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Abstract— Identifying the environment’s structure, i.e., to
detect core components as rooms and walls, can facilitate
several tasks fundamental for the successful operation of indoor
autonomous mobile robots, including semantic environment
understanding. These robots often rely on 2D occupancy maps
for core tasks such as localisation, motion and task planning.
However, reliable identification of structure and room seg-
mentation from 2D occupancy maps is still an open problem
due to clutter (e.g., furniture and movable object), occlusions,
and partial coverage. We propose a method for the RObust
StructurE identification and ROom SEgmentation (ROSE2) of
2D occupancy maps, which may be cluttered and incomplete.
ROSE2 identifies the main directions of walls and is resilient
to clutter and partial observations, allowing to extract a clean,
abstract geometrical floor-plan-like description of the environ-
ment, which is used to segment, i.e., to identify rooms in, the
original occupancy grid map. ROSE2 is tested in several real-
world publicly-available cluttered maps obtained in different
conditions. The results show how it can robustly identify the
environment structure in 2D occupancy maps suffering from
clutter and partial observations, while significantly improving
room segmentation accuracy. Thanks to the combination of clut-
ter removal and robust room segmentation ROSE2 consistently
achieves higher performance than the state-of-the-art methods,
against which it is compared.

I. INTRODUCTION

In recent years, ground mobile robots have been deployed
in numerous indoor applications including industrial, public,
office, and domestic environments. These robots often rely
on 2D occupancy maps for core robotic tasks such as
localization, motion and task planning.

Occupancy maps represent the shape of the environment
through a grid, where each cell is associated to a probability
of being occupied by an obstacle [1]. However, such maps
do not provide higher-level semantic information about the
environment (i.e., the type of objects, the structure of the
environment, the room type [2], [3]).

Considering how semantic information about structural
layout plays an important role in numerous robotic ap-
plications such as localisation [4], [5], exploration [6]–
[8], mapping performance benchmarking [9], and room
segmentation [10], it is not surprising that the structure
extraction problem has received substantial attention recently.
Even though indoor environments are predominantly well
structured it is still challenging to extract such information
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(a) Occupancy grid map.

(b) Removal of non-structural components.

(c) Wall lines identification.

(d) Geometric floor-plan-like representation.

(e) Room segmentation and room-shape prediction.

Fig. 1: Our method (ROSE2) starts from a (cluttered or
partial) 2D occupancy grid map of an indoor environment
and identifies the structure by retrieving its rooms and walls.
To do so, it filters clutter and non-structural features (b),
it retrieves the main wall directions (c), and obtains a
geometrical representation of the environment (d), that is
used to segment the map in rooms while predicting their
shape (e).
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from 2D occupancy maps. This is usually caused by the
presence of clutter (e.g., from furniture, movable objects) that
occludes the background (e.g., walls) [11]. Several methods
that try to identify structure from 2D occupancy maps
(e.g., by segmenting the map into rooms) perform poorly
in cluttered environments [12], as they are based on local
map features such as corners and narrow passages. However,
2D occupancy maps provide little insights to distinguish
between structural components of the environment (e.g., a
wall) or furniture (e.g., a chair or a table), that can both
give rise to such local features. Some works tackled this
problem by enriching the 2D range data with additional
modalities like camera images or by using 3D point clouds
[11], [13]. However, additional sensing modalities are not
always available.

In this work, we propose a method for RObust Struc-
turE identification and ROom SEgmentation (ROSE2) from
(cluttered) 2D occupancy maps. This method stems from
the assumption that the structure of the environment can be
defined through a (limited) set of main directions that are
followed by walls.

The proposed method for structure extraction and room
segmentation consists of two principal steps, as shown in
Fig. 1. First, we identify all occupied cells of a 2D occupancy
map that belong to the main structure (e.g., walls), by using
a robust frequency-based structure extraction method [14].
At the same time, we filter out map components that are due
to clutter, noise, and non-structural components.

Second, we group locally-perceived portions of walls
along the identified main directions of walls in the environ-
ment, following the assumption that a wall could be shared
by multiple rooms. This allows us to align walls detected
from individual rooms at the building level. We use these
features to build a clean, abstract geometrical floor-plan-like-
representation of the environment.

