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     Abstract—In this work, we present a powerful notch filter for 
power-line interference (PLI) cancelation from biomedical signals. 
This filter has a unit gain and a zero-phase response. Moreover, 
the filter can be implemented adaptively to adjust its bandwidth 
based on the signal-to-noise ratio. To realize this filter, a dynamic 
model is defined for PLI based on its sinusoid property. Then, a 
constrained least square error estimation is used to emerge the PLI 
based on the observations while the constraint is the PLI dynamic. 
At last, the estimated PLI is subtracted from recordings. The 
proposed filter is assessed using synthetic data and real biomedical 
recordings in different noise levels. The results demonstrate this 
filter as a very powerful and effective means for canceling the PLI 
out. 
     Keywords—Power-line interference, noise cancelation, notch 
filter, adaptive filter, biomedical recordings. 

I. INTRODUCTION  
     Power-line interference (PLI) is one of the major intruder 
sources while recording biomedical signals such as 
electroencephalography (EEG) or electrocardiography (ECG).  
These signals are of great value to determine the health status 
of individuals and can be used for many clinical (e.g. [1], [2] 
and [3]–[5]) or practical purposes (e.g. [6], [7] and [8]–[12]). 
Hence, removing the PLI from biomedical recordings is a very 
important issue in the field. 
     The power-line noise is usually attenuated using simple 
notch filters. These filters are troublous as they do not have unit 
gain and also the phase response is not constant. Furthermore, 
these filters are not adapted with the signal-to-noise ratio (SNR) 
of recordings which may lead to lose information in the 
situations that the signal power is improved. There are a vast 
number of studies that have tried to address these problems. In 
[13], the authors have proposed a feedback scheme to improve 
the quality factor (Q-factor) of a simple (IIR) second-order 
notch filter. Although the proposed scheme has improved the 
Q-factor, the filter has not unit gain and constant phase 
response. Several adaptive schemes in the literature somehow 
have tried to modify the Q-factor of the notch filter based on the 
SNR of recordings [14]. More up-to-date schemes have used 
the Kalman filter or its extensions to track the PLI and 
automatically adapt their band-width (i.e. their Q-factor) [15]; 
however, they require information about the phase and 

amplitude of the PLI. This is not desirable as these parameters 
can be easily altered for different recording setups or even 
within a specific setup (e.g. changing the sensors’ impedance 
due to sweating during recording sessions). In [16], the author 
has presented a discrete-time linear Kalman filter for PLI 
cancelation. This filter uses a dynamic model based on 
trigonometric identities of sinusoid series which doesn’t need 
the PLI amplitude and phase. The methods based on Kalman 
filtering require an estimation of initial states, they also require 
the model and observation noises be white. If these conditions 
are not satisfied, the designed filters might be inaccurate. In 
these situations, one may use the proposed filtering scheme in 
[17], which is merely based on minimizing the variance of noise 
sources. 
     Contribution: In this work we employ a new approach to 
design a high Q-factor notch filter for PLI cancelation. This 
filter has unit gain and zero-phase response to different 
frequencies. Furthermore, the filter can be implemented 
adaptively to adjust its bandwidth based on the SNR. The 
relation of the proposed method with the Wiener filter is also 
studied, which shows our filter as a generic framework to its 
Wiener counterpart in the situation of white observation noise. 
To realize this filter, an additive signal model is defined for 
observations where the first term is the PLI and the second term 
is dedicated to desired biomedical signals along with other 
noise sources. A recursive dynamic model is also defined for 
the PLI based on the trigonometric properties of sinusoid 
functions. Owing to this recursive model, there is no need for 
the amplitude and phase information of the PLI. Now, the 
observation and dynamic models can be merged to have a good 
estimation of the PLI. The usual way for this is using a Kalman 
approach, however, in our model, the observation noise (i.e. the 
part that is mostly dedicated to the biomedical signals) is highly 
colored. Hence, here, we utilize a constrained least square error 
(LSE) estimation [17] to elicit the PLI instead. Finally, the 
estimated PLI can be subtracted from recordings. The 
performance of the proposed filter is assessed using synthetic 
data and real biomedical recordings in different noise levels. 
The results demonstrate the effectiveness of the proposed filter. 
     The rest of paper is as follows. In section II, the proposed 
method is well established. In section III, the Z-domain analysis 
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of the proposed filter, and the relationship of the proposed 
method with the optimal Winier filter is discussed, also, a 
scheme is suggested to adapt the filter based on the SNR of 
observations. The performance of the proposed filter for 
eliminating the PLI from synthetic and real data is assessed in 
section IV. Finally, the last section is dedicated to a discussion 
about the proposed method and concludes the paper.  

