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Abstract

In the field of distributed computing by robot swarms, the research comprehends manifold
models where robots operate in the Euclidean plane through a sequence of look-compute-move
cycles. Models under study differ for (i) the possibility of storing constant-size information,
(ii) the possibility of communicating constant-size information, and (iii) the synchroniza-
tion mode. By varying features (i,ii), we obtain the noted four base models: OBLOT
(silent and oblivious robots), FST A (silent and finite-state robots), FCOM (oblivious and
finite-communication robots), and LUMI (finite-state and finite-communication robots).
Combining each base model with the three main synchronization modes (fully synchronous,
semi-synchronous, and asynchronous), we obtain the well-known 12 models. Extensive re-
search has studied their computational power, proving the hierarchical relations between
different models. However, only transparent robots have been considered.

In this work, we study the taxonomy of the 12 models considering collision-intolerant
opaque robots. We present six witness problems that prove the majority of the computational
relations between the 12 models. In particular, the last witness problem depicts a peculiar
issue occurring in the case of obstructed visibility and asynchrony.

Keywords— Mobile robots, Look-Compute-Move, Computational complexity, Opaque robots, Dis-
tributed Computing, Obstructed visibility, Collision intolerance

1 Introduction

In the far-ranging field of distributed computing, a significant area concerns computing by mobile enti-
ties [15, 16], where tasks are required to be solved by multiple simple and limited entities (also called
robots) that can move in the environment. In this realm, manifold theoretical models have been intro-
duced to formalize realistic scenarios (e.g. sensor or drone swarms, dynamic networks, software agents).
One of the most studied is the look-compute-move model [15, 16], where robots, once activated, execute a
cycle of three steps: they look at the environment, they compute the next position executing a distributed
algorithm, and they move to the computed position.

Under the umbrella of the look-compute-move macro-model, a vast combination of models has been
proposed to formalize different robot capabilities and to study how model settings affect its computational
power. In this respect, robots are assumed to possess very limited and restricted features, in order to
find the minimal sets of capabilities which are required to achieve a given task. Accordingly, robots are
assumed to be autonomous, indistinguishable, anonymous, and homogeneous : namely, they act without
any central control, they cannot distinguish themselves by external appearance or by ids, they possess
the same features, they execute the same algorithm in a decentralized way. Moreover, most of the
literature considers punctiform robots which cannot communicate with other robots (silent), without
any persistent memory (oblivious), without any agreement on a global coordinate system, or chirality,
or a unit measure (disoriented). Besides robot capabilities, different model environments have been
proposed to study diverse scenarios. The existing models can be mainly divided into two groups: the
models where robots act on the Euclidean plane [1, 13, 17, 22], and the models where robots act on
discrete spaces (generally graphs, rings, or lattices) [7, 8, 11, 23]. According to the synchronization
mode, robots may be synchronized (time is globally divided into rounds) or not. Specifically, literature
proposes three main modes: the fully synchronous mode (FULLY), where all robots execute each step of
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the look-compute-move cycle synchronously in one round, the semi-synchronous mode (SEMI), where at
each round a random subset of robots act synchronously, and the asynchronous mode (ASYNCH), where
robots act without any synchronization assumption.

The traditional problems studied for swarms of mobile entities include Pattern Formation [1, 12,
13, 17, 25, 28, 29, 30], Gathering [5, 7, 11, 14, 21], Scattering [20, 24], Flocking [4]. A common goal
of the algorithmic investigation is to reduce the model capabilities required to solve a given problem
or to prove the impossibility of solving it under a certain set of capabilities. This approach has led
to describing the computational power of a given model (i.e. the set of problems it can solve) and
outlining the hierarchical relations (dominance, equivalence, or orthogonality) among different models.
In the last decade, multiple works [2, 6, 8, 9, 10, 18] have inspected and compared the computational
power of different models which differ in robot features and synchronization mode. According to the robot
features, they have investigated how the communication and storage capabilities affect the computational
power of the robots. Starting from the classical model where robots are both oblivious and silent (i.e.
without any means of storage or communication), researchers have investigated how the possession of a
persistent memory or communication means changes the power of such models. To characterize these
extra properties, they proposed to add a constant-size light to each robot which can assume a color chosen
among a constant and fixed set of colors. Such light is persistent (so the color is maintained until the
next update), it can be updated at the beginning of a move step, and it can be internally or externally
visible. Specifically, the literature focuses on four classes of robots: the OBLOT class, where robots are
assumed to be oblivious and silent, the FST A class, where each robot is embedded with an internal light
(visible just to the robot, thus providing a persistent memory), the FCOM class, where each robot is
embedded with an external light (visible just to the other robots, thus providing communication means),
and the LUMI class, where each robot is embedded with an external and internal light. According to the
synchronization mode, each class has been studied under the three settings: FULLY, SEMI, and ASYNCH.

Besides some trivial relations between a pair of models that only differ because the first one enjoys
a capability that the second one lacks, other model relations may not be obvious to identify. This is
especially true for models characterized by completely different capabilities, so it may be difficult to un-
derstand which combination of capabilities is more powerful. In these cases, the literature has attempted
to illustrate some simulators to prove the equivalence between models, or some witness problems to prove
their strict dominance or orthogonality. Specifically, in [2, 6, 18, 19], the authors study the computational
power of transparent robots that can move on the Euclidean plane, assuming multiple robots can occupy
the same positions (multiplicity). In [8, 9, 10], the authors make the same effort but for robots acting on
graphs. In [3], the authors consider energy-constraint robots, i.e. robots that necessitate an idle round
to restore the needed energy to perform a new cycle.

Related works and our contributions. Our work is inspired by the papers [2, 6, 18, 19]
where the authors exhibit the complete taxonomy of the 12 models of robots that can freely move on the
Euclidean plane. Such models vary for the synchronization mode and for the possibility to memorize and
communicate. However they are assumed to be transparent, thus always guaranteeing complete visibility
for the swarm, and collision-tolerant, thus allowing robots to occupy the same position at the same time.