The structure identified by our method may be used for
multiple tasks such as (i) room segmentation, (ii) floor plan
reconstruction, (iii) prediction of the missing portion of the
environment, (iv) regularization, (v) map inpainting. In this
work, we apply structural knowledge to improve performance
of room segmentation, while we show qualitative results in
tasks (ii)-(v).

ROSE2 is applicable to different types of maps and en-
vironments as it does not rely on any assumption about the
shape of the environment (as (pseudo-)Manhattan worlds),
map completion (complete or partial maps), nor assume any
parametrization specific for a given map. ROSE2 does not
require any training before being applied to new settings and
can be used online during robot activities.

The experimental evaluation is performed by showing
how our method effectively identifies the structure and
performs room segmentation in several environments, both
using real-world cluttered and partial occupancy maps and
on the benchmark dataset for room segmentation of [10].
Thanks to the combination of clutter removal and robust
room segmentation ROSE2 consistently achieves a higher
performance when compared with the three methods from

the state-of-the-art discussed in [10].ß
This paper builds on previously published work about

different yet related topics, on structure extraction [14], [15]
and shape prediction of unobserved rooms [16]. In this
paper, we integrate an improved version of our work of
[16] with the robust feature extraction method of [14] to
achieve a framework that could be robustly used on all types
of 2D occupancy maps for structure extraction and room
segmentation. This improves the overall performance of the
framework in two ways. First, it simplifies the steps of the
method and removes the requirement of a manual tuning
of a set of parameters for each type of maps (as partial or
complete maps, simulated or real ones). Second, we remove
the limitation of [16] to work only with clean simulated maps
while also significantly improving performance in detecting
the environment’s structure.

II. RELATED WORK

A key feature of indoor environments is that they are built
with an underlying structure that is due to the fact that they
are composed of doors, walls, rooms, and hallways [17].
Identifying the environment’ structure is a key factor for
addressing tobot applications, among others, as localisation
[4], [5] and exploration [6]–[8]. In this section, we provide
an overview of methods proposed to detect structure from
occupancy robot maps. In particular, we focus on the task of
room segmentation, i.e., the detection and segmentation of a
map into a set of rooms.

The survey of Bormann et al. [10] compares the state-of-
the-art techniques used to perform room segmentation on
2D maps. In particular, [10] identifies three main groups
of approaches. The first and most popular one is that of
Voronoi-based approaches [18], that segment the environ-
ment using a Voronoi graph, a spatial partition of the map
whose nodes and edges have a maximal distance from at
least two points of a finite set of obstacles. The second
group is that of morphological operators, which segment the
environment by using a transform on the map. An example
is the morphological segmentation method [19], that grows
iteratively obstacles in the map until two connected areas be-
come separated. A second example is the distance transform-
based segmentation [20], that uses the distance of each
empty pixel to the closest border/obstacle for segmentation.
The third group, that includes [2], relies on learning grid-
cell labels from local appearances (e.g., by classifying 2D
raw sensorial inputs) and harmonizing neighbouring labels
afterward. In this way, the process of room segmentation is
fused with that of semantic mapping (e.g., determining that a
room is also a corridor or an office). The performance of all
these methods, as we show in Section IV, is unstable when
applied to cluttered maps.

Mielle et al. [12] presents a method for room segmentation
of 2D maps using the layout of the free space, by detecting
ripple-like patterns and by merging neighboring regions with
similar values. However, such a method cannot be applied
to cluttered and non-empty environments.



The work of [21] addresses the task of room segmentation
of a 2D occupancy map as a computer vision problem using
an encoder-decoder architecture to identify rooms and cor-
ridors. Differently from us, this method requires training on
the type of maps to be segmented. Clutter maps, which can
present significantly different features than those considered
for training in [21], were not investigated.

The method of [22], starting from a 2D occupancy map,
reconstructs the geometrical shape of rooms by using Markov
Logic Networks and data-driven Markov Chain Monte Carlo
(MCMC) to sample over several possible room shape can-
didates, and selecting the fittest candidate according to the
sensor data and a probabilistic room model.

Several methods extract the environment structure from
3D point clouds [13], [23]–[25]. While being partly inspired
by those methods, our work focuses on a different type of
input as 2D occupancy maps.

The task of using knowledge obtained from camera im-
ages and 3D point clouds to perform structure detection,
room segmentation, and semantic mapping on 2D maps has
also been investigated in several works. The work of [26]
shows how the integration of heterogeneous multi-modal
information from 2D laser range scanners and vision can
be fused into a probabilistic framework to obtain a semantic
segmentation of the map into rooms.