II. METHOD  
First, we define an additive signal model for observations, 

                          , 1,2,...,y p v n Nn n n= + =                         (1) 

Where yn indicates observations acquired from a recording 
instrument, pn is the PLI, vn is the noise part assumed to be 
uncorrelated with pn, n is the time index, and N is the total 
number of recorded samples. Note that, vn is assumed to be a 
zero-mean colored noise with variance 𝜎𝑣

2, which contains the 
desired bio-signals and all other noises (e.g. movement 
artifacts, etc.). 
     To define a dynamic model for PLI, this monotonic 
interference may be considered as, 
 
                             cos( )p A nn c = +                                  (2) 
where A and θ are arbitrary amplitude and phase, respectively. 
Here, ωc=2Π fc/fs where fc is the frequency of the PLI (usually 
50 or 60Hz), and fs is the sampling rate. The model defined in 
(2) depends on the amplitude and phase of the PLI. This is not 
desirable since these parameters can be easily changed in 
different situations. To overcome this problem, one may write 
(2) as the following recursive equation [16], 
                           1 2p p pn n n= −− −

                                    (3) 

where α=2cos(ωc). In the following, a zero-mean white noise 
ωn with variance 𝜎𝜔

2  is added to (3) to address the possible 
model errors caused by small deviations of the PLI frequency, 
amplitude or phase. 
     Putting (1) and (3) together, the following dynamic system 
is obtained, 
                          1 2p p pn n n n

y p vn n n
 




= − +− −
= +

                               (4) 

To estimate the PLI based on this system, we try to minimize 
the square error of the dynamic and measurement models 
simultaneously [17]. This leads to the following constrained 
LSE optimization problem, 

                   2ˆ argmin ( )
1 

N
p y pk kn kpn

= −
=

                                       (5) 

             s.t.  22( )1 1
1

N
p p pk k k

k
 − +  − −

=
 

where 𝛿2 is an upper bound to limit the maximum variation of 
dynamic model. A matrix form of (5) can be written as, 

                              2
ˆ argmin

 
p y p

p
= −                                    (6) 

                                s.t.  2 2H pc   

where ‖. ‖ indicates the Euclidian norm. 

Here, 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑁]𝑇   ({. }𝑇  indicates the transpose 
operator); 𝑦 is also defined in the same manner, and it is a 
column vector of length N consisting the observation samples. 
Hc is a matrix which indicates that the PLI oscillates at ωc 

(rad/sec), and it is defined as, 

               
1 1 0 0
0 1 1

0
0 0 1 1 ( 2)

Hc

N N






 
 
 
 
 
 
 
 

−
−=

− − 

 

The Lagrangian form of (6) is, 

          2 2ˆ argmin
 

p y p H pc
p


  
 
  