In this paper, we investigate the computational power of opaque robots, i.e. robots that cannot
see beyond a collinear robot. Opaqueness introduces a remarkable difficulty in the design of correct
algorithms to solve some classical problems [1, 12, 13]. In fact, the obstructed visibility leads to critical
issues to be addressed in the algorithmic strategies: robots may not be aware of the cardinality of the
swarm, robots may not be aware if there are some moving robots in the ASYNCH mode, robots may not
know the complete topology of the current configuration, robots may compute the next action based
on partial information. As a matter of fact, ad hoc techniques are needed to cope with this visibility
limitation [26, 27].

Besides the opaqueness feature, our model differs from [2, 6, 18, 19] since robots do not tolerate
collisions (so we drop the multiplicity assumption). The reason behind this choice is twofold, and it is
coherent with the related literature [1, 12, 13, 26, 27]. Firstly, assuming collision intolerance leads to
the formalization and analysis of more realistic models, as does assuming robot opaqueness. Secondly,
dropping the multiplicity assumption is coherent with the hypothesis of obstructed visibility in the case
of collinearity. As a matter of fact, a multiplicity of two robots forms a “degenerate” collinearity with any
other robot of the swarm, for which it would be unnatural to state the visibility relation in this special
case. In this respect, some witness problems introduced in [2, 19] cannot be applied under our model,
which needs a new study with specific witness problems.

In the first part of this work, we expose a preliminary study of the relations between transparent
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and opaque models. Intuitively, a transparent model seems to computationally dominate the same model
but with opaque robots. In Section 3 we formally prove this strict dominance: endowing a model with
transparency increases its computational power, allowing it to solve more problems. As a consequence,
this result highlights that constant-size (internal or external) lights are not always sufficient to compensate
for robot obstructed visibility.

In the second part of this work (Section 4), we present six witness problems showing the majority
of the hierarchical relations among models of collision-intolerant opaque robots, thus providing a first
overview of their computational taxonomy. For the sake of space, all relations proved in this work will be
compactly shown in the theorems in Section 4 (i.e. without splitting them in multiple corollaries). See
Appendix A for the proofs of such theorems.

2 Preliminaries

2.1 Models

This work compares 12 robot models that differ in some features. We here introduce in detail all the core
features that such models share, and the variable features under study.

Core features. We investigate swarms of autonomous computational mobile robots, which act
in the Euclidean plane R2. Robots are indistinguishable (they cannot be distinguished by external
appearance), anonymous (they are not provided with any id), homogeneous (they execute the same
algorithm), and punctiform entities. We consider opaque robots so that in the case of three collinear
robots p, q, r, the endpoint robots p, r cannot see each other. We assume robots are in the worst condition
about orientation: they are completely disoriented so that they do not share a global common coordinate
system (i.e. no agreement on origin, axis direction, chirality, or unit distance). Moreover, we assume
that the local coordinate system of any robot may change from one activation to another (variable
disorientation).

All the robots in the swarm are provided with the same deterministic algorithm, which is executed
every time the robot is activated. At each time, a robot can be either idle or active, according to the
scheduler. When activated, a robot executes a Look-Compute-Move cycle: it takes the snapshot of its
visible area (look), it executes the algorithm using the sole snapshot as input (compute), and it travels
straight towards the computed destination (move). If the destination position is equal to the current one,
the robot is said to perform a null movement. After the move step, the robot becomes idle again. We
consider rigid models, i.e. no adversary can stop the motion of a robot1.

We deal with a collision-intolerant model meaning that it does not tolerate either multiplicity (i.e.
no robot can occupy the same location as another robot at the same time) or overlapping trajectories
(robots r and s have overlapping trajectories if (i) r is moving from a to a′, (ii) s is moving from b to b′,
and (iii) the segments āa′ and b̄b′ have points in common). We refer to both multiplicity and overlapping
trajectories as collisions.

Variable features. Regarding the memory and communication features of robots, we consider
the four models mainly proposed in the literature. In the OBLOT model, robots are assumed to be
oblivious (i.e. they do not have any persistent memory to store data about past cycles) and silent (i.e.
they do not have any means to communicate with other robots). In the FST Amodel, robots are provided
with a persistent internal light which can assume a color chosen from a constant-size set. Such internal
light plays the role of a constant-size persistent memory. In the FCOM model, robots are equipped with
a persistent external light visible only to other robots, which can assume a color chosen in a constant-size
set of colors. Indeed, external lights can be exploited by the swarm to communicate some messages to
the visible robots. Lastly, the LUMI model gather the features of both FST A and FCOM. This model
assumes luminous robots, which are equipped with a light that can be colored using a constant-size set
of colors. Such light is both visible to the robot itself (working as an internal state) and visible to the
other robots (working as an external communication means).

Regarding the activation and synchronization of robots, we consider the three modes mainly studied
in the literature. In the fully synchronous mode (FULLY), time is split into atomic rounds, within which all
robots are activated together and execute their look-compute-move steps completely synchronously. The

1In [2, 6, 18, 19], the authors consider both rigid and non-rigid models. In the next model comparisons
(transparent vs opaque), we consider only rigid models.
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semi-synchronous mode (SEMI) differs from FULLY just for the fact that at each round a random subset
of the swarm is activated. In the asynchronous mode (ASYNCH), every robot is activated independently
from the others, and every cycle step lasts a finite but unpredictable amount of time. For the SEMI

and ASYNCH modes, robots do not know which are the activated robots at each instant. Moreover, we
always assume the fairness condition: for each time t and for each robot r, there exists a time t′ > t
such that r is activated. This condition allows us to compute time complexity considering the number of
epochs, where an epoch is a minimal time frame within which each robot is activated at least once. The
selection of the subset of robots activated at every time is made by an adversarial scheduler. Formally,
let R = {r1, . . . , rn} be a swarm of n robots, and let T be a time domain which could be discrete N≥0

(in FULLY and SEMI) or continuous R≥0 (in ASYNCH). An activation scheduling is a function S : T → 2R

defining the subset of the swarm that is activated at a specific time.

