-Vlasov linear quadratic control problems,
considering two different cases. Firstly, we study the one-dimensional case, where we can easily solve the
FBSDE system (1.6) and compare it with (3.7) for different values of ε, given by the two-scale approximation
induced by the Tikhonov theorem. Secondly, we consider the (non McKean-Vlasov) linear quadratic problem in
large dimension, for which we show that, even in such a simple framework, the classical approach is severely
outperformed by the two-scale approximation (see Table 1). The latter example is relevant because, as already
emphasized, the results of the paper are new even in the non McKean-Vlasov setting. Those results can be
explained by the fact that in the classical algorithm the minimization of the Hamiltonian requires solving, at each
time step, a large system of linear equations; on the other hand, using our method just amounts at evaluating at
each time step such a linear term, which indeed corresponds to the drift in the dynamics of the fast variable.

The rest of the paper is organized as follows. In Section 2 we prove two different formulations of the stochas-
tic Tikhonov theorem: Theorem 2.8, where it is studied the two-scale stochastic system (2.4) and its convergence
towards the limiting equations (2.17)-(2.18); Theorem 2.10, where the two-scale forward-backward system (2.28)
is studied and the limiting equations are (2.33)-(2.34). In Section 3 we introduce the mean field optimal control
problem (3.1)-(3.2), on which we impose a suitable set of assumptions guaranteeing the necessary and sufficiency
parts of Pontryagin maximum principle. Then, we consider the McKean-Vlasov forward-backward system (3.6)
arising from the Pontryagin maximum principle, which, together with (3.5), turns out to be the limiting equation
of the two-scale stochastic system (3.7). The last part of Section 3 is devoted to develop a numerical example in
the linear quadratic case. Finally, in Appendix A we recall the definition of Lions differentiability and present its
essential features.

2 Two-scale stochastic systems: stochastic Tikhonov theorems
Let (Ω,F ,P) be a complete probability space, on which a m-dimensional Brownian motion W = (Wt)t≥0 is
defined. For every n ∈ N and any sub-σ-algebra H of F , let L2(Ω,H,P;Rn), or simply L2 when no confusion
arises, the space of (equivalence classes of) H-measurable random variables taking values in Rn. Moreover, let
P(Rn) be the family of all probability measures on (Rn,B(Rn)), where B(Rn) is the Borel σ-algebra on Rn.
Given a random variable ξ : Ω → Rn we denote by Pξ its law on (Rn,B(Rn)).
We define

P2(Rn) :=

{
µ ∈ P(Rn) :

∫
Rn

|x|2 µ(dx) < +∞
}
.

On the set P2(Rn) we consider the 2-Wasserstein metric

W2(µ, µ
′) := inf

{(∫
Rn×Rn

|x− y|2 π(dx, dy)
)1/2

: π ∈ P(Rn × Rn) such that πx = µ, πy = µ′
}
,

where πx, πy are the respective marginals. Given ξ, ξ′ ∈ L2(Ω,F ,P;Rn) with laws µ and µ′, respectively, it
follows easily from the definition of W2 that

W2(µ, µ
′) ≤ ∥ξ − ξ′∥L2 , (2.1)

where ∥ · ∥L2 denotes the L2-norm. We also denote

∥µ∥2 :=
√

W2(µ, δ0) =

(∫
R
|x|2 µ(dx)

)1/2

, ∀µ ∈ P2(Rn),
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where δ0 is the Dirac delta centered at 0. Notice that if ξ : Ω → Rn is a random variable having distribution µ,
then

∥µ∥2 = ∥ξ∥L2 . (2.2)

In the sequel we also consider the set P2(Rn×k) and the corresponding Wasserstein metric W2, which are
defined in an analogous manner.
Let FW = (FW

t )t≥0 denote the P-completion of the filtration generated by the Brownian motion W . Suppose
also that there exists a sub-σ-algebra G of F satisfying:

1) G and FW
∞ are independent;

2) there exists a G-measurable random variable U : Ω → R having uniform distribution on [0, 1].

Remark 2.1. We refer to [11, Lemma 2.1, Remarks 2.2 and 2.3] for some comments and insights on the σ-
algebra G. Here we just notice that when we deal with McKean-Vlasov stochastic differential equations it is
natural to consider random initial conditions. Such random initial conditions will be taken G-measurable. The
second property satisfied by G is equivalent to the following property, see [11, Lemma 2.1]:

G satisfies 2) ⇐⇒ ∀n ∈ N, P2(Rn) =
{
Pξ : ξ ∈ L2(Ω,G,P;Rn)

}
.

Let F = (Ft)t≥0 denote the the filtration given by

Ft = G ∨ FW
t , ∀ t ≥ 0. (2.3)

Given n, ñ ∈ N, we introduce the following spaces of Rn-valued or Rn×ñ-valued stochastic processes on [0, T ].

• S2
n is the set of continuous and F-adapted Rn-valued stochastic processes Y = (Yt)t∈[0,T ] such that

∥Y ∥2S2 := E
[

sup
0≤t≤T

|Yt|2
]

< ∞.

• H2
n (resp. H2

n×ñ) is the set of F-progressively measurable Rn-valued (resp. Rn×ñ-valued) stochastic
processes Z = (Zt)t∈[0,T ] such that

∥Z∥2H2 := E
[ ∫ T

0

|Zt|2dt
]

< ∞.

2.1 Stochastic Tikhonov theorem I
Given T > 0, d, k ∈ N, ξ ∈ L2(Ω,G,P;Rd), η ∈ L2(Ω,G,P;Rk), we consider, for every ε > 0, the following
two-scale system of stochastic differential equations on [0, T ]:

dXε
t = b

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dt+ σ

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dWt,

εdAε
t = B

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dt+ βεΣ

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dWt,

Xε
0 = ξ, Aε

0 = η,

(2.4)

where we impose the following assumptions on βε and on the coefficients

b , σ , B , Σ : [0, T ]× Ω× Rd × P2(Rd)× Rk × P2(Rk) −→ Rd , Rd×m , Rk , Rk×m.

Assumption (A).

1) βε = o(ε) as ε → 0, that is limε→0
βε

ε
= 0.

2) The functions b, σ, B, Σ are measurable with respect to Prog ⊗ B(Rd) ⊗ B(P2(Rd)) ⊗ B(Rk) ⊗
B(P2(Rk)), where Prog denotes the σ-algebra of F-progressive sets on [0, T ] × Ω, while B(S) denotes
the Borel σ-algebra of a topological space S.

3) b, σ, B, Σ satisfy linear growth conditions: there exists a constant K > 0 such that

|b(t, ω, x, µ, a, ν)|+ |σ(t, ω, x, µ, a, ν)| ≤ K
(
1 + |x|+ ∥µ∥2 + |a|+ ∥ν∥2

)
,

|B(t, ω, x, µ, a, ν)|+ |Σ(t, ω, x, µ, a, ν)| ≤ K
(
1 + |x|+ ∥µ∥2 + |a|+ ∥ν∥2

)
,

for all (t, ω, x, µ, a, ν) ∈ [0, T ]× Ω× Rd × P2(Rd)× Rk × P(Rk).
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4) b, σ, B, Σ satisfy the Lipschitz continuity condition: there exists a constant K > 0 such that

|b(t, ω, x, µ, a, ν)− b(t, ω, x′, µ′, a′, ν′)| ≤ K
(
|x− x′|+W2(µ, µ

′) + |a− a′|+W2(ν, ν
′)
)
,

|σ(t, ω, x, µ, a, ν)− σ(t, ω, x′, µ′, a′, ν′)| ≤ K
(
|x− x′|+W2(µ, µ

′) + |a− a′|+W2(ν, ν
′)
)
,

|B(t, ω, x, µ, a, ν)−B(t, ω, x′, µ′, a, ν)| ≤ K
(
|x− x′|+W2(µ, µ

′)
)
,

|Σ(t, ω, x, µ, a, ν)− Σ(t, ω, x′, µ′, a′, ν′)| ≤ K
(
|x− x′|+W2(µ, µ

′) + |a− a′|+W2(ν, ν
′)
)
,

for all (t, ω) ∈ [0, T ]× Ω, (x, µ, a, ν), (x′, µ′, a′, ν′) ∈ Rd × P2(Rd)× Rk × P2(Rk).

5) B satisfies the monotonicity condition: there exists a constant λ > 0 such that

E
[〈
B
(
t, ξ,Pξ, η,Pη

)
−B

(
t, ξ,Pξ, η

′,Pη′
)
, η − η′〉] ≤ −λE

[
|η − η′|2

]
, (2.5)

for all t ∈ [0, T ], ξ ∈ L2(Ω,F ,P;Rd), η, η′ ∈ L2(Ω,F ,P;Rk).

Remark 2.2. As in (2.5), B(t, ω, x, µ, a, ν) is often written omitting ω, that is B(t, x, µ, a, ν). Similarly for the
other coefficients b, σ, Σ.

Remark 2.3. Notice that in [16] the Brownian motions driving the equations of the two-scale system are different
and independent. Here we relax this assumption taking in (2.4) the same m-dimensional Brownian motion W .
More precisely, the case studied in [16] is obtained writing W = (W x,W a) (with W x being mx-dimensional
and W a being ma-dimensional, where m = mx + ma) and choosing the coefficients σ, Σ in such a way that
the first equation in (2.4) only involves W x, while the second equation only involves W a.

Lemma 2.4. Let Assumption (A) hold. Let ξ ∈ L2(Ω,G,P;Rd), α, α′ ∈ H2
k. Suppose that Xα ∈ S2

d is a
solution to the following controlled stochastic differential equation on [0, T ]:

dXt = b
(
t,Xt,PXt , αt,Pαt

)
dt+ σ

(
t,Xt,PXt , αt,Pαt

)
dWt, ∀ t ∈ [0, T ], X0 = ξ. (2.6)

Similarly, suppose that Xα′
∈ S2

d is a solution to equation (2.6) with α′ in place of α. Then, for any t, t̄ ∈ [0, T ],
with t ≤ t̄, it holds that

E
[

sup
t≤t≤t̄

∣∣Xα
t −Xα′

t

∣∣2] ≤ eCK(1+T2)

{
E
[∣∣Xα

t −Xα′
t

∣∣2] (2.7)

+ E
[ ∫ t̄

t

∣∣b(s,Xα′
s ,PXα′

s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣2ds]
+ E

[ ∫ t̄

t

∣∣σ(s,Xα′
s ,PXα′

s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣2ds]},

for some constant CK ≥ 0, depending only on the constant K appearing in Assumption (A). In particular, it
holds that

E
[

sup
0≤t≤t̄

∣∣Xα
t −Xα′

t

∣∣2] ≤ 8K2eCK(1+T2)E
[ ∫ t̄

0

∣∣αs − α′
s

∣∣2ds]. (2.8)

Proof. Fix t, t̄ ∈ [0, T ], with t ≤ t̄. We begin noting that estimate (2.8) follows directly from (2.7), the Lipschitz
property of b, σ with respect to their two last arguments (a, ν), and estimate (2.1). Therefore it remains to prove
(2.7). From equation (2.11) we have, for any t ∈ [t, t̄],

∣∣Xα
t −Xα′

t

∣∣2 ≤ 3
∣∣Xα

t −Xα′
t

∣∣2 + 3

∣∣∣∣ ∫ t

t

(
b
(
s,Xα

s ,PXα
s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

))
ds

∣∣∣∣2
+ 3

∣∣∣∣ ∫ t

t

(
σ
(
s,Xα

s ,PXα
s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

))
dWs

∣∣∣∣2.
Taking the supremum over t ∈ [t, r], with r ∈ [t, t̄], together with the expectation, and also applying the Jensen
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and Burkholder-Davis-Gundy inequalities, we obtain (for some constant C2 ≥ 0)