= − + , s.t. 0                     (7) 

where λ is the Lagrange coefficient. This is a classic LSE 
problem which is in the form of a convex optimization problem 
with a quadratic constraint and its solution is obtained by [18], 
[19], 
                         1ˆ ( )Tp I H H yc c −= +                                (8) 

where I is an identity matrix of dimension N. In (8), let  Γ𝑏𝑝𝑓 =
(𝐼 + 𝜆𝐻𝑐

𝑇𝐻𝑐 )−1 . One may consider that Γ𝑏𝑝𝑓is in fact a 
bandpass filter which let the PLI to pass. However, we are 
interested in 𝑣 which indicates the non-PLI part of the 
observations, including the desired bio-signals. This part is 
obtained as follows, 
                            ˆˆ ( )v y p I ybpf= − = −                            (9) 

where Γ𝑛𝑓 = (𝐼 − Γ𝑏𝑝𝑓) is the final form of the proposed notch 
filter. There is only one parameter to be set in this filter, and it 
is λ. Increasing λ from zero force the �̂� to be more like a 
sinusoid series, and in the sense of a notch filter, it means a 
narrower stop-band. In the next section we discuss how 
changing the λ value changes the Q-factor of the filter. 

 
III. PROPERTIES OF THE PROPOSED FILTER 

A. Z-domain Analysis 
     The sample-wise form of (8) can be written as, 
                                    1ˆ ( )bpfp yn n n −=                              (10) 

In (10), 𝛾𝑛
𝑏𝑝𝑓 = (𝛿𝑛 + 𝜆ℎ−𝑛 ∗ ℎ𝑛) where δn is the Kronecker 

delta, hn=[1,-α,1] and   represents the convolution operator. 
This equation means that �̂�𝑛 is obtained by the deconvolution 
of 𝛾𝑛

𝑏𝑝𝑓 and yn (or equivalently 𝛾𝑛
𝑏𝑝𝑓 ∗ �̂�𝑛 = 𝑦𝑛). 𝛾𝑛

𝑏𝑝𝑓 
represents a linear time-invariant (LTI) and non-causal 
bandpass filter with the following transfer function, 
                     1( ) 11 ( ) ( )

zbpf bpf bpfz zn n 
 =

−+
                 (11) 

where 𝛾𝑏𝑝𝑓(𝑧) = 1 − 𝛼𝑧−1 + 𝑧−2. By the same logic and 
employing (9), the Z-transform of the notch filter is obtained as, 
                    1( ) 1 11 ( ) ( )

nf z bpf bpfz z 
 = − −+

                (12) 

Figs.1 and 2 show the frequency response of the proposed 
bandpass and notch filters for fc=60Hz and fs=256Hz. As it can 
be seen, they both have a unit gain and zero-phase response and 
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Fig 1. The amplitude and phase response of the proposed bandpass filter in 
different values of λ. λ = 0, 1, 1e1, 1e2, and 1e4 from top to bottom. The phase 
response for all _ values is zero, hence, the plots are overlapped. 

 
Fig 2. The amplitude and phase response of the proposed notch filter in 
different values of λ. λ= 0, 1, 1e1, 1e2, and 1e4 from top to bottom. The phase 
response for all _ values is zero, hence, the plots are overlapped. 

are stable. By increasing the value of λ from zero, the Q-factor 
of the filters is increased. 
 

B. Relation with the Winier Filter 
     Winier filter is the optimal solution for estimating a desired 
process by LTI filtering of noisy observations. It is assumed that 
signal and noise come from stationary processes with known 
spectra, and the noise is additive [20]. Considering (1), the 
transfer function of the Winier filter minimizing the mean 
square error between the estimated process and the desired 
process is obtained by, 
 
                         ( )

( ) ( ) ( )
S zppWinier z S z S zpp vv

 = +
                       (13) 

 
where Spp(z) and Svv(z) are the spectra of pn and vn, respectively. 
By considering the defined dynamic system in (4) and assuming 
that vn comes from a white random process, we have, 
 

          
2

1( ) ( )( ) 2 2
1( ) ( )

bpf bpfz zWinier z

bpf bpfz z


 

  

 
 
 
 
 
 
 
  
 

−
 =

+−

 

                           1
2 11 ( ) ( )2

bpf bpfz z  


=

−+

                           (14) 

which is equal to (11) if 2 2/   =  . Hence, we can consider 
the proposed filter as a generic form of the Winier filter when 
the observation noise comes from a white process. 