Notation. We use the notationX
Y
to indicate a model for opaque robots that possess all the above

core features and that has X as communication-storage setting and Y as synchronization mode, where
X ∈ {OBLOT ,FST A,FCOM,LUMI} and Y ∈ {F, S, A} (FULLY, SEMI, ASYNCH, resp.). Consistently

with the notation used in [2, 6, 18, 19], we indicate with XY the same model as X
Y

but considering
transparent robots which tolerate collisions. We refer to these two classes of models as the opaque and
transparent framework.

2.2 Problems

Robot swarms are distributed systems that are aimed at solving problems. Since in these models robots
can just move in the plane, the literature studies problems requiring a swarm to form (a sequence of)
geometric patterns, and/or to travel along specific trajectories. Formally, let us assume a swarm of
n robots R = {r1, . . . , rn} on the Euclidean plane. When no ambiguity arises, we indicate with ri both
the robot and the point on the plane where ri is located. Given an absolute coordinate system Z on R

2,
we define the configuration of the swarm at time t as the set Ct = {(x1, l1), . . . , (xn, ln)} where xi ∈ R2

is the position of ri according to Z, and li is the light color of ri, at time t. In the OBLOT model, we
always assume li = off for every ri ∈ R. A configuration is valid if no collision occurs on it. We define
C as the set of all the valid configurations for R. We say that a configuration C guarantees complete
visibility if there are no collinearities among robots.

A problem P for a swarm of robots is defined2 as a sequence (φ0, τ0, φ1, τ1, . . . , φm, τm . . . ) where
each φi is a condition on the configuration of the swarm, and where τi is a condition on the intermediate
configurations that the swarm is allowed to assume to reach a new configuration for which φi+1 holds.
We call such sequence the request of the problem P . The initial condition φ0 must include the clause
stating that li = off for every ri ∈ R. Except for this clause, since P might be solved without lights and
under any synchronization mode, φi, τi must not impose any conditions on light colors or the number of
cycles, for each i.

Starting from an initial configuration C0 for which φ0 is true, P is said to be solved under a scheduling
mode if, for each scheduling under the given mode, there exists an algorithm A through which the swarm
forms a sequence of configurations (C1, . . . , Cm, . . . ) such that φi holds in Ci for each i ≥ 1, and such
that τi−1 holds during the formation of Ci starting from Ci−1. If the request of the problem is finite,
the last condition τm requires the swarm to stay still after having satisfied the last condition φm of the
request.

Given an initial configuration C0, a scheduling on a time domain T and an algorithm A solving P ,
we define the sequence {C(t)}t∈T as the evolution of A, where C(t) is the configuration reached at time
t executing A according to the scheduling.

2.3 Computational Relations

Given a model M , we indicate with P (M) the set of problems solved under M , i.e. the computational
power of M . Given two models M1,M2, we define the following relations:

• M1 is computationally not less powerful than M2, formally M1 ≥ M2, if P (M1) ⊇ P (M2), i.e any
problem solvable in M2 is solvable in M1;

2For our purposes.
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• M1 is computationally more powerful than M2, formally M1 > M2, if P (M1) ⊃ P (M2), i.e any
problem solvable in M2 is solvable in M1 and there exists a problem solvable in M1 that is not
solvable in M2;

• M1 is computationally orthogonal to M2, formally M1 ⊥ M2, if P (M1) \ P (M2) 6= ∅ and P (M2) \
P (M1) 6= ∅, i.e there exists a problem solvable in M1 (M2, resp.) that is not solvable in M2 (M1,
resp.);

• M1 is computationally equivalent to M2, formally M1 ≡ M2, if P (M1) = P (M2), i.e M1 and M2

solve the same set of problems.

The following relations trivially follow from the definitions of the models:

LUMIY ≥ FST AY ≥ OBLOT Y and LUMIY ≥ FCOMY ≥ OBLOT Y

XF ≥ XS ≥ XA

where Y ∈ {F, S, A} and X ∈ {OBLOT ,FST A,FCOM,LUMI}. Indeed, the same relations hold in
the opaque framework.

3 Transparent vs opaque robots

Theorem 1. Let P be a problem solved in X
Y
. Then P is solved under XY .

Proof. Let A be an algorithm solving P under X
Y
. We can easily construct an algorithm A solving P

under XY . Given a robot r and given in input its snapshot σ of all the robots, A computes A(σ) := A(σ)
where σ is the snapshot obtained by σ removing all the robots which would be hidden from r in case of
opaqueness. A perfectly simulates A, thus correctly solving P for transparent robots.

Corollary 1. For each Y ∈ {F, S, A} and X ∈ {OBLOT ,FST A,FCOM,LUMI},

X
Y
≤ XY .

Problem 1 (Line-Stretch). Let us consider an initial configuration where n > 3 robots are equally
spaced along the same line, say γ. Let d be the distance between two adjacent robots. The problem asks
the endpoint robots to move away from their adjacent robot and stop in order to form a new distance
d+ d

n
with them. They are allowed to travel only along γ. The other robots must stay still. See Figure 1.

γ

Figure 1: Line-Stretch.

Lemma 1. Line-Stretch is solved under OBLOT A.

Proof. The problem is solved under the weakest model of the transparent framework. In fact, the endpoint
robots can compute and head to their destination since they can count all the robots and at least two
internal robots fix d. The final configuration is stable.

Lemma 2. Line-Stretch cannot be solved under LUMI
F

.