A similar approach is presented in [27] where a deep
learning vision-based place categorization method provides a
segmentation and semantic map of the 2D occupancy maps.
Another recent work following a similar method is the one of
[28], which integrates a vision-based scene classifier and an
object detector to segment 2D grid maps into rooms and,
at the same time, distinguish the semantic labels of that
environment.

The work of [29] addresses a different, but related, prob-
lem. Starting from a 3D point-cloud map of the environment
the method extracts a 2D occupancy map where different
rooms are detected. To do so, they identify in 3D several
structural features of the environment as regions, volumes,
and passages, that are used to extract a topological map.

Our works of [15], [16] present a method to predict the
shape of partially-observed rooms in 2D occupancy maps
after computing a geometrical floor-plan-like representation
of the environment called the building layout. While showing
promising results in clean maps without furniture, the method
required an ad hoc parametrization for each map in order to
work, which jeopardizes its applicability to cluttered maps.
Nevertheless, we show in [6] how such predicted structural
knowledge could be used online to improve performance
in exploration for map building. Another application is in
[30], that shows how the identification of the structure of
the environment can help to predict the shape of multiple
closed rooms that are behind closed doors, then performing
inpainting on the map of the predicted shape of unobserved
closed rooms.

III. OUR METHOD

ROSE2 identifies the structure present in indoor environ-
ments from 2D occupancy maps to reconstruct the geometry
of structural elements like walls and rooms, that are utilised
for segmentation. Our method is divided into three steps: map
cleaning and structural features identification (Section III-
A), wall detection (Section III-B), and room detection (Sec-
tion III-C).

The proposed pipeline is designed to work with regular
categorical 2D occupancy grid maps. In this type of map
each cell can belong to one of three categories: occupied,
free, or unknown. Besides this, our approach is independent
of the configuration of the robot system and of the SLAM
algorithm used to build the occupancy map.

A. Map cleaning and structural features identification

Typically, for ground robots, occupancy maps M obtained
in real-world environments are particularly noisy, since the
lidar used as the main sensorial input to build them is
commonly placed close to the floor level. As a result,
the sensor perceives and adds to the map non-structural
objects such as legs of tables and chairs, bags, noise due
to reflections caused by mirrors, French windows, and glass
walls. Consequently, detecting the structural features, like
walls, in such maps could be challenging.

Thus, in the first step of the proposed pipeline we
implement a method for differentiating between structural
elements of the environment and noise (i.e., clutter, spurious
measurements, and non-structural elements of the environ-
ment) and further removing noise in order to obtain a clean
map M̄ . To do so, we rely on the method that we presented
in [14], called ROSE.

ROSE exploits the fact that in human-made environments
structural components, like walls, are organised along a
limited number of dominant directions Ψ.

As a consequence the dominant directions can be observed
in the frequency spectrum as sets of radial ridges passing
through the center of the frequency image. To identify these
ridges ROSE computes a 2D Discrete Fourier Transform
(DFT) of M . Then, lines corresponding to the dominant
directions are identified. The process starts by computing
the cumulative amplitude along each direction of ψ in the
frequency image, then those directions that correspond to the
most prominent peaks among all directions ψ are selected as
Ψ. These peaks define the components of the frequency spec-
trum that should be retained (structure), while the reminder
of the frequency spectrum will be set to zero (clutter). This
process is equivalent to automatically generating a band pass
filter. However, in contrast to typical image processing, the
goal is to retain high-energy parts of the spectrum. Finally,
through computation of the inverse DFT for the filtered
frequency image, each occupied cell in the map gets a score
denoting how much it contributes to the structure of the
environment.

Note that ROSE does not assume Manhattan environments
(with only right angles), but can also handle environments



(a) (b)

Fig. 2: Line segments obtained from the clean map M̄ of
the map shown in Fig. 1. Different clusters of collinear line
segments are shown with different colors. Note how a single
wall in the environment is represented as a series of slightly
misaligned small line segments. Collinear clusters of (a) are
merged in (b).

with more than two dominant directions. For full details
about the method, please refer to [14].

Through discarding cells with a score lower than a thresh-
old (thus identifying them as not belonging to the structural
elements) the clean map M̄ is generated. The threshold is
automatically tuned by checking different threshold values
for each map to have a ratio of line segments (obtained using
the method from [31]) per free grid map cells in M̄ inside
a desired interval (experimentally identified), to avoid any
further parameters tuning when assessing a new map type.