E
[

sup
t≤t≤r

∣∣Xα
t −Xα′

t

∣∣2]
≤ 3E

[∣∣Xα
t −Xα′

t

∣∣2]+ 3E
[(∫ r

t

∣∣∣b(s,Xα
s ,PXα

s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣ds)2]
+ 3E

[
sup

t≤t≤r

∣∣∣∣ ∫ t

t

(
σ
(
s,Xα

s ,PXα
s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

))
dWs

∣∣∣∣2]
≤ 3E

[∣∣Xα
t −Xα′

t

∣∣2]+ 3TE
[ ∫ r

t

∣∣∣b(s,Xα
s ,PXα

s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds]
+ 3C2E

[ ∫ r

t

∣∣∣σ(s,Xα
s ,PXα

s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds].
By the Lipschitz property of b and σ, we find

E
[

sup
t≤t≤r

∣∣Xα
t −Xα′

t

∣∣2] ≤ 3E
[∣∣Xα

t −Xα′
t

∣∣2]+ 24K2(T + C2)

∫ r

t

E
[

sup
t≤t≤s

∣∣Xα
t −Xα′

t

∣∣2]ds
+ 6(T + C2)E

[ ∫ r

t

∣∣∣b(s,Xα′
s ,PXα′

s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds
+

∫ r

t

∣∣∣σ(s,Xα′
s ,PXα′

s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds].
Applying Gronwall’s inequality to the function v(r) := E supt≤t≤r |Xα

t −Xα′
t |2, r ∈ [t, t̄], we obtain

E
[

sup
t≤t≤t̄

∣∣Xα
t −Xα′

t

∣∣2] ≤ 3e24K
2(T+C2)TE

[∣∣Xα
t −Xα′

t

∣∣2]
+ 6(T + C2)e24K

2(T+C2)TE
[ ∫ t̄

t

∣∣∣b(s,Xα
s ,PXα

s
, αs,Pαs

)
− b

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds
+

∫ t̄

t

∣∣∣σ(s,Xα
s ,PXα

s
, αs,Pαs

)
− σ

(
s,Xα′

s ,PXα′
s
, α′

s,Pα′
s

)∣∣∣2ds].
This proves (2.7) for some constant CK ≥ 0, depending only on K and satisfying (3+6(T+C2)) exp(24K

2(T+
C2)T ) ≤ exp(CK(1 + T 2)).

Proposition 2.5. Let Assumption (A) hold. For every ε > 0, there exists a unique solution (Xε, Aε) in S2
d × S2

k

to system (2.4). In addition, there exists a constant C > 0, depending only on T,K, λ, but independent of ε,
such that

∥Aε∥2H2 ≤ C

(
1 +

(βε)2

ε2

)(
1 + E|η|2 + E|ξ|2

)
e
C

(
1+

(βε)2

ε2

)
(2.9)

and

∥Xε∥2S2 ≤ C

(
1 +

(βε)2

ε2

)(
1 + E|η|2 + E|ξ|2

)
e
C

(
1+

(βε)2

ε2

)
. (2.10)

Proof. Existence and uniqueness of (Xε, Aε). Let Φ: H2
k → H2

k be the map defined as follows. Given α ∈ H2
k,

let Xα ∈ S2
d be the solution to the following controlled stochastic differential equation on [0, T ]:

dXt = b
(
t,Xt,PXt , αt,Pαt

)
dt+ σ

(
t,Xt,PXt , αt,Pαt

)
dWt, X0 = ξ. (2.11)

The existence and uniqueness of Xα ∈ S2
d follows from the Lipschitz and linear growth conditions of b and σ

(see for instance [9, Theorem 4.21]). Then, let Φ(α) ∈ H2
k be the unique solution to the following stochastic

differential equation on [0, T ]:

εdAt = B
(
t,Xα

t ,PXα
t
, At,PAt

)
dt+ βεΣ

(
t,Xα

t ,PXα
t
, At,PAt

)
dWt, A0 = η.

The existence and uniqueness of Φ(α) ∈ H2
k can be proved proceeding as in [20, Theorem 3.21], and it follows

from the monotonicity condition of B and the Lipschitz property of Σ with respect to (a, ν). This shows that
Φ is well-defined. It remains to prove that Φ is a contraction, indeed, the fixed point of Φ is clearly the desired
solution Aε. By the linear growth conditions of B and Σ with respect to (a, ν) (Assumption (A)-4)), it is easy
to see that Aε also belongs to S2

d. Moreover, taking α := Aε in (2.11) we see that XAε

corresponds to Xε.
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Let us prove that Φ is a contraction. Let α, α′ ∈ H2
k. Without loss of generality, we can suppose that

α0 = α′
0. If this is not the case, we define α̃ ∈ H2

k as

α̃t :=

{
α′
0, t = 0,

αt, t ∈ (0, T ],
(2.12)

and replace α by α̃. From Itô’s formula applied to |Φ(α)t − Φ(α′)t|2, we get∣∣Φ(α)t − Φ(α′)t
∣∣2 =

=
2

ε

∫ t

0

〈
B
(
s,Xα

s ,PXα
s
,Φ(α)s,PΦ(α)s

)
−B

(
s,Xα′

s ,PXα′
s
,Φ(α′)s,PΦ(α′)s

)
,Φ(α)s − Φ(α′)s

〉
ds

+
(βε)2

ε2

∫ t

0

∣∣Σ(s,Xα
s ,PXα

s
,Φ(α)s,PΦ(α)s

)
− Σ

(
s,Xα′

s ,PXα′
s
,Φ(α′)s,PΦ(α′)s

)∣∣2ds
+

2βε

ε

∫ t

0

〈(
Σ
(
s,Xα

s ,PXα
s
,Φ(α)s,PΦ(α)s

)
− Σ

(
s,Xα′

s ,PXα′
s
,Φ(α′)s,PΦ(α′)s

))⊺
(Φ(α)s − Φ(α′)s), dWs

〉
.

Notice that the last term above is a true martingale (with zero mean) as Xα, Xα′
∈ S2

d, Φ(α),Φ(α′) ∈ H2
k, and

Σ satisfies a linear growth condition (see item 2 of Assumption (A)). As a consequence, taking the expectation,
using the monotonicity condition (2.5), and also the Lipschitz property of B in (x, µ) and of Σ in (x, µ, a, ν),
we obtain

E
∣∣Φ(α)t − Φ(α′)t

∣∣2 ≤ −2λ

ε
E
∫ t

0

∣∣Φ(α)s − Φ(α′)s
∣∣2ds

+
2K

ε
E
∫ t

0

(∣∣Xα
s −Xα′

s

∣∣+W2

(
PXα

s
,PXα′

s

))∣∣Φ(α)s − Φ(α′)s
∣∣ds

+
4K2(βε)2

ε2
E
∫ t

0

(∣∣Xα
s −Xα′

s

∣∣2 +W2

(
PXα

s
,PXα′

s

)2
+

∣∣Φ(α)s − Φ(α′)s
∣∣2 +W2

(
PΦ(α)s ,PΦ(α′)s

)2)
ds

≤ 2K

ε
E
∫ t

0

(∣∣Xα
s −Xα′

s

∣∣2 +W2

(
PXα

s
,PXα′

s

)2)
ds+

K

ε
E
∫ t

0

∣∣Φ(α)s − Φ(α′)s
∣∣2ds

+
4K2(βε)2

ε2
E
∫ t

0

(∣∣Xα
s −Xα′

s

∣∣2 +W2

(
PXα

s
,PXα′

s

)2
+

∣∣Φ(α)s − Φ(α′)s
∣∣2 +W2

(
PΦ(α)s ,PΦ(α′)s

)2)
ds,

where the last inequality follows from xy ≤ x2/2 + y2/2, for every x, y ∈ R. Hence

E
∣∣Φ(α)t − Φ(α′)t

∣∣2 ≤
(
4K

ε
+

8K2(βε)2

ε2

)∫ t

0

E
∣∣Xα

s −Xα′
s

∣∣2ds
+

(
K

ε
+

8K2(βε)2

ε2

)∫ t

0

E
∣∣Φ(α)s − Φ(α′)s

∣∣2ds
≤ Cε,K

∫ t

0

E
∣∣Xα

s −Xα′
s

∣∣2ds+ Cε,K

∫ t

0

E
∣∣Φ(α)s − Φ(α′)s

∣∣2ds,
with Cε,K := 4K/ε+ 8K2(βε)2/ε2. By Gronwall’s inequality, we find

E
∣∣Φ(α)t − Φ(α′)t

∣∣2 ≤ Cε,KeCε,KT

∫ t

0

E
∣∣Xα

s −Xα′
s

∣∣2ds ≤ Cε,KT eCε,KT
∥∥Xα −Xα′∥∥2

S2 .

Integrating with respect to t between t = 0 and t = T , we obtain∥∥Φ(α)− Φ(α′)
∥∥2

H2 ≤ Cε,KT 2eCε,KT
∥∥Xα −Xα′∥∥2

S2 .

By estimate (2.8) with t̄ = T , we have∥∥Φ(α)− Φ(α′)
∥∥2

H2 ≤ 8K2Cε,KT 2eCK(1+T2)+Cε,KT ∥α− α′∥2H2 .

This shows that Φ is a contraction if T is small enough. For a generic T , we proceed iteratively, proving existence
and uniqueness on suitable subintervals of [0, T ].

Estimates (2.9) and (2.10). We begin noting that we have the following standard estimate for Xε (in the sequel,
C > 0 denotes a constant only depending on λ,K, T , which may change from line to line)

E
[

sup
0≤s≤t

|Xε
s |2

]
≤ C E

[
|ξ|2 +

∫ t

0

∣∣b(s, 0, δ0, Aε
s,PAε

s
)
∣∣2ds+ ∫ t

0

∣∣σ(s, 0, δ0, Aε
s,PAε

s
)
∣∣2ds].
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Therefore, in particular it holds that

E
[

sup
0≤s≤t

|Xε
s |2

]
≤ C

(
1 + E|ξ|2 +

∫ t

0

E|Aε
s|2ds

)
. (2.13)

We begin applying Itô’s formula to s 7→ eλs/(2ε)|Aε
t |2 between s = 0 and s = t ∈ [0, T ], then we take the expec-

tation and we obtain (here we use that the stochastic integral t 7→
∫ t

0
e2λs/(3ε)⟨Aε

s,Σ(s,X
ε
s ,PXε

s
, Aε

s,PAε
s
)dWs⟩

is a true martingale; such a martingale property is a consequence of the fact that Xε ∈ S2
d, Aε ∈ H2

k, and Σ
satisfies a linear growth condition)

E
[
|Aε

t |2
]
= e−

λ
2ε

tE
[
|η|2

]
+

λ

2ε
E
∫ t

0

e
λ
2ε

(s−t)|Aε
s|2ds+

1

ε
E
∫ t

0

e
λ
2ε

(s−t)⟨B(s,Xε
s ,PXε

s
, Aε

s,PAε
s
), Aε

s⟩ds

+
(βε)2

ε2
E
∫ t

0

e
λ
2ε

(s−t)tr
(
Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)⊺
)
ds.