Proof. The problem cannot be solved under the strongest model of the opaque framework. Since the
n robots are always collinear by request, they cannot count themselves and so the endpoint robots will
never accomplish the task. Moreover, lights would be inefficient for keeping a swarm counter, due to their
constant size.

Theorem 2. For each Y ∈ {F, S, A} and X ∈ {OBLOT ,FST A,FCOM,LUMI},

X
Y
< XY .
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Proof. The result derives by combining Corollary 1 with Lemma 1 and Lemma 2. In fact, it holds that

Line-Stretch ∈ P
(

XY
)

whereas Line-Stretch /∈ P
(

X
Y
)

for any X,Y .

Theorem 3. Let P be a problem solved by an algorithm A under XY always avoiding collisions, such
that P is defined for a swarm with fixed cardinality, say k. If, given any evolution of A, every robot can

see k robots, then the problem can be solved even in X
Y
.

Proof. Since at any activation, each robot is aware it sees the whole swarm, it can compute its next action
by executing A. This computation results in the solution of the problem considering opaque robots.

4 Taxonomy of opaque models

We present our witness problems to prove some strict dominance (>) and orthogonality (⊥) relations
among opaque models. Thanks to Theorem 1 and Theorem 3, one of the witness problems presented
in [2] can be used to prove some hierarchical relations to hold in our opaque framework too. However,
other witness problems in [2, 19] are not compliant with our collision-intolerant models; thus, we present
specific problems that fit our assumptions.

4.1 Weakness of OBLOT

Problem 2 (Triangle Round-Trip). Let C be a configuration where 3 robots are placed so that two of
them lay on the vertices of an equilateral triangle (let a be the empty vertex), while the third robot lays
on the triangle center. From C, the robot in the center has to move to a, forming the new configuration
C′. Then, robots have to form C again, where a is again the empty vertex. See Table 1.

a a a

C C ′ C

Table 1: Configurations in Triangle Round-Trip.

Triangle Round-Trip is a sub-case of the problem N-gon Round-Trip defined in [2] (see Defini-
tion 1).

Lemma 3. Triangle Round-Trip /∈ P
(

OBLOT
F
)

.

Proof. The problem has been shown to not belong to OBLOT F (see Lemma 3 in [2]). In fact, using
oblivious and silent robots, there is no way to identify the former empty vertex a due to the full symmetry
of C′. By the contrapositive of Theorem 1, the result holds.

Lemma 4. Triangle Round-Trip ∈
(

P
(

FST A
A
)

∩ P
(

FCOM
A
))

.

Proof. The problem has been shown to be solved in FST AA and FCOMA (see Lemma 4-5 in [2]). Since in
this version of the problem the cardinality of the swarm is fixed and the robots never create collinearities

or collisions, we can apply Theorem 3 to state that Triangle Round-Trip can be solved both in FST A
A

and FCOM
A

.

Theorem 4. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

FST A
Yi

> OBLOT
{Yj}j≥i

FCOM
Yi

> OBLOT
{Yj}j≥i

LUMI
Yi

> OBLOT
{Yj}j≥i

.
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4.2 Orthogonality between FST A and FCOM

Problem 3 (Flip-Flop-Flip). Let p, q and r be three robots forming a strictly isosceles triangle so
that dist(p, r) = dist(q, r). Let γ be the perpendicular bisector to the line segment p̄q passing through
the point b ∈ p̄q. Let γ′ (γ′′, resp.) be the semi-line of γ starting from b and which contains (does not
contain, resp.) r. The problem requires r to perpetually perform three subsequent actions (see Table 2),
in an infinite loop: (i) r must reach a point on γ′′ \ {b}; (ii) r must reach a different point on γ′′ in order
to move away from p, q; (iii) r must reach a point on γ′ \ {b}. The problem requires r to never leave γ
and to never stop so that p, q, r form an equilateral triangle. Robots p, q must stay still.

γ ′γ ′′
r

p

q

γ ′γ ′′
r
p

q

γ ′γ ′′
r

p

q

First Flip Flop Second Flip

Table 2: Configurations in Flip-Flop-Flip.

Lemma 5. Flip-Flop-Flip ∈
(

P
(

FST A
A
)

∩ P
(

FCOM
F
))

.

Proof. We solve the problem in these two models using three colors (flip1, flop and flip2), assuming w.l.o.g.
all robots start with the color flip1. The problem request guarantees that each robot can recognize its role

by geometric conditions. In FST A
A

, r moves along γ changing its internal color following the perpetual
scheme (flip1 − flop − flip2)∞, so that at each activation, r knows which is the current action to be

performed. The robots p, q do not need to change their colors. In the FCOM
F

model, all the robots
synchronously update their external colors following the above scheme, so that at each round each robot
knows what actions (color setting and move step) have to be accomplished.

Lemma 6. Flip-Flop-Flip /∈
(

P
(

OBLOT
F
)

∪ P
(

FCOM
S
))

.

Proof. Flip-Flop-Flip cannot be solved under an OBLOT model since r would not have any means
to understand which movement it has to perform. Indeed, any strategy encoding the action of r into the
distances with p, q fails. Suppose for example to use u = dist(p, q) as a fixed measure unit, and let k, h be
two fixed values, with 0 < k < h. Suppose the algorithm implements this strategy: if dist(p, r) < ku, then
r must execute the first flip, traveling to a position r′ ∈ γ′′ such that ku ≤ dist(p, r′) < hu. Otherwise, if
ku ≤ dist(p, r) < hu, then r must execute the flop, moving to a position r′ ∈ γ′′ such that dist(p, r′) ≥ hu.
Lastly, if dist(p, r) ≥ hu, then r must execute the second flip, moving to a position r′ ∈ γ′ such that
dist(p, r′) < ku. Yet, since r could be placed at any position on γ′ in the initial configuration, any
distance encoding results inefficient for the solution of the problem.