B. Wall detection

While the process of obtaining a clear map M̄ and dom-
inant directions Ψ helps in identifying the main structural
components, this is not sufficient to identify walls. This
is because, in M̄ , portions of the same walls are usually
represented by small line segments slightly misaligned w.r.t.
each other. An example can be seen in Fig. 2, that shows
the line segments obtained from the map M̄ of Fig. 1b.
It can be seen how, despite the clean map M̄ (Fig. 1b)
just contains some clutter, line segments identified in it are
(slightly) misaligned, despite belonging to the same wall.
To mitigate this limitation, we identify walls by combining
together line segments that are close to each other within the
map. These line segments are clustered together according
to their direction and to the fact that they are lying (or not)
on one of the main dominant directions Ψ identified in M̄ .

The first operation on M̄ is the detection of line segments
s ∈ S using the probabilistic Hough line transform [31].
The line segments S are then clustered together to identify
those that belong to a portion of the same wall W . To do
so, we rely on the method we described in [16]. At first,
we cluster together all line segment with a similar angular
coefficient. After that, we identify a wall W = {s1, . . . , sn}
as a cluster of line segments (obtained using DBSCAN, [32])
that are spatially close to each other (i.e., there is a continuity
between them) and have a similar angular coefficient. For full
details about this step, please refer to [16].

We then align all line segment clusters W to dominant
directions Ψ, by associating each line segment s ∈ W with
its closest dominant direction ψ. Note that, as line segment
s are obtained from the clean map M̄ from which ψ is
computed, all line segments follow one of the dominant

directions. Thus, for each line segment s, we compute a line
segment s̄ which is a projection of s on a line with direction
ψ passing through the middle point p of s, thus aligning
all line segments in M̄ to a dominant direction in Ψ. As a
result, for each wall cluster W (of unaligned line segments
s), we obtain the corresponding aligned cluster W̄ (of line
segments s̄ aligned with a dominant direction).

As walls are shared by different rooms, we have often the
case where the same wall in the environment is split into
multiple clusters W , as in the case of the walls along the
main corridor of Fig. 2a. To solve this, we merge together
collinear wall clusters W̄ , using the following procedure.
Given a wall W̄ = {s̄1, . . . , s̄n}, we represent it with its
central point P . The central point P is selected as the median
point across all middle points pi of the line segments s̄i ∈
W̄ , along a direction perpendicular to the dominant direction
of W . Given two walls W̄ and W̄ ′, we call l and l′ the
parallel lines passing through the middle points P and P ′,
both with dominant direction coefficient ψ. If the distance
between l and l′ is less than a threshold (intuitively, closer
than the width of a doorway), then the two corresponding
walls W̄ and W̄ ′ are merged together in W̄ ′′ (for which a
new middle point P ′′ is computed). The result at the end
of this process for Fig 2a is shown in Fig. 2b, where all
line segments belonging to the same wall along the central
corridor are assigned to the same cluster.

At this point, for each cluster Wk we obtained, a represen-
tative line lk is assigned as a line whose angular coefficient is
equal to a dominant direction ψ and passing through pk. Each
representative line, in red in Fig. 1c, indicates the direction
of a wall within the building, and is projected across the
whole map M .

The convex area delimited by intersections of representa-
tive lines is called a face. We call L the set of representative
lines l, F the set of faces f , and we define the edges e ∈ E
as the portions of representative lines common between two
faces f, f ′. Note how there is a relation among all of these
objects: a wall cluster W is composed of line segments s; for
each wall cluster W exists a representative line l; l indicates
the direction of that wall W .

We define an edge weight w(e) that represents how much
of e is “covered” by a projection on it of line segments s
of a wall W corresponding to the representative line l on
which e lies. Intuitively, if an edge e is fully covered by line
segments (in M̄), it has w(e) ≈ 1; an edge e′ located in an
empty part of M̄ has w(e′) ≈ 0. We perform then a filtering
process: we remove all representative lines whose cumulative
weight of their edges is below a threshold (empirically set
to 0.1, so that less than the 10% of them is covered by an
obstacle in M̄ ) so to remove all representative lines that are
caused by a local feature that may be not common to the
whole environment. The rationale behind this is to identify
a set of few meaningful representative lines that cover the
walls as observed by the robot in the map M . An example is
shown in Fig. 1c. To avoid to loose interesting local structural
features with the filtering process, we keep only the edges
e of a removed representative line l that are almost entirely



(a) (b) (c)

Fig. 3: Representative lines (a), Voronoi Graph (b), and
resulting floor plan F (c) in a case where structure is not
fully observed in the map.

covered (so with a large weight w(e)).