By the monotonicity condition (2.5), the Lipschitz continuity of B with respect to (x, µ), and the linear growth
of Σ in (x, µ, a, ν), we get (using also (2.1) and the elementary inequalities E|Xε

s | ≤
√

E|Xε
s |2, E|Aε

s| ≤√
E|Aε

s|2)

E
[
|Aε

t |2
]
≤ e−

λ
2ε

tE
[
|η|2

]
+

λ

2ε

∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds−

λ

ε

∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds

+
C

ε

∫ t

0

e
λ
2ε

(s−t)
√

E|Xε
s |2

√
E|Aε

s|2ds+
1

ε
E
∫ t

0

e
λ
2ε

(s−t)⟨B(s, 0, δ0, 0, δ0), A
ε
s⟩ds

+ C
(βε)2

ε2

∫ t

0

e
λ
2ε

(s−t)
(
1 + E|Xε

s |2 + E|Aε
s|2

)
ds. (2.14)

Now, by (2.13), the elementary inequality
√
a+ b+ c ≤

√
a +

√
b +

√
c, valid for every a, b, c ≥ 0, and also

recalling from Assumption (A) that |B(s, 0, δ0, 0, δ0)| ≤ K, we find

C

ε

∫ t

0

e
λ
2ε

(s−t)
√

E|Xε
s |2

√
E|Aε

s|2ds+
1

ε
E
∫ t

0

e
λ
2ε

(s−t)⟨B(s, 0, δ0, 0, δ0), A
ε
s⟩ds ≤

≤ C

ε

∫ t

0

e
λ
2ε

(s−t)

(
1 +

√
E|ξ|2 +

√∫ s

0

E|Aε
r|2dr

)√
E|Aε

s|2ds

≤ C

ε

√∫ t

0

e
λ
2ε

(s−t)

(
1 + E|ξ|2 +

∫ s

0

E|Aε
r|2dr

)
ds

√∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds

≤ C2

2λε

∫ t

0

e
λ
2ε

(s−t)

(
1 + E|ξ|2 +

∫ s

0

E|Aε
r|2dr

)
ds+

λ

2ε

∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds

=
C2

λ2

(
1 + E|ξ|2

)(
1− e−

λ
2ε

t)+ C2

2λε

∫ t

0

E|Aε
r|2

(∫ t

r

e
λ
2ε

(s−t)ds

)
dr +

λ

2ε

∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds

=
C2

λ2

(
1 + E|ξ|2

)(
1− e−

λ
2ε

t)+ C2

λ2

∫ t

0

E|Aε
r|2

(
1− e

λ
2ε

(r−t))dr + λ

2ε

∫ t

0

e
λ
2ε

(s−t)E|Aε
s|2ds

≤ C2

λ2

(
1 + E|ξ|2 +

∫ t

0

E|Aε
s|2ds

)
+

λ

2ε

∫ t

0

e
cλ
ε

(s−t)E|Aε
s|2ds, (2.15)

where in the third inequality above we used that ab ≤ Ca2/(2λ) + λb2/(2C), for every a, b ∈ R. Moreover,
using again (2.13), we obtain

(βε)2

ε2

∫ t

0

e
λ
2ε

(s−t)
(
1 + E|Xε

s |2 + E|Aε
s|2

)
ds ≤ (βε)2

ε2

∫ t

0

(
1 + E|Xε

s |2 + E|Aε
s|2

)
ds

≤ C
(βε)2

ε2

(
1 + E|ξ|2 +

∫ t

0

E|Aε
s|2ds

)
. (2.16)

Plugging estimates (2.15) and (2.16) into (2.14) we get

E
[
|Aε

t |2
]
≤ e−

cλ
ε

tE
[
|η|2

]
+ C

(
1 +

(βε)2

ε2

)(
1 + E|ξ|2 +

∫ t

0

E|Aε
s|2ds

)
≤ E

[
|η|2

]
+ C

(
1 +

(βε)2

ε2

)(
1 + E|ξ|2 +

∫ t

0

E|Aε
s|2ds

)
.
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Applying Gronwall’s inequality to v(t) = E|Aε
t |2, t ∈ [0, T ], we find

E
[
|Aε

t |2
]
≤

(
E
[
|η|2

]
+ C

(
1 +

(βε)2

ε2

)(
1 + E|ξ|2

))
e
C

(
1+

(βε)2

ε2

)
T
, ∀ t ∈ [0, T ].

which yields (2.9). Finally, plugging (2.9) into (2.13) we get (2.10).

Assumption (B). For every ξ ∈ L2(Ω,G,P;Rd) there exists α̂ ∈ H2
k such that

∥∥B(
·, X̂·,PX̂·

, α̂·,Pα̂·

)∥∥2

H2 = E
[ ∫ T

0

∣∣B(
t, X̂t,PX̂t

, α̂t,Pα̂t

)∣∣2 dt] = 0, (2.17)

where X̂ is the unique solution in S2
d to the following controlled stochastic differential equation on [0, T ]:

dX̂t = b
(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dt+ σ

(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dWt, t ∈ [0, T ], X̂0 = ξ. (2.18)

Proposition 2.6. Let Assumptions (A) and (B) hold. Then, there exists a unique pair of processes (X̂, α̂) ∈
S2
d ×H2

k satisfying (2.17)-(2.18).

Proof. Let (X ′, α′) ∈ S2
d × H2

k be another pair satisfying (2.17)-(2.18). First observe that if ∥α̂ − α′∥H2 = 0,
then by estimate (2.8) we have ∥X̂ −X ′∥S2 = 0. Therefore, it is enough to prove ∥α̂−α′∥H2 = 0. To this end,
notice that, for any t̄ ∈ [0, T ], it holds that∣∣∣∣E[ ∫ t̄

0

〈
B
(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
−B

(
t,X ′

t,PX′
t
, α′

t,Pα′
t

)
, α̂t − α′

t

〉
dt

]∣∣∣∣
≤ E

[ ∫ T

0

(∣∣B(
t, X̂t,PX̂t

, α̂t,Pα̂t

)∣∣+ ∣∣B(
t,X ′

t,PX′
t
, α′

t,Pα′
t

)∣∣α̂t − α′
t

∣∣dt]
≤

(∥∥B(
·, X̂·,PX̂·

, α̂·,Pα̂·

)∥∥
H2 +

∥∥B(
·, X ′

· ,PX′
· , α

′
·,Pα′

·

)∥∥
H2

)∥∥α̂− α′∥∥
H2 = 0.

Hence

0 = E
[ ∫ t̄

0

〈
B
(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
−B

(
t,X ′

t,PX′
t
, α′

t,Pα′
t

)
, α̂t − α′

t

〉
dt

]
= E

[ ∫ t̄

0

〈
B
(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
−B

(
t, X̂t,PX̂t

, α′
t,Pα′

t

)
, α̂t − α′

t

〉
dt

]
+ E

[ ∫ t̄

0

〈
B
(
t, X̂t,PX̂t

, α′
t,Pα′

t

)
−B

(
t,X ′

t,PX′
t
, α′

t,Pα′
t

)
, α̂t − α′

t

〉
dt

]
≤ −λE

[ ∫ t̄

0

|α̂t − α′
t|2dt

]
+KE

[ ∫ t̄

0

(
|X̂t −X ′

t|+W2

(
PX̂t

,PX′
t

))
|α̂t − α′

t|dt
]
,

where the last inequality follows from the monotonicity and Lipschitz properties of B. Now, from the Cauchy-
Schwarz inequality and estimate (2.1), we find

λE
[ ∫ t̄

0

|α̂t − α′
t|2dt

]
≤ K

√
E
[ ∫ t̄

0

(
|X̂t −X ′

t|+W2

(
PX̂t

,PX′
t

))2

dt

]√
E
[ ∫ t̄

0

|α̂t − α′
t|2dt

]

≤
√
2K

√
E
[ ∫ t̄

0

|X̂t −X ′
t|2dt

]√
E
[ ∫ t̄

0

|α̂t − α′
t|2dt

]

≤
√
2t̄K

√
E
[

sup
0≤t≤t̄

|X̂t −X ′
t|2

]√
E
[ ∫ t̄

0

|α̂t − α′
t|2dt

]
.

Now, by estimate (2.8) we obtain

λE
[ ∫ t̄

0

|α̂t − α′
t|2dt

]
≤ 4

√
t̄ K2e

CK (1+T2)
2 E

[ ∫ t̄

0

∣∣α̂t − α′
t

∣∣2dt]. (2.19)

Let F : [0, T ] → [0,∞) be given by

F (t) = E
[ ∫ t

0

∣∣α̂s − α′
s

∣∣2dt], ∀ t ∈ [0, T ].
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Notice that F (0) = 0 and F is a monotone non-decreasing function. Since F (T ) = ∥α̂ − α′∥H2 , we see that
the claim follows if we prove that F is constant. This is indeed a direct consequence of (2.19), which written in
terms of F becomes

F (t) ≤ Ĉ
√
t F (t), for all t ∈ [0, T ], (2.20)

with Ĉ := (4K2/λ) exp(CK(1 + T 2)/2) > 0. Since F ≥ 0, from (2.20) we deduce that

Ĉ
√
t < 1 =⇒ F (t) = 0.

This means that F is constant on the interval [0, ℓ), where ℓ := Ĉ−2. Therefore, starting for instance from the
interval [0, ℓ/2], then considering the interval [ℓ/2, ℓ], afterwards the interval [ℓ, 3ℓ/2], and so on, we see that
after a finite number of steps we conclude that F is constant on the entire interval [0, T ].

Lemma 2.7. The family

H =

{
α ∈ H2

k : αt =

∫ t

0

Fs ds, ∀ t ∈ [0, T ], for some F ∈ H2
k

}
is dense in H2

k.

Proof. Consider the family

S =

{
α ∈ H2

k : αt = ξ1(t0,T ](t), ∀ t ∈ [0, T ], for some t0 ∈ [0, T ), ξ : Ω → Rk, Ft0 -meas. and bounded
}
.

It is well-known that linear space generated by S is dense in H2
k, see for instance [17, Lemma 3.2.4] (notice that

it coincides with the linear space generated by the processes of the form ξ1(t0,t1], with t0, t1 ∈ [0, T ], t0 < t1,
and ξ being Ft0 -measurable and bounded). Then, it is enough to prove that, for any t0 ∈ [0, T ) and ξ : Ω → Rk,
with ξ being Ft0 -measurable and bounded, there exists a sequence (Fn)n ⊂ H2

k such that

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

Fn
s ds− ξ1(t0,T ](t)

∣∣∣∣2dt] −→
n→∞

0.

Let Fn
s = nξ1[t0,t0+1/n](s), s ∈ [0, T ], n ∈ N. Then

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

Fn
s ds− ξ1(t0,T ](t)

∣∣∣∣2dt] = E
[ ∫ t0+

1
n

t0

∣∣nξ(t− t0)− ξ
∣∣2dt] =

1

3n
E
[
|ξ|2

]
−→
n→∞

0.

We can now state our first formulation of the stochastic Tikhonov theorem, which applies to the two-scale system
(2.4).