Flip-Flop-Flip cannot be solved under the FCOM
S

model too. By contradiction, suppose that the
problem is solved by a certain algorithm A. Let S be a SEMI activation scheduling under which A solves
the problem. We show that there exists a SEMI activation scheduling S′ such that Flip-Flop-Flip is not
solved by A. Let t be the first round in S where r executes the first flip. Let S′ be a scheduling such that
S′(t′) = S(t′), ∀t′ ≤ t. Clearly, r executes its first flip at the t-th round under S′. Suppose that, in the
(t+1)-th activation round under S′, r is the only one that gets activated, namely S′(t+1) = {r}. Yet, r
has no memory of the previous activation rounds. As a consequence, r makes again a flip. Contradiction.

Theorem 5.

LUMI
A

> FCOM
A

LUMI
S

> FCOM
S,A

LUMI
F

> FCOM
S,A

FCOM
F

> FCOM
S,A

.
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Problem 4 (Newcomer Introducing). Consider n + 2 robots, with n ≥ 7. Let n robots be placed on
the same circle whose ray length is ρ. Let c be a robot lying in the center of the circle. Let s be a robot
external to the circle so that s can see c. The problem requires sequentially forming two configurations.
First, s must travel along the line s̄c and stop on the boundary of the circle. Second, c must travel along
the radius defined by s and stop in a position c′ so that dist(s, c′) = 1

2
ρ. All the other robots must stay

still. See Table 3.

c
s

c
s

c
s

First Configuration (a) Second Configuration (b) Third Configuration (c)

Table 3: Configurations in Newcomer Introducing.

Lemma 7. Newcomer Introducing /∈ P
(

FST A
F
)

.

Proof. The impossibility of solving the problem with just internal lights derives from the fact that starting
from the second configuration (see Table 3.b) c has no way to recognize which robot is s. Since s can
be anywhere in the disposition of the n + 1 robots on the circle, a constant set of colors would not be
sufficient to store robot indices.

Lemma 8. Newcomer Introducing ∈ P
(

FCOM
A
)

.

Proof. We show a possible FCOM
A

algorithm solving Newcomer Introducing with two colors: off and
s. All the robots are initially set to color off. Each robot can determine its role by the geometry of the
configurations (c sees n ≥ 7 robots equidistant from itself and an external robot, s sees at least four
robots forming a circle with a robot on its center, while the other robots can see they lay on a circle with
at least other n− 2 ≥ 5 robots). When s is activated, it sets its light to s and starts to move. This color
is maintained also in its next activations. When c is activated, if it sees a robot s on the circle, it can
compute its destination correctly. The last configuration is stable: no other robot will move.

Theorem 6. Given the schedulers Y1 = F, Y2 = S, Y3 = A,

LUMI
Yi

> FST A
{Yj}j≥i

.

Theorem 7.

FST A
F,S,A

⊥ FCOM
S,A

.

4.3 Power of FULLY

Problem 5 (Spinning). The problem is defined recursively, without any stop conditions. Consider a
configuration C where n ≥ 5 robots {r0, . . . , rn−1} are located on a circle centered in O. Let a0, . . . , an−1

be the related positions of the robots such that it is possible to establish a global clockwise direction
(e.g. the one going from a0 to a2, passing through a1). Let α be the angle a0Ôa1, which is the minimum
angle in {aiÔai+1}0≤i≤n−1. The problem requires the given configuration to form a new configuration
C′ by rotating each ri from ai to a′i of an angle α

2
, following the agreed clockwise direction. Robots are

required only stop on the target points lying on the circumference. Recursively, the problem demands
the same request starting from C′. See Table 4.

Lemma 9. Spinning ∈
(

P
(

OBLOT
F
)

∩ P
(

LUMI
A
))

.
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α
a0

a1

a2
a3

a4

a5

α a′0

a′1

a′2a′3

a′4

a′5

Table 4: Configurations in Spinning.

Proof. The problem is solvable in OBLOT
F

: each robot always has complete visibility of the swarm, so
it is able to determine the rotation center and the rotation angle. The FULLY mode guarantees that all
the robots agree on the same rotation-angle, at each round.

The problem is solvable under LUMI
A

, by using these colors: off, a0, a1, moving0, moving1, m0, m1,

moving, moved, end. The algorithm solving the problem executes the same sub-routine perpetually. This
sub-routine implements a complete circle rotation of the swarm. At the beginning of each circle rotation,
all robots are off. In the first epoch, the robots r0 and r1 set their lights as a0 and a1, respectively. After
this setting, robot a0 (a1, resp.) computes its destination position, sets its light to moving0 (moving1,
resp.) and starts moving. If a robot r, which is not moving0 or moving1 colored, sees a moving0 or
moving1 robot, r does nothing. When a moving0 (moving1, resp.) robot is activated, it just updates its
light to m0 (m1, resp.). Once the rotation angle through m0 and m1 has been fixed, the other robots can
start their rotation. If an off robot r sees both m0 and m1 on the circle, it sets its light as moving and
starts its rotation. When a moving robot is activated, it sets its light to moved. When a robot sees only
m0, m1, moved, or end robots, then it updates its color to end. In the last phase of the sub-routine, if
an end robot can see only end or off robots, it resets its color to off. Once all robots are off, the circle
rotation is ready to restart.

Lemma 10. Spinning /∈
(

P
(

FST A
S
)

∪ P
(

FCOM
S
))

.

Proof. Spinning is not solvable under FST A
S

since an activated robot r cannot know what movements
other robots have already made, thus it cannot determine the rotation-angle.