C. Room detection

The third and last step is to reconstruct the shape of the
rooms in the environment. Rooms are found by clustering
faces according to the following two rules: (i) adjacent faces
whose common edge corresponds to a wall should belong
to different rooms, (ii) adjacent faces that share an edge not
corresponding to any wall should be part of the same room.
To do so, we partition F in {F1, F2, . . . Fn}, in which each
Fi collects the faces of a room, by clustering together faces
using DBSCAN [32] as the clustering method, and using the
weight w(ef,f ′) (as defined in the previous section) of the
edge adjacent to faces f and f ′ as the metric, similarly to
what we did in [16].

The faces belonging to each Fi are then merged together,
obtaining a polygonal representation of the room ri, in which
the borders of the polygon are assumed to be the external
walls of the room. The floor plan F = {r1, r2, . . . , rn}
is finally retrieved by considering together all rooms r, as
displayed in Fig. 1e.

The reconstruction of the floor plan F is a key step in
our method. It extracts the aligned shape and location of
the walls as observed by the robot and, simultaneously, the
border of a room in F predicts the presence of walls that
complete the rooms even when they are not observed (yet)
by the robot (e.g., due to occlusion). Note that the estimated
floor plan can be used to infer the actual shape of a partially
observed room, as in Fig. 1e. This step differs from the one
of [16], where two different methods are used to first extract
the shape of fully-mapped rooms [15], and then to predict
the shape of partially observed ones.

Finally, we obtain the segmented map M̌ , where empty
cells in the map M are assigned to the corresponding room
as identified in F .

The output of our method is thus the set 〈M̄, L, F,F , M̌〉
which identifies the environment’s structure.

D. Integrating missing structural knowledge

In cluttered environments, it can happen that neither side
of a wall that divides two different rooms r and r′ is directly
observed, due to partial mapping or occlusion. In these cases,
we cannot rely directly on walls to separate those two rooms
and identify their structure.

Instead, we consider the building topology by computing
a Voronoi topological graph G = (N,T ) of the environment,
as shown in Fig. 3b, using the method of [9], where N and T

are the set of nodes and edges, respectively. In this way, we
can check, for each room r, that all nodes Nr belonging to r
are connected to each other (i.e., the sub-graph Gr containing
all nodes Nr is a connected graph). If this condition does not
hold, we split accordingly the room r into two rooms r′ and
r′′ according to the separated components of the graph Gr.
To estimate the shape of r′ and r′′ we rely on the symmetry
of the building. If a representative line l that divides Gr′

from Gr′′ exists, we use it to separate those rooms in the
floor plan F . If such a line does not exist, we divide the
two rooms by using a line with the same direction of the
dominant direction Ψ that can separate nodes in Gr′ from
Gr′′ . An example is shown in Fig. 3, where Fig. 3a shows the
representative lines, Fig. 3b shows the Voronoi segmentation,
and Fig. 3c shows the final result with the segmented rooms
and the floor plan F where the added lines are shown.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the capabilities of ROSE2 to
identifying semantically meaningful structure of cluttered 2D
environments.

To do so, we focus on the task of room segmentation.
Evaluation is performed both visually and quantitatively,
comparing the segmented map M̌ with the actual ground-
truth segmentation of the rooms MGt (obtained with manual
labelling and using the environment floor plan, when avail-
able, as a reference) of the same map M . Given a room r̂
obtained from M̌ and that of its ground-truth counterpart
r obtained from MGt, we compute their Intersection over
Union (IoU) as IoU(r̂, r) = r̂ ∩ r/r̂ ∪ r.

Intuitively, we consider the area r \ r̂ as a false negative,
the area r̂\r as a false positive, and the area of r̂∩r as a true
positive. Then, given the segmented room r̂ of a room in M̌ ,
we look for the corresponding room r in MGt that maximizes
the overlap with r̂ using the same approach of [10]. We scale
IoU in range [0-100].