Theorem 2.8 (Stochastic Tikhonov Theorem I). Let Assumptions (A) and (B) hold. Moreover, let (X̂, α̂) ∈
S2
d ×H2

k be as in Assumption (B) and, for every ε > 0, let (Xε, Aε) ∈ S2
d ×H2

k be as in Proposition 2.5. Then,
it holds that ∥∥Aε − α̂

∥∥
H2 −→

ε→0
0 (2.21)

and ∥∥Xε − X̂
∥∥
S2 −→

ε→0
0. (2.22)

Proof. We begin by noticing that (2.22) follows directly from (2.21) and estimate (2.8) (with t̄ = T ). Thus, we
only need to prove (2.21). Let α̂ ∈ H2

k be the process appearing in Assumption (B). By Lemma 2.7 there exists
(Fn)n ∈ H2

k such that ∥αn − α̂∥H2 → 0 as n → ∞, with αn
t =

∫ t

0
Fn
s ds, t ∈ [0, T ] (as in (2.12), we redefine

αn at t = 0 as: αn
0 = η). Let also Xn ∈ S2

d denote the solution to the following equation:

dXn
t = b

(
t,Xn

t ,PXn
t
, αn

t ,Pαn
t

)
dt+ σ

(
t,Xn

t ,PXn
t
, αn

t ,Pαn
t

)
dWt, t ∈ [0, T ],

with Xn
0 = ξ. Applying Itô’s formula to e

2λ
3ε

t|Aε
t − αn

t |2, and taking the expectation (here we use that the
stochastic integral t 7→

∫ t

0
e2λs/(3ε)⟨Aε

s − αn
s ,Σ(s,X

ε
s ,PXε

s
, Aε

s,PAε
s
)dWs⟩ is a true martingale; such a mar-

tingale property is a consequence of the fact that Xε ∈ S2
d, Aε, αn ∈ H2

k, and Σ satisfies a linear growth
condition), we find

E|Aε
t − αn

t |2 =
2λ

3ε

∫ t

0

e
2λ
3ε

(s−t)E|Aε
s − αn

s |2ds+
2

ε

∫ t

0

e
2λ
3ε

(s−t)E
〈
B
(
s,Xε

s ,PXε
s
, Aε

s,PAε
s

)
, Aε

s − αn
s

〉
ds

− 2

∫ t

0

e
2λ
3ε

(s−t)E
〈
Fn
s , Aε

s − αn
s

〉
ds+

(βε)2

ε2

∫ t

0

e
2λ
3ε

(s−t)E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s

)∣∣2ds,
10



where we can interchange the expectation and the integral with respect to time thanks to Fubini’s theorem, as a
matter of fact the integrands belong to L1([0, t]× Ω,B([0, t])⊗ F , ds⊗ dP), for every t ∈ [0, T ]. Proceeding
along the same lines as for (2.14), we find (in the sequel, C > 0 denotes a constant only depending on λ,K, T ,
which may change from line to line)

v(t) ≤ C

∫ t

0

v(s) ds+ u(t),

where v(t) = E|Aε
t − αn

t |2, t ∈ [0, T ], and

u(t) =
C

ε

∫ t

0

e
2λ
3ε

(s−t)E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2ds+ 4

∫ t

0

e
2λ
3ε

(s−t)E
∣∣Fn

s

∣∣2ds
+

(βε)2

ε2

∫ t

0

e
2λ
3ε

(s−t)E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2ds.

Applying Gronwall’s inequality, we obtain v(t) ≤ u(t) +
∫ t

0
u(r)CeC(t−r)dr. Possibly enlarging C, from the

latter inequality we find v(t) ≤ u(t) + C
∫ t

0
u(r)dr, that is

E|Aε
t − αn

t |2 ≤ C

ε

∫ t

0

e
2λ
3ε

(s−t)E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2ds+ 4

∫ t

0

e
2λ
3ε

(s−t)E
∣∣Fn

s

∣∣2ds
+

(βε)2

ε2

∫ t

0

e
2λ
3ε

(s−t)E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2ds

+ C

{
C

ε

∫ t

0

(∫ r

0

e
2λ
3ε

(s−r)E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2ds)dr + 4

∫ t

0

(∫ r

0

e
2λ
3ε

(s−r)E
∣∣Fn

s

∣∣2ds)dr

+
(βε)2

ε2

∫ t

0

(∫ r

0

e
2λ
3ε

(s−r)E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2ds)dr

}
. (2.23)

Notice that∫ t

0

(∫ r

0

e
2λ
3ε

(s−r)E
∣∣Fn

s

∣∣2ds)dr =

∫ t

0

E
∣∣Fn

s

∣∣2(∫ t

s

e
2λ
3ε

(s−r)dr

)
ds

=
3ε

2λ

∫ t

0

E
∣∣Fn

s

∣∣2(1− e
2λ
3ε

(s−t)
)
ds ≤ Cε

∫ t

0

E
∣∣Fn

s

∣∣2ds.
An analogous estimate holds for the terms concerning B and Σ. Therefore, by (2.23) we obtain

E|Aε
t − αn

t |2 ≤ C

ε

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2ds

+ C

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Fn

s

∣∣2ds+ C
(βε)2

ε2

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2ds.

Integrating with respect to t between t = 0 and t = T , we find

∥∥Aε − αn
∥∥2

H2 ≤ C

ε

∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2dsdt (2.24)

+ C

∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Fn

s

∣∣2dsdt+ C
(βε)2

ε2

∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2dsdt.

Letting ε → 0, recalling estimate (2.10), the growth condition of Σ, equality (2.2), and the fact that βε = o(ε)
as ε → 0, we see that

(βε)2

ε2

∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Σ(s,Xε

s ,PXε
s
, Aε

s,PAε
s
)
∣∣2dsdt −→

ε→0
0. (2.25)

Similarly, since Fn ∈ H2
k and Fn is independent of ε, by Lebesgue’s dominated convergence theorem we

deduce that ∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣Fn

s

∣∣2dsdt −→
ε→0

0. (2.26)
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Finally, we have

1

ε

∫ T

0

∫ t

0

(
e

2λ
3ε

(s−t) + ε
)
E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2dsdt

=
1

ε

∫ T

0

E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2(∫ T

s

(
e

2λ
3ε

(s−t) + ε
)
dt

)
ds

=
1

ε

∫ T

0

E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2(− 3ε

2λ
e

2λ
3ε

(s−t)
∣∣∣t=T

t=s
+ ε(T − s)

)
ds

=
1

ε

∫ T

0

E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2( 3ε

2λ
− 3ε

2λ
e

2λ
3ε

(s−T ) + ε(T − s)

)
ds

≤ 1

ε

∫ T

0

E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2( 3ε

2λ
+ εT

)
ds

=

(
3

2λ
+ T

)∫ T

0

E
∣∣B(s,Xn

s ,PXn
s
, αn

s ,Pαn
s
)
∣∣2ds =

(
3

2λ
+ T

)∥∥B(
·, Xn

· ,PXn
· , α

n
· ,Pαn

·

)∥∥2

H2 .

Hence, by the above limit and also by (2.25) and (2.26), sending ε → 0 in (2.24) we obtain

lim sup
ε→0

∥∥Aε − αn
∥∥2

H2 ≤ C
∥∥B(

·, Xn
· ,PXn

· , α
n
· ,Pαn

·

)∥∥2

H2 .

Now, notice that ∥∥Aε − α̂
∥∥
H2 ≤

∥∥Aε − αn
∥∥
H2 +

∥∥αn − α̂
∥∥
H2 .

Hence, sending ε → 0 we find

lim sup
ε→0

∥∥Aε − α̂
∥∥
H2 ≤ C

∥∥B(
·, Xn

· ,PXn
· , α

n
· ,Pαn

·

)∥∥
H2 +

∥∥αn − α̂
∥∥
H2 , ∀n ∈ N. (2.27)

Recalling that αn → α̂ in H2
k as n → ∞, we deduce from estimate (2.8) (with t̄ = T ) that Xn → X̂ in S2

d. This
in turn implies that there exists a subsequence {(Xnm , αnm)}m which converges to (X̂, α̂) pointwise. As a con-
sequence, from the continuity of B, we deduce that {B(·, Xnm

· ,PX
nm
·

, αnm
· ,Pα

nm
·

)}m also converges point-
wise P⊗ dt-a.e. to B(·, X̂·,PX̂·

, α̂·,Pα̂·), which is equal to zero. Then, from estimate (2.10), the growth condi-
tion of B, and Lebesgue’s dominated convergence theorem, it follows that ∥B(·, Xnm

· ,PX
nm
·

, αnm
· ,Pα

nm
·

)∥H2

→ 0. In conclusion, from (2.27), and in particular from the arbitrariness of n ∈ N, we obtain

lim sup
ε→0

∥∥Aε − α̂
∥∥
H2 = 0,

which proves (2.21).

2.2 Stochastic Tikhonov theorem II
We present in this section a formulation of the stochastic Tikhonov theorem which applies to a class of coupled
forward-backward systems which arise in the study of mean field control problems, as described in Section 3.
More precisely, given ξ ∈ L2(Ω,G,P;Rd), η ∈ L2(Ω,G,P;Rk), we consider, for every ε > 0, the following
coupled two-scale forward-backward system of stochastic differential equations on [0, T ]:

dXε
t = b

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dt+ σ

(
t,Xε

t ,PXε
t
, Aε

t ,PAε
t

)
dWt,

dY ε
t = −Φ(t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )
)dt+ Zε

t dWt,

dȲ ε
t = −Ψ(t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )
)dt+ Z̄ε

t dWt,

εdAε
t = −Ȳ ε

t dt+ βεΓdWt,

Xε
0 = ξ, Y ε

T = ϕ(Xε
T ,PXε

T
), Ȳ ε

T = 0, Aε
0 = η.

(2.28)

On the coefficients b, σ we impose Assumption (A), moreover βε = o(ε) as ε → 0 and Γ is a matrix of size
k ×m. On the other hand, the coefficients

Φ , Ψ : [0, T ]× Rd × Rd × Rd×m × Rk × P2(Rd × Rd × Rd×m × Rk) −→ Rd , Rk,

ϕ : Rd × P2(Rd) −→ Rd

we impose the following assumptions.

Assumption (C).

1) Φ, Ψ, ϕ are Borel measurable functions.
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2) Φ, Ψ, ϕ satisfy linear growth conditions: there exists a constant K > 0 such that

|Φ(t, x, y, z, a, π)|+ |Ψ(t, x, y, z, a, π)|+ |ϕ(x, µ)| ≤ K
(
1 + |x|+ ∥µ∥2 + |y|+ |z|+ |a|+ ∥π∥2

)
,

for all (t, x, µ, y, z, a, π) ∈ [0, T ]× Rd ×P2(Rd)× Rd × Rd×m × Rk ×P(Rd × Rd × Rd×m × Rk).

3) Φ, Ψ, ϕ satisfy the Lipschitz continuity condition: there exists a constant K > 0 such that

|Φ(t, x, y, z, a, π)− Φ(t, x′, y′, z′, a′, π′)|+ |Ψ(t, x, y, z, a, π)−Ψ(t, x′, y′, z′, a′, π′)|
+ |ϕ(x, µ)− ϕ(x′, µ′)| ≤ K

(
|x− x′|+W2(µ, µ

′) + |y − y′|+ |z − z′|+ |a− a′|+W2(π, π
′)
)
,

for all t ∈ [0, T ], (x, µ, y, z, a, π), (x′, µ′, y′, z′, a′, π′) ∈ Rd ×P2(Rd)×Rd ×Rd×m ×Rk ×P2(Rd ×
Rd × Rd×m × Rk).