Spinning is not even solvable under model FCOM
S

. Suppose that, by contradiction, there exists an
algorithm A solving Spinning. In particular, the problem is solved under an activation scheduler S. Let
r0 be the robot in position a0. Let t1 be the activation time, under S, of the first round during which r0
performs a non-null movement. Let S′ be another scheduling, such that

S′(t) := S(t) ∀t < t1 and S′(t1) = S′(t1 + 1) := {r0}

If A is executed under S′, then the execution is the same as S until time t1 − 1. At time t1, robot r0
behaves in the same way as it did under scheduling S but, as no other robot has been activated, then
there is no way to keep track of the fact that r0 has already moved. At time t1 + 1 robot r0 is activated
again but it cannot understand from geometric conditions that it must stay still. Contradiction.

Theorem 8.

OBLOT
F

> OBLOT
S,A

FST A
F

> FST A
S,A

FCOM
F

> FCOM
S,A

OBLOT
F

⊥ FCOM
S,A

OBLOT
F

⊥ FST A
S,A

.
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α

a b

c

a b

c

a

b

c

Initial configuration. Required movements. Final configuration.

Table 5: Angle-Shift.

Problem 6 (Angle-Shift). Consider an initial configuration with three robots forming an acute and
scalene triangle. Let a, b, c be the three robots, where a is placed on the greatest angle, say α, whereas
c is placed on the smallest angle. Fixing a as the rotation center and following the direction given by
a, b, c, the problem requires b to rotate of α and c to rotate of π − α. The robots are not allowed to stop
anywhere else on the plane. Afterwards, the robots must stay still. See Table 5.

Lemma 11. Angle-Shift ∈
(

P
(

OBLOT
F
)

\ P
(

LUMI
S
))

.

Proof. Angle-Shift is solvable under any FULLY model: if b and c perform their cycles at the same time,
then they correctly compute their target position. The final configuration is stable since it always forms
an obtuse triangle (terminal condition).

Instead, the swarm can suffer from information loss in SEMI, making Angle-Shift unsolvable even

under LUMI
S

. In fact, suppose that in the initial configuration only b is activated. After b’s movement,
the three robots turn out to be collinear in the reached configuration. As a result, c has no means to
recompute α, whether c uses the geometry of the configuration or uses constant-size lights. The same
happens even if only c is activated.

Theorem 9.

LUMI
F

> LUMI
S,A

OBLOT
F

⊥ LUMI
S,A

FST A
F

⊥ LUMI
S,A

.

4.4 Opaqueness and asynchrony

We now introduce the Pseudo-Polygon problem which shows a peculiar issue occurring in case of ob-
structed visibility and asynchrony.

Definition 1. Given a regular n-gon N , for any n ≥ 4, a pseudo-polygon Q is a subset of vertices of N ,
such that |Q| ≥ n

2
+ 1. We call N the associated polygon with respect to Q.

Given a pseudo-polygon Q, it is always possible to determine the associated polygon, which is unique.
In fact, as Q contains at least three vertices, the circumscribed circle is univocally defined. Moreover,
since Q contains more than half of the vertices of the associated n-gon, there always exist at least two
vertices that are adjacent in N . So, it is always possible to univocally establish the associated polygon
from a pseudo-polygon.

Definition 2. A safe zone of a regular polygon is the locus of all points x in the plane such that:

• x is external to the regular polygon;
• x is not aligned with any of the two vertices of the associated polygon;
• x does not lie on the bisector of any edge of the associated polygon (equivalently, x is not equally

distanced from any two adjacent vertices);
• if ℓ is the length of the edge of the polygon, then the distance between x and any vertex of the

polygon is at least ℓ.

Figure 2 depicts the (complement of the) safe zone of a square.

10



Figure 2: The safe zone of the square comprehends all the points not belonging to the blue-
colored (infinite) lines and zones.

Problem 7 (Pseudo-Polygon). Let N be a regular n-gon with n ≥ 6 vertices. Let Q be a pseudo-
polygon of m ≥ n

2
+ 2 vertices, associated with N . Consider a swarm of m+ 1 robots, where m robots

lay on Q and let the last robot, w, lay in the safe zone of N . Let a be the farthest robot from w. Let
b, c be the first two found robots, starting from a and following both directions on the perimeter of the
associated polygon, one per each direction taken. Assume dist(b, w) > dist(c, w). The problem requires
a to move away from b towards a point x such that (i) x belongs to the safe zone of N , (ii) x belongs to
the halfplane delimited by the line b̄c that does not contain a, and (iii) x must not be on any line passing
by the position of w and any other robot on Q. Note that requests (i,iii) are imposed in order to have x
visible by every robot. See Figure 3.

c

ab

w

x

Figure 3: The Pseudo-Polygon problem associated with an octagon.

Lemma 12. Pseudo-Polygon /∈ P
(

FST A
A
)

.

Proof. Pseudo-Polygon cannot be solved in the ASYNCH mode, only using internal lights. Let us consider
the problem instance given by Figure 3 where the pseudo-polygon of the initial configuration is composed
of n

2
+ 3 vertices, with n = 8. Let us assume b is activated for the first time during the movement of a,

when a is hidden by c (i.e. b, c, a are collinear). When b looks at its snapshot, it recognizes a feasible
initial configuration (it sees a pseudo-polygon with n

2
+ 2 robots, and the robot w). According to this

configuration, b erroneously elects itself as the robot that has to move away from the pseudo-polygon.
It has no means to understand if a exists or not. On the other hand, a has no means to know if b has
updated its internal light to memorize it is not the elected robot to move.

False election. The impossibility of solving Pseudo-Polygon in the asynchronous modes with
just internal lights derives from a critical issue that is typical of swarms with obstructed visibility. This
critical issue can be described as the false election phenomenon. Such phenomenon can be informally
described as follows: from a stable configuration, the given problem requires the use of a leader election
routine to elect the unique robot (the true leader) which has to execute a non-null movement to reach
the next configuration. All the other robots have to stay still. In the ASYNCH mode, a robot r executes its

11



look step while the true leader is moving and is hidden from r. However, r cannot deduct the presence
of the true leader from its snapshot. So, applying the same leader election routine, r elects itself as the
(false) leader, thus starting an unrequested movement.