For comparison with [10], we also report the metrics of
precision and recall. Precision is defined as the maximum
overlapping area of a segmented room with the correspond-
ing ground truth room, divided by the area of the segmented
room; recall is defined the maximum overlap of a ground
truth room with the corresponding segmented room divided
by the area of the ground truth room. Note that these two
metrics have complementary bias [12]; an undersegmented
map (fewer rooms than the actual ones) can have high recall
and low precision; conversely, a oversegmented map (more
rooms than the actual ones) can have high precision and low
recall). We consider the IoU as the most relevant metric as
it is not affected by this bias.

We compare our results (label ROSE2) against publicly
available methods used in the room segmentation survey of
[10]: Voronoi-based (Voronoi), morphological (Morph),
and distance-based segmentation (Dist). As these methods,
that are described in Section II, are based on features
extracted directly from the map M , their performance varies
when the maps contain significant noise and clutter. Full



(a) ROSE2 IoU= 95.07 (b) Voronoi IoU= 27.34 (c) Morph IoU= 67.32 (d) Dist IoU= 63.39

Fig. 4: Room segmentation of our method and of methods from [10] on the map of Fig. 1.

ROSE2 Morph Dist Voronoi
precision 89.02 (8.39) 84.98 (6.12) 88.34 (7.85) 85.86 (9.84)
recall 93.93 (4.21) 82.3 (11.16) 79.79 (12.15) 71.92 (13.25)
IoU 73.3 (17.83) 51.24 (12.25) 54.65 (14.73) 28.65 (10.55)

TABLE I: Average results over 10 cluttered maps.

results from all considered maps and the code of the im-
plemenentation of our method are available online*.

A. Results on publicly available maps

In this section, we present the results obtained in 10 fully-
explored maps available from the datasets of [33], [34], as
the one of Fig. 1. Those maps are processed by ROSE2

regardless of the algorithm used for performing SLAM and
of their size, and without changing any parameter. As those
maps are obtained in real environments, like offices, they
naturally present a certain degree of clutter and artefacts.

Table I presents the results. Our method clearly outper-
forms the other ones from [10]. The increase in performance
is particularly clear when we consider the IoU, which is the
metric that better describes how our method can produce a
robust and stable segmentation. Fig. 4 compares the results
obtained by our method with those obtained by other meth-
ods in segmenting the map of Fig. 1, while Fig 5 shows
results in a map with a non-Manhattan floor plan. In both
examples, not only our method performs better than the
others in terms of IoU, but also the errors of our method
in segmenting the map are less critical, as the segmentation
is coherent with the structure of the environment. At the same
time, the methods of [10] often segment the environment in
a way that is not semantically coherent with its structure, as
for example in Figs. 4b and 5c.

Fig. 6 shows results in a map where several artifacts due
to perception issues (e.g., glass walls) are clearly visible.
Nevertheless, our method, differently from those of [10],
compensates for those map inaccuracies and provides a
meaningful segmentation of the environment, identifying its
structure.

To test the robustness and performance stability of ROSE2,
we report the results on the dataset used as a benchmark
in the survey on room segmentation methods of [10]. The
dataset is composed of 20 clean maps and 20 maps with
artificial additional noise of large-scale structured environ-
ments†. Those maps are significantly different (and simpler)

*https://github.com/goldleaf3i/
declutter-reconstruct

†http://wiki.ros.org/ipa_room_segmentation

(a) ROSE2

IoU= 80.44
(b) Voronoi
IoU= 44.22

(c) Morph
IoU= 55.65

(d) Dist
IoU= 52.39

Fig. 5: Room segmentation of our method and of methods
from [10] on a non-Manhattan map.

(a) ROSE2 IoU= 38.15 (b) Voronoi IoU= 10.23

(c) Morph IoU= 33.03 (d) Dist IoU= 39.31

Fig. 6: Room segmentation of our method and of methods
from [10] on a map with several perception artifacts.

from real-world maps, as they do not present clutter nor
noise typically present in real-world maps, but are empty
environments (no furniture) or with geometric noise
added (furnished).