4) The following monotonicity conditions hold: there exists a constant λ > 0 such that

E
[〈
b
(
t, ξ,Pξ, η,Pη

)
− b

(
t, ξ′,Pξ′ , η

′,Pη′
)
, υ − υ′〉]

+ E
[
tr
((

σ
(
t, ξ,Pξ, η,Pη

)
− σ

(
t, ξ′,Pξ′ , η

′,Pη′
))(

ζ − ζ′
)⊺)]

− E
[〈
Φ
(
t, ξ, υ, ζ, η,P(ξ,υ,ζ,η)

)
− Φ

(
t, ξ′, υ′, ζ′, η′,P(ξ′,υ′,ζ′,η′)

)
, ξ − ξ′

〉]
− E

[〈
Ψ
(
t, ξ, υ, ζ, η,P(ξ,υ,ζ,η)

)
−Ψ

(
t, ξ′, υ′, ζ′, η′,P(ξ′,υ′,ζ′,η′)

)
, η − η′〉] ≤ −λE

[
|η − η′|2

]
and

E
[〈
ϕ
(
ξ,Pξ

)
− ϕ

(
ξ′,Pξ′

)
, ξ − ξ′

〉]
≥ 0,

for all t ∈ [0, T ], ξ, ξ′, υ, υ′ ∈ L2(Ω,F ,P;Rd), η, η′ ∈ L2(Ω,F ,P;Rk), ζ, ζ′ ∈ L2(Ω,F ,P;Rd×m).

Proposition 2.9. Let Assumption (C) hold. For every ε > 0, there exists a unique solution (Xε, Y ε, Zε, Ȳ ε, Z̄ε, Aε)
in S2

d × S2
d × H2

d×m × S2
k × H2

k×m × S2
k to system (2.28). Moreover, there exists a constant C, independent of

ε, such that

∥Xε∥2S2 + ∥Aε∥2H2 + ∥Y ε∥2S2 + ∥Zε∥2H2 + ∥Ȳ ε∥2S2 + ∥Z̄ε∥2H2

≤ C

(
E|ξ|2 + E|η|2 + |ϕ(0, δ0)|2 +

∫ T

0

∣∣b(t, 0, δ0, 0, δ0)∣∣2dt+ ∫ T

0

∣∣σ(t, 0, δ0, 0, δ0)∣∣2dt (2.29)

+

∫ T

0

∣∣Φ(t, 0, 0, 0, 0, δ0)∣∣2dt+ ∫ T

0

∣∣Ψ(t, 0, 0, 0, 0, δ0)
∣∣2dt+ (βε)2

ε2
tr
(
ΓΓ⊺

))
Proof. The existence and uniqueness result follows from [21, Corollary 2.4]. Regarding estimate (2.29), we be-
gin noting that, by standard estimates for backward stochastic differential equations, we have, for some constant
C, independent of ε,

∥Y ε∥2S2 + ∥Zε∥H2 ≤ C E
[∣∣ϕ(Xε

T ,PXε
T
)
∣∣2 + ∫ T

0

∣∣Φ(t,Xε
t , 0, 0, A

ε
t ,P(Xε

t ,0,0,A
ε
t )
)
∣∣2dt] (2.30)

and

∥Ȳ ε∥2S2 + ∥Z̄ε∥H2 ≤ C E
[ ∫ T

0

∣∣Ψ(t,Xε
t , 0, 0, A

ε
t ,P(Xε

t ,0,0,A
ε
t )
)
∣∣2dt]. (2.31)

We also have the following standard estimate for Xε

∥Xε∥2S2 ≤ C E
[
|ξ|2 +

∫ T

0

∣∣b(t, 0, δ0, Aε
t ,PAε

t
)
∣∣2dt+ ∫ T

0

∣∣σ(t, 0, δ0, Aε
t ,PAε

t
)
∣∣2dt]. (2.32)

Now, proceeding as in proof of the stability result [21, Lemma A.1], that is applying Itô’s formula to ⟨Y ε
t , X

ε
t ⟩+

⟨Ȳ ε
t , A

ε
t ⟩ between t = 0 and t = T , using the monotonicity conditions of Assumption (C)-4), we obtain

E
[〈
ϕ(0, δ0), X

ε
T

〉]
≤ E

[〈
Y ε
0 , ξ

〉]
+ E

[〈
Ȳ ε
0 , η

〉]
− λE

[ ∫ T

0

∣∣Aε
t

∣∣2dt]− 1

ε
E
[ ∫ T

0

∣∣Ȳ ε
t

∣∣2dt]
+

βε

ε
E
[ ∫ T

0

tr
(
Z̄ε

t Γ
⊺
)
dt

]
+ E

[ ∫ T

0

〈
Ȳ ε
t , b(t, 0, δ0, 0, δ0)

〉
dt

]
+ E

[ ∫ T

0

tr
(
σ(t, 0, δ0, 0, δ0)(Z

ε
t )

⊺
)
dt

]
− E

[ ∫ T

0

〈
X̄ε

t ,Φ(t, 0, 0, 0, 0, δ0)
〉
dt

]
− E

[ ∫ T

0

〈
Aε

t ,Ψ(t, 0, 0, 0, 0, δ0)
〉
dt

]
.
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This provides in particular the following estimate:

λE
[ ∫ T

0

∣∣Aε
t

∣∣2dt] ≤ −E
[〈
ϕ(0, δ0), X

ε
T

〉]
+ E

[〈
Y ε
0 , ξ

〉]
+ E

[〈
Ȳ ε
0 , η

〉]
+

βε

ε
E
[ ∫ T

0

tr
(
Z̄ε

t Γ
⊺
)
dt

]
+ E

[ ∫ T

0

〈
Ȳ ε
t , b(t, 0, δ0, 0, δ0)

〉
dt

]
+ E

[ ∫ T

0

tr
(
σ(t, 0, δ0, 0, δ0)(Z

ε
t )

⊺
)
dt

]
− E

[ ∫ T

0

〈
X̄ε

t ,Φ(t, 0, 0, 0, 0, δ0)
〉
dt

]
− E

[ ∫ T

0

〈
Aε

t ,Ψ(t, 0, 0, 0, 0, δ0)
〉
dt

]
.

Then, it is easy to show that

∥Aε∥2H2 ≤ C

(
∥Xε∥S2 + ∥Y ε∥S2 + ∥Zε∥H2 + ∥Ȳ ε∥S2 + ∥Z̄ε∥H2 + E|ξ|2 + E|η|2 + |ϕ(0, δ0)|2

+

∫ T

0

∣∣b(t, 0, δ0, 0, δ0)∣∣2dt+ ∫ T

0

∣∣σ(t, 0, δ0, 0, δ0)∣∣2dt+ ∫ T

0

∣∣Φ(t, 0, 0, 0, 0, δ0)∣∣2dt
+

∫ T

0

∣∣Ψ(t, 0, 0, 0, 0, δ0)
∣∣2dt+ (βε)2

ε2
tr
(
ΓΓ⊺

))
.

Plugging the latter estimate into (2.30)-(2.31)-(2.32) we obtain estimate (2.29).

Assumption (D). Let Assumption (C) hold. For every ξ ∈ L2(Ω,G,P;Rd) there exists α̂ ∈ H2
k such that∥∥Ψ(

·, X̂·, Ŷ·, Ẑ·, α̂·,P(X̂·,Ŷ·,Ẑ·,α̂·)

)∥∥2

H2

= E
[ ∫ T

0

∣∣Ψ(
t, X̂t, Ŷt, Ẑt, α̂t,P(X̂t,Ŷt,Ẑt,α̂t)

)∣∣2 dt] = 0, (2.33)

where (X̂, Ŷ , Ẑ) ∈ S2
d × S2

d × H2
d×m is the unique solution to the following (uncoupled) forward-backward

system of stochastic differential equations on [0, T ]:
dX̂t = b

(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dt+ σ

(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dWt,

dŶt = −Φ
(
t, X̂t, Ŷt, Ẑt, α̂t,P(X̂t,Ŷt,Ẑt,α̂t)

)
dt+ ẐtdWt,

X̂0 = ξ, ŶT = ϕ(X̂T ,PX̂T
).

(2.34)

We can now state the stochastic Tikhonov theorem for the forward-backward system (2.28).

Theorem 2.10 (Stochastic Tikhonov Theorem II). Let Assumptions (A), (C), (D) hold. Moreover, let (X̂, Ŷ , Ẑ, α̂)
in S2

d × S2
d × H2

d×m × H2
k be as in Assumption (D) and, for every ε > 0, let (Xε, Y ε, Zε, Ȳ ε, Z̄ε, Aε) in

S2
d × S2

d ×H2
d×m × S2

k ×H2
k×m × S2

k be as in Proposition 2.9. Then, it holds that∥∥(Aε, Y ε, Zε, Ȳ ε, Z̄ε)− (α̂, Ŷ , Ẑ, 0, 0)
∥∥
H2 −→

ε→0
0,

∥∥Xε − X̂
∥∥
S2 −→

ε→0
0.

Proof. Let α̂ ∈ H2
k be the process appearing in Assumption (D). By Lemma 2.7 there exists (Fn)n ∈ H2

k such
that ∥αn − α̂∥H2 → 0 as n → ∞, with αn

t =
∫ t

0
Fn
s ds, t ∈ [0, T ] (as in (2.12), we redefine αn at t = 0 as:

αn
0 = η). Then, for every n ∈ N, let (Xn, Y n, Zn) ∈ S2

d × S2
d ×H2

d×m be the unique solution to the following
(uncoupled) forward-backward system of stochastic differential equations on [0, T ]:

dXn
t = b

(
t,Xn

t ,PXn
t
, αn

t ,Pαn
t

)
dt+ σ

(
t,Xn

t ,PXn
t
, αn

t ,Pαn
t

)
dWt,

dY n
t = −Φ

(
t,Xn

t , Y
n
t , Zn

t , α
n
t ,P(Xn

t ,Y n
t ,Zn

t ,αn
t )

)
dt+ Zn

t dWt,

Xn
0 = ξ, Y n

T = ϕ(Xn
T ,PXn

T
).

Let also (Ȳ n, Z̄n) ∈ S2
k × H2

k×m be the unique solution to the following backward stochastic differential
equation on [0, T ]:

dȲ n
t = −Ψ

(
t,Xn

t , Y
n
t , Zn

t , α
n
t ,P(Xn

t ,Y n
t ,Zn

t ,αn
t )

)
dt+ Z̄n

t dWt, Ȳ n
T = 0. (2.35)

Since ∥αn − α̂∥H2 → 0 as n → ∞, from standard estimates for (uncoupled) forward-backward systems it holds
that ∥∥Xn − X̂

∥∥
S2 −→

n→∞
0,

∥∥Y n − Ŷ
∥∥
S2 −→

n→∞
0,

∥∥Zn − Ẑ
∥∥
H2 −→

n→∞
0. (2.36)

Then, recalling (2.33), from (2.35) we obtain∥∥Ȳ n
∥∥
S2 −→

n→∞
0,

∥∥Z̄n
∥∥
H2 −→

n→∞
0. (2.37)
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Now, proceeding as in proof of the stability result [21, Lemma A.1], that is applying Itô’s formula to ⟨Y ε
t −

Y n
t , Xε

t − Xn
t ⟩ + ⟨Ȳ ε

t − Ȳ n
t , Aε

t − αn
t ⟩ between t = 0 and t = T , using the monotonicity conditions of

Assumption (C)-4), we obtain

0 ≤ −λE
[ ∫ T

0

∣∣Aε
t − αn

t

∣∣2dt]− 1

ε
E
[ ∫ T

0

〈
Ȳ ε
t − Ȳ n

t , Ȳ ε
t

〉
dt

]
(2.38)

+ E
[ ∫ T

0

〈
Ȳ ε
t − Ȳ n

t , Fn
t

〉
dt

]
+

βε

ε
E
[ ∫ T

0

tr
(
(Z̄ε

t − Z̄n
t )Γ

⊺
)
dt

]
.