The false election phenomenon must be examined when trying to transpose a SEMI algorithm in the
ASYNCH mode. In particular, the use of lights must be considered as a possible method to avoid false
elections. As we have shown in Lemma 12 for Pseudo-Polygon, internal lights are not sufficient to cope
with them. Instead, the next lemma proves that external lights are required (and sufficient) to correctly
solve the Pseudo-Polygon problem in the ASYNCH mode.

Lemma 13. Pseudo-Polygon ∈
(

P
(

OBLOT
S
)

∩ P
(

FCOM
A
))

.

Proof. Pseudo-Polygon is solvable in OBLOT
S

(i.e. in any synchronous model), since complete visibility
is guaranteed at any activation time and all the movements (null and non-null) are univocally determined
by geometric conditions. In fact, each robot can determine Q, the watcher w, and the robot a (the
farthest from w). The robot a can compute its final destination and move there. If a robot is not the
farthest from the watcher, or if it sees two robots that are not part of the pseudo-polygon, then it stands
still.

Pseudo-Polygon needs at least external lights to be solvable in the ASYNCH mode. We show here an
algorithm that needs 4 colors: off (default), on, a, b. In the first epoch, every robot updates its color
according to its role: robot a turns into a, robot b turns into b, whereas the remainder turns into on.
Afterward, let r be an activated robot that sees no off robots and that notes there is only one robot (the
watcher) out of the pseudo-polygon. Let Vr be the set of colors r can see.

• if Vr = {a, b, on}, r turns into on and stays still;
• if Vr = {a, on}, r turns into b and stays still;
• if Vr = {b, on}, and if r is the farthest robot from w, it turns into a and starts moving;
• if Vr = {on}, it means r is b and stays still (robot a is hidden).

If a robot r sees two robots not belonging to the pseudo-polygon, then r does not move (the final
configuration is already formed or is about to be formed).

Theorem 10.

OBLOT
S

> OBLOT
A

FST A
S

> FST A
A

FST A
A

⊥ OBLOT
S

.

5 Relation map

Table 6 summarizes the results proved in this work, showing the relations (>, <, ⊥, and ≡) that hold
between the pairs of models in our opaque framework. The map shows also which of the six witness
problems (TRT for Triangle Round-Trip, FFF for Flip-Flop-Flip, NWC for Newcomer Introducing,
SPIN for Spinning, ASH for Angle-Shift, PSE for Pseudo-Polygon) have been used to prove such re-
lations. For some pairs of models (gray cells), the knowledge about what kind of relation holds is still

now incomplete. E.g. between FST A
F

and FCOM
F

two possible relations (< or ⊥) can exist: so
far we have built Newcomer Introducing as witness problem proving that Newcomer Introducing ∈
(

P
(

FCOM
F
)

\ P
(

FST A
F
))

. To prove the orthogonality relation, we should find a witness problem

B such that B ∈
(

P
(

FST A
F
)

\ P
(

FCOM
F
))

. Instead, to prove the strict dominance relation, we

should find that any problem in FST A
F

can be solved also under FCOM
F

.
For the pairs of models where the relation is unknown in the opaque framework, we have reported

the relation holding in the transparent framework in red.
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Table 6: Relation map.

� LUMI
F

FCOM
F

FST A
F

OBLOT
F

LUMI
S

FCOM
S

FST A
S

OBLOT
S

LUMI
A

FCOM
A

FST A
A

OBLOT
A <

TRT

<
TRT

<
TRT

<
SPIN

<
TRT

<
TRT

<
TRT

<
PSE

<
TRT

<
TRT

<
TRT

FST A
A <

NWC

< or ⊥, <
NWC,

<
SPIN

⊥
TRT, SPIN

<
NWC

⊥
NWC, FFF

<
PSE

⊥
PSE, TRT

<
NWC

⊥
NWC, FFF

FCOM
A <

FFF

<
FFF

⊥
FFF, NWC

⊥
NWC, SPIN

<
FFF

< or ≡, < ⊥
FFF, NWC

> or ⊥, ⊥
NWC,

<
FFF

LUMI
A <

ASH

< or ⊥, <
ASH,

⊥
ASH, NWC

⊥
ASH, TRT

< or ≡, ≡ > or ⊥, >
FFF,

> or ⊥, >
NWC,

> or ⊥, >
TRT,

OBLOT
S <

TRT

<
TRT

<
TRT

<
SPIN

<
TRT

<
TRT

<
TRT

FST A
S <

NWC

< or ⊥, <
NWC,

<
SPIN

⊥
TRT, SPIN

<
NWC

⊥
NWC, FFF

FCOM
S <

FFF

<
FFF

⊥
FFF, NWC

⊥
SPIN, NWC

<
FFF

LUMI
S <

ASH

< or ⊥, <
ASH,

⊥
ASH, NWC

⊥
ASH, TRT

OBLOT
F <

TRT

<
TRT

<
TRT

FST A
F <

NWC

< or ⊥, <
NWC,

FCOM
F < or ≡, ≡

6 Conclusions

We have investigated the computational power of the 12 models of collision-intolerant opaque robots,
thus presenting the taxonomy of the problems solved in such framework. We have taken inspiration from
[2, 6, 18, 19] where the authors provide the complete map of the relations held by the same 12 models
but considering collision-tolerant transparent robots.