C. Adaptive Form of the Proposed Filter 
     The only tunable parameter of the proposed notch filter is λ. 
If λ is set to a specific value, the filter will have a fixed 
frequency response and a fixed stop-band. However, it is 
desired to have a narrower stop-band for high SNR situations to 
let more of the desired signal passes through the filter, and, it is 
the other way for low SNR situations. Hence, it is insightful to 
consider λ proportional to the SNR. To have an estimation of 
the SNR, one may pass the observation vector from a coarse 
notch filer and calculate the power (variance) of the filtered 
signal. Let �̂�𝑣

2 be an estimation of the desired signal power, and 
let �̂�𝑝

2 be an estimation of the PLI power (�̂�𝑝
2 can be obtained 

by subtracting the filtered signal from observations and 
calculating the variance of the residue). Now, the adaptive value 
is calculated by,  

                                
2ˆ
2ˆ

Cadaptive p




=                                   (15) 

where C is a constant scale parameter. 
     Another approach to find an adaptive value for λ is plotting 
an L-curve [21] and finding the best value (which is 
corresponding to the corner point of the L-curve). This gives 
the best compromise between following the sinusoid dynamic 
and following the observations. It can be seen that for higher 
SNRs, the corner point corresponds to a larger λ, and it is vice 
versa for lower SNRs. 
 

IV. METHOD EVALUATION 

     In this section, the proposed notch filter is evaluated for PLI 
cancelation from synthetic and real data. For real data, ECG and 
EEG signals are employed. The results are presented in the 
three following forms. First, the performance of the proposed 
filter in the time domain, second, its performance in the 
frequency domain by employing power spectral density (PSD) 
plots, and at last, the mean square error (MSE) between the 
desired signal and filtered signal in different SNRs are 
presented. For all experiments, λ is set to 1e4. 
 
A. Synthetic Data 
 
     For synthetic data, we generate a random sequence 
contaminated by the PLI (60Hz). Consider 
yn=2cos(ωcn)+cos(ω0n+Π/6)+rn as noisy observations. Here, 
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Fig 3. The performance of the proposed notch filter for removing the PLI from 
synthetic data. (a) The temporal templates of noisy, original, and estimated 
signals. (b) The PSD of noisy, original, and estimated signals. (c)  The MSE 
between the original and estimated signals for different SNRs. 

 
ω0 corresponds to 10Hz, rn is a white rn zero-mean Gaussian 
sequence with variance 0.25, and fs=256Hz. Fig.3 shows the 
performance of the proposed notch filter for removing PLI from 
synthetic data. In Fig.3a the signals in time domain are shown. 
As it can be seen, the PLI is effectively canceled and there is no 
phase difference between the noiseless (original) and filtered 
(estimated) signals, and the estimated signal is very close to its 
original version. The PSD of the signals can be found in Fig.3b. 
There is a pick at 60Hz in the PSD of the noisy observations, 
however, this pick is significantly mitigated for filtered data. 
One may consider that the PSD of the original signal is slightly 
higher than the filtered signal at the PLI frequency. This is due 
to the existence of some 60Hz components in rn which are 
removed from the estimated sequence. Fig.3c represents the 
MSE between the desired signal and filtered signal in different 
SNRs. It can be seen that even in very low SNR situations, the 
MSE is very small. However, by increasing the SNR the MSE 
is decreased, as expected. 
 