Notice that∫ T

0

〈
Ȳ ε
t − Ȳ n

t , Fn
t ⟩dt =

∫ T

0

〈
αn
t ,Ψ

(
t,Xn

t , Y
n
t , Zn

t , α
n
t ,P(Xn

t ,Y n
t ,Zn

t ,αn
t )

)
−Ψ

(
t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )

)〉
dt+ E

[〈
η, Ȳ n

0 − Ȳ ε
0

〉]
.

Moreover, we have

E
[〈
η, Ȳ n

0 − Ȳ ε
0

〉]
= E

[〈
η,E

[
Ȳ n
0 − Ȳ ε

0

∣∣F0

]〉]
=

= E
[ ∫ T

0

〈
η,Ψ

(
t,Xn

t , Y
n
t , Zn

t , α
n
t ,P(Xn

t ,Y n
t ,Zn

t ,αn
t )

)
−Ψ

(
t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )

)〉]
.

Then, plugging the above equalities into (2.38), letting n → ∞, and using convergences (2.36)-(2.37), we find

0 ≤ −λE
[ ∫ T

0

∣∣Aε
t − α̂t

∣∣2dt]− 1

ε
E
[ ∫ T

0

∣∣Ȳ ε
t

∣∣2dt] (2.39)

− E
[ ∫ T

0

〈
η + α̂t,Ψ

(
t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )

)〉
dt

]
+

βε

ε
E
[ ∫ T

0

tr
(
Z̄ε

t Γ
⊺
)
dt

]
.

From the latter inequality we get

1

ε
E
[ ∫ T

0

∣∣Ȳ ε
t

∣∣2dt] ≤ −E
[ ∫ T

0

〈
η + α̂t,Ψ

(
t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )

)〉
dt

]
+

βε

ε
E
[ ∫ T

0

tr
(
Z̄ε

t Γ
⊺
)
dt

]
.

Then, using the linear growth condition of Ψ and estimate (2.29), we deduce that ∥Ȳ ε∥H2 → 0 as ε → 0.
Recalling the equation satisfied by Ȳ ε, this in turn allows to prove that ∥Z̄ε∥H2 → 0 and therefore we get
∥Ψ(t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )
)∥H2 → 0 as ε → 0. Now, using again (2.39), we get

λE
[ ∫ T

0

∣∣Aε
t − α̂t

∣∣2dt] ≤ −E
[ ∫ T

0

〈
η + α̂t,Ψ

(
t,Xε

t , Y
ε
t , Z

ε
t , A

ε
t ,P(Xε

t ,Y
ε
t ,Zε

t ,A
ε
t )

)〉
dt

]
+

βε

ε
E
[ ∫ T

0

tr
(
Z̄ε

t Γ
⊺
)
dt

]
.

This implies that ∥Aε − α̂∥H2 → 0 as ε → 0. From (2.7) we then get that ∥Xε − X̂∥S2 → 0 as ε → 0. Finally,
by standard estimates for backward stochastic differential equations, we conclude that ∥Y ε − Ŷ ∥H2 → 0 and
∥Zε − Ẑ∥H2 → 0 as ε → 0.

3 Approximating control problems with two-scale FBSDEs
We consider the same probabilistic framework as in Section 2, with the complete probability space (Ω,F ,P),
the m-dimensional Brownian motion W = (Wt)t≥0, the sub-σ-algebra G, and the filtration F = (Ft)t≥0 given
by (2.3). We work under the conditions for applying the Pontryagin maximum principle, see for instance [1, 9].

We now formulate the mean field stochastic optimal control problem. Let A be a closed and convex subset
of Rk, which denotes the space of control actions. Let also A be the family of control processes, that is the set
of all α ∈ H2

k such that α takes values in A. Given ξ ∈ L2(Ω,G,P;Rd) and α ∈ A, the state equation of the
mean field control problem reads as follows:{

dXt = b
(
t,Xt,PXt , αt,Pαt

)
dt+ σ

(
t,Xt,PXt , αt,Pαt

)
dWt, t ∈ [0, T ],

X0 = ξ.
(3.1)
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The cost functional to be minimized is defined as

J(α) = E
[ ∫ T

0

f(t,Xt,PXt , αt,Pαt)dt+ g(XT ,PXT )

]
, (3.2)

where X solves the controlled equation (3.1). The Hamiltonian function is given by

H(t, x, µ, y, z, a, ν) = ⟨b(t, x, µ, a, ν), y⟩+ tr
(
σ(t, x, µ, a, ν) z⊺

)
+ f(t, x, µ, a, ν), (3.3)

for every (t, x, µ, y, z, a, ν) ∈ [0, T ]× Rd × P2(Rd)× Rd × Rd×m × Rk × P2(Rk).

Assumption (E) (Regularity of the coefficients).

• The functions b, σ, f are differentiable with respect to x and a. Similarly, the function g is differentiable
with respect to x. Moreover, the function (x, µ, a, ν) 7→ ∂xb(t, x, µ, a, ν) is Lipschitz and has at most
linear growth uniformly with respect to t. The same conditions apply to ∂ab, ∂xσ, ∂aσ, ∂xf , ∂af , ∂xg.

• The functions b, σ, f are L-differentiable with respect to µ and ν (for the definition of L-differentiability
see Appendix A). Similarly, the function g is L-differentiable with respect to µ. Moreover, the map
(x, µ, a, ν, x′) 7→ ∂µb(t, x, µ, a, ν)(x

′) is Lipschitz and has at most linear growth uniformly with respect
to t. The same conditions apply to ∂νb, ∂µσ, ∂νσ, ∂µf , ∂νf , ∂µg.

• The functions ∂xb, ∂ab, ∂xσ, ∂aσ are bounded. Moreover, the functions x′ 7→ ∂µb(t, x, µ, a, ν)(x
′),

x′ 7→ ∂µσ(t, x, µ, a, ν)(x
′) (resp. a′ 7→ ∂νb(t, x, µ, a, ν)(a

′), a′ 7→ ∂νσ(t, x, µ, a, ν)(a
′)) have an

L2(µ)-norm (resp. L2(ν)-norm) which is uniformly bounded with respect to the other variables.

Assumption (F) (Convexity).

• The function g is convex: for every (x′, µ′), (x, µ) ∈ Rd × P2(Rd),

g(x′, µ′) ≥ g(x, µ) + ⟨∂xg(x, µ), x
′ − x⟩+ E[⟨∂µg(x, µ)(X), X ′ −X⟩],

where PX′ = µ′, PX = µ (for the definition of ∂µg see Appendix A).

• The function H in (3.3) is convex in (x, µ) and strongly convex in (a, ν): there exist λ1, λ2 > 0 such that,
for every (t, y, z) ∈ [0, T ]× Rd × Rd×m, (x, µ, a, ν), (x′, µ′, a′, ν′) ∈ Rd × P2(Rd)× Rk × P2(Rk),

H(t, x′, µ′, y, z, a′, ν′) ≥ H(t, x, µ, y, z, a, ν) (3.4)

+ ⟨∂xH(t, x, µ, y, z, a, ν), x′ − x⟩+ ⟨∂aH(t, x, µ, y, z, a, ν), a′ − a⟩
+ E[⟨∂µH(t, x, µ, y, z, a, ν)(X), X ′ −X⟩+ ⟨∂νH(t, x, µ, y, z, a, ν)(α), α′ − α⟩]

+ λ1|a′ − a|2 + λ2E
[
|α′ − α|2

]
,

where PX′ = µ′, PX = µ, Pα′ = ν′, Pα = ν.

For any control process α ∈ A, with controlled state X solution to (3.1), we consider the so-called adjoint
equation (for the definition of ∂µH see Appendix A):

dYt = −∂xH(t,Xt,PXt , Yt, Zt, αt,Pαt)dt− Ẽ
[
∂µH(t, X̃t,PXt , Ỹt, Z̃t, α̃t,Pαt)(Xt)

]
dt

+ZtdWt, t ∈ [0, T ],

YT = ∂xg(XT ,PXT ) + Ẽ
[
∂µg(X̃T ,PXT )(XT )

]
,

where the triple (X̃, Ỹ , Z̃, α̃) has the same law as (X,Y, Z, α) and is defined on another probability space
(Ω̃, F̃ , P̃), where the expectation is denoted by Ẽ.

Assumption (G). Let Assumptions (E)-(F) hold. For every ξ ∈ L2(Ω,G,P;Rd) there exists α̂ ∈ H2
k satisfying

∂aH(t, X̂t,PX̂t
, Ŷt, Ẑt, α̂t,Pα̂t) + Ẽ

[
∂νH(t, X̃t,PX̂t

, Ỹt, Z̃t, α̃t,Pα̂t)(α̂t)
]
= 0, dt⊗ dP-a.s. (3.5)

where (X̃, Ỹ , Z̃, α̃) has the same law as (X̂, Ŷ , Ẑ, α̂) and is defined on another probability space (Ω̃, F̃ , P̃),
with expectation denoted by Ẽ. Moreover, (X̂, Ŷ , Ẑ) ∈ S2

d × S2
d ×H2

d×m is the unique solution to the following
(uncoupled) forward-backward system of stochastic differential equations on [0, T ]:

dX̂t = b
(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dt+ σ

(
t, X̂t,PX̂t

, α̂t,Pα̂t

)
dWt,

dŶt = − ∂xH(t, X̂t,PX̂t
, Ŷt, Ẑt, α̂t,Pα̂t)dt− Ẽ

[
∂µH(t, X̃t,PX̂t

, Ỹt, Z̃t, α̃t,Pα̂t)(X̂t)
]
dt

+ ẐtdWt,

X̂0 = ξ, ŶT = ϕ(X̂T ,PX̂T
).

(3.6)
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Theorem 3.1 (Stochastic maximum principle). Under Assumption (G), the process α̂, satisfying (3.5), is the
unique optimal control process of the mean field control problem (3.1)–(3.2).

Proof. The strong convexity assumption (3.4) on H and the fact that A is a closed and convex subset of Rk

guarantee that α̂ is the unique minimizer. Then, from [1, Theorem 3.5] the result follows.

Theorem 3.1 states that, in order to solve the mean field control problem (3.1)–(3.2), it is enough to solve the
McKean-Vlasov forward-backward system (3.6). Our aim is now to exploit the results of Section 2 in order to
provide an approximate solution to (3.6) through a suitable two-scale system. In particular, for every ε > 0,
ξ ∈ L2(Ω,G,P;Rd), η ∈ L2(Ω,G,P;Rk), consider the following extended two-scale system of stochastic
differential equations on [0, T ]:

dXε
t = b(t,Xε

t ,PXε
t
, Aε

t ,PAε
t
)dt+ σ(t,Xε

t ,PXε
t
, Aε

t ,PAε
t
)dWt,

dY ε
t = −∂xH(t,Xε

t ,PXε
t
, Y ε

t , Z
ε
t , A

ε
t ,PAε

t
)dt− Ẽ

[
∂µH(t, X̃ε

t ,PXε
t
, Ỹ ε

t , Z̃
ε
t , Ã

ε
t ,PAε

t
)(Xε

t )
]
dt

+Zε
t dWt,

dȲ ε
t = −∂aH(t,Xε

t ,PXε
t
, Y ε

t , Z
ε
t , A

ε
t ,PAε

t
)dt− Ẽ

[
∂νH(t, X̃ε

t ,PXε
t
, Ỹ ε

t , Z̃
ε
t , Ã

ε
t ,PAε

t
)(Aε

t )
]
dt

+Z̄ε
t dWt,

εdAε
t = −Ȳ ε

t dt+ βεΓdWt,

Xε
0 = ξ, Y ε

T = ∂xg(X
ε
T ,PXε

T
) + Ẽ

[
∂µg(X̃

ε
T ,PXε

T
)(Xε

T )
]
, Ȳ ε

T = 0, Aε
0 = η,

(3.7)

where the triple (X̃ε, Ỹ ε, Z̃ε, Ãε) has the same law as (Xε, Y ε, Zε, Aε) and is defined on another probability
space (Ω̃, F̃ , P̃), where the expectation is denoted by Ẽ. Moreover, βε = o(ε) as ε → 0 and Γ is a matrix of size
k ×m.