Thus far, the relations proved here in our opaque framework are the same as in the corresponding
transparent framework. The natural question that arises from this observation is whether the relation
map of the opaque models is completely identical to the relation map of the transparent models. To
answer this question, future works should find the missing relations among the twelve opaque models
in order to obtain the complete hierarchy in the opaque framework. Among the others, it is worth

mentioning the yet unknown relation between LUMI
S

and LUMI
A

. In the transparent framework, the
two models have proved to be computationally equivalent [6] through the design of a simulator which,
with the help of extra light colors, simulates any SEMI algorithm in the ASYNCH mode. This simulator is
not adequate to prove the same relation considering opaque robots, precisely because of their obstructed
visibility. With the Pseudo-Polygon problem, we have presented the false election phenomenon whose
formalization and investigation will be preparatory to answer this interesting open question: is it possible

to simulate a LUMI
S

algorithm in the ASYNCH mode, thus proving that LUMI
S

and LUMI
A

are two
equivalent models also in the opaque framework? Are constant-size lights sufficient to always avoid the
phenomenon of false elections? In addition, it would be necessary to formalize and study all the critical
issues caused by obstructed visibility: such formalizations may be essential for the correct investigation
of the missing relations.
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A Proofs of theorems

The proofs of the following theorems hold combining the previously stated lemmas and by transitivity.

We use the compacted notation {X1, . . . , Xm}Y1,...,Yh to indicate all the models in {X
Yj

i }1≤i≤m
1≤j≤h

where

Xi ∈ {OBLOT ,FST A,FCOM,LUMI} and Yj ∈ {F, S, A}.

Theorem 4. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

FST A
Yi

> OBLOT
{Yj}j≥i

FCOM
Yi

> OBLOT
{Yj}j≥i

LUMI
Yi

> OBLOT
{Yj}j≥i

.

Proof. Triangle Round-Trip cannot be solved under OBLOT
F,S,A

(by Lemma 3) but it can be solved
under {FST A,FCOM,LUMI}A,S,F (by Lemma 4). Combining the results, we obtain that OBLOT is
strictly dominated by FST A and FCOM for a given synchronization mode Yi ∈ {F, S, A}. The other
strict dominances are derived by transitivity.

Theorem 5.

LUMI
A

> FCOM
A

LUMI
S

> FCOM
S,A

LUMI
F

> FCOM
S,A

FCOM
F

> FCOM
S,A

.

15



Proof. Flip-Flop-Flip is solved under FCOM
F

and LUMI
A,S,F

(by Lemma 5) but it cannot be solved

under FCOM
S,A

(by Lemma 6). Combining the results, the strict dominance relations follow.

Theorem 6. Given the schedulers Y1 = F, Y2 = S, Y3 = A, it holds

LUMI
Yi

> FST A
{Yj}j≥i

.

Proof. By Lemma 8, Newcomer Introducing is solved under LUMI
A,S,F

. By Lemma 7, Newcomer

Introducing cannot be solved under FST A
F,S,A

. Combining the results, the strict dominance relations
follow.

Theorem 7.

FST A
F,S,A

⊥ FCOM
S,A

.

Proof. By Lemma 5 and Lemma 6, Flip-Flop-Flip is solved in FST A
F,S,A

but not in FCOM
S,A

. By

Lemma 8 and Lemma 7, Newcomer Introducing is solved in FCOM
S,A

but not in FST A
F,S,A

. Combining
the results, the orthogonality relations follow.

Theorem 8.

OBLOT
F

> OBLOT
S,A

FST A
F

> FST A
S,A

FCOM
F

> FCOM
S,A

OBLOT
F

⊥ FCOM
S,A

OBLOT
F

⊥ FST A
S,A

.

Proof. The above relations hold combining the previous lemmas and by transitivity:

• the strict dominance of X
F

over X
S,A

derives from Lemma 9 and Lemma 10, for each X ∈
{OBLOT ,FST A,FCOM}. In fact, Spinning is solved in {OBLOT ,FST A,FCOM}F but it
is not solved in {OBLOT ,FST A,FCOM}S,A;

• the orthogonality between OBLOT
F

over FCOM
S,A

holds since Spinning is solved in OBLOT
F

but not in FCOM
S,A

, and since Newcomer Introducing is solved in FCOM
S,A

but not in OBLOT
F

(by Lemma 8, Lemma 7);

• the orthogonality between OBLOT
F

over FST A
S,A

holds since Spinning is solved in OBLOT
F

but not in FST A
S,A

, and since Triangle Round-Trip is solved in FST A
S,A

but not in OBLOT
F

(by Lemma 4, Lemma 3).

Theorem 9.

LUMI
F

> LUMI
S,A

OBLOT
F

⊥ LUMI
S,A

FST A
F

⊥ LUMI
S,A

.

Proof. The above relations hold combining the previous lemmas and by transitivity:

• the strict dominance of LUMI
F

over LUMI
S,A

straightforwardly derives from Lemma 11. In fact,

Angle-Shift is solved in LUMI
F

but it is not solved in LUMI
S,A

;

• the orthogonality between OBLOT
F

over LUMI
S,A

holds since Angle-Shift is solved in OBLOT
F

but not in LUMI
S,A

, and since Triangle Round-Trip is solved in LUMI
S,A

but not in OBLOT
F

(by Lemma 4, Lemma 3);

• the orthogonality between FST A
F

over LUMI
S,A

holds since Angle-Shift is solved in FST A
F

but not in LUMI
S,A

, and since Newcomer Introducing is solved in LUMI
S,A

but not in FST A
F

(by Lemma 8, Lemma 7).
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Theorem 10.

OBLOT
S

> OBLOT
A

FST A
S

> FST A
A

FST A
A

⊥ OBLOT
S

.

Proof. The above relations hold combining the previous lemmas and by transitivity:

• for each X ∈ {OBLOT ,FST A}, X
S

strictly dominates X
A

since Pseudo-Polygon can be solved

in X
S

but not in X
A

(by Lemma 13 and Lemma 12);

• the orthogonality between FST A
A

andOBLOT
S

holds since Pseudo-Polygon is solved inOBLOT
S

but not in FST A
A

, and since Triangle Round-Trip is solved in FST A
A

but not in OBLOT
S

(by
Lemma 4 and Lemma 3).
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