B. ECG Data 
     Here, a sequence of normal ECG is employed to assess the 
performance of the proposed notch filter. The original ECG 
signal is obtained from a publicly available dataset [22], and it 
is demeaned and normalized. Then, this template is 
contaminated by a synthetic PLI to generate noisy observations 
suppressed for the filtered signal. Note that, in the PSD of the 
original signal, there is a small pick at 60Hz which can be 
related to an unsuppressed PLI. However, in the PSD of the  

 
Fig 4. The performance of the proposed notch filter for removing the PLI from 
a real ECG sequence (sampled at 360Hz). (a) The temporal templates of noisy, 
original, and estimated signals. (b) The PSD of noisy, original, and estimated 
signals. (c) The MSE between the original and estimated signals for different 
SNRs. 

estimated signal, this pick is significantly mitigated. Fig.4c 
shows the MSE between the desired signal and filtered signal 
in different SNRs. Here again, it can be seen that the MSE is 
very small, and by increasing the SNR the MSE is decreased. 
 
C. EEG Data 
     To investigate the performance of our proposed method for 
PLI cancelation from EEG data, here, an EEG signal from a 
publicly available dataset [23] is used. This signal is demeaned 
and normalized to obtain the original signal, then, it is 
contaminated by a synthetic PLI to generate noisy observations. 
Fig.5 shows the results for EEG data filtering. 
Same as the two former cases, the PLI is effectively suppressed 
and there is no time delay between the original and estimated 
signals (Fig.5a). Fig.5b represents the PSD plots. It can be seen 
that the noise pick at 60Hz is effectively attenuated for the 
filtered signal. Same as the ECG data, in the PSD of the original 
EEG signal, there is a small pick at 60Hz which can be related 
to an unsuppressed PLI. However, in the PSD of the estimated 
signal, this pick is mitigated. The MSE between the desired 
signal and filtered signal in different SNRs is presented in 
Fig.5c. Same as before, it can be seen that the MSE is very 
small, and by increasing the SNR it is decreased even more. 
 

V. DISCUSSION AND CONCLUSION 
     In this study, a powerful notch filter is presented which can 
effectively remove the power-line interference from different 
biomedical recordings. This filter has unit gain and zero-phase 
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Fig 5. The performance of the proposed notch filter for removing the 
PLI from a real EEG sequence (sampled at 240Hz). (a) The temporal 
templates of noisy, original, and estimated signals. (b) The PSD of 
noisy, original, and estimated signals. (c) The MSE between the 
original and estimated signals for different SNRs. 

  
in response to different frequencies. The Q-factor of the filter 
can be simply altered (by modifying the λ value) while its 
amplitude and phase response properties are preserved. This is 
important since designing high Q-factor notch filters is difficult, 
and their frequency response may be unstable. For example, in 
[13], a feedback scheme has been used to implement a high-
quality filter, however, the filter does not have unit gain and 
constant phase response. 
     Note that, as mentioned, the proposed notch filter is zero-
phase. No zero-phase filter can be causal and stable together, 
and one of them should be dropped. Hence, this filter is stable 
but non-causal. That is why Sameni [24] proposed a block-wise 
matrix formulation for online implementations. 
     The proposed filter can be implemented adaptively to accord 
with the SNR. A popular method for achieving adaptive notch 
filters is through Kalman filtering. Many studies have used the 
Kalman filter or its extensions to track the PLI [15], however, 
they usually require the phase and amplitude information. This 
is not desirable as these parameters are not fixed in different 
situations. In comparison, our method doesn’t need the 
amplitude or phase of the PLI, thanks to a recursive dynamic 
model based on the intrinsic property of the sinusoid series. 
Another point that should be noted is that the Kalman filter 
requires a good estimation of initial states and also white noises 
for observation and dynamic models to perform accurately. 

This may be limiting even using a Kalman notch filter which 
doesn’t need the amplitude and phase information [16]. In our 
study, this is solved by employing a constrained LSE 
estimation, instead. This method tries to minimize the square 
error of the dynamic and measurement models simultaneously. 
The performance of the proposed filter is assessed using 
synthetic data and real biomedical signals in different noise 
levels. It is demonstrated that the PLI is effectively suppressed 
in all cases.  
     In this study, no dynamic model is assumed for biomedical 
signals. Assuming a dynamic model for the non-PLI part of the 
observations may improve the purposed method and should be 
studied in future work. 
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