On these maps, ROSE2 obtains results that are similar
to those obtained in cluttered maps (and that are better than
those of [10] and of our previous work of [16]), with a 93.54
(5.46) precision and 91.03 (3.46) recall on furnished
maps, and 93.26 (6.4) precision and 97.58 (2.2) recall on no
furniture, without changes in parameters. Full results are
reported in the repository.

https://github.com/goldleaf3i/declutter-reconstruct
https://github.com/goldleaf3i/declutter-reconstruct
http://wiki.ros.org/ipa_room_segmentation


(a) ROSE2 IoU= 80.98 (b) Voronoi IoU= 33.1

(c) Morph IoU= 66.47 (d) Dist IoU= 74.62

Fig. 7: Room segmentation of our method and of methods
from [10] on a partial map obtained during exploration.

B. Results on partial maps

In this section, we evaluate the results obtained in several
maps coming from the incremental exploration of a building.
In this way we test the robustness of ROSE2 to extract the
structural features from different types of maps. For example,
maps obtained in the early stages of exploration have few
rooms that are only partially mapped by the robot. Data
are taken from [33] using two robot runs obtained in the
Freibug Building 79 (FR79) and in the University of Bremen
Cartesium building (Cartesium). We relied on GMapping
[35] as SLAM method. We used the last map to compute the
coverage percentage of the map from the start of exploration
(coverage = 0) to the full exploration of the environment
(coverage = 1).

Fig. 7 shows the results of ROSE2 compared with the
methods of [10] in a partial map obtained in FR79. ROSE2

can segment the environment in a meaningful way also when
the structure of the building can be identified by only a few
walls as partially perceived by the robot. Conversely, the
results of the methods from [10] show several artifacts. Fig.
3 shows the features we extract, namely the floor plan F and
representative lines l, obtained in the same environment of
Fig 7. Note how F is a reliable representation of the actual
shape of the environment, which could be used by the robot
to have a better understanding of the shape of rooms which
are only partially perceived by the robot.

Fig. 8 shows the IoU at different coverage levels for the
two environments FR79 and Cartesium. The performance
of our methods are consistent (IoU around 80) at all degrees
of map completion. At the same time, qualitatively speaking,
the segmentation performed by other methods varies greatly
as the map of the environment changes, while also achieving
a lower quantitative performance.

C. Discussion

The results from Fig. 8 show how our method is robust in
different map conditions; this is due to the fact that the steps
described in Section III allow the extraction of semantically

0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

coverage FR79

Io
U

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

coverage Cartesium

Io
U

ROSE2 Morph
Dist Voronoi

Fig. 8: IoU vs. percentage of coverage for the FR79 (top)
Cartesium (bottom).

Fig. 9: Features extracted (representative lines, room seg-
mentation) from a partial map of INTEL (IoU= 75.98).

meaningful structural features even from partial maps or from
particularly cluttered ones.

Another example of this is in Fig. 9, where we show
the segmentation and the representative lines retrieved from
a partial map obtained from the Intel Lab (INTEL) [33].
Also in this environment, which is complex due to its
large size and its non-Manhattan layout, our method gives a
semantically meaningful reconstruction of the environment,
while providing the directions of the main walls.

The retrieval of the floor plan F and the identification
of walls and representative lines can provide meaningful
insights on the actual shape of the environment also in
cases the robot has not a full knowledge of the entire map.
An example is shown in Fig. 10 with the inpainted room
shape from the floor plan F for two partial maps obtained
from FR79 and Cartesium. Despite that there are several
parts of the environment not observed yet by the robot, our
method can give an accurate representation of its structure.



(a) IoU= 90.42 (b) IoU= 74.63

Fig. 10: Floor plan F and room segmentation of two partial
maps from FR79 (a) and Cartesium (b).

This knowledge could be used to complement the map, by
estimating the actual shape of the rooms, but also to give
extra knowledge and awareness of the environment to the
robot [6].

V. CONCLUSIONS

In this work, we have presented a method to extract
the structure of an environment from its (cluttered) 2D
occupancy grid map, while performing a segmentation of
the map into a set of rooms. Our method starts to identify
the main directions of lines as observed in the occupancy
map, and cleans the map from clutter and noise. After that,
it estimates the presence of the walls in the environment and
of their directions with a set of representative lines; these
lines are combined to obtain a geometrical floor-plan-like
representation that is used to segment the map in rooms.
Results show that our method can be successfully applied
to occupancy grid maps, even in the case of severe noise
and clutter and when the map represents only a part of the
environment, as during exploration. Future work involves the
use of structural information to improve long-term mapping
of changing environments.
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