Remark 3.2. Notice that it would be more natural to consider the following system, for every ε > 0, ξ ∈
L2(Ω,G,P;Rd), η ∈ L2(Ω,G,P;Rk):

dXε
t = b(t,Xε

t ,PXε
t
, Aε

t ,PAε
t
)dt+ σ(t,Xε

t ,PXε
t
, Aε

t ,PAε
t
)dWt,

dY ε
t = −∂xH(t,Xε

t ,PXε
t
, Y ε

t , Z
ε
t , A

ε
t ,PAε

t
)dt− Ẽ

[
∂µH(t, X̃ε

t ,PXε
t
, Ỹ ε

t , Z̃
ε
t , Ã

ε
t ,PAε

t
)(Xε

t )
]
dt

+Zε
t dWt,

εdAε
t = −∂aH(t,Xε

t ,PXε
t
, Y ε

t , Z
ε
t , A

ε
t ,PAε

t
)dt− Ẽ

[
∂νH(t, X̃ε

t ,PXε
t
, Ỹ ε

t , Z̃
ε
t , Ã

ε
t ,PAε

t
)(Aε

t )
]
dt

+βεΓdWt,

Xε
0 = ξ, Y ε

T = ∂xg(X
ε
T ,PXε

T
) + Ẽ

[
∂µg(X̃

ε
T ,PXε

T
)(Xε

T )
]
, Aε

0 = η,

(3.8)

where the triple (X̃ε, Ỹ ε, Z̃ε, Ãε) has the same law as (Xε, Y ε, Zε, Aε) and is defined on another probability
space (Ω̃, F̃ , P̃), where the expectation is denoted by Ẽ. However, in the literature there is not yet well-posedness
and stability results for such a system in a McKean-Vlasov setting. As a matter of fact, results [21, Corollary
2.4] and [21, Lemma A.1], that we exploit below for system (3.7), rely on a G-monotonicity condition (see [21])
that in its present form does not hold in general for system (3.8).

Lemma 3.3. Suppose that Assumption (G) holds. Then, for every ε > 0, system (3.7) admits a unique solution
(Xε, Y ε, Zε, Ȳ ε, Z̄ε, Aε) ∈ S2

d × S2
d ×H2

d×m × S2
k ×H2

k×m × S2
k.

Proof. The result is a direct consequence of [21, Corollary 2.4], we simply check that the assumptions re-
quired by [21, Corollary 2.4] hold true. First of all, notice that the Lipschitz and linear growth conditions are
a consequence of Assumption (E). Then, it only remains to check the G-monotonicity condition reported in
the statement of [21, Corollary 2.4]. We choose G ∈ R(d+k)×(d+k) as G = Id+k, the (d + k)-dimensional
identity matrix. Moreover, we choose α1 = β1 = 0, β2 = 1, and ϕ2(A1, Ȳ1, A2, Ȳ2) = 2(λ1 + λ2)∥A1 −
A2∥2L2 + 1

ε
∥Ȳ1 − Ȳ2∥2L2 , ∀ (Ai, Ȳi) ∈ L2(Rk) × L2(Rk), i = 1, 2. With such choices, checking the G-

monotonicity condition reduces to estimate the following: for every t ∈ [0, T ], (Xi, Ai, Yi, Zi, Ȳi, Z̄i) ∈
L2(Rd)× L2(Rk)× L2(Rd)× L2(Rd×m)× L2(Rk)× L2(Rk×m), for i = 1, 2,

E[⟨b(t,X1,PX1 , A1,PA1)− b(t,X2,PX2 , A2,PA2), Y1 − Y2⟩]−
1

ε3
∥Ȳ1 − Ȳ2∥2L2

+ E
[
tr
(
(σ(t,X1,PX1 , A1,PA1)− σ(t,X2,PX2 , A2,PA2))(Z1 − Z2)

⊺
)]

− E[⟨∂xH(t,X1,PX1 , Y1, Z1, A1,PA1)− ∂xH(t,X2,PX2 , Y2, Z2, A2,PA2), X1 −X2⟩]

− E
[
Ẽ[⟨∂µH(t,X1,PX1 , Y1, Z1, A1,PA1)(X̃1)− ∂µH(t,X2,PX2 , Y2, Z2, A2,PA2)(X̃2), X̃1 − X̃2⟩]

]
− E[⟨∂aH(t,X1,PX1 , Y1, Z1, A1,PA1)− ∂aH(t,X2,PX2 , Y2, Z2, A2,PA2), A1 −A2⟩]

− E
[
Ẽ[⟨∂νH(t,X1,PX1 , Y1, Z1, A1,PA1)(Ã1)− ∂νH(t,X2,PX2 , Y2, Z2, A2,PA2)(Ã1), Ã1 − Ã2⟩]

]
,
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where (X̃1, Ã1,
˜̄Y1, X̃2, Ã2,

˜̄Y2) has the same law as (X1, A1, Ȳ1, X2, A2, Ȳ2) and is defined on another prob-
ability space (Ω̃, F̃ , P̃), where the expectation is denoted by Ẽ. From the convexity assumption (3.4) on H , we
obtain that the above quantity is bounded from above by

− 2(λ1 + λ2)∥A1 −A2∥2L2 − 1

ε3
∥Ȳ1 − Ȳ2∥2L2 ,

which shows the validity of the G-monotonicity condition.

We now compare the two FBSDE systems (3.6) and (3.7). In the first case, if α̂ is not known, it needs to be
numerically computed. This means that every discretization of the system (3.6) involves, at each step, a further
numerical approximation of the argmin of the Hamiltonian H . In (3.7) this further computation is avoided
entirely and it is simply replaced by a forward-backward system of SDEs, namely the third and fourth equations,
which plays the role of a stochastic gradient descent method which evolves at a different time scale.
The following is the main result of this section. We prove that, as ε → 0, the solution of the two-scale forward-
backward system (3.7) converges to the solution of (3.6).

Theorem 3.4. Suppose that Assumption (G) holds. Let (X̂, Ŷ , Ẑ) ∈ S2
d × S2

d × H2
d×m be the unique solution

of (3.6) and, for every ε > 0, let (Xε, Y ε, Zε, Ȳ ε, Z̄ε, Aε) ∈ S2
d × S2

d × H2
d×m × S2

k × H2
k×m × S2

k be the
unique solution of (3.7). Let also α̂ be the process satisfying (3.5). Then∥∥(Y ε, Zε, Ȳ ε, Z̄ε, Aε)− (Ŷ , Ẑ, 0, 0, α̂)

∥∥
H2 −→

ε→0
0

and ∥∥Xε − X̂
∥∥
S2 −→

ε→0
0.

Proof. The result follows directly from Theorem 2.10.

3.1 A McKean-Vlasov linear quadratic example
As an illustration of our results, we consider the classical Linear Quadratic (LQ) control problem extended to
the McKean-Vlasov setting. After briefly introducing the model, we outline a method to find its solution which
is based on the derivation of suitable Riccati equations. The classical approach of solving (3.6) will be used
as a benchmark for evaluating the performance of our novel approach, which instead relies on solving the two-
scale system (3.7). We elaborate on the following two main points. First, we focus on the goodness of the
approximation of the optimal control and the optimally controlled state, as ε goes to zero. Second, we argue
why using the two scale approximation may be preferable to the classical approach when the computation of the
argmin is costly, providing evidence that our new method can strongly outperform the standard one.

We now present the model. In the rest of the section, we use the notation µ :=
∫
xdµ to denote the first

moment of a certain distribution µ ∈ P2(Rd). We set:

• b(t, x, µ, a) = b1(t)x+ b2(t)a+ b3(t)µ,

• σ ∈ Rd×m,

• f(t, x, µ, a) = 1
2
[x⊺q1(t)x+ µ⊺q2(t)µ+ a⊺r(t)a],

• g(x, µ) = 1
2
[x⊺q1x+ µ⊺q2µ],

• A = Rk,

for some q1, q2 ∈ Rd×d and some bounded measurable functions b1(t), b2(t), b3(t), q1(t), q2(t), r(t) taking
values respectively in Rd×d, Rd×k, Rd×d, Rd×d, Rd×d, Rd×d, with q1(t), q2(t), q1, q2, r(t) being symmetric
and such that q1(t), q2(t), q1, q2 ≥ 0, r(t) ≥ λrIk, for some λr > 0, where Ik is the identity matrix of order k.
The Hamiltonian of the system reads as

H(t, x, µ, y, z, a) =
〈
b1(t)x+ b2(t)a+ b3(t)µ, y

〉
+ tr

(
σz⊺

)
+

1

2

(
x⊺q1(t)x+ µ⊺q2(t)µ+ a⊺r(t)a

)
.

Therefore, solving the first-order condition, we see that the minimizer of H is given by

α̂(t, x) = −r(t)−1b2(t)
⊺y. (3.9)

The McKean-Vlasov system (3.6) reads as follows:
dXt =

(
b1(t)Xt − b2(t)r(t)

−1b2(t)
⊺Yt + b3(t)E[Xt]

)
dt+ σdWt,

dYt = −
(
(b1(t) + b3(t))

⊺Yt + q1(t)Xt + q2(t)E[Xt])
)
dt+ ZtdWt,

X0 = ξ, YT = q1XT + q2E[XT ].

(3.10)
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Figure 1: Approximation errors with varying ε (Left). An example of trajectory of X, α̂,Xε, Aε for ε = 5 · 10−5 (Right).

By taking the expectation in (3.10), one can find an ODE system for E[Xt] and E[Yt]. Given the linearity of
the system, one expects its solution to be of the form E[Yt] = λ1(t)E[Xt], for a deterministic function λ1.
Calculating the differential of this expression and comparing it to the one from the ODE system, one obtains a
first Riccati equation:

λ′
1(t) + λ1(t)

(
b1(t) + b3(t)− b2(t)r(t)

−1b2(t)λ1(t)
)
+ (b1(t) + b3(t))

⊺λ1(t) + q1(t) + q2(t) = 0,

λ1(T ) = q1 + q2.

When the solution exists, it yields expressions for E[Xt] and E[Yt] that can be plugged into (3.10). This makes
the system of FBSDE no longer of McKean-Vlasov type. Again, given the linearity of the system, one expects
its solution to be of the form Yt = λ2(t)Xt + θ2(t), for some deterministic functions λ2, θ2. Computing
the (stochastic) differential of this expression and comparing to the one of the FBSDE system, one obtains the
following Riccati equations:

λ′
2(t) + λ2(t)

(
b1(t)− b2(t)r(t)

−1b2(t)λ2(t)
)
+ (b1(t) + b3(t))

⊺λ2(t) + q1(t) = 0,

θ′2(t)− λ2(t)b2(t)r(t)
−1b2(t)θ2(t) + (b1(t) + b3(t))

⊺θ2(t) + q2(t)E[Xt] + λ2(t)b3(t)E[Xt] = 0,

λ2(T ) = q1, θ2(T ) = q2.

We can then exploit the solutions λ2, θ2 to decouple system (3.10) and solve the resulting SDE for X using a
standard Euler-Maruyama scheme.

For the analysis of more general linear-quadratic McKean-Vlasov control problems with controlled volatility
and dependence also on the mean of the control, under slightly different assumptions that ours, we refer to [25].
This section, however, aims at illustrating that the two-scale method performs better that the standard one, which
turns out to be true even for the simplest linear-quadratic examples (even non McKean-Vlasov). We thus leave
the numerical study of the more complicated case of controlled volatility for future research.

The two-scale approximation. The FBSDE system reads as follows:

dXε
t =

(
b1(t)X

ε
t + b2(t)A

ε
t + b3(t)E[Xε

t ]
)
dt+ σdWt,

dY ε
t =−

(
(b1(t) + b3(t))

⊺Y ε
t + q1(t)X

ε
t + q2(t)E[Xε

t ]
)
dt+ Zε

t dWt,

εdAε
t =− Y

ε
tdt+ βεΓdWt,

dY
ε
t =−

(
b2(t)

⊺Y ε
t + r(t)Aε

t

)
dt+ Z

ε
tdWt

X0 =ξ, Y ε
T = q1X

ε
T + q2E[Xε

T ], Y
ε
T = 0, Aε

0 = η.

(3.11)

To solve this linear system, we proceed as above. We first consider the ODE for the expectations E[Xt], E[Yt],
E[At], E[Y t]. Making the ansatz (E[Yt],E[Y t])

⊺ = Λ1(t)(E[Xt],E[At])
⊺, for a deterministic matrix Λ1(t) ∈

R(d+k)×(d+k), we derive the ODE

Λ′
1(t) + Λ1(t)

(
C1(t) +D1(t)Λ1(t)

)
+ E1(t)Λ1(t) + F1(t) = 0,

Λ1(T ) = G1,
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where

C1(t) =

[
b1(t) + b3(t) b2(t)

0 0

]
, D1(t) =

[
0 0
0 −Ik/ε

]
, E1(t) =

[
(b1(t) + b3(t))

⊺ 0
b2(t)

⊺ 0

]
,

F1(t) =

[
q1(t) + q3(t) 0)

0 r(t)

]
, G1 =

[
q1 + q2 0

0 0

]
.

Solving the equation for the mean, we get E[Xt], so that we can solve the FBSDE (3.11): making the ansatz
(Yt, Y t)

⊺ = Λ2(t)(Xt, At)
⊺ +Θ2(t), we find the Riccati equations

Λ′
2(t) + Λ2(t)

(
C2(t) +D1(t)Λ2(t)

)
+ E1(t)Λ1(t) + F2(t) = 0,

Θ′
2(t) + Λ2(t)D1(t)Θ2(t) + E1(t)Θ2(t) + Λ2(t)µ2(t) + ν2(t) = 0,

Λ2(T ) = G2, Θ2(T ) = g2,

where

C2(t) =

[
b1(t) b2(t)
0 0

]
, F2(t) =

[
q1(t) 0)
0 r(t)

]
, G2 =

[
q1 0
0 0

]
,

µ2(t) =

[
b3(t)E[Xt]

0

]
, ν2(t) =

[
q2(t)E[Xt]

0

]
, g2 =

[
q2E[XT ]

0

]
.

We can then exploit the solutions Λ2, Θ2 to decouple system (3.11) and solve the resulting SDEs for (Xε, Aε)
using a standard Euler-Maruyama scheme.

In Figure 1, we present the results of our experiments on a one-dimensional problem, namely d = k = m =
1, with coefficients b1(t) = b2(t) = b3(t) = q1(t) = q1 = r = Γ = 1, q2(t) = q2 = 0.1, βε = ε2 and initial
conditions ξ = 1, η = 0. We solve (3.11) for different values of ε, varying from 5 · 10−2 to 5 · 10−5. On the left
of Figure 1 we plot the S2-error of Xε with respect to the optimally controlled state X̂ and the H2-error of Aε

with respect to α̂ which, in this case, can be computed explicitly and it is given by (3.9). We can appreciate how
the errors decrease with ε and they become small, as we expect from Theorem 3.4. On the right of Figure 1 we
show an example of a trajectory for the quantities (X̂, α̂,Xε, Aε) for ε = 5 · 10−5. We observe how both Xε

and Aε are good approximations of X̂ and α̂ respectively. We note that Xε has the same initial point as X̂ and
this is a known parameter. In general, how to initialize Aε is not a priori clear and an initial condition far from
the true optimal control may obviously lead to a larger approximation error.

The curse of dimension. In this paragraph we put ourselves in a classical setting (non McKean-Vlasov),
which is a particular case of the above general setting obtained by choosing b3(t) = q2(t) = q2 = 0. For
the coefficients b1(t), b2(t), q1(t), q1 we simply take the identity matrix (in particular, we assume that d = k).
Finally, we choose

r(t) = [rij ], with rij = δii(1 + exp(−i))−1,

where δ is the Kronecker delta. The purpose of this example is two-fold. First, we show that even in the
framework of this simple example, where also the minimizer of the Hamiltonian has an explicit solution, the
classical approach is severely outperformed by the two-scale approximation, as the dimension of the state space
grows. Second, we stress the fact that the results of the paper are new even in the non McKean-Vlasov setting.

We start noting that, although explicitly given by (3.9), the computation of the minimizer requires several
matrix operations including inversion, transpose and matrix multiplication. All of them can be costly when the
dimension is large. We experimented the classical approach and the two-scale approach using the specifications
above and changing only the dimension d. The result are presented in Table 1, where we referred to the approach
using the minimization of the Hamiltonian as the argmin approach (AM) and compared it to the two-scale (TS)
approach with ε = 5 · 10−5. As we can see from the results of the table, in lower dimension it is still more
convenient to minimize the Hamiltonian. As soon as the dimension increases, the two-scale approach performs
significantly better than the argmin one, with an essentially constant error of approximation. To appreciate
visually the data of Table 1 we can see, in Figure 2, the difference of the execution times of the two algorithms,
when the dimension increases. In addition to the data reported in Table 1, it is worth mentioning that with
d = 500 the two-scale algorithm concludes in 2m:18s, whereas the argmin one has an estimated execution time
of 7h:57m:45s. From these numerical results we conclude that the two-scale method may represent a valid fast
alternative for solving problems in high dimension.

A Lions differentiability
There are various notions of differentiability for functions of probability measures. In the present paper we adopt
the definition firstly given by P.-L. Lions in the series of lectures [18]. In the present appendix we present the
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Dimension Exec. time AM Exec. time TS Time saved Exp. cost AM Exp. cost TS Rel. Error
10 0.78s 1.10s -41.9% 18.65 19.05 2.17%
20 0.95s 1.22s -28.73% 38.53 39.36 2.13%
30 1.50s 1.38s 8.17% 61.16 62.47 2.14%
50 6.49s 1.97s 69.67% 105.70 107.99 2.17%
75 37.55s 2.88s 92.33% 158.01 161.39 2.14%

100 80.38s 4.34s 94.60% 212.72 217.28 2.14%
125 153.32s 8.27s 94.60% 269.95 275.74 2.14%
150 298.89s 12.06s 95.97% 322.55 329.49 2.15%
200 761.94s 27.58s 96.38% 432.70 442.00 2.15%

Table 1: Execution times and expected costs for the argmin (AM) approach and the two-scale (TS) approach. Computed on a Surface 6 pro
laptop with Intel(R) Core(TM) i5-8350U CPU 1.70 GHz.
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Figure 2: Execution times with varying dimension.

21



essential features of such a definition, while we refer to [9, Chapter 5] for more details.
Lions’ definition is based on the idea of lifting, which allows to interpret a derivative with respect to a measure as a
Fréchet derivative in the L2 space of random variables. Firstly, fix a probability space (Ω,F ,P), not necessarily
the same adopted in the previous sections of the paper, satisfying the following property: there exists an F-
measurable random variable U : Ω → R having uniform distribution on [0, 1]. We recall that the probability
space adopted in the previous sections satisfies such a property and, in particular, U can be taken G-measurable.
We also recall from Remark 2.1 that the existence of U is equivalent to the following property:

P2(Rn) =
{
Pξ : ξ ∈ L2(Ω,F ,P;Rn)

}
, ∀n ∈ N.

Definition A.1. Given a function u : P2(Rd) → R, we say that ũ : L2(Ω,F ,P;Rd) → R is the lifting of u if it
holds that

ũ(ξ) = u(Pξ), ∀ ξ ∈ L2(Ω,F ,P;Rd).

Definition A.2. Given a function u : P2(Rd) → R and a probability µ0 ∈ P2(Rd), we say that u is differen-
tiable in the sense of Lions or L-differentiable at µ0 if there exists ξ0 ∈ L2(Ω,F ,P;Rd) such that Pξ0 = µ0

and its lifting ũ is differentiable in the sense of Fréchet at ξ0.

Definition A.3. Let u : P2(Rd) → R such that its lifting ũ is everywhere differentiable in the sense of Fréchet.
We say that u admits L-derivative if there exists a function ∂µu defined on P2(Rd), such that µ0 7→ ∂µu(µ0)(·) ∈
L2(Rd,B(Rd), µ0;Rd) and

Dũ(ξ0) = ∂µu(µ0)(ξ0), P-a.s.

for every ξ0 ∈ L2(Ω,F ,P;Rd) with Pξ0 = µ0. The function ∂µu is called L-derivative of u.

Proposition A.4. Let u : P2(Rd) → R such that its lifting ũ is everywhere differentiable in the sense of Fréchet
and Dũ : L2(Ω,F ,P;Rd) → L2(Ω,F ,P;Rd) is a continuous function. Then, for every µ0 ∈ P2(Rd), there
exists a Borel-measurable function gµ0 : Rd → Rd such that

Dũ(ξ0) = gµ0(ξ0), P-a.s.

for every ξ0 ∈ L2(Ω,F ,P;Rd) with Pξ0 = µ0.

Proof. See [9, Proposition 5.25].

Definition A.5. Given a function u : P2(Rd) → R, we say that u is continuously L-differentiable if its lift-
ing ũ is everywhere differentiable in the sense of Fréchet and Dũ : L2(Ω,F ,P;Rd) → L2(Ω,F ,P;Rd) is a
continuous function.

Proposition A.6. Let u : P2(Rd) → R be continuously L-differentiable. Then, there at most one function
∂µu : P2(Rd) → R such that:

1) for every µ0 ∈ P2(Rd), the function x 7→ ∂µu(µ0, x) is Borel-measurable;

2) for every ξ0 ∈ L2(Ω,F ,P;Rd) with Pξ0 = µ0, it holds that

Dũ(ξ0) = ∂µu(µ0)(ξ0), P-q.c.

3) ∂µu is continuous on P2(Rd)× Rd.

If such a function exists then we say that u admits continuous L-derivative.

Proof. See [9, Remark 5.82].

Finally, let u : P2(Rd) → R be continuously L-differentiable and suppose that u admits L-derivative ∂µu : P2(Rd)×
Rd → Rd continuous. Then, for every fixed µ ∈ P2(Rd), we consider the derivative of the function x 7→
u(µ)(x), which we denote by ∂x∂µu(µ)(x) and is a function from P2(Rd)× Rd into Rd×d.
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